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Preface to the Second Edition

Fifteen years have passed since completion of the first edition of this book
and much has happened. Any attempt to do justice to the new develop-
ments would necessitate at least one new volume rather than a second
edition of the current one. Fortunately other authors have taken up the
challenge of describing these discoveries and our bibliography includes
references to a variety of new books that have appeared or are about to
appear. We consequently decided to keep the format of this book as a basic
reference for the operator algebraic approach to quantum statistical me-
chanics and concentrated on correcting, improving, and updating the
material of the first edition. This in itself has not been easy and changes
occur throughout the text. The major changes are a corrected presentation
of Bose-Einstein condensation in Theorem 5.2.30, insertion of a general
result on the absence of symmetry breaking in Theorem 5.3.33A, and an
extended description of the dynamics of the X—Y model in Example 6.2.14.
The discussion of phase transitions in specific models, in Sects. 6.2.6 and
6.2.7, has been expanded with the focus shifted from the classical Ising
model to genuine quantum situations such as the Heisenberg and X-Y
models. In addition the Notes and Remarks to various subsections have
been considerably augmented.

Since our interest in the subject of equilibrium states and models of
statistical mechanics has waned considerably in the last fifteen years it



VIII Preface to the Second Edition

would have been impossible to prepare this second edition without the
support and encouragement of many of our friends and colleagues. We are
particularly indebted to Charles Batty, Michiel van den Berg, Tom ter Elst,
Dai Evans, Mark Fannes, Jurg Frohlich, Taku Matsui, André Verbeure,
and Marinus Winnink for information and helpful advice, and we apol-
ogize for often ignoring the latter. We are especially grateful to Aernout
van Enter and Reinhard Werner for counselling us on recent developments
and giving detailed suggestions for revisions.

Oslo and Canberra 1996 Ola Bratteli
Derek W. Robinson
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States in Quantum Statistical Mechanics






5.1. Introduction

In this chapter, and the following one, we examine various applications of C*-
algebras and their states to statistical mechanics. Principally we analyze the
structural properties of the equilibrium states of quantum systems consisting of
a large number of particles. In Chapter 1 we argued that this leads to the study
of states of infinite-particle systems as an initial approximation. There are two
approaches to this study which are to a large extent complementary.

The first approach begins with the specific description of finite systems and
their equilibrium states provided by quantum statistical mechanics. One then
rephrases this description in an algebraic language which identifies the equili-
brium states as states over a quasi-local C*-algebra generated by subalgebras
corresponding to the observables of spatial subsystems. Finally, one attempts
to calculate an approximation of these states by taking their limit as the volume
of the system tends to infinity, the so-called thermodynamic limit. The infinite-
volume equilibrium states obtained in this manner provide the data for the
calculation of bulk properties of the matter under consideration as functions of
the thermodynamic variables. By this we mean properties such as the particle
density, or specific heat, as functions of the temperature and chemical poten-
tial, etc. In fact, the infinite-volume data provides a much more detailed, even
microscopic, description of the equilibrium phenomena although one is only
generally interested in the bulk properties and their fluctuations. Examination
of the thermodynamic limit also provides a test of the scope of the usual
statistical mechanical formalism. If this formalism is rich enough to describe
phase transitions, then at certain critical values of the thermodynamic para-
meters there should be a multiplicity of infinite-volume limit states arising from
slight variations of the external interactions or boundary conditions. These
states would correspond to various phases and mixtures of these phases. In
such a situation it should be possible to arrange the limits such that phase
separation takes place and then the equilibrium states would also provide
information concerning interface phenomena such as surface tension.

The second approach to algebraic statistical mechanics avoids discussion of
the thermodynamic limit and attempts to characterize and classify the equili-
brium states of the infinite system as states over an appropriate C*algebra. The
elements of the C*algebra represent kinematic observables, i.e., observables at
a given time, and the states describe the instantaneous states of the system. For
a complete physical description it is necessary to specify the dynamical law
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governing the change with time of the observables, or the states, and the
equilibrium states are determined by their properties with respect to this dy-
namics. The general nature of the dynamical law can be inferred from the usual
quantum-mechanical formalism and it appears that there are various possibi-
lities. Recall that for finite quantum systems the dynamics is given by a one-
parameter group of “automorphisms of the algebra of observables,

b

A T[(A) — eil‘HAe—ilH

where H is the selfadjoint Hamiltonian operator of the system. Thus it appears
natural that the dynamics of the infinite system should be determined by a
continuous one-parameter group of “automorphisms t of the C*algebra of
observables. This type of dynamics is certainly the simplest possible and it
occurs in various specific models, e.g., the noninteracting Fermi gas, some of
which we examine in the sequel. Nevertheless, it is not the general situation.
The difficulty is that a group of this kind automatically defines a continuous
development of every state of the system. But this is not to be expected for
general infinite systems in which complicated phenomena involving the local
accumulation of an infinite number of particles and energy can occur for
certain initial states. Thus it is necessary to examine weaker forms of evolution.
For example, one could assume the dynamics to be specified as a group of
automorphisms of the von Neumann algebras corresponding to a subclass of
states over the C*algebra. Alternatively one could adopt an infinitesimal de-
scription and assume that the evolution is determined by a derivation which
generates an automorphism group only in certain representations. Each of
these possible structures could in principle be verified in a particular model by a
thermodynamic limiting process and each such structure provides a framework
for characterizing equilibrium phenomena. To understand the type of char-
acterization which is possible it is useful to refer to the finite-volume descrip-
tion of equilibrium.

There are various possible descriptions of equilibrium states, which all stem
from the early work of Boltzmann and Gibbs on classical statistical mechanics,
and which differ only in their initial specification. The three most common
possibilities are the microcanonical ensemble, the canonical ensemble, and the
grand canonical ensemble. In the first, the energy and particle number are held
fixed; in the second, states of various energy are allowed for fixed particle
number; and in the third, both the energy and the particle number vary. Each
of these descriptions can be rephrased algebraically but the grand canonical
description is in several ways more convenient. Let $ be the Hilbert space of
states for all possible energies and particle numbers of the finite system, and H
and N, the selfadjoint Hamiltonian and number operators, respectively. The
Gibbs grand canonical equilibrium state is defined as a state over .Z($), or
Z%E(9), by

_ TI'g, (e_ﬁKA)

20 = Ty o)
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where K = H — uN, p € R, and it is assumed that e X is a trace-class op-
erator. Typically H is lower semi-bounded and the trace-class property is valid
for all § > 0. The parameters f and p correspond to the inverse temperature of
the system, in suitable units, and the chemical potential, respectively, and
therefore this description is well-suited to a given type of material at a fixed
temperature. Now if the generalized evolution 1 is defined by

A€ 2L(9) — u(d) = 4e™ € 2(9) ,

_ﬁK

then the trace-class property of e #* allows one to deduce that the functions

> oo ,(4(B))

are analytic in the open strip 0 < Im ¢ < § and continuous on the boundaries
of the strip. Moreover, the cyclicity of the trace gives

wp, w(AT(B))|;=ip = p, u(BA) .

This is the KMS condition which we briefly described in Chapter 1 and which
will play an important role throughout this chapter. One significance of this
condition is that it uniquely determines the Gibbs state over #%(9), i.e., the
only state over £%($) which satisfies the KMS condition with respect to 7 at
the value f is the Gibbs grand canonical equilibrium state. This can be proved
by explicit calculation but it will in fact follow from the characterization of
extremal KMS states occurring in Section 5.3. It also follows under quite
general conditions that the KMS condition is stable under limits. Thus for a
system whose kinematic observables form a C*algebra 2 and whose dynamics
is supposed to be given by a continuous group of *-automorphisms 7 of 2, it is
natural to take the KMS condition as an empirical definition of an equilibrium
state.

Prior to the analysis of KMS states we introduce the specific quasi-local C*-
algebras which provide the quantum-mechanical description of systems of
point particles and examine various properties of their states and representa-
tions. In particular we discuss the equilibrium states of systems of non-inter-
acting particles. This analysis illustrates the thermodynamic limiting process,
utilizes the KMS condition as a calculational device, and also provides a
testing ground for the general formalism which we subsequently develop.

In the latter half of the chapter we discuss attempts to derive the KMS
condition from first principles.



5.2. Continuous Quantum Systems. I

5.2.1. The CAR and CCR Relations

There are two approaches to the algebraic structure associated with systems of
point particles in quantum mechanics. The first is quite concrete and physical.
One begins with the Hilbert space of vector states of the particles and subse-
quently introduces algebras of operators corresponding to certain particle
observables. The second approach is more abstract and consists of postulating
certain structural features of a C*algebra of observables and then proving
uniqueness of the algebra. One recovers the first point of view by passing to a
particular representation. We discuss the first concrete approach in this sub-
section and then in Section 5.2.2 we examine the abstract formulation.

The quantum-mechanical states of » identical point particles in the config-
uration space R" are given by vectors of the Hilbert space L*(R™). If the
number of particles is not fixed, the states are described by vectors of the direct
sum space

8 — (_B LZ(RW) 7
n>0
i.e., sequences iy = {l//(")}nzo, where y© € C, Y € L2(R™) for n > 1, and the
norm of  is given by

Wl = 1wOP + 3 / dxy - di P (xS

n>1

There is, however, a further restriction imposed by quantum statistics.
If € & is normalized, then

dp(xiy. .y x,) = W Gy, x) Pdx - dx,

is the quantum-mechanical probability density for ¥ to describe » particles at
the infinitesimal neighborhood of the points xy, ..., x,. The normalization of
corresponds to the normalization of the total probability to unity. But in
microscopic physics identical particles are indistinguishable and this is reflected
by the symmetry of the probability density under interchange of the particle
coordinates. This interchange defines a unitary representation of the permu-
tation group and the symmetry is assured if the ¥ transform under a suitable
subrepresentation. There are two cases of paramount importance.



Continuous Quantum Systems. I 7

The first arises when the components %™ of each Y are symmetric under
interchange of coordinates. Particles whose states transform in this manner are
called bosons and are said to satisfy Bose (—FEinstein) statistics. The second case

corresponds to anti-symmetry of the ¥ under interchange of each pair of
coordinates. The associated particles are called fermions and are said to satisfy
Fermi (—Dirac) statistics. Thus to discuss these two types of particle one must
examine the Hilbert subspaces &, of &, formed by the Y = {1//(")},,>0 whose
components are symmetric (the + sign) or anti-symmetric (the — sign). These
subspaces are usually called Fock spaces but we will also use the term for more
general direct sum spaces.

To describe particles which have internal structure, e.g., an intrinsic angular
momentum, Or spin, it is necessary to generalize the above construction of
Fock space.

Assume that the states of each particle form a complex Hilbert space b and
let )’ =h®H®--- ® Y denote the n-fold tensor product of § with itself. Fur-
ther introduce the Fock space §(b) by

b)) =Dy,
n>0
where §” = C. Thus a vector ¥ € F(b) is a sequence {y"},., of vectors
Y™ € " and 1" can be identified as the closed subspace of F(h) formed by the
vectors with all components except the nth equal to zero.

In order to introduce the subspaces relevant to the description of bosons

and fermions we first define operators P5 on &(}) by

P+(f‘®f2®"'®f"):‘(”!)_]me®fnz®'-~®fn,, 7
P_(f1®f2®-..®f,,)Z(n!)_IZgnfm®fﬂz®...®fnn

for all f1,...,f, €bh. The sum is over all permutations 7; (1, 2,...,n) —
(w1, 72, ..., m,) of the indices and ¢, is one if 7 is even and minus one if 7 is odd.
Extension by linearity yields two densely defined operators with ||P+|| = I and

the P, extend by continuity to bounded operators of norm one. The P, and P_
restricted to )", are the projections onto the subspaces of §” corresponding to
the one-dimensional unitary representations 7 — 1 and n +— ¢, of the per-
mutation group of n elements, respectively. The Bose-Fock space &, (b) and the
Fermi-Fock space §_(b) are then defined by

F+(b) =P+ F(b)

and the corresponding n-particle subspaces by by b, = P, h". We also define a
number operator N on §(h) by

n>0

DN) = {w; =10 WO < +oo}
and

N‘// = {nl//<")})120
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for each Y € D(N). It is evident that N is selfadjoint since it is already given in
its spectral representation. Note that ¢V leaves the subspaces &_ (b) invariant.
We will also use N to denote the selfadjoint restrictions of the number operator
to these subspaces.

The peculiar structure of Fock space allows the amplification of operators
on b to the whole spaces §_(h) by a method commonly referred to as second
quantization. This is of particular interest for selfadjoint operators and uni-
taries.

If H is selfadjoint operator on b, one can define H, on b’} by setting Hy =0
and

Hn(P:t(fl®"'®fn)):Pﬂ:(Zfl®f2®"'®Hfi®“‘®fn>
i=1
forall f; € D(H), and then extending by continuity. The direct sum of the H, is
essentially selfadjoint because (1) it is symmetric and hence closable, (2) it has a
dense set of analytic vectors formed by finite sums of (anti-) symmetrized
products of analytic vectors of H. The selfadjoint closure of this sum is called
the second quantization of H and is denoted by dT'(H). Thus

dT(H) = P H, .

n>0

The simplest example of this second quantization is given by choosing H = 1,
one then has

dTr(1) =N .
If U is unitary, U, is defined by Uy = 1 and by setting
Un(P£(/1® 2@ ® [)) = P(Uf1QUf2® - @ Uf,)

and extending by continuity. The second quantization of U is denoted by o)
where

bl

TU)=PU, .

n>0
Note that I'(U) is unitary. The notation dT" and I is chosen because if U, = ¢/
is a strongly continuous one-parameter unitary group, then
F(U;) — eitdl"(H) )

Next we wish to describe two C*algebras of observables associated with
bosons and fermions, respectively. Both algebras are defined with the aid of
particle “annihilation” and “‘creation’ operators which are introduced as fol-
lows. For each f € b we define operators a(f), and a*(f), on §(b) by initially
setting a( )Y Q) = 0,a*()Y® = £, f € b, and

aN1@ 2@ ® fu) =0 ([, f) 2O f30---® fn ,
FNN®N20 @ f)=m+ D)o fio--0f, .
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Extension by linearity again yields two densely defined operators and if
Y™ € 1", one easily calculates that

a1 < a1 ™, Ha*(f_)lﬂ(”)ll <+ D1
Thus a(f) and a*(f) have well-defined extensions to the domain D(N'/?) of
N'/2 and
la* (Yl < 1A + 1w

for all y € D(N'/?), where a(f) denotes either a(f) or a*(f). Moreover, one
has the adjoint relation

@ (Ne.¥) = (p.a(/)Y)

for all @, € D(N'/?). Finally, we define annihilation and creation operators
a+(f) and a’(f) on the Fock spaces §(h) by

a:(f)=Pra(f)Ps, al (f)=Pra (f)Px+ .

The relations

(@ (N ) = (pae (), llak (NI < A1V + 1)1y

follow from the corresponding relations for a(f) and a*(f). Moreover,

ax(f)=a(f)Px,  ai(f)=Pzd(f)

because a(f) leaves the subspaces §,(f)) invariant. Note that the maps
f—ay (f) are anti-linear but the maps f+— a%(f) are linear.

The physical interpretation of these operators is the following. Let
Q= (1,0,0,...), then Q corresponds to the zero-particle state, the vacuum. The
vectors

Vi (f) =al ()R

identify with elements of the one-particle space h and hence a, (f) “‘creates” a
particle in the state f. The vectors

Vi (froeee, fo) = ()7 Pal(f1) - al (f2)Q
=P:(/1®--® fn)
are n-particle states which arise from successive “creation’ of particles in the
states f, fn—1,---,f1. Similarly the a . (f) reduce the number of particles, i.e.,

they annihilate particles. Note that if f = f; for some pairi, j with
1 <i<j<n,then

lp——(fla"->fn):P—(f]®"'®fn):0

by anti-symmetry. Thus it is impossible to create two fermions in the same
state. This is the celebrated Pauli principle which is reflected by the operator
equation

a (fla=(f)=0 .



10 States in Quantum Statistical Mechanics

This last relation is the simplest case of the commutation relations which link
the annihilation and creation operators.
One computes straightforwardly that

la+(f)a(9)] =0=la\(f) allg)] ,
la+(f), a’(9)] = (f,9)1 ,

and

{a-(f), al9)} =0={a’(f),a’(9)} ,

{a(f), a’(9)} = (f,9)1 ,
where we have again used the notation {4,B} = AB + BA. The first relations
are called the canonical commutation relations (CCRs) and the second the ca-
nonical anti-commutation relations (CARs).

Although there is a superficial similarity between these two sets of algebraic
rules, the properties of the respective operators are radically different. In ap-
plications to physics these differences are thought to be at the root of the
fundamentally disparate behaviors of Bose and Fermi systems at low tem-
peratures. In order to emphasize these differences we separate the subsequent
discussion of the CARs and CCRs but before the general analysis we give an
example of the creation and annihilation operators for point particles.

EXAMPLE 52.1. If b =L*(R"), then §.(h) consists of sequences {'10(")}1120 of
functions of n variables x; € R* which are totally symmetric (+ sign) or totally an-
tisymmetric (— sign). The action of the annihilation and creation operators is given by

(ai(f)l//)(")(xl,...,x,,) =n+ 1)]/2/dxmlﬁ('”'l)(x,xl,...,x,,) ,

n

@2, x) =PI E DT S )

i=1
where %; denotes that the i th variable is to be omitted. Note that as the maps
Seas(f),  fral(f)

are anti-linear and linear, respectively, one may introduce operator-valued dis-
tributions, i.e., fields @ (x), and a* (x), such that

()= [&TWar) . al(n)= [drswaieo .
and then the action of these fields is given by

(@)™ (xr, o) = (14 D2y Ve, x|

(@) (.. x,) =2 i(:t D700 —x )" D (x, kn L x)

i=1

In terms of these fields the number operator N is formally given by

N:/dx al (x)ay(x) .
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5.2.1.1 The CAR Relations. We next analyze the properties of the creation and
annihilation operators obeying the CAR relations on the Fock space §_(h).
We simplify notation by dropping the suffix minus on the operators.

Proposition 5.2.2. Let §) be a complex Hilbert space, §_(b) the Fermi Fock
space, and a(f) and a*(g) the corresponding annihilation and creation op-
erators on §_(b). It follows that

M la()I = 111 = lla* (Nl

for all f €Y, and hence a(f) and a*(g) have bounded extensions.
) IfQ=(1,0,0,...) and {f«} is an orthonormal basis of b, then

w(fan"')fan) :a*(fal)"'a*(fﬂn)g

is an orthonormal basis of &_(H) when {fu,..., fa,} runs over the
finite subsets of { fa}

(3) The set of bounded operators {a(f), a*(g); g € b} is irreducible on
&_(b).

Proor. (1) One has

(@ (Nal))’ = a (f)alf), @ (NYalf) = [/ I7a (f)a(f)

and hence

la(A1I* = @ (NalHl = 1Pl (HalHIl = 1P laOI -
As a(f) # 0 for f # 0 one concludes that

eI =141 = lla™ NIl -

(2)  This follows easily from the observation that

U (farseeos fa) = ()PP (fory ®-® fa) .

(3) Let T be a bounded operator in the commutant of {a(f),a*(g); /. g € b},
then

W(farseeos San)s T‘//(gﬁla“-:gﬁ,,.))
=(T"Q,a(f4,) - a(fu)a (gp,) - a"(95,)Q)
= (T*Qvg)(l//(fouv' ‘-7fa,.)’ ‘//(gﬁn’" 795,,.)) .

To establish the last equality one considers the three cases n > m, n < m, and n =
m, separately. In the first case both expressions are zero because the a(f) annihilate
more particles than the a*(g) create. In the second case both expressions are again
zero by complex conjugation. In the third case a(fy,) - - - a*(gp,)Q is a multiple of Q

and the desired equality follows once more. Thus 7 = (Q, TQ)1 and irreducibility is a
consequence of Proposition 2.3.8.
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5.2.1.2. The CCR Relations. The main qualitative difference between fermions
and bosons is the absence of a Pauli principle for the latter particles. There is
no bound on the number of particles which can occupy a given state. This is
quantitatively reflected by the unboundedness of the Bose annihilation and
creation operators. If, for example, /") is the n-fold tensor product of f €}
with itself, then the annihilation operator satisfies

la( 1 = n' 2 1]

(we omit the suffix plus on the operators). This unboundedness leads to a large
number of technical difficulties which are absent for fermions. These problems
can be partially avoided by consideration of bounded functions of the opera-
tors a(f) and a*(g).

It is convenient to introduce a family of operators {®(f), f € b} by

O(f) =27 (a(f) +a ()
Note that if TI( /) = ®(if), then

N(f) = —i27"(a(f) — a*(f)) ,
Thus

a(f) =27H@() +iMl(f),  a'(f) =27"(@(f) ~iTI(y))

and the a(f) and a*(f) can be recuperated from the ®( f). Thus for functional
purposes it suffices to examine the latter operators. Their basic properties are
most easily examined on the subspace F(h) C F +(b) formed by the finite-
particle vectors, i.e., the y = {1//(”)},,>0 which have only a finite number of
nonvanishing components. -

Proposition 5.2.3. Let 1) be a complex Hilbert space, &, (b) the Bose Fock
space, and a(f) and a*(g) annihilation and creation operators satisfying the
canonical commutation relations. Define ® by

o(f) =27"(a(f) +a"(f))
for all f €. It follows that

(1) For each f eb,®(f) is essentially selfadjoint on F(b) and if
£ = Sl = 0. then ||®(f. ) — @S )| — 0 for all y € D(N'/?).

@ If Q=(1,0,0,...) then the linear span  of the set
{O(f1)- - D(f)Q; fi €h,n=0, 1,...} is dense in F.(h).

(3)  For each y € D(N) and, f,g € § one has

(@(/)D(g) — D(g)D(f ) = iIm(f, g)y .

Proor. (1) The operator ®(f) is densely defined, and symmetric, hence closable.
To establish essential selfadjointness it suffices to prove that ®(f) has a dense set of
analytic vectors. But if y® ¢ b, then Y e D(®(f)") for all m and
O(f)y™ € b1+ @ h"~!. The estimates
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la(AW®N < (4 DN, e DN < (+ D ™17
then imply that

100" | < 272(n +m)" 2 (n+m = 1)/ (n+ 1) P NILA" -

Therefore

" ™+ m) 1\
5= oy < 3 WD () By gy < o

m>0"" m>0

for all ¢ € C. It immediately follows that each i in the dense set F(b) is an analytic
vector for @(f).
The continuity follows because

1(@(fo) — DNV < 27 a(fo — I +272lla" (fo = NV
<22 fu = FIIN + 1)y

(2) The linear spans of {®(f))---®(f,) fi€bh,n>0} and {a*(f1)---
a*(f)Q; fi € b, n > 0} are identical. But the latter is dense by the same arguments
used in Proposition 5.2.2.

(3) This is immediate from the canonical commutation relations.

Next we consider the unitary groups generated by the operators @(f), but
henceforth we use this symbol to denote the selfadjoint closure of the previous

®(f).

Proposition 5.2.4. For each f €} let ®(f) denote the selfadjoint operator
o(f) =27 (a(f) +a*(f)) -
Moreover let W(f) denote the unitary operator exp{i®(f)}. It follows that
(1)  For each pair f, g € b, W(f)D(®(g)) = D(®(g)) and
W (N)RW(f) =(g) —Im(f, 9)T.
(2) For each pair f,g€ b
W(NW(g) =e ™V IPW(f +g)
(3)  The set {W(f); f € b} is irreducible on F_(b) .
@ Ifllfe— fll =0, then
(W (fo) = WY — 0

Sfor all §y € ()
(5) For each f € h\{0}

W) -1l=2.

Proor. (1) Each y, € F(b) is analytic for ®(f) and one can define ®(g) W (f)"
on , by power-series expansion. This expansion yields the identity
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QYW () Vo =W (£)(@(g) — Im(f; g)1)¥,

and consequently
Q)W (1) (W = Yl < 10(g) (b, = W) | + [Tm(f; @)1, — gl -

But F(D) is a core for ®(g). Thus if y € D(®(g)), one may choose the y, such that
W, — ¥ and ®(g)yy, — D(g)y. It immediately follows that D(g)W (f)"p, converges
and therefore (/)" € D(®(g)) and ®(g)W ()", — ®(g)W (f)"y. Thus D(D(g))
is invariant under each W(f) and

(g (f)" = W(f) (®(g) - Im(f, g)1)
on D(®(g)).

(2)  For y € F(b) one can exploit the invariance of D(®(g)) under W(f + g)*,
etc., and the closedness of each ®(f) to derive the identity

W WS+ )b

= W)i®(f), W(tg)|W (t(f + g)) W
= —itIm(f, g)W ()W (tg)W (t(f +9)" ¥ .

Integration then gives the following identity between bounded operators
1
WU GW (S +0)" =11 [ dt st W an)w (s +g)

Iteration of this identity immediately yields
W(AW(@W(f +g)" = e MU9)/2

which is equivalent to the stated result.

(3) If T is a bounded operator which commutes with each W(f), then
TD(®(f)) € D(®(f)) and ®( /)Ty = TO(f)y for each y € D(D(f)) because D(f)is
the infinitesimal generator of t € R— W (if). But a(f) = 271/2(®(f) + i®(if)) and
so T commutes with a(f) in the same manner and irreducibility follows by the same
calculation used for the CARs in Proposition 5.2.2.

(4)  F(b) is a core of ®(f) and ||(D(f,) — ®(f))y|| — 0 for all ¥ € F(b) by
Proposition 5.2.3. Therefore, it follows from Theorem 3.1.28 that W(f.) converges

- strongly to W(f).

(5) It follows from part (1) that
Wit Q)W (itf)" = ®(f) = fl| f]°1

for all # € R. Thus the spectrum of ®(f) must be the whole real line. Now consider
the unitary group W (¢f) and its spectral representation

W(tf) = / dE(A)e™ .
For each §/ € &, (b) one has
AP~ 17 =1 =2 [, B8 = cos )
Thus if £([7 + 2,7 — &)y = Y with0 < & < /2
A=W () = DulP/ vl
and hence ||W(f) —1||=2.

< 2|1 —cose
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The operators W (f) introduced in the above proposition are usually called
Weyl operators and the commutation relations

W)W (g) = e V2 W(f +g) =IO ()W (f)

are called the Weyl form of the canonical commutation relations.

5.2.2. The CAR and CCR Algebras

In the last subsection we derived the canonical commutation and anti-com-
mutation relations and constructed the Weyl operators associated with the
former. To complete this discussion we next examine the abstract C*algebras
generated by elements satisfying the CARs or the Weyl form of the CCRs. It
will result that these algebras are uniquely determined by the appropriate form
of commutation relation.

Again we divide the discussion into two separate parts.

5.2.2.1. The CAR Algebra. The foregoing Fock space construction established
the existence of bounded operators satisfying the CARs. The next result char-
acterizes the abstract properties of the C*-algebra generated by these operators.

Theorem 5.2.5. Let }) be a pre-Hilbert space with closure handlet N;, i =1, 2,
be two C*algebras generated by the identity 1 and elements a;(f), f €D,

satisfying

(1) fai(f) is antilinear,
@ Aai(f), ai(9)} =0,
3 Aa(f), ai(9)} = (f; 9)1

foral fgeh,i=1,2.
It follows that there exists a unique *-isomorphism o : Wy — Wy such that

a(a1(f)) = a(f)

Sor all f €Y. Thus there exists a unique, up to *-isomorphism, C*-algebra
A = A(h) = A(Y) generated by elements a(f), satisfying the canonical anti-
commutation relations over 1.

Furthermore

M) la(N)Il = If1l for all f €.

(2) If'Y is n dimensional, where n < + oo, then U(Y) is isomorphic with
the C*-algebra of 2" x 2" complex matrices.

(3) U(Y) is separable if, and only if, Yy is separable.

4)  AY) is simple.

(5) If U is a bounded linear operator on Yy and V a bounded antilinear
operator satisfying

V*U+Uv=0=UV"+vur ,
vu+vv=1=0U0"+vv",
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then there exists a unique *-automorphism v of W(H) such that
q 14 Y

1a(f) = a(Uf) +a (V)

and in this case
v a(f) = a(Uf) +a (V') .

Proor. (1)  The proof that ||a;(f)|| = || f|| is identical to the proof given in Pro-
position 5.2.2. It is a direct consequence of the CARs.

(2)  Assume that |} is finite dimensional, and let {f1,..., fn} be an orthonormal
basis for b. If /' a(f) are operators satisfying the CARs, define

el = a(fi)a* (1), e =viia(fy) |
B v (f),  ew =a(falf) -

fér k=1,...,n where
Vi = ﬁ(ﬂ —2a"(fi)a(f1))
i=
and we use the standard notation a*(f) = a(f)*. It follows from the CARs that
{ef—f)}i’j: 1,» are n families of mutually commuting 2 x 2 matrix units,
el e = el

' k
k#g= eg‘)e(g) = eg‘z,)el(j)

Im

Moreover, they generate the same algebra as the a(f ) since

k=1
o = Lt -4 )ty
i=1
Hence this algebra is the algebra of 2" x 2" matrices, and this establishes property
(2), and the proposition when b is finite dimensional.

When | is infinite dimensional, construct an orthonormal basis {f+} for ). For
cach finite dimensional subset of {/,} we may construct matrix units as above, and
as [la(f)|| = |/l it follows by continuity that the C*-algebra generated by the a(f)is
unique and is, in fact, generated by an increasing net of full matrix algebras.
Moreover, A(h) = A(H).

The separability statement (3) is immediate from the construction of A(h) above,
and the simplicity follows from Corollary 2.6.19 or can be proved as follows: since
{a(f),a*(f)} = ||fII*1, it follows that n(a(f)) # 0 for all representations of © of
A(H) , and hence 7 is faithful by the uniqueness of 2A(h). Hence A(h) has no non-
trivial closed two-sided ideals. Statement (5) follows by applying the first statement
of the Proposition on ai(f) = a(f), a:(f) = a(Uf) + a*(Vf) .

Note that from statement (2) of the theorem and the construction of A(D) it
follows that this algebra is a UHF algebra (see Example 2.6.12).

The transformations described in part (5) of the theorem are often called
Bogoliubov transformations.

We next investigate local structure of the CAR algebra 2(h) over a Hilbert
space b.
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Proposition 5.2.6. Let (D) be the CAR algebra over a Hilbert space V), and
let I be a net of closed nonempty subspaces of by, ordered by inclusion such that:

(1) IfM €1, there exists an N € I such that M 1 N.

(2) If M LN and M L K, there exists an L € I such that M 1 L and
N, K CL.

(3) b= UMelM-

Let W(M) C U(Y) be the sub-C*-algebra generated by {a(f); f € M} for each
M el Then (UMW), {UAM)}yc,) is a quasi-local algebra in the sense of
Definition 2.6.3, with a(a(f)) = —a(f) for all f €.

Proor. First, if M| C M,, we evidently have A(M;) C A(M,), and, second, as any
A € A(h) can be approximated by finite polynomials in a(f) and a*(g), it follows
from the relation [la(f)|| = || /|| and assumption (3) that A(h) = U, ; W(M). Third,
the A(M) have a common identity by definition. Finally, let ¢ be the unique
*-automorphism of U such that a(a(f)) = —a(f) for all f € §. This automorphism
exists by applying Theorem 5.2.5 part (5) to U = —1 and ¥ = 0. Then ¢ =7 and
a(UM)) = UM) for all M €. Each element 4 € A(M) can be uniformly ap-
proximated by a sequence of polynomials P, in the a(f) and a*(g) with f, g € M. But
if 4 is even, it follows that the (P, + o(P,))/2 also converge to 4 = (4 + o(4))/2. But
(P, + a(Py,))/2 is an even polynomial in the a(f) and a*(g). By a similar reasoning
odd elements can be approximated by odd polynomials. Hence it suffices to prove the
commutation relations for polynomials. But noting that 4> and B commute if 4 and
B anti-commute, these follow directly from the CARs.

EXAMPLE 5.2.7. Leth= LZ(R") and, for each bounded open set A C R", define
A, as the C*subalgebra generated by {a(f) : f € L>(A)}. It follows that the CAR
algebra (h) is a quasi-local algebra with respect to this generating net. In particular

A(h) = JAn

A

We conclude by mentioning an equivalent way of describing the CAR al-

gebra which is analogous to the description of the CCRs in terms of the
operators {®(f); f € b}.

One defines a family of elements B(f); f € ) by
B(f) =27"*(a(f) +a*(/))

then

a(f) =2""2(B(f) +iB(if)) ,

i.e., the a(f) can be recovered from the B( f). But it follows from the CARs that

{B(/), B(9)} = Re(/, 9)

and conversely the CARs follow from these latter relations. Thus one is
prompted to study the seemingly more general problem of an algebra 2 gen-
erated by elements B(f), f € H, satisfying

{B(f), B(g)} =s(f, 9)
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forall f,g € H, where H is a real vector space and s is a real positive symmetric
bilinear form over H. If in this context J is any operator such that

s(Uf, 9) = —s(f,Jg), J*=-1,

one can introduce annihilation, and creation operators a,(f) and a}(g) by

as(f) =27"(B(f) +iB(Jf)), a}(g) =2""(B(g) - iB(Jg))

and one has

{as(f), a3(9)} = s(f, ) +is(f. Jg) ,

etc. Thus in comparison with the previous discussion s(f, g) corresponds to the
real part of (f,g) and s(f,Jg) corresponds to the imaginary part.

Although this latter description seems more general we remark that if H is a
real Hilbert space and if s is the nondegenerate inner product on H, then a J
with the above properties exists if, and only if H has even (or infinite) di-
mension. In this case H is a complex Hilbert space and s is the real part of the
inner product. One has the identification

(A +ida)é = L&+ hJE
forall ;; e Rand ¢ € H, and

(fs 9) =s(f, 9) +is(f.Jg) -
The J can be constructed by first choosing an orthonormal basis
{&1, ny, &, ny, ...} of H and then defining J by
JE&=mn;, Ini=—& -
Finally we remark that if T is any real invertible operator such that

s(Tf, Tg) = s(f, g)

it follows that there exists a unique *-automorphism y of 2 such that
7(B(f)) = B(Tf) .

A simple calculation shows that this corresponds to the Bogoliubov transfor-
mation of the a,(f) and aj(g), with

U=2"Y(T-J1J), V=2YT+JTJ) .

5.2.2.2. The CCR Algebra. Next we characterize the abstract properties of the
C*algebra generated by the Weyl operators. Although this CCR algebra has
many properties analogous to the CAR algebra the lack of norm continuity of
the map fi W(f) alters properties of density, separability, and quasi-locality.

We will slightly generalize the situation described in Section 5.2.1.2 and
examine a family of Weyl operators W ( /) defined for elements fof a real linear
space H equipped with a nondegenerate symplectic bilinear form o, i.e., ¢ is a
map from H x H into R such that

a(f, 9) = —alg, f)
for all f; g € H, and if
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U(f7g):0

for all f € H, then g = 0. For example, one could take H to be a complex pre-
Hilbert space and ¢ to be given by

a(f; 9) =Im(f, g)

and then one recuperates the CCR relations described previously.

In fact, the generalization is very slight because if ¢ is a nondegenerate
symplectic bilinear form on H and there exists an operator J on H with the
properties

o(Jf, 9) = —a(f, Jg), JP=-1,

then H is a pre-Hilbert space with scalar multiplication and inner product
defined by

(/11 +l/12)f=}'1f+}'2']f> Ale R; fEH ’

(f,9) = a(f,Jg) +ia(f,9), f,9€H

and clearly o(f, g) = Im(/, g).

Note that if H is sequentially complete with respect to the topology defined
by o, a J with the above properties exists if, and only if, H does not have finite
odd dimension. To construct J one first uses a procedure similar to the Gram—
Schmidt orthogonalization procedure to find elements {&;,#;} in H spanning a
dense subspace and such that

O'(f[, 61) = U(nia 77]) =0,
O'(fi,’lj) =0y -
Then one defines J by J¢; = 5; and Jy; = —¢&; and extension by continuity.
In the following, when talking about the CCR algebra over a complex pre-

Hilbert space H, it is always understood that o is the imaginary part of the
inner product.

Theorem 5.2.8. Let H be a real linear space equipped with a nondegenerate
symplectic bilinear form o and let W;,i = 1, 2, be two C*algebras generated
by nonzero elements W;(f), f € H, satisfying

W) Wi(—f) = Wi/,

Q) Wi )Wilg) = e V92 W,(f +g) for all f, g € H.

It follows that there exists a unique *-isomorphism o; W,— Wy such that

a(W1(f)) = Wa(f)

for all f € H. Thus there exists a unique, up to *isomorphism, C*algebra
A = W(H) generated by Weyl operators W(f).
Furthermore
() w(0) =1, W(Y), is unitary for all f € H, and |W(f)—1|| =2 for
all nonzero f € H.
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(2)  If H is nonzero, then N(H) is nonseparable.

(3) U(H) is simple.

(4) If T is a real linear invertible operator on H such that
o(Tf,Tg) = a(f, 9)

Jorall f, g € H, then there exists a unique “-automorphism y of W(H) such
that

YW(f) =W(Tf) .

Proor. It follows from property (2) of the W (f) that
W) =w(f)=wO)W(f)
and
W(=)W(f)=W(©O)=W()W(-F) .
As the W(f) are nonzero one concludes that ##(0) is the identity 1 and property (1)
implies that W(f) is unitary.

Next let us regard the linear space H as a discrete additive abelian group. The
W(f) give a unitary representation of H up to a phase, or multiplier 5(f, g) =
exp{—ia(f, g)/2}. It is subsequently of importance that S=1,(f)=b(f g) is a
character of H, e.g.,

b(fl +f‘27 []) = b(fh g)b(ffl, g) .
Our aim is to prove that the C*algebras ;,i = 1,2, are “isomorphic.
Consider the two representations R, and R of H defined on I>(H) by
(Ro(9)F)S) = b(f, 9)F(f +9)

and

(R(@F)(f)=F(f +9) -

One calculates that R, is a unitary representation up to the multiplier b and R is a
unitary representation in the usual sense. (Note that W(g) = Ry(g) defines a re-
presentation of the CCRs and hence a CCR algebra exists.)

We may assume that 2, and 2, are faithfully represented on Hilbert spaces 9,
and 9, and define new multiplier representations 7; x R on 2(H; §,) = §, ® P(H)
An element y € *(H;$;) is a function over H with values in 9, and we set

(Wi x RY(@))(f) = Wilg)(f +g) -

Then W; x R is a multiplier representation of / with multiplier b, and we next show
that I¥; x R is quasi-equivalent to Ry. Define a unitary operator U; on *(H, §,) by

(Up) () = W(/)(f)

and then calculate that

(Ui(W: < RY(gW) () = Wi(£)((W; x R)(g)¥)(f)
=W IWigh(f +9)
=b(f, Wi f + 9 (f +9g)
= b(f, 9)(Uah)(f +9) = (1: @ Ry (9)) Ub)(f)

that is,
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Ui(Wi x R)(9)U =1, ® Ru(9) ,

where 1; is the identity on $,. Let B; be the C*algebra generated by
{(Wi x R)(g); g € H}. Then, by the above identity, there exists a “isomorphism t
from B; onto B, such that

(W1 x R)(g)) = (W2 x R)(g) -
Hence if we can find *-isomorphisms 7; : 2; +— B; such that
©u(Wi(g)) = (Wi x R)(9) ,

the first statement of the theorem follows. But, setting W = W, this amounts to
showing that

H i)n‘(W X R)(f3)
i=1

Z&Wﬂﬂ
i=1

forall 4, € C, f; € H,and n > 1. The representation W X R is, viaAFourier transform
on /2(H), unitary equivalent to the representation W x R on I>(H;$) defined by

(W xR (W) () =W (@9 (x), x€H

and hence

= sup
1€H

iﬂui(W X R)(f,)
i=1

Z Ly ()W (fi) “ .

i=1
Now, the set {y,} of x € H of the form
1,(f) = bg, /)’

is dense in H, since it is a subgroup of A with annihilator zero. Moreover,
1 (NIW(f) = W(g)W(f)W(g)". Therefore

geH

i=1

wig) (2 /L-W(fi)> W)

i=1

” S AW x R)() ” — sup
i=1

Sl () H

= sup
geH

Z}mﬁw
i=1
It follows that there exists a *-isomorphism « : 2 — 2, such that

a(Wi(f)) = Wa(f)

for all f € H, and o is unique since the W;(f) generate 2A; as a C*algebra.

Let us next prove the four properties of U(H) stated in the latter half of the
theorem.

(1) At the beginning of the proof we established that each W (f) is unitary and
W(0) = 1. The CCRs now give

W(QW()W(g) =e @l w(f)

and hence the spectrum of W(f) is invariant under rotations. Hence the spectrum is
equal to the circle and ||W(f) — 1|| = 2 by the spectral radius formula.

(2) Assume that A(H) is separable and let {4,},, be a countable dense se-
quence of elements of A(H). Thus for each ¢ € R and each f € H there must be an n,
such that
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“W(tf) —Am” <1.
But if f # 0 and ¢ # t,, then A,,(I #* A,,,2 because
W@ f) = Au, | <1, W (e2f) = Ay, || < 1
would imply
Wt —n)f) =1 <2
in contradiction to the first statement proved above. But as R is not countable 4,
cannot be dense and this contradiction proves that 2(H) is nonseparable.

(3) Let n be a representation of A(H), then by the first statement of the the-
orem there exists a *-isomorphism « from (H) onto n(A(H)) such that a(W(f)) =
n(W(f)) for all f € H. But then « = because (H) is generated by the W(f).
Hence the kernel of 7 is zero. But  was arbitrary and therefore 2(H) must be simple.

(4)  This follows by applying the uniqueness statement to W,(f) = W(f) and
W (f) = W(Tf).

As in the CAR case, the transformations described in part (4) of the theorem
are often called Bogoliubov transformations.

There is an important difference between this theorem and the corre-
sponding result. Theorem 5.2.5, for the CARs. There is no statement analo-

gous to A(h) = A(h) and, and in fact, one has the following situation.

Proposition 5.2.9. Let A(H) be the CCR algebra over the real vector space
H and let W(M) be the C*-subalgebra generated by {W(f); f € M} where M
is a subspace of H.

1t follows that

if, and only if, M = H.

ProoF. If M # H, consider the representation of U(H) on I*(H) defined by
W(@F)(f) =b(f,9)F(f +49),

i.e., the representation used in the proof of Theorem 5.2.8. Assume g € H\M and let
A € C,g; € M, then

(- Z W9) )F) (1) = b7 0 (FUr+0)= 3 it 0= )P (s + 0) -

i=1

Hence, if Fis supported by M,

(w6 = Y- 200 )| = e
i=1
because the vector f— F(f+ g) is orthogonal to each of the vectors f— b(f,g; — g)
XF(f +g;). This orthogonality follows because if f +g; € supp F C M, then
f €M —g; =M, and hence f + g ¢ M. Therefore

inf ||W(g) —A4]| >1
TN LOETE



Continuous Quantum Systems. | 23
and hence W(g)¢ W(M) .

We now consider quasi-local structure on the CCR algebra.

Proposition 5.2.10. Let H be a linear space with a nondegenerate symplectic
bilinear form a. If N and M are subspaces of H, define N L M if and only if
a(f,9) =0 forall f € N and g € M. Let I be a net of nonempty subspaces of
H, ordered by inclusion, such that:

(1) IfM €1, there exists an N € I such that M 1 N.

2) If M LN and M 1K, there exists an L € I such that M 1 L and

N,KCL.
3 H=Uye M.

Let A(H) be the CCR algebra over H, and let W(M ) be the sub-C*-algebras
generated by {W(f); f € M} for each M € 1.

Then (A(H), {W(M)},,c;) is a quasi-local algebra in the sense of Defini-
tion 2.6.3, with o = 1.

Proor. This is immediate from the relation

w()W(g) = e VI (g)W(f)
for f,g€H.

Although this statement on quasi-local structure is similar to Proposition
5.2.6, there is a distinction which arises from the phenomena described in
Proposition 5.2.9 and which is illustrated by the following example.

EXAMPLE 5.2.11. Let H be the subspace of L?>(R") formed by the functions with
compact support. Moreover, let

a(f, 9) =Im(f, g) -
If A is a bounded open set of R" and A, is the C*-subalgebra of A(H) generated by
{W(f); f € L*A)} then (U(H),{Ar},cr) is a quasi-local algebra in the sense of
Definition 2.6.3. However, U(H) is not equal to the CCR algebra over L?>(R") be-
cause of Proposition 5.2.9.

5.2.3. States and Representations

We continue the analysis of the CAR and CCR algebras with a discussion of
various properties of states and representations of these algebras. Most of these
properties are related to the existence of creation and annihilation operators
and this causes a distinction between the CARs and CCRs. The CAR algebra
contains creation and annihilation operators but these operators can only be
affiliated with special representations of the CCR algebra. We begin with a
discussion of these representations and associated states. We concentrate on
the CCR algebra over a pre-Hilbert space [y and eschew the case of a real vector
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space with symplectic form. As we have explained in Section 5.2.2.2 this latter
case is barely more general.

There is a certain arbitrariness in the definition of the CCR algebra from the
generators @(f) in Proposition 5.2.4, i.e., one could define this algebra by
taking other functions of ®(f) than A — e*. In fact the C*subalgebra of the
CCR algebra generated by {W(t¢f);t € R} where f €} is a fixed nonzero
element is isomorphic with the set of almost periodic functions on
R = o(®(f)), and there is no inherent reason not to operate with the set of
continuous functions on R vanishing at infinity, or any other subalgebra of
Cy(R) which separates points of R. A consequence of this analysis is that one is
not too interested in general representations of the CCR algebra, but only
representations where the generators of #+— W (¢ f) exist. These are the so-called
regular representations.

A representation ($, ) of the CCR algebra (), over the pre-Hilbert space
b, is said to be regular if the unitary groups 7 € R (W (tf)) are strongly
continuous for all f € b. If = is regular, then one can introduce, on §, the
selfadjoint infinitesimal generators ®.(f), / € h of the groups ¢+ (W (¢f)),
J €D, and then use these to define annihilation and creation operators.

Similarly a state w over 2(h) is said to be regular if the associated cyclic
representation (%, 7, Q) is regular. Note that

(e (W (££)) = 1) (W (9)) Q0|
=2—e "My (W(tf)) - D w(W (~11))

and hence it easily follows that « is regular if, and only if,
t€ R—w(W(tf)) € Cis continuous for all f € ). We use the notation @,,(f)
to denote the infinitesimal generator of the unitary group =, (W (¢f)) associated
with a regular state.

The simplest example of a regular state is the Fock state wy defined by the
vacuum, or no-particle state, Q = (1,0,0,...) € §,(h). One easily calculates
that

wr(W(f)) = (QW(f)Q) = e I+

Even if w is a regular state, there are certain technical domain problems
which complicate the introduction of annihilation and creation operators.
These are handled, however, by the following quite straightforward result.

Lemma 5.2.12. Let A(h) be the CCR algebra over the pre-Hilbert space
band w a regular state over A(Y). For each f €y denote the infinitesimal
generator of the unitary group t— m,(W(tf)) by ®y(f).
It follows that the operators {®,(f), @y,(if), f € M} have a common
-dense set of analytic vectors for every finite-dimensional subspace M C y.
Moreover the annihilation and creation operators defined for each f € b by

D(aw(f)) = D(®u (1)) D(Pu(if)) = D(ay,(f))

and
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ao(f) = 27200 (/) +i®u(if)), ay(f) =27 (Qu(f) = iDu(if))
are densely defined, closed, a,(f)" = a’,(f), and

190 ()0l + [10u(i)ell” = 2llau( el + 1717l
for all ¢ € D(ay,(f)).

Proor. We may assume that M is a complex subspace. Let {f;;j=1,2...,m} be
an orthonormal basis of M and define an operator R, on $,, by

R, = (g) / dsy dty - dspdtye™ S THE St L) g (W(Z(sj +it;) f,)) :
j=1

It follows from rotational invariance that R, is independent of the choice of basis.
Moreover, if for € §,, one defines ¥, by ¥, = R,y then ||y, — ¥|| — 0 by a si-
milar argument to that used to prove Proposition 2.5.22. But using

W(sfi)W((s; +it;) f,) = e 02 W((s; +s+it) f;)

and a change of variable in the multiple integral defining R, one calculates that y, is
analytic for each @, (f;). Hence y,, is analytic for each operator @, (f), with f € M.

It immediately follows that a,(f) and a’(f) are densely defined on
D(®y(f))ND(Do(if ). Moreover, au(f)" D a;,(f). Thus a,(f) has a densely de-
fined adjoint which means that it is closable. Similarly a7 (f) is closable. Now if
[0S D(am(f))’ then

190 (£)oll® + 1w (i) ol* = (I(au(f) + a5 (Nl + l(au(f) — ay(N))ell?)/2
= llaw(f)oll” + llas (el .

Moreover, by differentiation of the Weyl relations

(@0 )0, Pu(if)9) = (Qu(if) 0, B ()0) + il £l 0l

which gives
la, (el = lau(Nell” + 1 £l -

Combination of these two identities yields

@0 (Nl + 10Nl = 2llau(Nel® + I F 170l -

But now assume that v, € D(ay(f)), |, — Wl = 0, and [lay(/)(W, — %) = 0.
One may use the identity just derived with ¢ =, —,, to deduce that
“q)m(f)(l//n - K/’m)” — 0 and ”(D(D(lf)(wn - ltbm)” — 0. But (D(H(f) and q)w(lf) are
selfadjoint, and in particular closed, and hence Y € D(®,(f))n D(D,(if))
= D(aw(f)). Another application of the identity gives |la,(f)(¥, — ¥)|| — 0 and
therefore a,,(f) is closed. A similar argument is valid for a7, (f).

It remains to prove that a,(f)" = a,(f). This will be deduced as a corollary of
Corollary 5.2.15.

Our next aim is to establish criteria for a state to be normal with respect to
the Fock representation, i.e., the defining representation of 2A(h) on the Fock
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spaces §_.(h). In Section 2.6.2 we defined a state w over an irreducible sub-
algebra A of Z(H) to be normal if it is determined by a density matrix p in the

form
w(4) = Trg(p4) .

It follows from Theorem 2.4.25 that this is equivalent to the representation
(9w M0, Q) being a direct sum of copies of the representation of 2 on §. The
condition of normality is of interest in applications because the normal states
of the Fock representation correspond to convex combinations of finite-par-
ticle vector states. Thus the normal states are interpretable as the states with a
finite number of particles. If the algebra is quasi-local, then the locally normal
states, i.e., the states which are normal in restriction to the local generating
algebras, correspond to states for which the local subsystems have a finite
number of particles. Thus locally normal states can be used to describe infinite
systems of particles for which the overall density is finite.

Basically the criterion for normality is the existence of a selfadjoint number
operator but as this operator is almost always unbounded some care has to be
taken in its definition. On Fock space the number operator N can be decom-
posed in terms of operators N, of the form

Ny =a'(falf) .
It follows from the CARs and CCRs that these operators satisfy the relations

[Ny,a(g)] = —(g, a(f) ,
[Ny, a'(9)] = (f>9)a(f)

and it is consistent with the interpretation of a( /) and a*(g) as annihilation and
creation operators that Ny measures the number of particles in the state / € b.
Moreover, one easily calculates that

W NY) =D Ny )

for y € D(N) where the sum is over an orthonormal basis of h. We will extend
these relationships to other representations.

Notice that N, is bounded for the CAR algebra but unbounded for the CCR
algebra; thus we must first give a suitable definition of N for the CCR algebra
and then find an appropriate definition of the sum of the N;. We will use
quadratic form techniques to handle both these problems. We need the fol-
lowing facts.

A sesquilinear form t over a Hilbert space $ is a function
@, € D(t) x D(t)—t(¢p,¥) € C where D(t) is a subspace of § and ¢ is anti-
linear in ¢ and linear in . The form is said to be densely defined if its domain
D(t) is dense, symmetric if

o, ¥) =t(y, 9)
for all ¢, € 9, and positive if

th, ) >0

for all € D(¢). Positive forms are automatically symmetric.
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Associated with each sesquilinear form ¢ there is a quadratic form
t(y) = t(y,¥). This quadratic form determines ¢ by the polarization formula

3
Z Wy +1"p)/

A positive quadratic form ¢ is said to be closed whenever the conditions
(1) ¥, € D(), 2) ¥, — ]l — 0, and (3) 1(, — ,,) — O imply that y € D()
and #(y, — ) — 0. Alternatively, ¢ is said to be closable if it has a closed
extension and this is the case if, and only if, the conditions y,, € D(¢), ||¥,|| — 0
and t(y, — ¥,,) — 0 imply that #(y,) — 0.

Forms are important because if ¢ is a densely defined, positive, closed,
quadratic form, then there exists a unique positive selfadjoint operator 7 such
that D(¢) = D(T"/?) and

(o, ¥) = (T, T'?y)
for all @, € D(¢). In particular

o, ¥) = (o, TY)

for all ¢ € D(¢) and € D(T). This statement has an obvious converse and
hence there is a one-to-one correspondence between forms ¢ of this type and
positive selfadjoint operators.

In applications the most sensitive point in the construction of positive op-
erators from forms is the verification of closedness of the forms. But if S'is a
closed operator with dense domain D(S), and one defines ¢ by D(¢) = D(S) and

1o, ¥) = (So,S¥),

it is evident that ¢ is positive, densely defined, and closed. If T is the associated
positive selfadjoint operator, then T'/? is nothing but the positive part of the
polar decomposition of S, and T = S*S.

If w is a regular state over the CCR algebra () on a pre-Hilbert space b,
one can introduce closed annihilation and creation operators a,(f) and a,(f)
on $, by Lemma 5.2.12. Let n, r and N, ; be the positive form and the
positive selfadjoint operator defined by a,(f), i.e.,

1o, 1) = law( WP, ¥ € D(au(S)) ,
Ny, r = aw(f)*aw(f) .

We take N, ; as number operator for the one particle state f € b. It is easy to
check from the Weyl form of the CCRs and from Lemma 5.2.12 that one has

o, 1) = (190 WP + 10uGOWIP = 1L£171WIP) /2

It is natural to attempt to define a total number operator for the state w by
summing the n,, s over a complete orthonormal basis, but again the difficulty is
whether the resulting quadratic form is closed. To handle this we first define an
order relation between positive forms by #; > #, if D(#;) C D(t;) and
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t(y) > ()

for all € D(#). This ordering defines an ordering of positive selfadjoint op-
erators. If 77 and 75 are the selfadjoint operators determined by the positive,
closed, densely defined forms #; and 5, we write

nn>1
whenever
t>t6 .

This order relation is a generalization of the order for positive elements of a C*-
algebra discussed in Section 2.2.2 and has many properties in common with
this latter order. In particular the same argument that established Proposition
2.2.13 shows that if 7 and T, are two positive, invertible, operators and

I >7 >0,
then
(T + )~ > (1 + 1))

for all 1> 0. In particular this means that D(Tz_l/z) C D(Tl_l/2) by the defi-
nition of the form ordering. Moreover, the discussion after Proposition 2.2.13
implies that

(T + 20" 2 > (1) + 21)™'/2

for all 2 > 0. These points will be used in proving the following result.

Lemma 5.2.13. Let t, be a monotonically increasing net of positive, closed
quadratic forms on a Hilbert space $ and define t by

D(t) = {w;l// € ﬂD(l‘“),SI;p t(¥) < +oo} ,
1) = sup t(y) -

It follows that t is a positive, closed, quadratic form.
If, moreover, t, and t are densely defined, then the corresponding positive
selfadjoint operators T, and T satisfy

tim || — &) = 0
o
Jor all y € 9§, uniformly for t in finite intervals of R.
ProoF. As the net is monotonic
t() = lim 4, () .
24

Thus ¢ is the limit of quadratic forms and it follows easily that it is itself a quadratic
form. Moreover, it is positive.

Next assume ¥, € D(¢), ||}/, — ¢|| — 0, and for & > 0 there is an N, such that
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t(‘/jn - l//m) <e

for all n,m > N,. Therefore t,(y,, — ¥,,) < ¢ for all « and as ¢, is closed, € D(t,) and
ty(Y, — ) < e for all n > N;. But

tfl((l#[/ - ‘//n) + l//n) + td((l// - l//n) - l//n) = 2t1(llln) + 22‘1(‘!’ - l//n)

and hence

tﬂt(l//) S Ztﬁ(wn) + 28 M
Moreover

sup () < 2¢(,,) + 2e < 400

and therefore € D(¢). But then
t(‘//n - '»0) = sup td(l//n - lp) <e

for all n > N, and thus #(y, — ) — 0, i.e., ¢ is closed.

Now consider the second statement. The forms #,, and hence the operators 7, + 1,
are monotonically increasing. Therefore, the two families (7, + 1)~ and (7, + 1)'/
are monotonically decreasing. Thus, by Lemma 2.4.19, (T, + 1)~ converges strongly
to a positive operator R and (T, + 1])_'/ 2 converges strongly to a positive operator
which, by continuity, is R'/2. It also follows from monotonicity that R > (T +1)".
This bound has two useful consequences. First, it shows that R is invertible, and
its inverse R~! is automatically selfadjoint. Second, it implies that
D((T +1)'?) C D(R'/).

Next introduce densely defined operators B, = R'/2(T, +1)"/2. If ¥ € D(t,), then

Byl = (Tu + 1)y, R(Tu +1)"2y) < [y

by monotonicity. Hence B, has a bounded extension with ||B,|| <1 and B; is
bounded with ||B%|| < 1. It follows that D(R!/?), i.., the range of R'/2, lies in
D((T, +1)"/?) for each «. One also has

lim||[R'2(1 — B = lim||B.((T, +1)™"* = R2)y|| =0
o o

and hence 1 — B, converges weakly to zero on the range of R/2. As this range is
dense, B, and B converge weakly to 1. But the bound ||B%|| < 1 gives

IB; = Wl> < 20wl - (¥, BLy) — (B, ¥) = 0
and in particular ||BXy/|| — ||y||. Therefore, if y € D(R™'/2), then
lim £,(9) + 11> = lim [}(7: + 1)y
= lim | BR 2y = Ry
which simultaneously establishes that i € D(¢) = D((T +1)"/?) and

1)+ WIP = 1T+ 1) 291 = IRy

But one has D(R"'/2) C D((T +1)"/?) C D(R"/?) and hence T + 1 = R~'. Thus we
conclude that (7, +1)™" converges strongly to (T +1)7".

Finally, note that if y = (1 + 7) '@ € D(T) and ¥, = (1 + T,) "¢, then ¥, — ¢
and Ty, = (1 — (1 + T,)"")@ — Ty. Therefore, the unitary groups generated by the
T, converge strongly to the group generated by T' by Theorem 3.1.28.
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Now let us return to the discussion of the number operator associated with a
regular state w over the CCR algebra on a pre-Hilbert space Iy. The finite-
dimensional complex subspaces F C Iy form a directed set when ordered by
inclusion. If { f;} is an orthonormal basis for F, define

D(nw,F) = m D(a(,)(f))

fEF

and
nw,F(w) = Zna)., fi(llll) = Z ”aw(fl)l/j”z .

As any two orthonormal bases for F' are related by a unitary matrix, it follows
immediately that this definition of n,,  only depends on w and F.

The n, r form a monotonically increasing net of positive, closed, quadratic
forms and their limit will be a positive, closed, quadratic form by Lemma
5.2.13. If this latter form is densely defined, then it uniquely determines a
selfadjoint number operator N, on . The following result shows that the
existence of such an operator characterizes normality of w. The main burden in
the proof is the demonstration of algebraic properties of N, analogous to
properties of the number operator on Fock space.

Theorem 5.2.14. Let w be a state over the CAR algebra, or a regular state
over the CCR algebra, and let {a,(f); f € b} denote the corresponding closed
annihilation operators (a,(f) = n,(a(f)) is bounded in the CAR case). De-
fine a positive, closed quadratic form on ., by

nco('ﬂ) = Sl;p nw,F(‘//) s
Do) = {¥iv € () Dlaul) o) < +oo}

fED
where the supremum is over all finite-dimensional subspaces of b.
The following conditions are equivalent:

(1) w is normal with respect to the Fock representation.
(2) D(ny) is dense in ,,.
(3)  D(nw) contains a vector which is cyclic for n,(U(h)) in 9,,.

Moreover if these conditions are satisfied, then

lim (&% &™) = 0

uniformly for t in finite intervals of R where N,, is the selfadjoint operator
corresponding to the form n, and N, r is the selfadjoint operator determined
by the form n,, p.

Proor. (1) = (3): If @ is normal then by Theorem 2.4.26 ($,,,7,,) is a countable
direct sum of copies of the Fock representation since the Fock representation is
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irreducible. Let N, =N ® N @ --- be a direct sum of copies of the Fock number

operator and choose ¥ = {¥,},59 € 9,, such that ¢, € D(N), the y, are mutually
orthogonal, and ¥ € D(N,,). Thus

('/faN(u ‘//) = Z (1//,,,N1//,,)

n>0
=Zsup Z la(f vl = sup Z law (fOVI
n>0 Foyrycr Fofyer

by direct calculation on Fock space. But the irreducibility of the Fock representation
and the orthogonality of the components y, ensure that y is cyclic for n,((b)).
Thus condition (3) is valid.

We next prove the implications (3) = (2) = (1) for the Weyl algebra. Subse-
quently, we comment on the easier case of the CAR algebra. The proof relies upon
three observations which establish invariance of D(n,,) under the Weyl operators and
the commutation properties of the number operator N, determined by n,,.

OBSERVATION 1

mo) =sp 5 3l W(es) - )i

Fityrye r2
o™ (WS = )P = uW}

and D(n,,) is exactly the set of Y for which the supremum is finite.
The proof relies on the fact that if U(¢) = ¢ is a continuous unitary group on a
Hilbert space, then y € D(H) if, and only if],

sup [[¢~' (U () = || < +o0
t
by Proposition 3.1.23. Using the spectral representation of U one then finds that
IHY|? = sup Il (U(e) = Dyl = lim ||~ (U (1) - nyl® .

Now assume the supremum in the statement of the observation is finite. In par-
ticular

sup{ 1= (o (W (1) = DI + ™" (o (W Gitf) = OIP = WP } < +oo
for cach £ € b. Thus ¥ € D(®u(/)) A D(@u(if)) = D(@u(f)) = D(a,(f)) and
sup{ 11~ (o (1) = D)WIP + 117" (o i) = DI ~ W11} /2
= tim{ ™! (ro (W () = DWIP + ™ (ro (W (it ) = Y1 = 1P } /2
= (10 (NI + RNV = IWIP)/2 = llaw(HWIP

whenever || f|| = 1 where the last step uses Lemma 5.2.12. This identification shows
that the form defined by the supremum is at least an extension of n,. But if, con-
versely, ¥ is in the domain of n,,, then € D(®,(f)) N D(Dy(if)) for all f € b and
the same argument identifies the two forms.
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OBSERVATION 2
nm(W(g))D(”w) = D("«U):
1o (o (W ()W) = no(¥) + (b, ©u(ig)) + llgl*v]7/2

This follows by first using the Weyl form of the commutation relations to es-
tablish that

tim =" (o (W (££) = 1)) (7 )1
= lim 167 (70 (W () = D)W 4 7" (7™ 9 — ), (W (1) )|
= ||‘I)m(f)'ﬁ - Im(fv Q)IPHZ .
Thus by Observation 1
1o (1t (W ()W) = no () + (I, @, (ig)¥) + [l 7] /2
+lm(y, D, (i(gr — 9))¥),

where

gr=>_ filfia) .
{fiycr

But [[®,(i(g7 — 9)WII* < (2n(#) + [¥]%)llgr — gll* — 0 and the desired result fol-
lows immediately.

The implication (3) = (2) is a consequence of Observation 2 and the linearity of
D(n). Thus if € D(n,,) is cyclic, then D(n,,) contains the dense set formed by finite
linear combinations of =,(W (f))y, f € b.

OBSERVATION 3
a,(f)D(N/?) € D(N,)
and for iy € D(NZ/?)
Noto(FW = aw(f)No = D)
Observation 2 implies that
(N, W ()W) = (W(Lf) @, No) + t(W (1) @, ®(if)ih)
W (f) 0. S1/2

for ¢ € D(N,,) and € D(Nf,/z). Differentiation of this expression and a similar one
with f replaced by if and the subsequent addition of the two results gives

(No@, an(IW) = (@, (£)p, (No — 1))

because D(N,,) C D(n,) C N, D(®(f)). But then (N, — 1)y € D(NY/?) = D(n,)
C N, D(aw(f)). Thus one has

(No®, aw(NW) = (¢, a0(f)(No — D)

for all ¢ € D(N,,) where we have used a* (f)* 2 a,(f). The result follows by con-
tinuity of the right-hand side in ¢.

Now we are prepared to prove (2) = (1) of the theorem.
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Let E,, denote the spectral family of N,, and for simplicity set P; = E,({(—o0, 4]).
For each f €} the operator P,a,(f)P; is a bounded operator from P;$,, to P,H,,
because ||a, (Y| < ||N(f,/ zv,bﬂ. But P;N,, and P,N,, are bounded operators on P;$,,
and P, 9, and hence Observation 3 and functional analysis of bounded operators
gives

F(No)Puaw(f)P: = Puaw(f)PiF (No — 1)
for any bounded function F. In particular
Pi-1au(f)Pr = Puaw(f)P:
for all u > A. Therefore,
Pr1a(f)Pr = aw(f)P;: -

But N, is positive and hence if 1y denotes the greatest lower bound of its spectrum,
one must have

aw(f)Piy+12=0 .

Thus if ¥, is a unit vector in the range of P; 15 ,

aw(f)o =0

for all f €b.

Next let Py, be the projection onto the cyclic subspace generated by application of
the operators a¥ (f) to . It follows from a,(f)¥, = 0 that the subrepresentation
Py, 7y of m, is unitarily equivalent to the Fock representation. (The implementing
unitary operator is given by

Ua,,(f1) - ap(f2)Qu = a’(f1)---a"(fn)Q

where Q= (1,0,0,...) € F,.(h).) Now we repeat the same construction for the
subrepresentation 70, = (1 — Py, )n, and § =(1- Py,)9,, to find a ¥, € $° such
that P,,,Ib‘j) is unitarily equivalent to the Fock representation. The proof is achieved
by complete induction.

In the CAR case Observation 1 is irrelevant. Observations 2 and 3 are replaced
by

no(@o( )W) + no(al, (W) = no(¥) = 2llau(HVI* + £
nw((paaw(f)l//) = nw(az)(f)(pv l/’) - (@aaw(f)l//)

which are computed before taking the limit in the definition of n,. The rest of the
argument is identical to the CCR case.
The final statement of the theorem follows directly from Lemma 5.2.13.

One classic consequence of Theorem 5.2.14 is the following:

Corollary 5.2.15 (Stone-von Neumann uniqueness theorem). Let A(h) be
the CCR algebra over a finite-dimensional Hilbert space .

It follows that each regular state w over U(Y) is normal with respect to the
Fock representation and hence any regular representation of W(Y) is a multiple
of the Fock representation.
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Proor. From Theorem 5.2.14 it suffices to show that the operators {a,(f); f € b}

have a common dense domain in ,,. But as § is finite dimensional this follows from
Lemma 5.2.12.

We can also use this result to complete the proof of Lemma 5.2.12, i.e., to show
that a,(f)" = a,(f) for each regular w and f € Ij. The restriction of 7, to the CCR
algebra over C f is a multiple of the Fock representation of this algebra by Corollary
5.2.15. Hence it is enough to prove that a(f)" = a*(f) in the Fock representation.
Writing the Fock space §, as a direct sum of n-particle spaces

we know that ), C D(a*(f)) for all n and the linear span of the I, is a core for
a*(f), since it is a joint core for ®(f) and ®(if). We know already that

a’(f) Ca(f)". To show the converse, assume that y = @), _, ™ € D(a(f)"). This
means that the functional B

¢ € D(a(f)) = (¥, a(f)e)

is bounded. But if go=®“>0rp(") is a finite-particle vector it follows from
a(f)b} € b':] that N

Wa(f)e) = > W V.a()e) =3 @ (", o) .

n>1 n>1

Hence the boundedness in ¢ implies that

Sl (NP < oo

n>0
But as a*(f) is closed, this implies that = @, ¢ € D(a*(f)) and

(@ ()" =a (e .
Thus

a(f)=alf)", alf)=a(f) .

The proof we have given of the von Neumann uniqueness theorem is only
one of several existing proofs. One can for example give another proof by
employing the argument used to show the uniqueness of the CCRs in Theo-
rem 5.2.8, but regarding b as the locally compact abelian group R*" in its
usual topology rather than the discrete one, where 7 is the complex dimension
of b.

Corollary 5.2.15 identifies the regular states on the CCR algebra 2(}) over
a general pre-Hilbert space h with the states which are locally normal with
respect to the quasi-local structure defined by the finite-dimensional complex
subspaces of . Thus, as far as regular states are concerned, one could define
the CCR algebra as a closure of a union of algebras of the form Z(F, (M)),
where § (M) is the symmetric Fock space over the finite-dimensional subspace
M and Z(F, (M)) is the weak closure of (M) in the Fock representation.
This latter definition of the CCR algebra gives a larger algebra without the
deficiencies mentioned in the introduction to this subsection, i.e., it contains all
bounded Borel functions of the fields @(f).
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Although the Fock representation is the unique irreducible regular re-
presentation of 2(C"), up to equivalence, it often appears in a seemingly dif-
ferent form, e.g., it occurs as the Schrodinger representation in quantum
mechanics. The physical interpretation of this latter reformulation is rather
different and it is of some interest to cast the representation in this form
because it also immediately allows the construction of a nonregular irreducible
representation.

EXAMPLE 5.2.16 (The Schrodinger representation). Let {f;;j=1,2,...,n} be
an orthonormal basis of the finite-dimensional Hilbert space ) and introduce 2»n
one-parameter groups U; and V; by

Uils)) = W(s;f;) ,  Vilt) = Wi f;)
where the W are Weyl operators. These groups can be represented on L?(R") by

(Uj(sj)l//)(xl’ “ee ,X,,) = eiij,l//(xl’ ce 7xn) B

(Vi) (1, - oxn) = W(x1, X = Gy, X))
Now if f € }) has the decomposition
f= _)Zl](Sj*l'ifj)fj ;
j=
one obtains a representation of the Weyl algebra with
Wi =TT U o) Vi) -
In particular .

(q)(f_/)'ab)(xl yo ,X,,) = le//(X] s axn) y
@G/ ) x1,- ) =~ g )

and
1o} 0
N — -1/2 . - * . :7—1/2 L
a(fj) =2 <x1+axj>7 a’(f;)=2 (xj ax,) .

Now the Fock vacuum, i.e., the vector Q= (1,0,0,...), is determined by the
equation
a(f)Q=0,

and hence its representative Q(xj,...,x,) in the Schrédinger representation is the
unique (up to a phase factor) solution of

3]
(x»-i—é;C;)Q(xl,...,x,,):O .
Thus
Qx1,x2,. .., x,) = "2 exp(—(x% +x3 4 +x,2,)/2) ,

and the representatives of the multiparticle states are given by
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m

Y —m/2 a
a(fj)-a(f;,)Q=2 / H(—n‘k‘%)g(xl:'“:xn ) -
X

E=1

This identification determines the equivalence of the Fock and Schrodinger re-
presentation.

Physically one can interpret L*(R") as the space of states of one-particle moving

in n dimensions. The ®( f;) correspond to the position operators, or observables, and

the ®(i f;) correspond to the coordinates of momentum. The Fock number operator
is given by the differential operator

n
2792 1 2
N =3 (-0*/ox} +x3 —1)/2
j=1
and in the Schrédinger picture this is interpreted as the Hamiltonian of a harmonic
oscillator. Thus from this point of view Q is the ground state, the state of lowest

energy, of the oscillator and the creation and annihilation operators create and
annihilate quanta of energy.

EXAMPLE 5.2.17.  Let A(R") be the almost periodic functions over R” and let M
denote the unique invariant mean over 4(R") (see Section 4.3.4). The mean M defines
a scalar product on 4(R") by

(f.9) =M(f9g)
and the completion of 4(R") with respect to the associated norm is a Hilbert space $.
If'b is » dimensional, one can define a representation of the associated Weyl algebra
on 4(R") by exactly the same construction given in Example 5.2.16. Extension by

continuity then gives a representation on $. This representation is not, however,
regular. For example, if f # 0 and Q(x1,...,x,) = 1, then

, ifr=
e {§ 1128

Note that the Hilbert space $ is nonseparable, {exp{i3>°7_ | 4x}; 4 € R} forms an

orthonormal basis of the space. A similar nonregular representation of the CCRs is
given by R, in the proof of Theorem 5.2.8.

We complete this discussion of normal states with a few comments on a
special subclass, the finite-density states. Theorem 5.2.14 establishes that o is
normal if, and only if, D(n,,) contains a cyclic vector. But there is a preferred
cyclic vector Q,, associated with o and we call w a finite-density state if
Q,, € D(n,). Thus o has finite density if, and only if, w is normal with respect
to the Fock representation and Q,, € D(N({,/ 2). If p is the density matrix on
Fock space which determines o, then the latter property is equivalent to the
positive selfadjoint operator N'/2pN'/2 having a finite trace. Note also that one

can define a positive functional, the number functional, € Eyr—
N(w) € [0, c0] by

N(w)=sup > ofa(f)a(f)

Fyrycr
if 2 is the CAR algebra and
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N(w)=sup > {2o((W(tf) = 1) (W(tfi) 1))

“ErycF
+ 2 o((W(itf:) = 1) (W(itfi) = 1)) = 1}/2

for the Weyl algebra, and then  has finite density if, and only if, N(w) < 4.
In both formulae the suprema are over finite orthonormal subsets {f;} of b
and the assertion for the CCR algebra uses Observation 1 of the proof of
Theorem 5.2.14.

Note also that in the CCR case it follows from the proof of Theorem 5.2.14
that N(w) < +oo implies that Q,, € D(a,(f)) for all f and

]/\\/(U)) = sup Z ”am(fi)QwHZ

Foyryer

in analogy with the CAR case. Moreover, if N(w) < 400, then its value can be
interpreted as the extension of w to the number operator and one has the
identifications

]/\}(a)) = “N{})/zga)“z — T’B(Nl/szl/Z) )

It is of some interest to remark that N is affine, because the suprema are net
limits, and lower semi-continuous in the weak™ topology, because N is the
upper envelope of a family of weak*-continuous functionals. In particular N
respects barycentric decompositions, by Corollary 4.1.18 applied to —N, and
the subsets of states with density below a fixed bound, i.e., the sets
{w; N(w) < 2}, are weak*-closed by lower semicontinuity.

Next we examine more detailed properties of states with respect to the
annihilation and creation operators and, in particular, the determination of a
state by its values on these operators. Discussion of states over the CAR
algebra is simpler because the algebra contains the annihilation and creation
operators a( f),a*(g); f,g € b and it follows easily that each w is determined by
the set of values w(a*(f1) - -a*(fu)a(fus1) - a(fusm)),n,m >0, fi €h. A
similar result is also true for a subset of regular states over the Weyl algebra.

If w is a regular state over the Weyl algebra 2(h), then the infinitesimal
generators @, (f) of the Weyl groups ¢ € R — 7,(W(tf)) are defined for all
f € 1 and one can introduce the annihilation and creation operators a,(f) and
a;,(f). But, as we have mentioned above, the cyclic vector Q, is not necessarily
in the domain of these operators. Thus it is generally impossible to define
analogues of the w(a*(f1)a(f2)), etc. For this reason it is natural to introduce
more stringent notions of regularity of states and their associated cyclic vectors.

A state w over 2(h) is defined to be in the class C™ if t+— w(W(tf)) is m
times differentiable for all f € . Similarly, ¥ € C™ if n,,(W(¢f))¥ is m times
strongly differentiable for all f €. This latter condition is equivalent to
¥ € D(®,(f)") for all £, and it is not difficult to see that w € C*" if, and only
if, Q, € C™. In particular the value of C* states can be defined on all poly-
nomials of the @,(f), and we use the natural notation

w(q)w(fl) T (Dw(fn)) = (Qa)a q)u)(fl) o (D(u(fn)Qw) s
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w(A(Dw(fl) o (Dw(fn)) = (Qwv ”w(A)(Dw(fl) oo (Dw(fn)gw) s

etc. Finally a C* state w is called analytic (entire analytic) whenever the
functions ¢ € Ri— (W (tf)) are analytic in an open neighborhood of the origin
(are entire analytic), for all f €. There are two interesting properties of
analytic states.

First, a state w is analytic if, and only if, Q, is an analytic vector for all
®,(f). For example, if Q,, is analytic for @, (f), then t+ 7, (W (tf))Q, is
strongly analytic and hence ¢+— w(W(tf)) is analytic. Conversely, if o is ana-
lytic, then Q,, is a C* vector and

(W (t) = 3 " (@0 (1)' )
n>0 """
Therefore
1€ R 30 (1) G 00 0l
n>0 =

is analytic and as (2n)! > 22("=U (5 — 1)1 one has

5 (Gl @atrraul ) < + o

n>0

for all [¢| < # and for some # > 0. Equivalently

S j0u(ry ) < 400
n>0""
for [t < #, i.e., Q, is analytic for @, (f).
Second, if  is analytic, then each of the functions ¢ € R—o(W(tf)) is
actually analytic in an open strip around the real axis. This is because the ¥ are
unitary and hence one has estimates of the form

|(Qu, 70 (W (2)) Do (/)" Q)| < [( Ry, D) Q)]

Qs 70 (W (21) @ () Q0)] < 1(Q0 @i ()" Q0)| ] (R, @ (1) 202)[

This second remark has an important consequence.

Each state w over the Weyl algebra is determined by its values on the set of
Weyl operators {W(f); f € b}. But if  is analytic, then w(W(f)) is de-
termined by the derivatives of the function ¢~ w(W (tf)) at the origin. Thus
each analytic state is determined by the set of matrix elements, or expectation
values, {o(®,(f)"); f € h,n > 1}. Alternatively o is determined by the set
{o(a,(f)"au(f)")}. Hence properties of the analytic states can, in principle,
be completely reconstructed from knowledge of either of these sets.

The conclusion of these observations is that analytic states o over the Weyl
algebra are determined by the set of multilinear functionals
{w(az;(fl) T a;;(fn)aw(fnﬂ) Ao (fuim));nym > 0,/i€b}. In this sense
analytic states are analogous to states over the CAR algebra. Both are de-
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termined by a family of functionals which are expressed in terms of operators
with a clear physical interpretation.

It is often useful to consider other classes of multilinear functionals, the
truncated functionals, whose values are directly related to correlations between
physical events. These functionals are determined by recursion relations which
are different for the CARs and CCRs and are combinatorically somewhat easier
for the latter. Thus we first describe the definitions corresponding to the CCRs.

Let 3 denote an arbitrary index set and F a function from the nonempty
finite subsets of I to the complex numbers. We associate with F the truncated
function Fr by the recursion relations

Fy=>" 1 ),
Py JeP;

where the sum is over all partitions 2, of the finite set I into ordered subsets.
Explicitly 2; = {J1,J2, ...,Ju} Where JinJ; = Jif i # j, the union of the J; is I,
and the elements of each J; retain the order of I. For example, one has

F(O() = FT((X) ) F(Ot,ﬁ) = FT(OC,B) +FT(a)FT(ﬁ) ) etc.,
and these equations have the solutions
Fr(o)=F(«) ,  Fr(o,f) =F(o,p) —F(@F(B) ,  etc,

It is often useful to remark that

F(I)= Y Fr(J)F(1\))
ac CI
for any I > «, where we take F(Z) = 1. This follows directly from the recursion
relations by noting that the coefficient of an arbitrary term Fr(J) in these
relations is given by

S 11 Frx) =F\) -

.@1\] KE.@]\J

These algorithms can now be used to associate truncated functionals with an
analytic state w over the Weyl algebra on }. Let I consist of elements of h and
then the values w(®y,(f1) - - @ (f»)) of @ on monomials of the @, (1) define a
complex function over the ordered finite subsets of 3. The above procedure
defines a truncation wr which satisfies

wT((I)tu(f>) = (U((I)m(f)) ,
o7(Po(f1), P (f2)) = O(P0(f1)Pu(f2)) — 0(Pu(f1))0(Pu(f2)) , ete.

By linear combination, or reapplication of the same procedure, one also ob-
tains truncations of the functions w(al,(f1)---a,(fn)aw(g1) -~ aw(gm)). It is
evident that the truncated functionals inherit all the linearity and antilinearity
properties of the nontruncated functionals and, moreover, that the state w is
determined by the truncated functionals.

The truncated functional wr(a},(f),a.(g)) represents the correlation be-
tween the operations of annihilation of a particle with wavefunction g and the
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creation of a particle with wave function f. The higher truncations represent
multiple correlations. In Section 5.2.5 we demonstrate that the equilibrium
states of a system of noninteracting bosons have the simple property that the
higher-order correlations vanish identically and this property can be used to
characterize a special class of states, the quasi-free states. Explicitly an analytic
state w is called quasi-free if

CUT((Dco(fl), ce- :(Dw(fn)) =0

for all n>2 and all fy,..., f, € h. Thus a quasi-free state is determined by
two functionals wr(®,(f)) and wr(®,(f1),Py,(f2)). Of course these func-
tionals must satisfy certain positivity properties. In particular the conditions

”{q)w(fl) +iDy(f2) — (@, (f1) + i‘Dw(fz))ﬂ}lelz >0

can be reexpressed as

wT((D(u(fl)a(D(u(fl)) + wT(q)ru(fZ)v(Dw(f2)) - Im(flaf2) >0 .

Therefore, these conditions are necessary for the truncated functionals to
determine a state. What is less obvious is that this set of conditions, for all
f1,f2€b, is also sufficient for the ws to determine a quasi-free state w.
The sufficiency can be proved by explicit construction of the representation
(90> 1w, Qw) (see Notes and Remarks). In particular every analytic state
w determines a quasi-free state which is obtained by setting wr(®, (f1)
o, @ (fn)) =0 for all n > 2.

EXAMPLE 5.2.18. Let w be a state on the CCR algebra over the pre-Hilbert
space Iy and assume that o is invariant under the group of gauge transformations
0 € (0,2m) — 1o(W(f)) = W(e’f). If w is analytic, then this invariance can be ex-
pressed by

(O(a:)(fl) e a:;(fn)aw(gl) o 'a(u(gm)) =0

if n # m. Hence a gauge-invariant quasi-free state is determined by a single sesqui-
linear form wr(a*(f),a(g)) and the positivity conditions reduce to the simple con-
ditions

or(a*(f),a(f)) =0 .

Conversely assume that one has a positive sesquilinear form ¢ over h and for
Simplicit_y assume that it is given by a positive selfadjoint operator T on the com-
pletion b, of b, i.e.,

tg, ) =(T'"g, T'2f)

forall f,gebh. Let §, =F, (h) ®F.bhand Q, = Q® Q, where Q = (1,0,0,...) is
the Fock vacuum. If J is an anti-linear involution satisfying (J/,Jg) = (9, f), then
the operators

ao(f) =a(V1+Tf)@1+10a (IVTS) ,
a,(g) =a" (V1+Tg) ®1+1®a(J/VTyg)
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satisfy the CCRs on §,,. (The a and a* denote the Fock annihilation and creation
operators.) It follows easily that the state w(4) = (Qw,49Q) is a gauge-invariant
quasi-free state and one has

o(a;,(f)au(9)) = UVTf,IVTg) = (VTg,VT ) =1(g.f) -
On the CCR algebra itself this state is given by

(W (f)) = exp{—w(0,(f)’)/2}
= exp{—|IfI’/4} exp{—t(f, )/2} -

The truncated functionals can be used to reexpress mixing properties of a
state, with respect to groups of Bogoliubov transformations, in a particularly
simple manner. This reformulation explicitly connects mixing properties and
the lack of correlation between physical events. It is illustrated by the following
example.

EXAMPLE 5.2.19. Let U denote the CCR algebra over L?(R"), or the quasi-local
C*-subalgebra of 9 defined in Example 5.2.11. The group R" of space translations
acts as *-automorphisms 7 of U via Bogoliubov transformations, e.g.,

wW()) =WwWf), (U) =7 y—2x) .
Note that the CCRs give
e (), W ()l = 2sin(Im(UL /', 9)/2)]
< (Uef,9)]

and hence

Irlli_rgo Nz (), Wl =0 .
It follows that 2 is asymptotically abelian for space translations in the norm sense,
i.e.,

]xlli_r.nw”[TX(A)’B]” =0

for all 4,B € A. Thus if w is any state over A, the strong mixing property
|llim |w(41:(B)) — w(A4)w(t:(B))| =0
| X{—00

for all 4,B € U, is equivalent to the three-body cluster property
|l]irn |w(A7(B)C) — w(AC)w(1c(B))| =0
|X|—0oC

for all 4,B,C € . If, however, w is R'-invariant and analytic the following are
equivalent:

(1)  w is strongly mixing for space translations,
(2) ]1m|\'|—»oo wT((I)w(fl)7 BN q)w(fn)y T-\‘(q)w(gl))y EERR TX((Dw(gl)!))) =0
forall ym>1andall f1,... fu,d1,..,9m € L*(R"), where 7,(®y(f)) = @p(Us f).

Proor. (1) = (2). For g € L*(R") and all x € R" the vector-valued functions
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teRw— n,(W(tU.f))Q,

have an analytic extension to a strip around the real axis whose width is independent
of x. This follows from the R'-invariance and analyticity of w. It then follows by

power-series expansion and the density of the Weyl operators that condition (1) is
equivalent to

(1) Hm!xr—*oo w(d)w(f)"fx(q)w(g))m) = a)((l)w(f)”)w(d)m(g)'”)
for all f,g € L*(R") and all n,m > 1. But (1') is equivalent to

(2/) limjx{.—;oo r (q)(u(f)v ] q)m(f)7 Tx (q)w(g))7 RS Tx(q)w(g))) =0

n-factors m~factors

for all f,g € L*(R") and all n,m > 1. This is obvious for n = m = 1 but the general
case follows by inductive reasoning from the formula

F(y= Y Fr(J)F(I\J)

acJ CJ

connecting a function and its truncations. Finally (2) and (2') are equivalent by
linearity and anti-linearity.

Note that the above properties all stem from the fact that (U, £, g) — 0 as |x| — o0
and hence they generalize easily to other Bogoliubov transformations. Moreover the
various results are valid if the pointwise limits are replaced by mean values.

The notion of truncated function can be extended to the CAR algebra A
over [ but with two differences. First, there is a simplification because the a(f)
and a*(g) are elements of the algebra and thus there is no inherent restriction
on the states. The second difference is a slight complication of the combina-
torics of the truncation process which is necessary for consistency with the anti-
commutation relations. This modification is only possible for even states, i.e.,
states which are invariant under the unique *-automorphism ¢ of 2 for which
a(a(f)) = —a(f), f €b. The appropriate definitions are as follows.

Let 3 once again denote an index set and F a function from the nonempty
ordered even subsets of I to the complex numbers. The truncation Fr of F is
now defined recursively by

P = e [ F200)

2, JeZ,;

where the sum is over all partitions 2, of I into ordered even subsets,
Pr={J,...,J,} and &(2) is +1 or —1 according to whether the permutation
I'+— (Ji,Js,...,J,) is even or odd. Note that as the J; are even their interchange
does not affect the even or odd character of the permutation. The simplest
examples are

F(OC“B) :FT(aaﬁ) )
F(O(,ﬂ, 7 5) = FT(aaﬁa%é) +FT(a7ﬂ)FT(y76)
‘FT(O" V)FT(ﬁ7 5) +FT(a,5)FT(ﬁ= 7)
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and by inversion one obtains Fr in terms of F. Again one has a simple in-
ductive relation connecting the F' and F,

F(I)y= ) &lJ,.I\))Fr(J)F(I\J)
aedCl
for any I >« where F(J) = 1 and ¢(J,I\J) = +1 according to whether
I'— (J,I\J) is an even or odd permutation of /.
If w is an even state over the CAR algebra, then the above process can be
used to define a truncation wr as a function over the monomials in the a*(f)
and a(g). For example, one has

wr( (), a*(9)) = w(a(f)a*(9)) »
a’(f),a(9)) = (@ (falg))
wr(a*(fl)ya*(fz), (91),a(g2)) = w(a"(f1)a"(

—o(a*(f1)a* (f2))w(a(gi)a(g2))
+w(a*(f1)a(gr))w(a (f2)a(gz
—o(a*(f1)a(g2))w(a (f2)alg))

etc.
An even state w over U is called quasi-free if, and only if,

wr(a® (f1),a*(f2),...,a* (f2)) =0

for n > 2 and all fy,..., f, € l) where a” is used to represent either a* or a.
Thus a quasi-free state is determined by two functionals wr(a*(f),a(g)) and
wr(a*(f),a*(g)) and conditions can be given on any two functionals with the
correct linearity and anti-linearity conditions to ensure that they determine a
quasi-free state w. Necessary and sufficient conditions are

wr(a(f),a"(f)) + or(a*(g),alg)) + wr(a(f), alg)) + wr(a*(9),a*(f)) = 0

which correspond to the conditions

7@ (f) + a(9))Qull* > 0 .

EXAMPLE 5.2.20. A state w over the CAR algebra on the Hilbert space | is
gauge-invariant if it is invariant under the group of Bogoliubov transformations
to(a(f)) = a(e’f),0 € [0,27), the so-called gauge transformations. A gauge-in-
variant quasi-free state is determined by one truncated function and the positivity
conditions reduce to the conditions

IfI1? > or(a(f),a(f)) >0 .

The functional wr automatically determines a selfadjoint operator 7 such that
1>T7T2>0and

or(@(f),ag)) = (9. Tf) -

If w is the state determined by wr, then the corresponding representation is given by
9, =F_(0) @ F_(h),Q, =Q®Q, where Q = (1,0,0,...) is the Fock vacuum, and
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ao(f)=a((1=T)"7f)@1+00a JT"Vf)
ay(g) =a (1 -T)"g) @1+ 0 a(JT'g) .

In these last equations a and a* denote the Fock space representatives of the CARs, J
is an anti-linear involution satisfying (Jf,Jg) = (g, f), and 8 is an operator which
anti-commutes with the @ and a¢* and satisfies Q = Q.

The truncated functionals are directly related to correlations in much the

same way as for the CCRs. The following example is the analogue of Example
5.2.19.

EXAMPLE 5.2.21. Let 2 be the CAR algebra over L?(R"). The group R' of space
translations acts as a strongly continuous group of *-automorphism t of 2 whose
action is such that

w(a(f) =a(Uef) . (Uef)y) = fy—x).

The CARs preclude that U is an asymptotically abelian with respect to space
translations but if @ is R'-invariant, then the pair (U, w) is R'-abelian and o is
automatically even. The proof of these statements is essentially contained in the
proof of Theorem 2.6.5. It proceeds as follows. Let E,, denote the projection on the
subspace of U, (R")-invariant vectors in $,, and let 21_ and 2, denote the odd and
even elements of . It follows from the CARs and a monomial approximation that

Jim_[[e(4) 8] = 0

if either 4 or B is even. Thus
[Emnm(A)Enn E(unm (B)Em] = A/[,\‘(Eruntu([fx(A)vB])Em)
=0
by the mean ergodic theorem where M denotes an invariant mean over R'. If,

however, 4 is odd, then a similar argument gives

Jim ({5 (4). 47} =0

and hence
{Erunm(A)EunErl)nw(A*)E(u} =0.
Since both terms in the anti-commutator are positive, one concludes that
Eymo(A)E, = 0. Thus w is even and (U, w) is R'-abelian.
In fact the R"-abelianness coupled with the CARs implies that
]\/[((U(Al [T(B]),BZ}AZ)) =0
for all R"-invariant states » and all 4;, B; € . This follows by first considering even
By and then
M((,O(A]T(B] )BZAZ)) = (Qrm TE(U(BI )Ewﬂm(AlBZAZ)Qw)
= M(U)(AlBg‘E(B1 )Ag))

by the above asymptotic commutation for even elements and R'-abelianness. But if
By is odd and 47, 4] denote the odd and even parts of 4;, then
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M(w(Al‘L'(B])BzAg)) = (Qw,ﬁw(Bl)EwTL’w((AT —A;)BgAg)Qw))
=0

by the asymptotic commutation and anti-commutation, and E,n,(B1)E, = 0. Si-
milarly for the second term of the commutator.
Finally, one concludes that the following conditions are equivalent.
(1) limpy_ o ©(47:(B)) = w(4)w(B) for all 4,B € A.
(@) limy_ o ©(47:(B)C) = w(4C)w(B) for all 4,B,C € A.
(3) 1im}.\'|—aoo wT(B(f1)7 s 7B(f")v TI(B(gl))v cees TX(B(gm))) =0
forall fi,...fug1,...,gm, where B(f) = (a(f) +a*(f))/2 .

Clearly (2) = (1), but the converse follows by noting that if B =B~ + B* and
C = C™ + C* are the decompositions of B and C into odd and even parts, then
lim {w(A1:(B)C) — w(ACt(B)) — 0(ACT1:(B7)) + w(AC 1(B7))} = 0

[x]—
by the asymptotic commutation relations cited above. But then condition (1) gives
lllim w(A1:(B)C) = w(AC)w(B*) + w(ACT)w(B™) — w(AC™ )w(B™)
X[—00
= w(AC)w(B") = w(4C)w(B) ,

where the last steps follow because w is even. The equivalence of (1) and (3) is proved
as in Example 5.2.19.

Again it should be remarked that the above properties basically follow from the
fact that (U.f,g) — 0 as |x] — co and hence easily generalize to other groups of
Bogoliubov transformations.

5.2.4. The Ideal Fermi Gas

The foregoing discussion of the CAR algebra, the CCR algebra, their states,
and their representations was motivated by the theory of systems of point
particles. This algebraic apparatus provides a kinematical description of such
systems and it remains to specify the dynamics. The simplest thermo-
dynamically interesting models describe noninteracting particles confined to
some bounded open set A of R, the so-called ideal gases. Our immediate aim is
to describe the equilibrium formalism for such systems in the Gibbs grand
canonical ensemble and in this subsection we consider fermions. We begin with
a general discussion of noninteracting systems and subsequently specialize to
point particles in the configuration space.

Let §_(h) be the anti-symmetric Fock space built over the one-particle
Hilbert space §). The dynamics of a $ystem with an arbitrary number of fer-
mions moving independently is dictated by the Schrédinger equation

LAY,
i dt
on &_(b). In this equation H is a selfadjoint Hamiltonian operator on
b, dT'(H) denotes the second quantization of H discussed in Section 5.2.1, and
#i is Planck’s constant. The lack of interaction between the particles is reflected

= dl"(H)xp,
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by the direct sum and tensor product structure of dT'(H), e.g., the n-particle
energy is the sum of the energies of the » individual particles. We will choose
units such that # = 1.

The solution of the Schrodinger equation gives the evolution

¥ € §_(b)—, = exp{—itdU(H) }yp = T(e™")y
and the evolution of any bounded observable, i.e., any bounded operator on
&_(D), is given by transposition as

A€ L(F_(h) = u(d) = T(e")AT(e™) .

The action on the annihilation, and creation, operators is particularly simple.
One finds

w(a(f) =a@f),  wl@(f) =a(f) .

Thus, the evolution can be expressed as a one-parameter group of Bogoliubov

transformations of the CAR algebra (). This group is strongly continuous
because

le(a(f)) = a(N)ll = lla(e™s = )l =l = 11| -

Next let us consider the Gibbs grand canonical equilibrium state of the
particle system at inverse temperature f € R and chemical potential p € R. If
K, denotes the modified Hamiltonian

K,=dU(H—pl)=dIl'(H) — uN
then the Gibbs state is defined by

Tr(e P 4)
a)(A) = W 3

where 4 € (D), the trace is over F_(h), and it is implicitly assumed that e~#Xx
is of trace-class. Typically the individual particle energy is lower semibounded
and this last restriction requires at least that § > 0. It can be reformulated as a
condition on the one-particle Hamiltonian.

Proposition 5.2.22. Let H be a selfadjoint operator on the Hilbert space |
and let B € R. The following conditions are equivalent.

(1) exp{—pH} is trace-class on .
(2)  exp{—p dU(H — 1)} is trace-class on §_(b) for all n € R.

Proor. (1) = (2). Let {&,},5, denote the eigenvalues of H in increasing (de-
creasing) order if > 0 (if § < 0) repeated according to multiplicity. If z = ¢, one
has

Trp(e My =2 3 eXp{ - B Z enﬂ}
p=I1

0<i <mr<--<np
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because of anti-symmetrization and the definition of the second quantization pro-
cess. Thus

0 < Tr(e™u) =" Try(e

m>0

= H (1 4 zePem)

m>0

< [ exp{ze™#} = exp{z Tr(e )} .

m>0

(2) = (1). The operator exp{—pBK,} leaves the one-particle subspace b of F_(b)
invariant and, moreover,

exp{—pK,}y = z exp{—pH} .

The variable z which occurs in the foregoing calculation is usually referred
to as the activity. It often occurs in the sequel.

The Gibbs equilibrium state is particularly easy to calculate with the algo-
rithm

e BKug* (f) = za* (e—ﬁH f)e'.BKu
This algorithm combined with the CARs gives

2 BH £ oK
ofe’(falg)) = e o)

= z(a(g)a*(e”"))
= —zw(a*(e7")alg)) +z(g,e”") .

But then one has

o(a*((1 +2ze7) fa(g)) = z(9,e 1)

and hence

o(a*(f)alg)) = (9,2 ™ (1 + 27 7)7 1) .

A similar calculation gives

w(ﬁa*(fi)ﬁa(gj)) =Zw< n a(fi) ! a(gj)a*(e_ﬁHfl)>

i=2 j=1

=3 (1) Pz(gp e P10 (Ha () Hw)

Jj#p

—zw( “(e7Pf1) H (f7) Hag,)

Therefore, by linearity and the replacement of f; by (1 4 ze~##)~" £, one finds
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n n

® (H “U]] “(gf)> =Y (=)o@ (fi)alg,)o ( [[a() fIa(g,-)> :

i=1 j=1 p= i=2 j=1

Iteration of this identity expresses the value of w on the product of the a*(f;)
and a(g;) as the sum of products of two-point functions w(a*(f;)a(g;)). Note
that if the number of a*(f;) and a(g;) differ, then the corresponding value is
zero because exp{—pK,} leaves each of the subspaces )" invariant, i.e., @ is

gauge-invariant (see Example 5.2.20). Thus, the Gibbs state is a quasi-free state
over 2A(D).

Note that the above calculation is a direct application of the KMS condi-
tion, discussed in Chapter 1 and the introduction to this chapter, to the evo-

lution determined by the generalized Hamiltonian K, i.e., the group of
Bogoliubov transformations such that

4(a(f)) = é"ra(f)e = ealet f)
In particular we used the algorithm
o(a"(f)4) = o(dt(a" (/)= -

The result of these calculations is summarized in the following.

Proposition 5.2.23. Let H be a selfadjoint operator on the Hilbert space }
and assume that exp{—pH} is trace-class. Let

| Tr(e o)

~ Tr(e FKy)

denote the Gibbs grand canonical equilibrium state over the CAR algebra A(Y)
and

w(4)

A € A(D) —7,(4) = ™ de™"™x € A(D)

the evolution corresponding to the generalized Hamiltonian K,, = dU(H) — uN,
where 11 € R.

It follows that o is the unique ©-KMS state, at the value B, and that this
state is the gauge-invariant quasi-free state with two-point function

o(a*(f)a(g)) = (g,2¢ ™ (1 +ze )7 1)

where z = ePH,

This proposition identifies the Gibbs equilibrium states and the t-KMS
states with one small discrepancy. The Gibbs states are only defined if
exp{—pH} is of trace-class or, equivalently, if exp{—pK,} is of trace-class.
These properties are unimportant, however, for the definition of the evolution
7 which exists whenever H is selfadjoint. Moreover, the notion of the KMS
state can be directly defined in terms of 7 (this will be extensively discussed in
Section 5.3) and the same combinatoric calculation given before the proposi-
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tion establishes that the quasi-free state given in Proposition 5.2.23 is the
unique 7-KMS state. Thus, the KMS states can exist when the Gibbs states are
not defined. Nevertheless, one can establish that all the -KMS states can be
obtained as weak*-limits of Gibbs states for dynamics ) which approximate £
in the sense that |]f,(")(A) — %(A4)|] = 0as n — oo for all 4 € A(H). This result is
established by constructing H, on b such that (1) exp{—pH,} is of trace-class,
and (2) exp{itH,} converges strongly to exp{itH}. The groups =) are then
defined by replacing H by H, and the convergence of the corresponding Gibbs
states follows from Lemma 5.2.25.

Now we examine the thermodynamic limit of Gibbs or, more generally,
KMS states, of noninteracting Fermi systems. For the discussion we specialize
to point particles in the configuration space R*. Thus we choose f € L*(A)
where A is a bounded open subset of R* and specify the one-particle Ha-
miltonian as a selfadjoint extension of the Laplacian —V?. This latter operator
will always be understood as defined on the infinitely often differentiable
functions C§°(A) with support in A. The conventional quantum-mechanical
Hamiltonian for free particles of mass m is —4>V?/2m but we now choose units
such that 72 /2m = 1.

There are many selfadjoint extensions of —V? on L?(A), each corresponding
to a choice of boundary conditions, i.e., a specification of the dynamical be-
havior of the particle on arrival at the boundary of the finite system. The
number and nature of the possible extensions is partially governed by the
smoothness properties of the boundary of A. We examine some specific cases
below (see Example 5.2.26). If, however, A is replaced by R", then there is no
ambiguity introduced by the boundary and —V? has a unique selfadjoint ex-
tension H whose action is given by

WMﬂ=@WW/ﬁﬂmﬁm7

where f denotes the Fourier transform of /. The domain of H is the set of
f € L*(R") such that

/wmﬂﬂmf<+m‘

There are two basic quantities of interest in the thermodynamic limit, the
dynamics and the equilibrium states. For these latter one can take either the
Gibbs states or the KMS states. The following theorem describes the former
but can easily be reformulated for the KMS states.

Theorem 5.2.24.  For each bounded open set A C R" let Hy denote a self-
adjoint extension, on L*(A), of the Laplacian —N? and let H denote the unique
selfadjoint extension on L*(R") of —V2. Let W denote the CAR algebra over
L*(A), A the CAR algebra over L*(R"), and ™ and t the groups of *-auto-
morphisms of Wn and W such that tMa(f)) = ale™rf) and 1,(a(f)) =
a(e™ f). It follows that
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(1) limy_ ||t (4) — 7(4)|| = 0, for all 4 € Ay and all A C R’, uni-
formly for t in finite intervals of R, where A" — oo in the sense that A’
eventually contains any given A C R".

(2) If wp is the quasi-free state given by

wA(a*(f)a(g)) = (g, Ze_ﬁH“ (1] _Q_Ze—ﬁHA)‘lf) 7

then

lim wy(4) = w(4)

A —oc

for all A € Wy and all A C R, where the limit is in the sense of (1)
and o is the gauge-invariant quasi-free state over U with two-point
function

o(a*(f)alg)) = (g, z¢ ™ (1 + 2z )7 f)

- ﬁ/dv})mf(p)ze_ﬁpz(l —1—.7@’/3172)_1

where f denotes the Fourier transform of f.

Proor. (1) In Example 3.1.29 we showed that

Jim [[(¢ — ety =0 .

The desired result then follows from the continuity condition

I (a(f) = (@)l = [[(¢"™ — &) £
and the fact that 2, is uniformly generated by the a(f).

(2) It follows from Proposition 5.2.23 that wa (a*(f)a(g)) is the matrix element
of a bounded function of H,. Thus the convergence of wa(a*(f)a(g)) to
w(a*(f)a(g)) and hence the weak*convergence of the quasi-free states w, to the
quasi-free state w is a consequence of the following lemma.

Lemma 5.2.25. Let U, and U be strongly continuous unitary groups, on the
Hilbert space $, with generators iH, and iH. Assume that the net U, converges
strongly, i.e.,

lim [|(Us — U] =0

for all \y € O, uniformly for t in finite intervals of R.
1t follows that
lim [|(f(H,) — f(H)W| =0

A4—00

for all y € &, and for all bounded continuous functions f on R .

Proor. If the Fourier transform foffis absolutely integrable, then the estimate
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I(f(He) = FIHDYI| < /dt FOLIE™ =™l

which follows from spectral analysis, allows one to conclude that
SH — fH)Y .
But these f are dense in Cy(R) in supremum norm, and hence the convergence
follows for all f € Cy(R).
Next let g, (t) = exp{—#*/m}. One has g, (H)¥ — ) and, by the foregoing,
gm(Ha)ll/ _—)gm(H)‘l/ BUI me

”gm(Ha)l// - ll’“ < “(gm(Ha) - (],,,(H))l,b” + ”gm(H)'wb - lr//“

and hence for ¢ > 0 one can choose an m and a f§ such that

“gm(Hd)l// - l//” < 8/37 “gm(H)l// - '1[/“ < 5/3
for all & > . But fg, € Co(R) and hence there is a y such that
I/ (He) g (H)Y — f(H)gu(H)WI < el fll/3

for all o« > y. Therefore,

Hf(Hoz)l/’ - fHW] < ”f(Ha)gm(Ha)‘// — f(H)gm(H)Y||
S H) g (Ho)y = || + 1| FE) g (H)WY — Y| < el fll

for all « > pV y. Since Y and ¢ were arbitrary, f(H,) converges strongly to f(H).

Theorem 5.2.24 demonstrates several points of interest. First, the dynamics
of the infinite idealized Fermi gas are determined by a strongly continuous one-
parameter group of *-automorphisms of the CAR algebra 2 over L*(RY).
Second, the thermodynamic limit of the finite-volume equilibrium states is
uniquely defined and independent of the choice of boundary conditions, i.e.,
there is a unique thermodynamic phase. This latter point is valid for either of
the possible definitions of the finite-volume states, the conventional Gibbs
definition, or the definition as a KMS state.! Finally the theorem gives an
explicit identification of the thermodynamic equilibrium state of the Fermi gas
as a quasi-free state w and this allows a detailed analysis of equilibrium phe-
nomena. Let us examine some of the most relevant features.

First consider the dynamics. The group t with generator —V?, or the related
group with generator —V? — y1, is usually referred to as the fiee evolution. The
Riemann-Lebesgue lemma implies the property

! ~V? may have selfadjoint extensions Hx on L*>(A) which are not lower semibounded when
v > 2. For all classical boundary conditions however, H, is lower semibounded, and the operator
exp {—fBHa} has a finite trace for > 0. (See Example 5.2.26.) Hence the Gibbs definition is
restricted to classical boundary conditions and positive values of the temperature f~'. The KMS
definition is, however, valid for positive or negative temperatures and any boundary condition, and
negative temperature states can be interpreted as limits of Gibbs states for neighboring dynamics.
This difference between the Gibbs description and the more general KMS condition could be of
significance in more realistic models because certain phenomena of magnetism indicate the possi-
bility of attaining negative temperature states (see Notes and Remarks).
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i (7.6 = im_ [ ap7(p)a(pie” =0
tl—o0 t—o0

Hence the properties of R-abelianness, asymptotic abelianness in mean, etc.,
derived for an R-invariant state in Example 5.2.20 are applicable. In particular,

M(CL)(Al[T(B|),Bg]A3)) =0

for any R-invariant state , any invariant mean M, and all 4;, B; € . We will
derive more detailed properties of the free evolution in Example 5.4.9.

Second, consider the equilibrium state w. This state is invariant under the
group t of time translations and under the group R’ of space translations, i.e.,
the group of Bogoliubov transformations induced by the unitary transforma-
tions U; (U f)(y) = f(y — x) of L*(R"). In fact the state is strongly mixing for
both groups. This can easily be verified by application of the Riemann-Le-
besgue lemma to the two-point function. The state w also has finite particle
density per unit volume p(f,z) for 0 < B < cc.

Recall that in Section 5.2.3 we associated with each state w over the CAR
algebra a number functional N(w) which measures the number of particles in
the state. Thus, by restricting w to the local algebras 2, one can define local
number functionals Ny(w). Then Ny(w)/|A|, where |A| is the volume, i.e.,
Lebesgue measure, of A, is exactly the number of particles per unit volume in
A. Since the equilibrium state is invariant under space translations, this number
should be independent of A and indeed one easily computes the density as

p(B.2) = |AI" R ()
=AY (@ (f)alf))

n>0
= (27r)v/d"p e P (1 427 P7) 7! < oo |

where {f,},-¢ is an orthonormal basis of L>(A). Thus it follows from Theorem
5.2.14 that o is locally normal, i.e., normal with respect to the Fock re-
presentation in restriction to each of the local CAR algebras. It is also possible
to evaluate the local energy per unit volume, and hence the energy per unit
particle, but for this it is first convenient to introduce an algorithm for the local
Hamiltonians on Fock space.

Let {f,},50 be an orthonormal basis of L>(A) formed of once-continuously
differentiable functions and define a quadratic form 4 on the Fock space
F_(A) over L*(A) by

W) = (ha (Y f) - al(Y f)W)
n>0
with the domain of 74 consisting of those ¥ for which the sum is finite. It
follows from Lemma 5.2.13 that ¢, is a positive, closed quadratic form and an
explicit calculation shows that P_g; ® g» ® --- ® g,, € D(t,) for all once-con-
tinuosly differentiable g; and all m > 1. Thus #, is densely defined. Hence, there
exists a positive selfadjoint operator 75 on §_(A) such that



Continuous Quantum Systems. [ 53

() = (120, 73 0)
for all ¥ € D(¢). Choosing i to be an infinitely-often differentiable one-par-
ticle vector with support in A, one calculates that
W) = —(, V)

and hence T}, in restriction to the one-particle space, is a selfadjoint extension
of —V? on C3°(A). More generally one deduces by calculation with multi-
particle vectors that T, is a selfadjoint extension of the second quantization
I'(—V?) of —V2. In fact, it follows from the classical theory of quadratic forms
and differential operators that T corresponds to the second quantization of
the selfadjoint extension of —V? which satisfies Neumann boundary condition
(see Example 5.2.26). This extension is very convenient for the calculation of
the local energy per unit volume &(f3,z) of the equilibrium state w. One has

a(ﬁ,z) = |Al_l Z w(a*(an) 'a(an))

n>0

= (2n)_"/d"p Pz PP (1 4z FP)

- (%) m)~ / d'p log(1 +ze 7).

(The last equality follows through integration by parts and expresses the
classical equation of state

P(B; z) =&, 2)

v
with the pressure P(f, z) identified by

P(B, z) = ﬁ_l(zn)_"/dvp log(1 —I—ze‘ﬁp:) )

The temperature dependence of p, ¢, and P is particularly simple. For example,

p(B, 2) = i), (B, 2) =B

where
I(z) = n_"/Z/d"x ze"‘z(l + ze_xz)_I ,
J(z) = n""/z/d‘lt zxze_x:(l + ze‘"z)_1

are independent of ff and A = (4n,8)1/ 2 corresponds to the thermal wavelength
of the individual particles, i.e., A is a measure of the “effective’ size of the
fermions.

Quantum mechanically the Fourier variable p conjugate to x is interpreted
as particle momentum and the formulas for p and ¢ indicate that

Qm)"ze PP (1 + ze PP 'dp
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should be interpreted as the momentum distribution per unit volume. In the
high-temperature-low-density region, 4"/ ?p <1, one must have z<1 and

5

B, 2= Qu) 7 [ @7 a(p, ) = 207z [ arp e

(8]

Thus the momentum distribution takes the Maxwellian form (27)'ze~#7"d"p
and by use of the equation of state one can derive Boyle’s law

PB, 1) _ 2¢(Bp) _
p(B, 1) vp(B, 1)

In fact, this is the ultimate justification of B as the inverse temperature, in
suitable units. The low-temperature-high-density region, 4"/ 2p>1 is best illu-
strated by examining the idealization of zero temperature, i.e., by taking the
limit § — oco. One then has

g

ﬁlim ze_ﬁ”l(l + ze'ﬁpl)_] :ﬁhm e—ﬁ(Pz—#)(l + e—ﬂ(pz—u))—l
B { 1, ifp><upu
o, if P>

Thus only particles with energy (= momentum?) less than or equal to u occur.
This situation is often described as the Fermi sea. All states with particle energy
less than p are occupied and all states with energy greater than yu are empty.
The critical values of p, the surface p*> = y, are called the Fermi surface.

One can also conclude that the weak®- limit of the equilibrium states as
B — oo exists and is the gauge-invariant quasi-free state wy with two-point
function given by

wo(a*(fa(g)) = (2n)~" / &' 50/ (p) -

PP<u

The zero-temperature states are usually called ground states and can be in-
dependently defined by the requirement of minimal energy per unit volume at
fixed density. The general definition of ground states will be examined in
Section 5.3. Note that the energy ¢ and density p are easily calculated in the
ground state of the Fermi gas and one has ¢ ~ p! /", in contrast to the linear
behavior at low densities and high temperatures.

To complete the thermodynamic description one should also prove that the
local density, energy, pressure, etc., are equal to the thermodynamic limit of
their finite-volume counterparts. These limits are seemingly more sensitive,
however, to the manner in which A — oo and the boundary conditions vary. In
the simplest situations one can, of course, calculate explicitly the limit and for
the classical boundary conditions various techniques of convexity, mono-
tonicity, subadditivity, etc., have been developed which apply even to inter-
acting systems. These methods are mostly based upon the characterization of
selfadjoint extensions of —V? by quadratic forms.



Continuous Quantum Systems. [ 55

EXAMPLE 5.2.26 (The classical boundary conditions). Let D denote the Laplacian
operator ~V? defined on all twice-continuously differentiable functions in L?(A)
where A is assumed to have a piecewise differentiable boundary 9A. Green’s formula

(DY, ¢) - (¥, D@P/“{%f“’_'/—’%}

demonstrates that a restriction H of D to a domain D(H) is symmetric if

- 0o Oy
on~ on?
on the boundary JA of A for all ¢,y € D(H). Here we have used 9/0n to denote the
inward normal derivative. The simplest and most basic examples of the boundary
conditions are (1) Dirichlet conditions, Yy = 0 on OA. and (2) Neumann conditions,
AY/0n =0 on Gy where ¢ € C!(OA) is a real differentiable function over A (Di-
richlet conditions formally correspond to ¢ = + 00). These conditions determine a
family of selfadjoint extensions H° of —V? which are best described through
quadratic forms.
Let 4° denote the quadratic form defined by D(k°) = C'(A) and

W) = vyl

This form is densely defined, positive, and closable (V is closable on C'(A)). The
closure of #°, which we also denote by 4°, determines a selfadjoint extension H° of
—V? by

K@) = [VHY |
and this operator corresponds to Neumann boundary conditions. The closure 2~ of

the restriction of #° to C}(A) determines the Dirichlet extension > in the same
manner. Moreover, the quadratic forms 4° defined by D(k°) = D(k°) and

HW) = W) + / ds ol

determine the 0y = oy extensions. These latter forms are closed because for b < 1
there is an a > 0 such that

[ as ot

Note that if 0 < gy < 05, then

<dllyl* + bho(y) .

hO Sho'l Shag Shoo

in the sense of quadratic forms. It follows from the mini-max principle that if {¢°}, .,
denotes the eigenvalues of H® arranged in increasing order, repeated according to
multiplicity, then
& <& < < &

for all n > 1.

If A is a parallelepiped, —V? also has a selfadjoint extension HP°" corresponding
to periodic boundary conditions. This extension is determined by the restriction AP
of  to the periodic functions in D(4°) and hence one also has
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hO < Jper < h>°

and the corresponding order for the eigenvalues.
Finally let 2%, {e°(A)},>,, etc., denote the forms and eigenvalues and consider a
variation in A. If A; C A, one has h%i > hj’fz and hence

e (A1) = &7 (M)

for all n. This property is often useful. For example, one can compute that
exp{—H{y"} is trace-class for all parallelepipeds and hence, by monotonicity, it is
trace-class for all A.

We will not consider the limit of the thermodynamic functions in any detail
but content ourselves by noting that if A, is a parallelepiped, with edges of
length Ly, Ly, ..., L,, the density with Dirichlet boundary conditions is given by

pa (B, 2) = |AL] ™! Tr(ze Pn (1 + ze PHA )~
= (Lle"'Lv)_l Z Ze_ﬁgﬂ(A)(l + ze‘ﬁsﬂ(/\))_l )
Ap,.ny>1

where the eigenvalues are given by

An identical expression is valid for Neumann boundary conditions but the
value n; = 0 is also allowed. But the sum is just a Riemann approximation to
the local density and hence p,, (f,z) tends to p(f,z) for Dirichlet or Neumann
conditions. Thus the same conclusion is valid for the 8 = oy conditions with
any ¢ > 0 by monotonicity. Note that as

n
/ dxze—ax'(l + Ze—ax-)fl >Ze—an-(l + Ze—an-)
n—1

n+1 R 5
> / dxze™™ (1 4+ ze )7 |
n

one can conclude that p,, < p for the Dirichlet boundary condition and obtain
an upper bound on the difference p — p,,. An explicit calculation gives

12z 1 /4
P09 ~ a8 <75 (7)

where 4 = (47tﬁ)l/2 is the thermal wavelength. One also easily obtains the es-
timate

Combination of these inequalities gives a bound on the error occurring when
one replaces p,, by its thermodynamic limit,
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0<1 —Mgu%.

B p(B,2)
Explicitly one has 2 ~ 2 x 107 cm for helium at room temperature and hence
if L = 1 cm the error is about 2 parts in 107. At lower temperatures for example
3°K, the error would be about 2 in 10° because A is proportional to the inverse
root of the temperature, but for heavier atoms the accuracy improves. Hence,
the infinite-volume limit provides an excellent approximation even for systems
whose diameter is as small as 1 cm.

5.2.5. The Ideal Bose Gas

We begin the description of the ideal Bose gas with a general discussion which
parallels that of the previous section. Subsequently we specialize to particles
in R".

Let & (h) be the symmetric Fock space over the one-particle Hilbert space
h. The dynamics of the noninteracting system is again defined in terms of the
second quantization dI'(H) of the one-particle Hamiltonian H on b.
One has the evolution

Ve, (h)—y, =Ty
for the wave functions and
Ae $(§+(b)) —1,(4) = F(ei’H)Ar(e—itH)

for the observables. In particular, the dynamics yield a one-parameter group of
*-automorphisms 7 of the CCR algebra 2A(}) and

w(W(f)) = W(e" [)
for the Weyl operators W (f). In contrast to the Fermi gas this group of
Bogoliubov transformations is not strongly continuous because of Theorem
5.2.8.
The Gibbs grand canonical equilibrium state is defined in terms of the
generalized Hamiltonian K, = dT'(H — ul) =dT'(H) — pN whenever

exp{—pK,}
is trace-class. This latter property places a constraint on the possible values

of p.

Proposition 5.2.27. Let H be a selfadjoint operator on the Hilbert space b
and let B, p € R. The following conditions are equivalent.

(1) exp{—pH} is trace-class on Yy and B(H — u1)> 0,
(2) exp{—pdU(H — ul)} is trace-class on §_ (D).

Proor. (1)=>(2).Let {e,}, 5 o denote the eigenvalues of H in increasing (decreasing)
order if § > 0 (if B < 0) repeated according to multiplicity. If z = e’ one has
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Trp(e ) <z Y exp{—ﬁf}np}

R, A2, >0 p=1
and hence
0 < Tr(e PKw) Z Try: (e PR
m>0
< H (I — ze ﬁ‘"‘
m=0
- H (1 + zePom(1 — ze‘ﬁe"')_])
m>0
< exp{ z ze Pem(1 — ze‘ﬁe"’)_'}
m>0
<exp{z(l — ze M) Tr(e M)}
where the second relation uses the assumption f(g, — u) > 0.

(2) = (1). The restriction of K, to the one-particle space is H — uf and hence
exp{—p(H — p1)} must be of trace-class. But then it follows from the above
identification of the trace of exp{—pfK,} that B(s, — u) >0 for all m, ie.,
BH — ul)>0.

Let us now assume that exp{—pK,} is of trace-class and then calculate the
Gibbs equilibrium state
Tr(e PKed)
Tr(e‘ﬁKll)
This is most easily accomplished by extending o to the annihilation and
creation operators. For this we first note that if iy € "', one has

w(d) =

la(f1)a(f2) -~ a(fu)yll < m P £l 1LFall -

Moreover exp{—pK,}b" C b and hence
Trip (752" (f2) @ (fo)a(f1) - alfn)e P7)
< m"Try (e )| 11 | £l

d n 5 5
= (252 Toee A Al

A simple extension of the estimates used in the proof of Proposition 5.2.27
establishes that the operators

Af = a(fl) T a(fn)e_ﬁK“/z

have a bounded closure A and both 47 A, and Ay A} are of trace-class. Thus
one can extend o to monomials or polynomials in the a(f) and a*(g). More-
over, this extension is continuous in the sense that
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(@ (f1) - (fu)a(gr) alg)) < ]I T ol
j=1

i=1
for a suitable constant C. Now one can use the algorithm
e PR2g(f) = a* (e PHHD/2 £)g=FKu/2
to calculate @ in a manner similar to that used to evaluate the Fermi equili-
brium state prior to Proposition 5.2.23. In particular,
(a*(f)alg)) = Tr(a"(e M=+ f)e Mg (e PH=KDg)) [ Tr(e7PHr)
— w(a(e—ﬁ(H—uﬂ)ﬁg)a*(e—ﬁ(H-uﬂ)/Zf))
— w(a*(e—ﬁ(H—m])/Zf)a(e—lf(ﬁ—uﬂ)ﬂg))

where the last step uses the CCRs. Iteration of this identity gives

w(a*(f)alg)) = w(a’ (PHDL f)a(eHH-1D/2))

n

+ Z (g’ e—m,B(H—;dl)/2f) )

m=1
But f(H — pl) > 0 and hence

lim [le™"H#=+02 fl| =0
n— oo

Moreover, f,g— w(a*(f)a(g)) is continuous by the previous observations.
Therefore, in the limit that n — oo the above identity gives

w(a*(f)a(g)) = (g, ™ (1 —ze#)7 1) .

Repetition of this method establishes that the value of @ on monomials of the a
and a* are determined by sums of products of the above two-point function.
Thus w is a gauge-invariant quasi-free state over the CCR algebra (}). The
value of w on the Weyl operators #( f) is then easily calculated. The quasi-free
structure gives

o(W(f)) = exp{—w(®u(f)*)/2}

and one has

o(®@u(f)?) = w(a(fa*(f) +a (f)a(f))/2
= (f,(V +ze P —ze PHY' 1y /2

The foregoing calculation of w was based once again on the combinatoric
relation provided by the KMS condition but expressed on the unbounded
operators a(f) and a*(g). It can be verified from the value of w(W(f)) that the
state w also satisfies the KMS condition on the CCR algebra but care has to be
taken in phrasing the necessary continuity and analyticity properties because
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the evolution is not strongly continuous. We postpone the detailed discussion
of this point to Section 5.3.
The following proposition summarizes the above results.

Proposition 5.2.28. Let H be a selfadjoint operator on the Hilbert space

b and let B, € R. Assume that exp{—pHY} is of trace-class, B(H — u1) > 0,
and let

_ Tr(e PKed)

o) = TRy

denote the Gibbs grand canonical equilibrium state over the CCR algebra
AY), where K, = dT'(H — ul).

It follows that w is the gauge-invariant quasi-free state with two-point
function

o(a'(f)a(g)) = (g, z ™ (1 —ze )71 1)

and therefore
(W (f)) = exp{~(f, (1 +ze (1 —ze ™) ) /43 .

Once again we remark that the quasi-free state occurring in the proposition
exists whenever H > ul, > 0, and p is not a discrete eigenvalue for H. Ex-
ample 5.2.18 shows that if ze=#7 (1 — ze=##)~" is a positive selfadjoint operator,
then the associated sesquilinear form determines a quasi-free state. It is not
necessary that the operator is bounded or that it has discrete spectrum. One
can demonstrate that this wider class of states can be constructed as weak*
-limits of Gibbs states w, corresponding to dynamics ") which approximate
the dynamics 7 defined by H in the sense that w, (47" (B)C) — w(At,(B)C) for
all 4,B,C € A(h) and t € R.

The infinitely extended ideal Bose gas is more interesting than the Fermi gas
from the point of view of phase structure because it describes a phase transition
at low temperatures. We first describe the properties of the thermodynamic
limit of the equilibrium states and the dynamics in the single-phase region.
Subsequently, we examine the details of the two-phase region. We adopt the
notation used for point particles in Section 5.2.4.

Proposition 5.2.29. Let Hy denote a selfadjoint extension of the Laplacian
~V? on L*(A) corresponding to a classical boundary condition, and let H
denote the unique selfadjoint extension of —V*, on L*(R"). Further let An
denote the CCR algebra over L*(A) and N the CCR algebra over the subspace
b of L*(R") formed by the union of the L*(A). Finally let t be the group of
“-automorphisms of Wn and W, such that TNW(f)) = W (™ f). Let p > 0.
If follows that :
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(1) If wa is the Gibbs grand canonical state corresponding to (Ha, f, 1)
and if there is a C > 0 such that Hy — ul > C1 for all A, then

Allim op(4) = w(d)
for all A€ N\ and all A CR'. The limit is in the sense that A’

eventually contains any given A C R’ and w is the gauge-invariant
quasi-free state over W with the two-point function

(@ (aw(g)) = (g,2e P (1 — zePH)7" 1)
o [T S 1 st

and hence

o(W(f)) = exp{~(f, (1 +ze ") (1 -z )7 1) /4)} .

2) If (94, 7w, Qo) is the cyclic representation corresponding to w, then
7, ()" contains a representation of the CCR algebra over L*(R*) by a
Jamily of unitary Weyl operators {W,(f); f € L*(R")} such that

(a) “(VV(D(f) - VV(D(g))Ww(h)Qw” < Ch”f_ g”(“f” -+ ||g“) fOI'
all f, g, h € L*(R").

(®)  Wo(f) = slimy—co no(W(f4)), if fu € band || f — fI| — 0.

(3)  There exists a strongly continuous one-parameter group of unitary
operators U, on 9, such that

Uw(t)Qw =Q, , Uw(t)VV(u(f)Uw(t)_l = [/Vm(einf) )

The U, implement a o-weakly continuous group of *-automorphisms t
of Teo(W)" such that ©,(4) = U, ()AU, (1)~ and one has

lim wy (At (B)C) =(Qu, 70 (A) T (710 (B)) 10 (C) Q)

N— oo
= lim w(47" (B)C)
AN— o

forall A,B,C € AU.

Proor. (1) All the operators Hx are automatically lower semi-bounded and the
Gibbs state is defined only for f > 0 by Example 5.2.26 and Proposition 5.2.28. The
condition Hy — ul > C1 then ensures that
1 + ze~PHa
Now it follows from Example 3.1.29, Lemma 5.2.25, and Proposition 5.2.28 that
wp (W(f)) converges to w(W(f)) for all £ € h and hence w,’ converges to w in the
weak* topology.
(2) Using the CCRs one can successively estimate that
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17 (W () = W(9)) (W (1)) Qu| < e U400 — 1|+ || (W(f) = W (9)) Q||

and

170 (W (f) = W(9))Qull < |e7™™ 972 — 1] + ||z (W (f — g) = )| -
But one has
le™ ™o 1 < | f =gl |All, ™02 —11 < | f =gl lI£11/2 -
Moreover,
(W (f = 9) = QI = (1 — 0(W(f = 9))) + (1 — (W (g — f)))
<20(®y(f — 9)*/2)

<coth(BC/2)|f —glI*/2 .

The last step uses the obvious bound on the two-point function following from the
assumption B(H — ul) > BC1. Collecting these estimates gives the desired con-
tinuity.

Finally, as Q,, is cyclic and ||¥,(g)|| <1 for all g € § one can define W, (f) for
/€ L*(R") by continuity, i.e., if f, € b and f,, — f, then W,(f) is defined as the
strong limit of 7,,(W(f,)). This establishes the existence of the W, (f) and property
(b) is automatically satisfied.

(3) Define U, on {W,(f)Qu; f € L*(R")} by

Ucu(t) VVw(f)Qu) - W(u(eitHf)Qw .

It follows from the CCRs and the explicit form of w(W,,(g)) that the U, are iso-
metric and extend to unitary operators. The strong continuity follows from (2a), e.g.,

||Uw(t)Ww(f)Qw = Wol )Wl < 2C0”eile = s -

The invariance of Q,, and the automorphism property follow by the definition of U,,.
Finally, it suffices to establish the last properties with 4, B, and C chosen to be Weyl
operators. But then w, (47X (B)C) can be explicitly calculated and its limit de-
termined by use of Lemma 5.2.25. A straightforward calculation gives the first
identification. The second follows from the continuity of f € L*(R") —W,(f) and
the definition of t* and «.

Remark. (1) Statement (3) can be extended. By the same calculational
procedure one deduces that

llm wAr(Aor (4y) -- A,(An))

=(Qu, To(do)ty (Tw(41)) -+ T, (T (41)) Q0)
= m o(dy T (A1) -+ T (4,))

for all 4, € Wand ¢, € R.

(2) Itcan also be shown that w satisfies a KMS condition with respect to .

We will return to this point in Section 5.3.

Under the restrictions imposed the above proposition gives a satisfactory

description of the thermodynamic limit. This limit can be taken in a very



Continuous Quantum Systems. I 63

general form and the equilibrium state w is explicitly identified. Moreover, the
dynamics is constructed in a natural manner as a group of automorphisms of
7, (A)" which appears as a limit of the finite-volume dynamics. It is readily
verifiable that w is invariant not only under time translations but also under
the group R’ of space translations. Moreover, it is strongly mixing for both
these groups. Furthermore, w has finite density per unit volume and hence is a
locally normal state over the quasi-local algebra generated by the 2,. The
momentum distribution of the particles is now given by

(27[)_"ze_sz (1-— ze_ﬁpz)_ld"p

and in the high-temperature-low-density region, which again coincides with
z<1, this distribution is approximately Maxwellian and agrees with the Fermi-
Dirac distribution.

Let us next examine the shortcomings due to the conditions H — ul > C1.

Since all the selfadjoint extensions H, of —V? corresponding to classical
boundary conditions are lower semi-bounded, the conditions H — ul > C1
state that u < y, for some y; which depends on the boundary conditions used
for the Ha. In the simplest case of Oy = oy boundary conditions with ¢ > 0 or
periodic boundary conditions, one has y; = 0 and hence 4 < 0 orz < 1. But an
explicit calculation of the density p(8, z) gives

B, ) = n) [ dpze (1 —ze )
< /1""7':“"/2/de e‘xz(l - e_xz)_] ,

where 1 = (47rﬁ)1/ 2 is once again the thermal wavelength. If v > 3 the last
integral is finite and one concludes that the density at fixed temperature is a
bounded function of the activity. (The same conclusion is valid for all v if
Uy < 0.) But this boundedness does not faithfully reflect the properties of large
but finite systems. The density of a finite system A is given from Proposition
5.2.28 by

pa(B, 2) = |A| 7 Tr(ze Pr (1 — ze=PHm) 1)
— [‘/\|_1 ZZe_ﬁE"(A)(I _ Ze-ﬁgn(/\))_l ,

n>0

where ¢,(A) are the eigenvalues of Hx. Thus for § and A fixed, the density may
be made arbitrarily large by choosing z close to exp{fey(A)}. In this case the
first term in the above sum contributes a significant proportion to p, (B, z). The
drawback of Proposition 5.2.29 is that it does not take account of this latter
phenomenon which is known as Bose—Einstein condensation.

In order to understand the basic effect of Bose—Einstein condensation on the
high-density regime of the Bose gas we examine the thermodynamic limit of the
Gibbs states at fixed density, but variable activity. This discussion demands
more detailed analysis than was previously necessary. A complete description
of all possibilities, e.g., all possible boundary conditions, etc., would lead us
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too far astray and hence we examine the simplest case, Dirichlet boundary
conditions, and mostly consider parallelepipeds A; with edges of length
Ly, Lo, ..., L,. Thus the local density p,, is given by

pa B 2) = (Lily---L)7" Y ze Pl (1 — eyt
HYyeeyity 21
where
v — 2
en(L) = Z(f) .
i=1 \

A Riemann approximation argument establishes that p, (B, z) < p(B, z), a
bound that we frequently use, and

Jim pp, (B, 2) = (2m) / d'pze V(1 —ze7P7) "' = p(B, 2)

for all > 0 and all 0 < z < 1. In particular the limiting value z = 1 is allowed
but then p(B,1) is infinite if v=1 or v=2. Note that z— p,, (f, z) and
z+— p(p, z) are both strictly increasing. Now we begin the examination of the
thermodynamic limit at fixed density by considering the variation of the ac-
tivity. The following result is crucial for the understanding of Bose-Einstein
condensation of thermodynamic systems.

Theorem 5.2.30. Assume v > 3. Let py (P, z) be the particle density of the
Gibbs state with Dirichlet boundary conditions for a parallelepiped A; and

p(B, z) the thermodynamic limit of p,, (P, z). Define p.(B) = p(B, 1) and for
each p > 0 choose z; as the unique root of

pAL(ﬁ7 ZL) = l_) .
1t follows that:
(1) If'p < p.(B) and z is that unique root of p(B, Z) = p then

Iim z; =2z
AL—'OO

where A; — oo indicates that Ly, ...,L, — occ.

@ If P> p.(B) then limy, —.ozp = 1 and if (sup.,, L;)/(infi<j<,L))
remains bounded as A; — oo then

lim|Ar] ™2 01— zye P = 5 p ()
o0

L—

where eg(Ar) = e1(Ar), with 1 = (1,...,1), is the smallest eigenvalue
of the Dirichlet Hamiltonian Hy, .
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Proor. The proof is based upon convexity and growth properties of the density.
For example, if 21 > 2, then convexity of z+— p,(f, z) implies that

apA(ﬁ, -) < (ﬁ )_p/\(ﬂ7z ) S%(ﬂy Z]) .

zZy — 2

But
)= AT e (1 - )
2

where ¢,(A) are the eigenvalues of Hx. Therefore,

pA(B, 2) < OpA(B, Z) pa(B; 2)
z = 0z T z(l —zeFa()) T

Combining these inequalities gives

pA(.B,ZZ)SpA(ﬂ’Zl) PaB,z2) . palB 1)

z zZ1— 2 21(1 — e Pald))

These bounds will be used throughout the remainder of the proof.

(1) As pa, (B, z) < p(B, z) and both functions are increasing in z one must have
z;, > z. Thus choosing z; = z; and z; = Z in the above inequality one finds

z(p — pa, (B, 2))

0<z-z< —
p/\L<ﬁ7 Z)
and hence
lim z, =2z .
L — 00

@ Assume p,(f) < p. If z, < 1 then p,(B) < pp, (B, z) < p(B, 1) < p.(f) and
one has a contradiction. Hence zp > 1. But z; < efolAs) 50 limp, oo 2z; = 1.
Next define p; and p,\— by

Py = limsup |AL|_lzLe‘ﬂ€°(A‘)(l — z e Pra(A)y~!

AL — o0
and
P (B, 2) = AL D ze (M1 — zePaali)) !
n>m
where n > m indicates n; > m; for atleast onei = 1,...,v. Thus pf{’—:) is obtained from

m

pa, by omitting a finite number of terms and the p(
convexity properties of the PA,-

retain the monotonicity and

Since z; > 1 one has pf{—z)(ﬂ, z1) > p%’?(ﬁ, 1). Hence

P (B, z) > L (B,1) = pa, (B, 1) — (BIALler(Ar)) ™!

as the ¢, (A,) term is the only one omitted in the sum for m = 1. But, by assumption
there is a 4> 1 such that (sup,<;<,L;) < A(infi<;<.L;) as Ay — oo. Therefore

[Arlei(AL) > nzl‘2|AL|/(inf|g9 Lj)2 — 00 as Ay — co. Consequently
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pelB) < liminf p(p, =)

Ap—o0

= liminf( ]AL| zre” (AL)(l _ZLe—/}f:l(AL))—1> —7-7
Ap—oc

because ¢ (Ar) = ey(Ar). Hence py <7 — p.(B) .
Next define p, by

po = liminf|A | zze~PeolA) (1 — 7 e=PralA)y =1
—_— AL —cc

It suffices to prove py > 5 — p.(f) because this implies that p; = Py =P — p.(B). But
z; < PN and consequently

|AL| 7Lg "(AL)(I _ZLe_/jﬁﬂ(AL))_l
< AL e Pah=a i) (] _ g=Bla(h)=a(A0)y )

< (BIALI(en(AL) — &1 (AL)) ™

Moreover |A|(e,(Az) —&1(AL)) — o0 as A, — oo for n# 1. Thus one concludes
that

Jim ALz e P (1 - 2y — g

Ap—o0

for n # 1, 1i.e., only the state of lowest energy provides a non-zero contribution to the
density. Therefore

po =liminf (7 — p)(B. z2)) = 7 — limsup p2 (8, =)

- Ar—o0

for all m > 1. The p,{" have, however, convexity properties similar to the pa, and

hence

m (m) ( B l)p(yf)(ﬂ’ “ )
B ) = ) < C il

where ¢,,(Az) denotes the smallest eigenvalue occurring in the series for p%'). Now we
use the homogeneity assumption, (sup; <;.,L;) < A(infi<;<,L;) as A — oo, to
estimate that

-2 -2
g1(Ar) Snzv( inf L) §n3v22< sup Lj) < (v /mP)em(AL)

1<j<v 1<j<v
Hence 2e1(Ar)/en(AL) < 1 for all m > (2v)"/?). Then for this range of m one has

zle “Pen(h) < g Blem(A)=201(A) 1 and one may rearrange the convexity inequality to
obtdm

Pﬁ\%)(ﬁ, 21) < pp, (B Dz (1 — zpe Pon M) (1 — e Fen(Au)) =t

But 1 < z; < €”(A) and one concludes that
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(27! — e~ Pemlbo))

: (m1) ;
timsup o} (5, 1) < pe(B)limsup hr—— s

AL — 0 AL — o0 (ZZ

< pe(B)limsup (1 — 2&; (Ar)/em(AL)) ™"

Ap— o0

< pe(B)(1 — 2027 /m’) ™"
Hence for all large m

limsup p (B, z2) < p,(B)(1 — 2vA%/m?)”"

AL — o0

and consequently
po =P —p(B)(1 =272 /m?)7" .

As the left hand side is independent of m one concludes that py > p — p.(B) by taking
the limit m — oo.

Although Theorem 5.2.30 is formulated for Dirichlet boundary conditions a
similar result is true for Neumann conditions or the intermediate conditions
Oy =0y with ¢>0 (see Example 5.2.26). The spectrum e&,(Ar)=
Z;’=1(nn,~/L,~)2, n; =0,1,..., of the Neumann Hamiltonian contains the Di-
richlet spectrum together with additional modes for which some, or all, n; = 0.
Hence the Neumann density g, has a decomposition

a(B, 2) = |AI7'2(1 = 2)™" + pa(B, 2) +7a(B, 2)

where |A|"'z(1 —z)™" is the contribution from the zero-energy ground state,
pa(B,z) is the Dirichlet density and the remainder rA(f,z) is the contribution
from the eigenvalues with some, but not all, n; = 0. Consequently, 5 satisfies
an estimate

v—1
0 S r/\(ﬁ’ Z) S cht(L)(zn)_‘l/d‘lp Ze_ﬂpz(] _Ze_ﬂpz)_l
p=1

where ¢, (L) is the coefficient of x* in the product []'_,(1 +x/L;). Now fix z,
such that p=p,,(B,2). Then Z(1 —%)"' <p|AL| and hence Z
<1—(p|AL])"". These bounds in combination with the foregoing bounds on
ra suffice to deduce that lima, . 74, (B, Z1) = 0. (Care has to be taken with the
u = 1,2 terms as the integrals in the bounds diverge as z — 1. But the bound on
z; suffices to control the divergence.) Therefore

p < lli\m_gloﬂALI_lEL(l —z)" +p.(B) -

Hence if 5 > p,(B) then z,(1 —Z,)" > (5 — p.(B))|A.| for all sufficiently large
Li. Thus 0 < 1 =2, < ((p — p.(B))|AL])"" and lim, .. Z, = 1. Moreover,

dim (A TE (1= 2)T = p = lim py, (B, Z) =5~ pe(B) -

If, however, p < p.(f) = p(B, Z) then z < 1. But a Riemann approximation
argument establishes that p, (,2) > p(B,2) and lima, . py,(B, 2)
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= p(B, Z) = p. Therefore z;, <z < 1 and the convexity argument used in the
proof of Thoerem 5.2.30 implies that

0<z-2z,<Zz(ps,(B,2)/p—1) .

Hence limp, .o Z; = Z. Finally, the spectrum of the Hamiltonian correspond-
ing to boundary conditions 9y = oy with ¢ > 0 is sandwiched between the
Dirichlet and Neumann spectra (see Example 5.2.26). Thus the density at fixed
activity lies between the Dirichlet and Neumann densities. Therefore the ac-
tivity zf corresponding to a fixed density p is intermediate to the activities z;
and z;, for Dirichlet and Neumann conditions. Consequently z§ converges to
the common limit of z; and Z; as A, — co. The thermodynamic limit is to this
extent insensitive to the boundary conditions.

The discussion of the thermodynamic limit of the Gibbs states at fixed
density follows a very similar pattern. It is convenient, however, to first ex-
amine the limit at the critical value of z, namely, z = 1 with variable density.
This is particularly easy for Dirichlet boundary conditions and the result is
shape independent.

Proposition 5.2.31. Let wy denote the Gibbs grand canonical state, over Uy,
corresponding to Hy, B, and z where Hy is the Dirichlet extension of —V2, on
L*(A), and N, is the CCR algebra over L*(A).

1t follows that the weak*-limits

w(4) = lim wy(4)
A —oo

exist for z =1 and each p > 0, 4 € |J, A when A — oo in the sense that A’
eventually contains any A C R". The limit state w is the gauge-invariant quasi-
free state such that

o(W(f)) = exp { —(f, (M +e Py~ e-f”H)f)/4}
= eI/ exp{—<2n>—" / d'plf(p)IPe 7 (1 - e-ﬁff)“}

for all €| J,L*(A), where H is the unique selfadjoint extension of —V?* on
LX(R"). In particular, o(W(f))=0 if v=1,2 and Jd'xf(x) #0, and
o(W(f)) > 0 in all other cases.

Proor. The proof relies upon a simple but rather surprising property of the op-
erators exp{—fH,}, which we derive in Chapter 6; see Corollary 6.3.13. This
property states that for each > 0 and f € L>(A) the function

A= (f,exp{—pHp}[)

is increasing and

lim (7,6 f) = sup (/7P /) = (£, ) .

A — oo

These results rely heavily on the choice of Dirichlet boundary conditions. If we
accept them, then the proof of the proposition is simple.
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One has from Proposition 5.2.28 that

on W) =W erp - 377, o))

n=1
and therefore

lim wy (W(f)) =e /I exp{ - supsupzz" £, e*"ﬂHA'f)}

A'—oo A z<l1p
= e W B exp{~(f,e7 (1 = )7 1)}
= Wtesp{ — @uy [apliip)Pe (1 - 7))

But for f € LZ(A),f(p) # 0, the integral in the exponent diverges for v =1 or 2. It
is, however, finite if f(0) = 0 since f'is analytic, and it is finite for general / when
y<3.

Now we can determine the thermodynamic behavior for the Gibbs equili-
brium states at fixed density.

Theorem 5.2.32. Let wp, be the Gibbs grand canonical state corresponding to
Hy,, B and z;, for the parallelepiped A, = {x € R"; —L;/2 < x; < L;/2}, where
Hy, is the Dirichlet extension of —V? on L*(A.) and z is chosen such that w,
has particle density p.

It follows that the weak*-limits
o(4) = lim wa,(4)

AL—’OO

exist for each > 0,p > 0,and A € U A U, where A; — oo in the sense that
Ly,...,L, — o0 and (sup; <,;<,L;)/(inf\ <;<,L;) remains bounded when
D > p.(B). The w are gauge-invariant quasi-free states.

Let p(B, z) denote the thermodynamic density and set

o(W(f)) = exp{-p, (f,/)/4} -

The two-point function p,,(f, f) is then determined as follows:
(A) If p < p.(B) = p(B,1) then
po(f: 1) = (f, (V2 ) (1 —2e7 )7 1)

where H is the selfadjoint extension of —V?* on L*(R") and z is the
unique root of p = p(B, 2).
(B) If p > pc(B) then

polfs ) =2 py | [asr@] + a4 ema—et

where po(B) = p — pc(B)-
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Proor. (A) Letp < p.(B). As py, (B, 2) < p(P, z) one must have z < z;. Moreover,
there must exist Z; and z < 1 such that z; < 2 for all ; > L,. Therefore,
0 < (f, (1+ze7h)(1 —ze7Fn )~ 1)
= (/s (U ze™) (1 = 2P ) <2 fIP(1 = 2) Pz - 2)

The convergence of w,, to the correct state then follows from Proposition 5.2.28 and
Theorem 5.2.30. The case p = p () will be covered by the proof of (B).

(B) Letg,(Az) and E,(A.) denote the eigenvalues and eigenprojectors of Hy,. The
state m,, is quasi-free and wy, (W(f)) = exp{—pwl\L (f,f)/4} where

pu),\L(f7 f) = Z(l +ZLe AL )(1 —ZLe [38,, (A2) ) (f7 II(AL)f) -

n

Now the first term in this sum is a product of two factors each of which has a limit as
AL — CO. Fil‘St,

Jim ALz P (1 = 2P T = 05— ()
by Theorem 5.2.30; and second,

Am[AL(f Eo(A)f) = lim 2"

L=

/ d'x f(x) H cos (m,) ‘ﬁ

i=1
2

=2 [ d'xf(x)

)

where we have used the fact that the normalized eigenfunction corresponding to the
lowest eigenvalue is

b = 20T Ton(7 (-4) = 2 [Teo()

i=]

But for the higher terms

NS Ey(Ar) f) < ?( / d"xlf(x)|>2
and

hm ALl (1 +zpe Pl (1 = zp e PalMy=t —

AL — o
The first statement follows by explicit calculation and the second by the estimates
used to prove the second half of Theorem 5.2.30. (This again reflects the fact that

only the lowest energy state gives a nonzero contribution to the density.) Thus for
each m > 1 one has

20 (11 = 08,01 = 274G )] [ erte

where

PR, S) = Y (L zpe Pty (1 — ze PNy (£ B, (AL) £)

n>m
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Finally, one may prove that

lim - lim {(p8 (f,/) = (f, (0 + €)@ =) 1)} =0

m— 00

by repetition of the argument used to prove the second part of Theorem 5.2.30. First,
one uses monotonicity of pf\ﬁL) in z to obtain an estimate

B (£, 1) 2 (f, (1 + e M)(1 = )7 p) — 11 D7 (BlALlea(AL)) ™

n<m
and, second, one uses convexity in z to find

(1— ZLe—Beﬁ(AL))

PEL ) S (1, (e )t e ) ) e

The argument is then completed as in Theorem 5.2.30.

Theorem 5.2.32 establishes that there are two distinct regimes for the Bose
gas. First, there is a high-temperature-low-density regime described by Pro-
position 5.2.29 and corresponding to z < 1 for Dirichlet boundary conditions.
Second, there is a low-temperature-high-density regime in which z=1 and
Bose—FEinstein condensation takes place, i.e., a finite proportion of the particles
occupy the lowest energy state. In this second regime the system has a multi-
tude of possible equilibrium states each of which has the same temperature and
activity. The states differ by their particle densities and all densities
p € [p.(B),00) are possible. The two-point functions of the equilibrium states w
in the condensation region are given by

M@umwnzrmm/w@@/wﬁm
+QM”/ﬁﬁ@ﬂmeU—fWW
and the local density by
p(B) = 2'po(B) + po(B)

where py(B) =p — p.(B) and p € [p.(B),00). The term py(f) measures the
density of the condensate, i.e., the particles in the lowest, zero, energy state,
and the coefficient 2 indicates the relative proportion of the condensate at the
origin. This coefficient can be identified from our estimates as the thermo-
dynamic limit of |Az| |5 (0)]* where Y is the lowest-energy eigenfunction of
the Dirichlet Hamiltonian Hjy,. If one replaces Dirichlet boundary conditions
by the elastic conditions dy/dn = oy, then a slight modification of the fore-
going arguments establishes the existence of the corresponding equilibrium
state. The only noticeable difference is that the coefficient 2" is replaced by a
positive constant ¢,

¢ = lim |A YO
L — 00

where WS’L is now the lowest-energy eigenfunction with the new boundary con-
ditions. One can check that ¢, is a decreasing function of s and ¢, — lasg — 0,
i.e., ¢ = 1 for Neumann conditions. In the Neumann case the condensate is
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distributed evenly throughout the system and the local density takes the value p
used in the limit. Thus the thermodynamic equilibrium state is sensitive to the
choice of boundary conditions and each choice gives, in principle, a different state
in the condensation region although accidental degeneracy is possible.

The phenomenon of condensation corresponds to a phase transition of the
system and the equilibrium states have less ergodic properties than the states in
the single phase (z < 1) region. Although the states occurring in Theorem
5.2.32(B) are invariant under the action 7 of the group R of space translations,
they are no longer R'-ergodic. This is most easily seen by calculating that

lim (W (f)0(W(9))) = (W (f))w(W(g))

|x] = 0

x exp{ —c,;po(,B)ZRe/d"xf(x)/d"xg(x)} .

Thus o is strongly mixing and R’-ergodic, if, and only if, p,(f) = 0. The
decomposition of  into R*-ergodic states can be explicitly computed and one
finds the following result?

2n

o(4) = (2m)™ /OOOde(p,po)/o dow, q(4)

where K(p, po) = po(B)~" exp {=p/po(B)} and the states w, , are determined
by

@ oW (1)) = expficlf2p (& [ @ix(a) + 7 [ ax7w)}
x exp{ — (£, (1+e )1 — ) p)/a).

In particular the R'-ergodic states w, , are no longer gauge-invariant. The two-
point functions of the states w, , are given by

Op, (@5 )an(9)) =cap / ' f (x) / &g

+ (2n) ™ / d'pg(p)f(p)e (1 e 7)"!
and the local densities by

Po, . (B) =cop+p.(B) -

2This decomposition is readily verified with the aid of the two formulas
2n

(27'[)_1 dcxei(a cos a+b sin ) :J()((az +b2)l/2> ’
0

/ dx e Jo((2ex)™?) = e=? |
0

where Jj is the usual Bessel function, a,b € R and ¢ > 0.
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Thus the variable p occurring in the integral decomposition measures the
density of the condensate and the probability measure dp K(p, p) determines
the distribution of the various possible condensate densities.

It remains to describe the thermodynamic limit of the dynamics in the
condensation region. This can be discussed from the same point of view
adopted in Proposition 5.2.29 but various changes occur. Most noticeably the
equilibrium states do not extend to states over the CCR algebra on L?(R"). If
(9w Tw, Qo) is the cyclic representation corresponding to the equilibrium state
w obtained by the fixed-density thermodynamic limit with p > p.(f), then
n,(A)" contains a representation of the CCR algebra over the subspace
&(R") C L*(R"). This follows because any element in #(R") can be approxi-
mated by elements in (J, L2(A) in the norm

17l =VOPF + [ @pli(p)P0 =)
~ and the unitary Weyl operators satisfy estimates of the form

(W f) = Wo(9)) Wo(R)Qull < cnll /= gl (171 + llgll)

for f,g € Uy L*(A). (Recall that v >3 when p (B) < +oc0.) Note that the
unitary group U, = exp {itH} generated by the Laplacian on L*(R’) maps
F(R") on #(R"), because L (R") is equal to its Fourier transform. Hence U
implements a one-parameter group of Bogoliubov transformations on the
CCR algebra over #(R"). Since any element in | J, L*(A) can be approximated
by elements &(R") in the norm || ||, it follows that this group extends by
strong continuity to a one-parameter group 7 of *-automorphisms of 7,,(2)" as
in Proposition 5.2.29. If 7" is the one-parameter group of Bogoliubov trans-
formations of the CCR algebra over L?(A) implemented by the Dirichlet La-
placian Hy, one can then establish that

alim W, (A7 (B)C) = (Qu, Mo(A) T (1 (B)) 70 (C)Q0)

for Weyl operators A, B, and C over 2(R"), where A, tends to infinity in the
sense of Theorem 5.2.32. To explain the nature of this argument it is preferable
to first examine the analogous problem in the setting of Proposition 5.2.31 for
v > 3. Choosing 4, B, and C as Weyl operators and using the CCRs one
readily reduces the problem to the proof that

lim (f, Xpe'hg) = (X'2f, X'12Mg)
where
Xp=01+ e—pHA)('ﬂ _ e—ﬁHA)—l
and
X = (1+e )1 — ety

But if x, and x are the positive quadratic forms canonically associated with the
bounded positive operators X, and the positive selfadjoint operator X, re-
spectively, then the proof of Proposition 5.2.31 is based upon the fact that the
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net x4 is monotonically increasing and its limit, in the sense of Lemma 5.2. 13,1s
exactly x. But in the proof of Lemma 5.2.13 we established that

Jim 1@+ 0200+ Py -y =0
for all y € L*(R"). Hence, if € D(X'/?) one has
Jim (|00 +0) 2y - (0 1)y =0

Therefore, the desired result follows from the estimate
|(f, Xne"™g) — (X121, X126 g))
<+ D)2, + 1)1 = (X +1)17)g)]

(X + 07, (e — &) (X 4-1) "))

(X + 2 = (0 + 1)) 1,6 (x + 1))

+1(f, (e —eMyg)| .
This result can now be used to establish the analogous fixed-density result by
retracing the estimates used to prove Theorems 5.2.30 and 5.2.32. In particular
one uses the last two estimates given in the proof of Theorem 5.2.32. We omit
the details.

Finally, we emphasize that the quantitative properties of Bose—Einstein
condensation are quite sensitive to changes of boundary conditions although
the qualitative features remain unchanged. If one uses 9y /On = o boundary
conditions with ¢ < 0, then condensation occurs in all dimensions at a value of
the activity z, < 1 and the condensate is principally located near the surface of
the system. Thus, in the thermodynamic limit at fixed density the equilibrium

state, which characterizes the properties of the system near the origin, shows no
trace of the condensate.

EXAMPLE 5.2.33. Let $ = L*(—L/2, L/2) and let H be the selfadjoint extension
of —d?/dx* which satisfies

[ ov], =0 = [T s )

for all yy € D(HL), where o > 0. The lowest eigenvalue Ao(L) of H; is negative and is
given by Ao(L) = —A?, where 1 is the unique solution of

Atanh(AL/2) =¢ .

x=-L/2

This eigenvalue has the property that it increases with L to the asymptotic value —g?.
The corresponding normalized eigenfunction i can be chosen as

VE(x) = (2/L)'/2{1 + (L) sinh(/lL)}_l/z cosh(/x) .

(In fact, if L is large enough there is a second negative eigenvalue A1(L) which
decreases to —¢* and whose eigenfunction can be chosen to be anti-symmetric.) Thus,

the Gibbs states are only defined for u < 4g(L) < —0¢?, and condensation takes place
for
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z =z, = exp{—fa’} < 1.

The critical density p(f, z;) is now given by

5

and as L|y5 (0)]* — 0 in the limit L — oo the thermodynamic limit state  at fixed
density p satisfies

oW (1)) = exp{ = (f, (1 +2e7)/(1 —ze7¥) )/}
for p < p(B, z,) and
o (f)) = exp{ = (f, (1 + 2,6 )/(1 = z,¢) £)/4}

for p > p(p, z;). Similar conclusions are valid for v > 1.



5.3. KMS-States

5.3.1. The KMS Condition

In the previous section we analyzed two C*algebras which describe the kine-
matics of particle systems and also analyzed the simplest examples of equili-
brium states. Now we discontinue this specific analysis and describe instead
various general characterizations of equilibrium phenomena. Principally, we
investigate the Kubo-Martin—Schwinger, or KMS, condition briefly outlined
in the Introduction and used in the calculation of the Gibbs states of the ideal
Fermi and Bose gases. Our description of this condition was, hitherto, rather
sketchy and this will be corrected in the sequel. Recall that if A = 2%(H), H is
a selfadjoint operator on 9, € R, and exp {—BH} is of trace-class, then the
Gibbs equilibrium state

_ Trg (€~ ﬁHA)

A) =2 )
A = g

formally satisfies the condition
a’(ATt(B))|t=i/s = w(B4)
with respect to the automorphism group
7,(4) = e ge7

This is a particular example of the KMS condition and it basically involves two
elements:

(1) The analyticity of the functions ¢+ w(4t,(B)) in a strip, the strip
0 <Imt < pif f > 0, and,

(2) The approximate commutation of each pair 4, and B, within the
state w.

We will choose a precise definition of the KMS condition which emphasizes
the latter, algebraic, property and partially deemphasizes the analyticity prop-
erty. Subsequently it will be necessary to extend the properties of analyticity.

Throughout most of the rest of this chapter we consider a C*-dynamical
system (2, R, 7) based on the group R and for brevity we denote such systems
by (2, 7). Moreover, we let 2. denote the set of entire analytic elements for t,
Definition 2.5.20. Recall that ; is a norm dense *-subalgebra of 2, Propo-
sition 2.5.22, and it is clearly t-invariant, i.e., if 4 € U, then t,(4) € U, for all
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t € R. We also consider a W*dynamical system (IR, t), where 9t is a von
Neumann algebra and 7 a o-weakly continuous one-parameter group of
*-automorphisms of M. The set M, of entire analytic elements for 7 is no longer
norm dense in M but nevertheless it is dense in the o-weak topology and t-
invariant.

We now adopt a definition of KMS states phrased in terms of dense sets of
analytic elements which has the advantage that it is often easy to corroborate.

Definition 5.3.1. Let (2, 1) be a C*-dynamical system. The state w over U is
defined to be a t-KMS state at value f € R, or a (t, §)-KMS state, if

o(4uy(B)) = w(B4)

for all 4, B in a norm dense, t-invariant *-subalgebra of 2.

If (M, 1) is a W*dynamical system, a state w over M is defined to be a (z, B)-
KMS state, for f € R, if w is normal and the above identity is valid for all 4
and B in a o-weakly dense t-invariant *subalgebra of ..

A -KMS state at value f = —1 is called a -KMS state.

This definition has several immediate consequences.
The value f =0 is distinct from the other values. In this case Definition
5.3.1 states that w is a trace-state,

w(AB) = w(BA)

for all 4, B € A. Conversely, a trace-state is a (z,0)-KMS state. If  # 0 and o
is a (1, §)-KMS state the definition indicates that t measures the deviation of »
from being a trace. This idea will be clarified later.

Another immediate consequence is that if # +— 1, = 1 is the trivial group of
automorphisms, then w is a (t, §)-KMS state if, and only if, it is a trace-state.

Next note that w is a (t;, f)-KMS state if, and only if, it is a (1_p, — 1)-
KMS state. If § # 0, this statement is evident but if § = 0 both sets of states are
the trace-states. Thus by rescaling the group one can eliminate . Hence, for
many general purposes it suffices to consider t-KMS states. This also shows
that the choice f = —1 in the definition of these latter states has no particular
significance. (The value —1 coincides with a convention adopted in the modular
theory of Tomita-Takesaki). We emphasize, however, that despite these re-
scaling properties there is no simple prescription for connecting the (z, §)-KMS
states for different f§ (see Theorem 5.3.35).

EXAMPLE 5.3.2. Let 2(h) be the CAR algebra over the Hilbert space ) and 7 a
one-parameter group of Bogoliubov transformations such that t,(a(f)) = a(e™ 1),
etc. Let f be an analytic element for H, then the T-KMS condition states that

w(a*(f)alg)) = w(a(g)a’ (e 1))
= (g, f) = w(a’ (e flalg)) -

Therefore
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o(a*(f)alg)) = (g, (1 + )7 f)

Iteration of this calculation in the manner preceding Proposition 5.2.23 shows that
the gauge-invariant quasi-free state with the preceding two-point function is the
unique (t, f)-KMS state. Note that the polynomials in a(f) and a*(g), with fand g
analytic for H, are norm dense in 2. In particular the limit Gibbs state constructed in
Theorem 5.2.24 is the unique (t, §)-KMS state for the limit dynamics.

Alternatively, let 2 be the CCR algebra over a pre-Hilbert space l), H a positive
selfadjoint operator defined on ) not having zero as its eigenvalue, and such that
ey Chforallt € R, and h C D(e (1 — e ##)™") for f > 0. Let w be the gauge
invariant quasi-free state with the two-point function

o(a;,(f)as(g)) = (9. (1 =) 7' )

and t the g-weakly-continuous group of *-automorphisms of 7,,(2)" obtained by
strong continuity from the Bogoliubov transformations determined by . It fol-
lows from the calculation preceding Proposition 5.2.28 that w is a (t, f)-KMS state
over the von Neumann algebra 7,,(2)". But if s is any positive sesquilinear form on
h x b with the invariance property

s(g, f) = s(g, " )

for all g, f € h and all + € R, then the gauge-invariant quasi-free state with two-
point function

o(ag,(f)as(9)) = (9, (1 — )7 1) +5(9, 1)

is also a (t, f)-KMS state over 7,,(2)”. Thus, one has a possibility of a nonunique
(r,3)-KMS state in this case. An example is the Bose-Einstein condensation ex-
tensively studied in Section 5.2.5. Here h = #(R*) with v > 3, H = —V? is the
Laplacian and

s0.)=p [ @0 [ s

where p > 0.
It follows immediately from the commutation relations

W)W (g) = e ™ (g)(f)

that the CCR algebra over b has a unique trace-state w, given by

wrm={y 1130,

This state is invariant under all Bogoliubov transformations, and thus the group of
automorphisms determined by e extends to a one-parameter group t of *-auto-
morphisms of 7, (A)”. However, this group is not o-weakly-continuous and hence w
is not a (7,0)-KMS state on 7,,(2)" in the sense of Definition 5.3.1.

When f < 0, there exists no (z, §)-KMS states over the CCRs in the von Neu-
mann sense.

We begin the analysis of KMS states by proving that they satisfy the crudest

characteristic of equilibrium, t-invariance.
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Propositions 5.3.3. Let w be a (t, f)-KMS state over the C*-algebra U (or
the W*algebra M) with ff € R\{0}.
It follows that w is - invariant, i.e.,

o(7(4)) = o(4)

forall A € A (for all A € M) and all t € R.
Moreover the following conditions are equivalent for an arbitrary state »
over U (which is assumed normal in the W*-case):
(1) wisa(t,B)-KMS state with f € R.
(2)  o(t_ip2(4)tip/2(B)) = w(BA), for all A, B in a norm-dense t-in-
variant *-subalgebra of ..

Proor. The proof of the two cases C*, and W*, is identical. We consider the former.
First note that by rescaling we may assume 8 = —1. Next let B be an element out
of the norm-dense t-invariant *-subalgebra B, C 2, for which the KMS condition
holds and define the analytic function F by
F(z) = w(1:(B)) .

Then F is an entire analytic function which is bounded on the strip

D={zz€ C,~1 < Imz < 0}
by

M = sup{ ||z;,(B)|| ;7 € [-1, 0]} .
This follows because

IF@)| < Nle=B)ll = lltrez(itm :(B)) | = [[titm=(B)] -
But if U has an identity 1 it follows directly from the t-KMS condition that
F(z—i) = w(lt_(1.(B))) = w(t.(B)1) = F(z) .

Hence F is periodic with period —i. If 2 does not have an identity, the same con-
clusion is easily reached by use of an approximate identity. But the periodicity now
implies that

IF2)l < M
for all z € C. Hence F is constant by Liouville’s theorem. As B, is dense in 2 it
follows than w is t-invariant.

If condition (2) of Proposition 5.3.3 is valid, a similar argument shows that w is -
invariant if f € R\{0}. But then

w(dtig(B)) = a(tip/a(t-ip/2(A)Tip/2(B))) = 0(t_ig/2(A)Tip/2(B)) -
If § =0, this relation is trivially fulfilled. Hence 1 < 2.

It should be emphasized that the value § = 0, which is excluded in Proposition
5.3.3, is exceptional. If, for example,  is abelian, then all states are (z,0)-KMS
states but if 7 is not trivial there are certainly states which are not t-invariant.

One immediate corollary of t-invariance is that each KMS state of a C*-
dynamical system extends in a canonical fashion to a KMS state of an asso-
ciated W*-system.
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Corollary 5.3.4. Let w be a (t,)-KMS state of the C*-dynamical system
(U, 1) with p € R\{0} and let & be the normal extension of  to the weak
closure M, = 1, (A)" of W in the cyclic representation (H,,, Ty, Q).

It follows that there exists a unique a-weakly-continuous group t— 7%, of
*-automorphisms of M, such that

1 (no(4)) = nw((4))
Jorall A € Wand t € R. Moreover, & is (T, )-KMS on M,,.

Proor. Proposition 5.3.3 implies that o is t-invariant and hence there exists a
unitary representation U, of R on $,, such that
T (ti(A)) = Un(8) 0 (4) U (1)~
for all 4 € A and ¢t € R by Corollary 2.3.17. Therefore,
(B) = U, (1)BU,(t)"'
exists for each + € R and B € M,,. As U, is defined by
Uw(t)ﬂ(u(A)Qw = ﬂ:w(fz(A))Qw
and ¢t~ 1, is strongly continuous, it follows that ¢ —U,,(¢) is strongly continuous on
7, (W)Q,,, and hence on H,,. Therefore, ¢+ %, is o-weakly-continuous on Mi,. But
any norm-dense t-invariant *-subalgebra of 7, () is a o-weakly-dense Z-invariant

“-subalgebra of M,,. Thus, the -KMS condition follows directly from the t-KMS
condition. ;

Although for purposes of verification it is very practical to define t-KMS
states with dense subsets of analytic elements, it is mathematically somewhat
unnatural. Thus our next purpose is to extend the KMS condition to a larger
more natural class of elements. For this one needs a version of the maximum
modulus principle which is often referred to as the three-line theorem.

Proposition 5.3.5 (Phragmen—Lindelof). Ler D be the open strip in C defined
by
D={z;z€C,a<Imz < b}

and D the closure of D. Let f be a complex function which is analytic on D,
and bounded and continuous on D.
It follows that the function

¥ € 0, Blg(y) = log <p G+ iy>|)

is convex. In particular,

sup]f(z)| :max{sgg]f(x—l—ia)\, supxeﬂlf(x%—ibﬂ} )

zeD

It should be emphasized that this result is not a straightforward extension of
the maximum modulus principle because there exist entire analytic functions
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which are bounded on the boundary {z;Imz € {a,b}} of the strip D but,
nevertheless, are unbounded on D itself. (For a reference to the three-line
theorem, see Notes and Remarks).

We also need a version of the so-called edge of the wedge theorem. This
theorem was originally motivated by problems of quantum field theory and it
has many important applications in this latter domain (see Notes and Re-
marks). The general theorem concerns functions of several complex variables,
but the following proposition is only stated for one variable, and in this form it

is an immediate consequence of the Schwarz reflection principle.

Proposition 5.3.6. Let O CC be an open connected set such that
v = 0nR # O and define
D={zz=x+iyeC,y>0}n0C.

Let F be a complex function which is holomorphic on ® and continuous on
DU, Suppose furthermore that F(x) =0 for x € ¥".
It follows that F(z) = 0 for all z € D.

After these function theoretic preliminaries we are now ready to derive the
first set of alternative characterizations of KMS states.

Proposition 5.3.7. Let (U, 1) be a C*-dynamical system, or a W*-dynamical
system, w a state over W which is assumed to be normal in the W*case, and
B € R. Define

Dp={zz€C,0<Imz<
if >0 and =i B

Dp={zz€C, f<Imz<0}
if <0, and let S_D/g be the closure of Dy if p # 0 and 5/; =Rifp=0.
The following conditions are equivalent:

(1) o isat-KMS state at value .
(2) For any pair A, B € N, there exists a complex Junction F4 g which is
analytic on Dg, and bounded and continuous on Dy, such that

FA’B(l‘) = CI)(AT,(B)) 3
Fy 5(t+1B) = o(t.(B)4)

for all t € R.
(3) For any pair A, B € U, there exists a complex function F4 g which is
analytic on Dg, and continuous on Dg, such that

Fy4 5(t) = w(4A7,(B)) ,
F‘A7 B(t + l/))) = (U(T,(B)A)
for all t € R.
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Furthermore if these conditions are satisfied, then the function F, g in
conditions (2) and (3) satisfies the bound

sup |F,5(z)| < [|4]| 1]
ZE'D[;

and for A € WA, B € ., the function identifies with the restriction to D of the
entire analytic function z — w(At.(B)).

Proor. (1) = (2) Let B, denote the *subalgebra of . occuring in Definition 5.3.1.
For 4, B € B, define F, p by

Fy 5(z) = w(4z(B))
for all z € C. Then F,, z is entire analytic,

Fy,3(t) = w(d7(B))
for t € R, and

Fu, p(t +if) = o(dtig(u(B))) = o(t:(B)4) .
As zw— 1(B) is strongly analytic, Proposition 2.5.21, it follows that
y € 0, p]—||7(B)]| is continuous, and hence bounded. Define M by
M = sup{ [|x,(B)|l; » € 0, BI} -

Thus

|Fa 5t + )| < Al 1 (B)] < M |||

for t +iy € D, and (2) holds for 4, B € B.. For general 4, B € A choose sequences

{4} 1 {Bu}zr in B such that 4] < 4], 1B < [1Bll, and 7, (4,)Q, —

o (A)Qy, T (4]) Q0 — Tu(47)Q,, and 7,(B,)Q, — 1,(B)Q,, and 7, (B3)Q, —

7, (B*)Q,,. (In the C*case this approximation can be made in the norm topology. If

A is a WW*-algebra, the approximation is possible because of Theorem 2.4.16.)
Now define F, by

Fy (Z) = ELH B, (Z)

for z € D. The three-line theorem, Proposition 5.3.3, implies that |F,(z) — F,(z)|
assumes its maximum value on the boundary of D and for z on this boundary one
has

IFo(2) = Funl2)] < max{sup (At (Ba)) = (wes(Bo))]

teR

lsgg lw(ft(Bn)An) - a)(f,(B,”)A,,,)|}

< 1BI{IIm (45, = 45)Q0|| + 1704y — 4) Q0 }
+ ”A”{”TCM(B: — B})Qp]| + |70 (By — Bnr)Qw”} .
The last estimate is valid for the sum of the terms in the maximum and follows from
t-invariance of w established in Proposition 5.3.3 and the Cauchy-Schwarz in-

equality. Hence F, is a Cauchy sequence uniformly on D. The limit function is
therefore continuous and bounded on D, and analytic in D. Also
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Fas(t) = lim o(4,u(8,) = o(4n(B))
Fyp(t+if) = Jim Fy, (1 + i)
= ,,ILHE,O o(t,(Bp)A4,) = w(t,(B)A) .
(2) = (3): This is trivial
(3)=(1): 1If4, BeU, define
G4, 5(z) = w(47.(B))
for all z € C. Then Gy, p is an entire analytic function and
Gy, 5(1) = Fa,5(2)

for t € R. It follows from the edge of the wedge theorem, Proposition 5.3.6, that
G4 p(z) =F4 p(z) forallze D, ie,

F4 p(z) = w(A4-(B))
for all z € D. But then, by condition (3)
w(Atig(B)) = F4, (i) = w(BA)

forall 4, B € U, ie., wis (z, f)-KMS.
The last statement of the proposition was established during the proof of
(1) = (2) and (3) = (1).

The same line of reasoning allows the explicit extension of a (z, )-KMS
state w over a C*-dynamical system to a (%, f)-KMS state over the associated
von Neumann algebra M, = 7,(A)" as described in Corollary 5.3.4. We next
prove that the KMS condition implies that Q,, is separating for 9, but for
later purposes we isolate the following lemma.

Lemma 5.3.8. Let I be a C*-algebra on a Hilbert space $, Q a cyclic unit
vector, and o the corresponding state. If w(A*A) = 0 implies that w(44*) =0
for all 4 € N, then it follows that Q is separating for IN.

ProoF. Assume that 4Q = 0. Then BAQ = 0 for all B € M, and hence by hypoth-
esis A*B*Q = (BA)*Q = 0. As Q is cyclic it follows that 4* = 0 and hence 4 = 0.

Corollary 5.3.9. Let (U, t) be a C-dynamical system, w a t-KMS state on
A at value f € R, and (9, 7w, Qw) the corresponding cyclic representation.
It follows that Q,, is separating for m,(2)".

Proor. If B+ 0, it follows by Corollary 5.3.4 that the state & on M, = 7, (A)”
defined by

@(A4) = (Qqp, 4Q,)

satisfies the (%, $)-KMS condition for a group ¢+ %, of *automorphisms of 9M,,. Let
A € M, be an element such that &(4*4) = 0, i.e., such that AQ,, = 0. Let F4-_4(z) be
the function corresponding to 4*, 4, as in Proposition 5.3.7. Then

Fup 4(t) = d(A 1, (4)) = (AQq, Uy(£)4AQ,) =0
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for ¢ € R. It follows from the edge of the wedge theorem, Proposition 5.3.6, that
Fy+ 4(z) = 0 for all z with Im z between 0 and f. But then

O(Ad") = Fy 4(if) = 0.

Hence Q,, is separating for M, by Lemma 5.3.8.
If B =0, then & is a trace-state on 7,,(2)” and Lemma 5.3.8 is again applicable.

The separating property of Q, for n, ()" provides the principal link be-
tween the modular theory of Tomita-Takesaki and the theory of KMS states.

Assume that o is a --KMS state over a von Neumann algebra 9 for some o-
weakly-continuous group t of *automorphisms. Thus by Corollary 5.3.9, w is
faithful on 7,(9t). But the kernel of r,, is a o-weakly-closed two-sided ideal
3 C M and by Proposition 2.4.22 there exists a projection £ € MAN such
that 3 = Mi(1 — E). It follows that w(1 — E) =0, and o is faithful on IME
because m,, restricts to an isomorphism between IRE and =, (M), and

w(4E) = w(4) = (Qq, 1,(4)Q,) .

The remarkable consequence of the Tomita-Takesaki modular theory is
that this condition is also sufficient for w to be a --KMS state for some group 7.
This unexpected result follows basically from the identity of the modular
condition, described after Definition 2.5.15, and the KMS condition expressed
for the modular group.

Theorem 5.3.10 (Takesaki). Let MM be a von Neumann algebra, and w a
normal state on IN.
The following conditions are equivalent:

(1)  w is faithful as a state on 7,(M), i.e., there exists a projection
E € MM such that o(1 — E) = 0 and o|y; is faithful.

(2)  There exists a -weakly-continuous one-parameter group T of *au-
tomorphisms of M such that w is a --KMS state.

Furthermore, if these conditions are fulfilled, the automorphism group t
leaves E fixed,

(E)=E

Jor all t € R, and the restriction of © to IE is uniquely determined by w. This
restriction is the modular automorphism group of MME associated with o .

Proor. We have already remarked before the theorem that (2) = (1) is a con-
sequence of Corollary 5.3.9. As the definition of r on Mi(1 — E) has no influence on
the KMS property, we may assume that £ = 1, i.e., we may assume that w is faithful
on M, when proving (1) = (2). Thus passing to the cyclic representation associated
with w, we may assume that w is given by a separating and cyclic vector. Let A be the
modular operator associated with the pair (9, Q), Definition 2.5.10, and let
o.(4) = A"AA™" be the corresponding modular automorphism group, Definition
2.5.15. Then, for 4, B € M.,
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w(4B) = (4"Q, BQ)
- (AI/ZB*Q, AI/ZAQ)
= (Q, BAAA™'Q) = w(Bo_;(4)) .

Hence w is a 7-KMS state in the sense of Definition 5.3.1.

This ends the proof of (1) = (2), and the property 7,(E) = E is a consequence of
the fact that w is t-invariant, i.e., 7 lifts to the representation n, as described in
Corollary 5.3.4. To show uniqueness of the restriction of 7 to IE, we may again
assume that w is faithful and given by a separating and cyclic vector Q. If U(¢) = &"#
is the unitary group on $ corresponding to 7, and 4, B € M., we have

w(A4B) = w(t;(B)A)
and hence

(A2B*Q, AV24Q) = (Q, ABQ)
= (Q, Be'4Q) = (B*Q, €14Q) .

As I, is strong*-dense in I, it follows that P, Q is a core for A]/z, and the above
relation implies that A'/?4Q € D(A'?*) = D(A'?) and

AAQ = e AQ

for all 4 € M,. Now let My be the *-subalgebra of M, consisting of elements with
compact spectrum relative to 7. Then M, is dense in 9t by Lemma 3.2.39 and since
7_i(Mo) = My it follows that e MyQ C MyQ. But as any element in MyQ is con-
tained in a spectral projection of H corresponding to a compact spectral interval, it
follows that My Q consists of entire analytic elements for . Hence My Q is a core for
e’ by application of Corollary 3.1.20 with S = e”. Thus A is an extension of e”. As
A and e are selfadjoint it follows that A = e/, and hence 7 is the modular auto-
morphism group.

Combining 5.3.3, 5.3.9, and 5.3.10 one sees that a given state w on a C*-
algebra U is a KMS state for a one-parameter group 7 of *-automorphisms of
7, (W)" if, and only if, the normal extension & of w to m,(A)" is faithful, and in
this case the group 7 is unique. The converse problem of constructing KMS
states when 7 is given is much more complicated and only has a positive
solution for special classes of 2 and 7. We will partially analyze this problem at
the end of this subsection and in the following one.

The principal aim in the rest of this subsection is the derivation of alter-
native formulations and characterizations of the KMS condition. The analysis
is essentially identical for C* or W*systems, and, for simplicity, we present all
results in the C*case and omit the analogous W*statements. The first re-
formulation expresses the analytic properties in a way which is often useful for
applications to the thermodynamic limit. For this we need some properties of
analytic functions.

Recall that if 2 = Z(R) denotes the set of infinitely differentiable functions
with compact support and if f€ & the inverse Fourier transform
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1) = (2n)" 12 / " dp 7 f(p)

is an entire analytic function. Moreover, in restriction to R one has
[ €% =(R).ie, fisinfinitely often differentiable, and x € R—x" d" f (x) /d"x
is uniformly bounded for all n, m € N. More precisely one has the following:

Proposition 5.3.11 (Paley-Wiener). A function f is the inverse Fourier
transform of a function f € & with support in [—R, R] if, and only if, f is entire
analytic and for each integer n there exists a constant C, such that

/(@] < Cu(1+ |z))™" exp(R|Im z]) .

We only need the “only if” statement of this proposition. This is easily
established (see Notes and Remarks).
Now we are prepared for the first reformulation of the KMS condition.

Proposition5.3.12.  Letr (U, 1) be a C*-dynamical system, and o a state over .
The following conditions are equivalent:

(1)  w satisfies the (z, B)-KMS condition.
(2)  The relation

[ oot @) = [~ s o)

o0

is valid for all A, B € W and all [ with fe 9.

Proor. (1) = (2): If B U, then z — w(41.(B)) is entire analytic and
@(47(B)) = w(ti-i5(B)A)
for all # € R. The function
z— f(2)o(w(B)4)

is entire analytic and decreases faster than |Re z| ™ as Re z — oo, provided [Tm z|
< B, by Proposition 5.3.11. Hence, by Cauchy’s theorem

/_.Oc dt f(t)w(At,(B)) = [m dt f(t)o(t,—ig(B)A)

= /‘OO dt f(t + if)w(t,(B)4) .

The condition for general B € U follows by continuity and the decay properties of 7
(2) = (1): If (2) holds and B € U, then inversion of the foregoing argument
establishes that

| asotns) = [~ o 1)

[o¢] J =

Choose f, € D such that 0 < £, < 1,/,(x) =1 if [x|<n and f,(x) = 0 if
|x| > n+ 1. Thus, for any bounded, continuous function g,
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im [ dx fa()g(x) = g(0)

n—oo —

and hence
w(AB) = w(t_ig(B)4) .

Replacement of B by 7,3(B) then gives the -KMS condition.

The utility of Proposition 5.3.12 can be illustrated by consideration of a
sequence 1" of strongly continuous one-parameter groups of *-automorphisms
of A converging strongly to a group 1, i.e., |7} (4) — 7,(4)|| — 0 as n — oo for
all 4 € A and ¢ € R. Assume that w, is a sequence of (1", f)-KMS states which
converges in the weak*-topology to a state . It then follows that w,(41}(B))
— w(At,(B)) and hence if f € 2 the Lebesgue-dominated convergence theorem
and Proposition 5.3.12 imply that

| aswotse) = tim [ arp@o,0m)

= lim dt f(t +if)w.(t](B)A4)

/_OO dt f(t +if)w(t(B)4) ,

i.e., wis a (1, f)-KMS state. This same type of reasoning can be applied under
weaker assumptions to the convergence of Green functions.

EXAMPLE 5.3.13. Let " be a sequence of strongly continuous one-parameter
groups of *-automorphisms of a C*-algebra U and w, a sequence of t"-invariant
states. Assume that the limits

G(4, B;t) = lim w,(47!(B))
h— 00

exist, for all 4,B € A and ¢ € R, and in particular the weak*-limit w of w, exists. It
follows automatically that the functions G;¢+— G(4, B; t) are measurable but they are
not necessarily continuous. If one assumes, however, that the G are continuous and
the w, are (7", f)-KMS states for some f € R, then Proposition 5.3.12 implies that
Q,, is separating for 7, (U)". For this one first applies the Lebesgue-dominated
convergence theorem to conclude that

/w dt f(6)G(4, B; 1) = /m dt £ (¢ + iB)G(B, 4; —1)

o0 oo
for all f with f € 2. Second, one estimates that
|G(4, B; t)lz < lim w,(44")w,(B"B) = Hnw(A*)Qsz”nm(B)Qw”z
and hence
G(4,B;t) = (1,(4")Qy, X7, (B)Q0w)
where ¢+ X; is a weakly continuous one-parameter family of bounded operators with

IX:|l < 1. Next, for 4 € n,(A)" one chooses 4, € A such that 7, (4,)Q, — AU, and
T (A})Qy — A*Q,. Finally one has
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/ dt f(1)(4"Q0u, X:A"Qy) = lim dt f(t)G(An, 4;;1)
= lim dtf(t—i-zﬂ)G(A”,A,,;—t)

/DO dtf(t+iﬂ)(AQw,X_, AQ,,) .

Thus if 4Q, = 0, then
/ A (A, XA°Q,) = 0

and as t+— X; is continuous one must have 4*Q,, = 0. But then Q,, is separating for
"
7, (A)” by Lemma 5.3.8.

The next reformulation of the KMS condition emphasizes the measure-

theoretic structure which is an inherent consequence of the t-invariance of
KMS states.

If (2, 7) is a C-dynamical system, and w is a t-invariant state on 21, consider
the functionals y, and v4 defined on & by

i = [ "t foa ) |

oo

vA(f) = /_OO dt f(Ho(t,(4)A7) .
If

Uy(t) = /_ ” e P dE(p)

o0

is the spectral decomposition of the canonical unitary group implementing 7 in
the representation (§,,, 7., Q,), one has

,“'A(f):/ dt/ dp/ (710 (4)Qu, dE(q) 0 (A4)Q “)—e’l”f( e~

:/_ (o (A)Qur, dE(q) 0 (4)Q0) F (q) -

Hence y, is actually a positive Radon measure on R, i.e., y, extends by con-
tinuity to a positive functional on Cy(R), which is given by
dpy(p) = (M (4)Q0, dE(p) 1 (4)Q0)
Analogously, v, is the measure given by
dvi(p) = (T(4")Q0, dE(—p)my(47)Q0) .
We now characterize the KMS condition by means of these measures.

Proposition 5.3.14.  Let (U, 1) be a C-dynamical system, w a t-invariant state
over W, and p, and v, the positive Baire measures on R associated with .
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The following conditions are equivalent:
(1) wis a t-KMS state at value B.
(2) The measures uy and v,4 are equivalent, with Radon-Nikodym deri-
vative

s

— »Bp
Ty (p)=e

forall4 € A.

Proor. (1) = (2): Using Proposition 5.3.12 (2) we deduce that
mlf) = [ et )

= /_Oo dt f(t +if)o(t,(4)4") = vA(kf) ;

where k(p) = e #7. The proof of (2) = (1) follows by inversion of the argument.

Note that condition (2) of the last proposition can be stated as a set of
inequalities

2) duy(p) > e PP duy.(—p)
because iteration of this latter condition gives

duy(p) > e PPdp,.(—p) > duy(p)

and then the identity dv4(p) = du,.(— p) implies that (2) and (2') are equiva-
lent. The following characterizations of the KMS condition are all expressed in
terms of inequalities which stem from a stability property of the KMS states. It
is remarkable that these inequalities can be expressed in terms of the in-
finitesimal generator ¢ of the group t and do not directly involve the global
behavior of the group.

The stability properties which are inherent in the following characterizations
of the KMS condition can be partially explained through the principle of
maximum entropy for the Gibbs equilibrium states. For simplicity let & = M,,,
the C*-algebra of all » x n-matrices, acting on the n-dimensional Hilbert space
$, and hence each state over U is of the form w, where

wp(4) = Trg,(p4)

and p is a density matrix. In particular, if H = H* € Wand f € R, the Gibbs
state wqy, is defined by setting
e Pt
PBH = Trg (e-PH) -
Now one can define an entropy function S;w € Eyq +— S(w) € [0, log 1] by

S(w,) = =Trg,(plogp) .
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(The function — x log x is defined by continuity to be zero at x = 0). It then
follows that the Gibbs state is the unique state which maximizes the function

F(w,) = p'S(w,) - wp(H) .
This follows basically from the convexity inequality
—Tr(4 log4 —Alog B) < Tr(4 - B)
for Hermitian matrices 4 and B and the identification
F(w,) =—p ' Trg (plog p — p log Ppr) + p~" log Trg (e7P)

(see Chapter 6, Section 2.3). Thus the Gibbs state is characterized by the
principle of maximum entropy at fixed energy.

The maximum entropy principle leads to various stability criteria. For ex-
ample, if ¢ is any map from Ey to Ey, then

Flwg,) 2 F(o(w,,)) -

The simplest illustration of this rule occurs if (¢(w))(4
unitary U € 2. For this transformation one has S(¢(
the inequality for F gives

—Trs, (ppH) > —Trg, (pgy UHU)

) = o(U*AU) for some
w)) = S(w), and hence

which can be rephrased as
@, (UTH,U]) > 0.
But the dynamical group © corresponding to H is given by
7,(4) = e ge™
and the infinitesimal generator § of t by
o(4) = [iH, 4]

Thus one concludes that the Gibbs state satisfies the stability requirements
i"o(U3(U)) > 0

for each unitary U € . In Section 5.4.4 we will demonstrate that this criterion
expresses the fact that systems in equilibrium are unable to perform mechanical
work in cyclic processes. For this last reason states which satisfy the criterion
are said to be passive. In Theorem 5.3.22 we also demonstrate that passivity of
a state is to a large extent equivalent to the KMS condition. The two condi-
tions cannot be completely equivalent because the passivity criterion carries no
reference to the temperature, i.e., the value of ﬁ“l, and convex combinations of
passive states are passive.

A second type of stability criterion follows from consideration of con-
tinuous semigroups ¢ > 0 +— 7, such that 7,Eq C Ey. If y denotes the infinite-
simal generator of 7, then the maximum entropy principle gives
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t—l(F(wPﬁH) _F(Tf a)p/}H)) > 0
and hence
—F(ywp,,) > 0.
For an example of this latter principle consider the operator yz; A — A defined
by
yg(4d) = B*AB — {B*B, A}/2

for some fixed B € U. Clearly, yz is bounded and y5(1) = 0. But one readily
calculates that

p(A"A) — yp(4")4 — A"yp(4) = [4, B]'[4, B] > 0
and hence y; is dissipative, by Proposition 3.2.22, and
4 —ayp(A)] 2 [14]l, o >0,4€A,
by Lemma 3.1.15. Therefore,

. t -
> 0T —explon) = i (1-13,)
n— oo n

is a uniformly continuous semigroup of contractions. Moreover, T;1 = 1. It
then follows from Corollary 3.2.6 that the 7; are positive, i.e., ;2 C A, and
T/Ey C Eqy for all t > 0. Application of this type of semigroup and convexity
arguments leads to a set of inequalities for the Gibbs states which are some-
times referred to as auto-correlation lower bounds. These inequalities have been
proved to be equivalent to the KMS condition.

Theorem 5.3.15 (Roepstorft-Araki-Sewell). Letr (W, 1) be a C*-dynamical
system, 0 the infinitesimal generator of t, and w a state over U.
The following conditions are equivalent:

(1) wisa (t,p)-KMS state
@) —iBo(A*5(4)) > (4 A)log((4*A)/a(44"))
for all A € D(6), where
ulog(u/v), u>0,v>0,

ulog(u/v) = ¢ 0, u=0,v >0,
+ o0, u>0,v= 0.

Proor. (1) = (2): A routine calculation shows that the function
u,v € Ry x Ry—S(u,v) =ulog(u/v)

is lower semicontinuous, jointly convex in (#,v) and homogeneous of degree 1 in
(u,v), i.e.,

S(Au, Av) = AS(u,v)

for u,v, 1 € R,. Hence it follows that
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S(Z l,‘l{,‘,z /1,‘1.7,‘) S Z j.,' S(ll,’, Ui)

for all finite sequences {4;}, {u;}, and {v;} in R,. If f; and f, are continuous
bounded non-negative functions on R, and p is a positive finite Baire measure on R,
it follows from Proposition 4.1.1 that yu can be approximated by measures of finite
support, and the lower semicontinuity of S implies.

S(u(f1), u(f2)) < w(S(f1, f2)) -
If w is a (z, B)-KMS state, we may form the measures
dtuA(P) = (nw(A)medE(p)nw(A)Qw) 5
dvi(p) = (M(4")Q0, dE(— p) s (A7) Q)

as in the introduction to Proposition 5.3.14, unless f =0, in which case w is a
trace-state, and both sides of the inequality in (2) are zero. Define k(p) = e~#7.
Proposition 5.3.14 and the above inequality then imply

S(a(d™4), o(d47)) = S(uy(1), va(1))

S(ua(1), pa(k71))

a(S(L &)

= py(logk)

—iB(70 (4)Q0, iHo T (4)Q0) = —ifw(475(4)) |

where we have used the notation U, (¢) = & .

IN

I

To prove (2) = (1) we need the following lemma.

Lemma 5.3.16. Let (U, 1) be a C*dynamical system, let § be the infinitesimal
generator of t, and assume that w(46(A)) € iR for all A = 4* € D(9).
1t follows that w is t-invariant, i.e.,

o(t(4)) = o(4)
forallA e Wandt e R.
PROOF. As 6(4)" = 5(4) for 4 = 4* € D(5) it follows that
o(3(4)4) = ©(45(4)) = —w(45(4)) ,
where the last equality is a consequence of the hypothesis of the lemma. Hence
(5(4%)) = w(5(4)4) + w(45(4)) =0 ,
and it follows that

on(d) - o) = [ dso(3( ) =0.

The t-invariance then follows by continuity from Proposition 2.2.10 and Theorem
2.2.11, i.e., each element of A is a linear combination of four positive elements.

END oF PROOF OF THEOREM 5.3.15. (2) = (1). If f # 0 the auto-correlation lower
bounds and Lemma 5.3.16 imply that w is t-invariant and we may form the measures
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uy and vy forall 4 € AL If fe 2 it follows essentially from Propositions 5.3.11 and
2.5.22 that

) = [ dt p(0ea)

is entire analytic for ¢ and, in particular, t,(4) € D(d). Now we compute

= [ s [ appe
~ [ Fp)aE(p) = fi-ti)
Defining h(p) = |f(p)[2 and k(p) = e~#P we deduce further that
—ife(ts(4)"6(cs(4)))
= —iB(Uo(f)10(4)Q0, iHu Uu(f)70(4)Q0)
= (ﬁ(u(A)Qw: ];(—Hw)Bwa(_Hw)nw(A)Qw) = Hy (]Og(k)h) N
By similar computations, one finds
o(ts(d) 17(4)) = ua(h),
o(ts(A)tr(4)7) = va(h)
—ipe(ts(4)5(ts(4)")) = —va(log(k)h) .
Thus the auto-correlation lower bounds, applied to 77(4) and 1,(4)", respectively, give

wa(log(k)h) > S(uy(h), va(h)
—va(10g(k)R) > S(va(h), py(h)) -

Now, define p(#) = sup(supp /) and p(h) = inf(supp /). Assuming for the moment
that f > 0, we deduce from log k(p) = —fp that

—Bp(h)h < hlogk < —Bp(h)h .
The auto-correlation lower bound then implies that
—Bp(R)g(h) = pg(h) log(py(h)/va(h))
Bp(h)va(h) > va(h) log(va(h)/pa(h)) ,
or, equivalently
e P2y, (h) > py(h) > e PPy (h) .
Also, since
ePEWY > e > e Priy
we have
e P2By () > v(hk) > e PPBy () .

Let ¢>0 and let {A,},., be a sequence of positive elements in 2 such that
>, by =1 pointwise, and

et _ BBl | <
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Then the above inequalities imply that
|.u,4 (hhn) — V4 (hhnk)l S V4 (hhn)
and so, by Lebesgue’s theorem,

s () = va(hk)| < eva(h) .
Hence
ts(h) = va(hk)
for all 4 € &. But this is just the measure-theoretic form of the KMS condition,
Theorem 5.3.14. When f < 0 the reasoning is the same.
Finally if g = 0 the auto-correlation lower bound implies that m(4*4) < w(44*)

for all 4 € U; thus by interchanging 4 and 4%, w(4*4) = w(44*), and o is a trace-
state.

We next derive a characterization of the KMS condition by “auto-corre-
lation upper bounds.” This is formulated in terms of a quantity which occurs in
a perturbation expansion of the free energy, and is known alternatively as the
Duhamel two-point function, Bogoliubov scalar product, Kubo-Mari scalar
product, or the canonical correlation. If (2, ) is a C*-dynamical system and w
a t-invariant state on 2, this quantity is a priori defined as a sesquilinear form
on the entire analytic elements 2, by

Lt * -1 —pH,
(4,B), = E/o diw(A*1;(B)) = (10(4)Q0w, (fHw)” (1 — e 77)1,(B)Qy,)

for 4,B € A,. Here and later we define p+ p~'(1 — e™?) by continuity to be
equal to one when p = 0.

Formally, this quantity appears in the second-order term of a perturbation
expansion of the partition function. Let us reconsider the example A = M,, and
the Gibbs state

Trg, (e 774)
wprr(4) = Trg (@ P1) -
The quantity

Z(BH) = Trg, (e )

is usually referred to as the partition function and one computes that

1
P8 =8 [ dt op(arsy(s)
= Trg, (pA* / 1 dt e P pReP-0H) / Z(BH)
0

1
- g— Trsjn (/ dt e_ﬁt(HﬁyB) ﬁA*e_ﬁ(l_l)(H_yB)) y= O/Z(ﬁH>
'y 0 ’

9? (A —
— ooy TP fz(p)

82
axayZ(B(H —xd” — yB))x=y=0/Z(ﬁH) .
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The name canonical correlation comes from the following formula which is
derived in a similar manner

% op—)(A)|,_o= P{(4", B). — wpu(A)wgu(B)} .

Subsequently, in Theorem 5.4.12, we show that if w is a (z, f)-KMS state
which is strongly clustering, i.e.,

lim o(47(B)) = o(4)o(B)

for all 4,B € U, then

T
if(4,B).. =ifw(d)w(B) + Thrr;o dtw([4,t,(B)]).
= Jo

The last term represents the first-order change of w(4) when w is allowed to
envolve under a perturbed dynamics, with perturbation B. Thus it is often
called the linear response. This is fully discussed in Section 5.4.

The inequalities occurring in the following theorem will be referred to as the
auto-correlation upper bounds.

Theorem 5.3.17 (Roepstorff-Fannes-Verbeure).  Let (U, 1) be a C=dyna-
mical system, and w a t-invariant state over .
The following conditions are equivalent:

(1) wisa(z,p) - KMS state

B
@ B /0 A4 15(4)) < ((4°4) — o(44))/ log((4"4) /w(447))
for all A € W, where we define
(u—v)/log(u/v), u>0,v>0,u#nv,

(u—v)/log(u/v) = ¢ u, u=v0v>0,
0, uw=0 .

Proor. We consider only the case f§ # 0 and leave the marginal case f =0 as an
exercise.

(1) = (2): If 4 € A, define the measures p, and v4 as in the introduction to
Proposition 5.3.14, and again define k(p) = e~#7. By Proposition 5.3.14 the KMS
condition implies

(k™) = va(l),

while the auto-correlation upper bound states that

pa (1= &) /logk) < (va(1) = my(1))/ log(va(1)/ma(1)) -

Hence we must prove

pa((1 = k1) logh) < (g (k71) — (1)) / log(hs (k™) /14(1)) -

By a change of scale, it is enough to prove that
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/dﬂ(p)p‘l(e”— 1)< (/dﬂ(p)e”—/du(p)>/log</du(p)e”//du(p))

for any positive finite Baire measure y on R such that Jdu(p)e’? < oo forall r € R.

Define a function f by
70 =tog( [ autprer)

This function is convex in ¢ because

70 = [dutpiper [ auper

0= ( [auter [aupper( [ aurrer)’) /([ du(p)e’”>22 0,

where the last inequality is a consequence of the Cauchy-Schwarz inequality, In
particular,

£(0) < (1= 1) £(0) + /(1)
and hence
1 1
/0 dt exp{f(1)} < /O dt exp{£(0)} exple(£(1) — £(0))}
= (exp{/(1)} — exp{ F(0)})/(/(1) - £(0)) .

But

o 1

/ dt exp{f(1)} = / du(p)p~(e” — 1)

0

and so we obtain the desired inequality

Jauer e =0 < ([ aun - | du(p)e”> J1oe( [ auto /] d#(p)ep) .

(2) = (1). We will prove that the auto-correlation upper bound implies the
auto-correlation lower bound and then appeal to Theorem 5.3.15. Again we may
assume f§ = 1 by changing scale. Consider the function

1
=plHeP —1) = ef' .
£p) = e - 1) /0‘“

It follows from the integral representation that f is strictly increasing and convex,
and hence the inverse function g,

g(p~'(e? = 1)) = p,
exists on R* and is strictly increasing and concave.

Defining x = w(44*)/w(A*A), the auto-correlation upper bound for f = 1 takes
the form

/ diy(p)p~' (e — D)jo(A74) < (x— 1)/ log x

and hence
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g(/ dpy(p)p~"(ef — 1)/w(A*A)> <log x .

But as g is concave and continuous, and dyu,(p)/w(A*4) is a probability measure, it
follows that

A/dM@m”wh4VMf@)z/mmmmﬁ%w—nwmmm

=/¢MMMMK@
= (1(4)Q0, = HyTy(A) Q) [ 0(AA)
iw(4*8(4)) w(4*4)

I

and hence
iw(478(4)) < w(4"A4)log (w(44™) /w(4*A)) .

Multiplying both sides by —1 one obtains the auto-correlation lower bound at f = 1.
As 2. is a core for the infinitesimal generator é of 7, by Corollary 3.1.7, the in-
equalities of Theorem 5.3.15 follow for general 4 € D(6) by continuity.

In order to proceed further in the analysis of KMS states, and in particular
to examine the condition of passivity as a criterion for the KMS property, we
must broaden slightly the latter notion. In statistical mechanics the parameter
B which occurs in the definition of a (t, §)-KMS state is proportional to the
inverse temperature. Thus = 0 corresponds to infinite temperature and the
associated KMS states, the t-invariant traces, are therefore called chaotic
states. At the other extreme one has the zero-temperature case f§ = +oc and
the definition of a KMS state extends in a natural fashion to these states. They
are states of minimal energy in the corresponding representation, or ground
states. One can also formally consider negative temperatures and the extreme
case f§ = — oo and for contrast the corresponding states are called ceiling states.

Definition 5.3.18.  Let (U, 7) be a C*-dynamical system, ¢ the generator of t,
and o a state over .
Then w is called a 1 ground state if

—iw(A*6(4)) >0
for all 4 € D(6). In this case w is also called a -KMS state at value + oo, or a
(7, +00)-KMS state. Similarly w is called a t ceiling state if

iw(4%6(4)) >0

forall 4 € D(8), and in this case w is also called a t-KMS state at value — oc, or
a (1, — 00)-KMS state.

There are many other ways of characterizing ground states. We collect some
of them in the next proposition. A corresponding proposition exists, of course,
for ceiling states.
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Proposition 5.3.19. Let (U, 1) be a C*-dynamical system, and let o be a
state on .

The following conditions are equivalent:

(1)  w is a1 ground state.
(2) If A, B e WU, then the entire analytic function

z— w(A4t.(B))

is uniformly bounded in the region {z; z € C, Imz > 0}.
(3)  Forany A, B € U, there exists a function Fy g which is continuous in
Imz > 0, analytic and bounded in Imz > 0 such that

Fy5(t) = w(4t,(B))

forall t € R. X A
(4) If f is a function with Fourier transform f€ %, and supp f
C (—0,0), then

ot/ (A) 1/(4)) = 0
for all 4 € N.
(5) o is t-invariant, and if
eMom, (A)Qy = 14, (1,(4)) Qe
is the corresponding unitary representation of R on 9,,, then
H,> 0.
If these conditions are satisfied, then e € n, (W)" forallt € R .
Proor. We will prove (1) & (5), (4) < (5), and subsequently (5) = (3) = (2) = (5).
(1) = (5). If wis a ground state then w is t-invariant by Lemma 5.3.16, and we
may form e, But r,,(D(6))Q, C D(H,,) and

(s (4)Qur, HoTror(4) Q) = —i(Ty(4) Ry, 70y (6(4)) Q)
—iw(4*5(4)) > 0

for all 4 € D(5). But
e”H’Unw(D(é))Qw = 7o, (7(D(0))) Q0 = e (D(5)) Q0
and hence 7,(D(9))Q,, is a core for H,, by Corollary 3.1.7. It follows that

(W, Hop) >0

for all € D(H,,) .
(5) = (1). This is immediate from the relation

—i0(4"5(4)) = (1,(4) Q0 , HoTte(4)Q)
for 4 € D(9).
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(5) = (4). If w is t-invariant we have
o (17(4)) Q0 = U (/)0 (4)Q0 = f(—Ho) o (4) Q0

by the calculation used in the proof of (2) = (1) in Theorem 5.3.15. Hence if H, > 0
and supp f C (—o0,0) then f(—H,,) = 0 and thus

oty (4) 77 (4)) = |70 (t/(4)Qu]> = 0
for all 4 € 2.
4) = (5). If (4) is true it follows from the Cauchy-Schwarz inequality that
w(Ats(B)) =0

forall 4,B € U, and all fe 2 with supp fg (—00,0). Replacing 4 by the elements
of an approximate identity for 2, Proposition 2.2.17, we obtain

o(zs(B)) =0

for all B € A and all fe 2 with supp fg (—00,0). If B = B* it follows by taking the
complex conjugate of the last relation, that the relation still holds for all f€ £ such
that 0 ¢ supp f. But then Lemma 3.2.45 implies that

o(u(B)) = o(B)

for all t € R, i.e., w is t-invariant. It follows therefore that

(70(A) R0, f(—Ho)T0(B)Qw) = 0(471/(B)) = 0

whenever supp fg (—00,0). Hence H, > 0.
(5) = (3). By spectral theory, we may define

F45(2) = (m0(47)Qy, € 1,(B)Qy)
0
_ /_ € P (11, (A7), dE( )0 (B) Q)

o0

for Im z > 0, where

0
eitHw — / e—itpdE(p)
is the spectral decomposition of efe. Lebesgue’s theorem now implies that F4 p has
the desired properties.

(3) = (2). This is proved by using the edge of the wedge theorem, Proposition
5.3.6, as in the proof of (3) = (1) in Proposition 5.3.7.

(2) = (5). By an extension of the Phragmen-Lindelof theorem, Proposition
5.3.5, we have that

|lo(47:(B))} < 4] ||BIl
when Im z > 0. Hence, replacing 4 by the elements of an approximate identity,
lo(z=(B))| < |1B]]

when Im z > 0. But if B = B* it follows from the Schwarz reflection principle that
(1z(B)) = w(t,(B)), and hence |w(z:(B))| < ||B|| for all z € C. By Liouville’s theo-
rem, w is t-invariant, and we can form H,,.

If B € A, then ¥ = 7,,(B)Q,, is analytic for H, and




100 States in Quantum Statistical Mechanics

(b, 9| = |w(B*t.(B))| < o(B'B) = (,¥)
for Im z > 0. Therefore, taking the derivative at 0 in the direction Im z > 0,Rez=0,
we obtain
(Y, —Hu ) <0.
But 7, (U;)Q,, is e"o-invariant and thus a core for H,, by Corollary 3.1.7. It follows
that
Hy,>0.

The last statement in the proposition is a consequence of Corollary 3.2.60.

EXAMPLE 5.3.20. Let (h) be the CAR algebra over a Hilbert space | and 7 a
one-parameter group of Bogoliubov transformations such that t,(a(f)) = a(e?#f),
etc. In Example 5.3.2 we have shown that there is a unique (r, B)-KMS state for all
B € R and we next argue that there is a unique t ground state (t ceiling state) if, and
only if, there are no nonzero f € b invariant under the unitary group U, = ¢ . First,
assume there are no invariant f and let w be a ground state. It follows from Lemma
5.3.16 that  is t-invariant and then it follows as in Example 5.2.21 that  is even.
Now by linearity, anti-linearity, and positivity

w(@*(fa(g) = (9,Tf)

where 0 < 7 < 1. The t-invariance implies that 7 commutes with U, and hence T
commutes strongly with /. But the ground-state condition —iw(4*5(4)) > 0 with the
successive choices 4 = a(f) and 4 = a*(f), f € D(H), yield the conditions

TH=HT <0, TH=HT<H.
These conditions uniquely determine 7 by T = E(—oo, 0) where Ey denotes the
spectral family of H. In particular
To(@((1=T)f)Quw =0, 7,(@ (Tf)Qw=0.
Therefore,
w(a(gi)a(g2)) = w(a((1 = T)gi)a(Tg2))
= —w(a(Tg2)a((1 - T)g1)) =0 .

Moreover,

w(a*(fr)a*(f2)a(gi)a(g2))
= (@ (TH)a (Tf)a(Tg1)a(Ty))
= —o(a (Th)a(Tg1)a*(Tf2)a(Tg2)) + (91, T>)(92 T/)
=—(92,TH) (91, T/H) + (91, T2) (92, Tf)

by use of the CARs. A similar calculation for higher-order monomials proves that o
is the unique gauge-invariant quasi-free state with the above two-point function.

Conversely, assume that U,f = f with £ #0. Let f* denote the orthogonal
complement of f in . It follows from the construction in the proof of Theorem 5.2.5
that A(h) = A(CS) ® A(f*). Thus, if v, is any state over A(Cf) and wy is a
ground state for t restricted to 2(f*), then w; ® wy is a ground state for . Thus the
ground state is not unique.
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After this diversion on ground states and ceiling states, which correspond
intuitively to t-KMS states at values + co, and — oo, we return to the discus-
sion of stability properties and the KMS condition. So far we have derived
various characterizations of the (r,f)-KMS condition for some fixed
B € Ru{+ co}. We next consider a condition which implies the KMS property
for some f € [0, 00] but does not determine the precise value of . This con-
dition is the passivity condition introduced in the discussion of stability and the
maximum entropy principle which preceded Theorem 5.3.15. We first give a
precise definition of passivity for a general C*-system together with a refine-
ment of this notion, complete passivity.

Definition 5.3.21. Let (U, 7) be a C*-dynamical system, where 2 has an
identity, let 6 be the infinitesimal generator of 7, and let w be a state on 2.
Then w is said to be a passive state if

—iw(U*8(U)) > 0
for any U € %o(W)nD(5), where %, () denotes the connected component of
the identity of the group #(2) of all unitary elements of 2 with the uniform
topology.
Moreover, w is said to be a completely passive state if ®?=1  1s a passive
state of the C*-dynamical system (&);_ U, K);_,7) for each n € N.

The principal characterizations of passivity are contained in the following.

Theorem 5.3.22 (Pusz-Woronowicz). Let (W, 1) be a C*-dynamical system,
where W has an identity, 8 the infinitesimal generator of T and w a state on N. Let
8" be the generator of (—Bj: \T on (—D;'z \U. Consider the following conditions:

()  wisa(z,B)-KMS state for af € [0,+ 0|, and w is t-invariant.
(2) w is completely passive.

(3) w is passive.

@) —i(@_,0)(BS")(B)) >0 for all B=B* € D(3"") and all n € N.
(5) —iw(46(4)) >0 for all A = 4* € D(9).

The following implications are valid: (1) < (2) & (4) = (3) = (5).

Furthermore, if there exists a group G and an action o of G as *-auto-
morphisms of W such that w is o-invariant, « commutes with t, and w is weakly
a-clustering, i.e.,

woa;=w, ge€GG,
og T =Ti0y, gEGIER,

and
B'eclor(loi(B)) |w(4B') — w(4)w(B)| =0, A4,BeU ,

then it follows that (5) = (1) and all the conditions are equivalent.
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Remarks

(1)  Since conditions (3) and (5) are preserved under convex combina-
tions of states, and convex combinations of (t, §)-KMS states for
different f are not KMS states, it is clear that a condition of purity
of w is needed for the implications (3) = (1) and (5) = 1.

(2) Ifwisa (1, $)-KMS state for a f € (0, 0], then w is automatically
7-invariant by Propositions 5.3.3 and 5.3.19, but this is no longer
the case for f = 0. Condition (5) implies invariance, however, and
thus the condition of z-invariance cannot be dropped from (1) (see
Lemma 5.3.16).

Proor

(1) = (2). If wis an invariant KMS state at value f for (2, 7) then it follows that
®;’= ,wis a B-KMS state for (®;’=]‘H, @;: ,7) and hence (1) = (2) will follow from
(1= ).

(2) = (3). Trivial.

(1) = (3). When g € (0, +oo) this is an immediate consequence of the auto-
correlation lower bounds, Theorem 5.3.15, and when B = +oo it follows from the
definition of a ground state, Definition 5.3.18. The remaining case is p=0,ie,wisa
T-invariant trace-state. Assume first that U € D() is a unitary such that || U — 1] <2.
Then it follows from spectral theory and an extension of Theorem 3.2.32 that there

existsan4 = A" € D(J) with ||4|| < msuchthat U = ¢. But Lemma 3.2.31 implies that

1
S(U) =i / dre™s(4)e' =
0

and hence

o(U*5(U)) :i/o drw(ei("_lMB(A)@‘“"'”) = iw(6(4)) =0,

where the second step relies upon the trace property of w and the third step follows
from the z-invariance.

Next, if —iw(U*6(U)) > 0 for some U € %(A) nD(5) and ¥ € %(A) ~ D(5) is an
element such that |V — U|| < 2, then

V=UU,
where Uy = VU™ € #(A)nD(8) and ||U; — 1| = |V — U|| < 2. Thus
o(U;é(U1)) =0
and
—iw(V*o(V)) = —iw(U*U; 6(UU))
= —io(U U 6(U1)U) — ioo(U*U; U1 6(U))
= —iw(U;3(U))) — io(U*6(U)) >0 .
Hence, the set of U € %(A) n D(8) such that —io(U*5(U)) > 0 is open and closed,

and thus %(U)ND(S) is contained in this set. (Note that Uy(A)N D(6) =
(% (W)~ D(6)), by the first part of the proof.)
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3) = (5). If 4 =4* € D(d), then
e e Ay (W) nD(6)
for all ¢ € R by Lemma 3.2.31, and

1
o) =i [ dreiaa)e 1
0
It follows that

1
(e o)) =& [ dro(e M5 )
0

e/oldriins"(;—l—l)"wQA, LA,...}EA,é(A)]...])

n=0 ! =

P\ ont1

R SN GG
_,;0 (n+ 1) <[A:£A7~~-[A,6(A)]...])

n

= ew(6(4)) + ;iw([é(A), A + 0 .

But the passivity of w implies that this expression is nonnegative for all ¢ € R.
Therefore, one must have w(5(4)) = 0 and i(w[6(4), 4]) > 0 for all 4 = 4™ € D(J).
But then the relation

[6(4), 4] = 6(4)4 — 46(4) = 6(4%) — 245(A)
implies that
—iw(46(4)) >0

for all 4 = 4* € D(9).

(2) = (4). This is a special case of (3) = (5).

We now turn to the remaining proofs, namely, (4) = (1) and (5) = (1) under the
weak-clustering assumption on w. We first explore some consequences of (5).

If B € D(6), then (B + B*)/2 and (B — B*)/2i are selfadjoint elements in D(J), and
condition (5) implies

—io(27'(B+B*)3(27 (B + B))) — io((2i) (B — B*)8((2i) ' (B - B*))) > 0
and hence

—iw(B*6(B)) — iw(B6(B*)) > 0 .

Lemma 5.3.16 implies that w is t-invariant. Let ¢ — U, (¢) = exp{itH,} be the canon-
ical unitary group implementing t on $,, The last condition then reads

(10(B)Q0, How(B)Q0) + (0 (B")Qw, HuTte(B") ) 2 0
for all B € D(8). Next we use the relation
(2 (B))Q = Un( /)0 (B = f(~Ha)(B)
which is valid for f € &(R). Moreover, 7/(B) € D(6) for all f € & and hence
(70 (B)Qu, Hot(Ho)Tw(B) Q) + (T (B)* Qu, Hot(—Ho)w(B) Q) 2 0
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for all B € A and all positive y € #(R). By Corollary 2.4.15, r, () is strong*-dense
in nm(QI) = M, and thus we have established
OBSERVATION 1
(AQrmeX(H(u)AQ(u) + (A*wa H(UX(—HM)A*Q(U) 2 0
for all 4 € M,, and all positive y € 7 (R).

Next, define £ = [nm(QI)'Qw] Then Q,, is cyclic and separating for EI,E. Let A,
Je be the associated modular operator and antiunitary involution on E$,,. Extend
Ag to 9, by defining

A= AgE

Then A is a nonnegative selfadjoint operator on 9, and M,Q,, is a core for A2,
since EM,Q, = EM, EQ,, is a core for A . By standard results of the Tomita-
Takesaki theory we obtain

(A'4Q,,A'BQ,,) = (AY*EAEQ,, A’ EBEQ,,)
= (EB'EQq, EA'EQ,)) = (EB*Q,, 4"Q,,)

Since Uy (1)Quw = Q, and Uy, (1)1, (A) Uy (2)* = 7,(A) for all #, we then find
U,(t)E = EU,(¢) for all ¢, and hence

Un()EM, EUL(8)" = EMLE .

Since Az is canonically related to (EWM,E, Q,), it follows that U, (t)EAE
= ApU,(t)E, and hence A and H,, commute strongly. Thus one has a joint spectral
representation,

H, = / edE(e,d), A= / e*dE(e, 2)
A A

where A= R x Rand R = Ru{—oo}. Let 5(H,,log A) C A be the support of £(-,-),
ie., the joint spectrum of H,, and logA.
OBSERVATION 2

G(Hyp, logA) C {(g, 1) € A;e4 <0} .

To prove this, we apply Observation 1 with y(¢) = e on 4 = BE where B € M,
Therefore,

(BQuw, Hoe "5BQ,,) + (EB*Qu, Hye #oB"Q,) > 0 |

where we have used the fact that H, and E commute strongly. The function
e f(e) = ce =" is real and anti- -symmetric and hence has purely imaginary Fourier
transform f Let C € 9, be the clement defined by

= / dt U,()B* Uy (0) (1)
Then

C = — / dt U,()BU, (1) f(t)

and hence
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C'Q, = Hye "oB'Q,,  CQ, = —H,e B0, .
Using the modular relation for A we obtain
(EB*Qu, Hye "oB*Q,) = (EB*Q,, C*Qy)
= (A'2CQ,, A'*BQ,,)
= —(A'?H,e "oBQ,,, A'?BQ,) ,
and hence

(BQy, Hoe BQ,) — (A'?H,e #oBQ,, A'?BQ,) >0 .

As M,Q,, is a core for A2, and H, commutes strongly with Al

closure that

, it follows by

Hpeo(1-A)>0.
Observation 2 follows immediately from this inequality.

Define o(H,,, logA) = 6(H,, logA)nR x R .

OBSERVATION 3
0(Hy, logA) = —6(H,, logA) .

Note that o(H,, logA) = o(H,E, log Ag). Hence Observation 3 follows from the
identities.

Je AeJe = Ag' JeHy EJg = —H, E .

The first of these follows from Proposition 2.5.11, the second from the commutation
of eef with Sg = JEA}:./ 2 which is established as in the proof of (3) = (2) of The-
orem 3.2.61.

OBSERVATION 4. Assume that there exists a set CRx [ﬁ?, such that
1) gl—kzgi,where;:im(ﬂ%xﬂ%),
@ Zc{(51)eRxR; 1 <0}
(3) &(Ho, logA) CX.

Then w is a (z, f)-KMS state for some f € [0, 00] .

In the proof of Observation 4 we consider two cases separately.

Case 1. (H,,logA) = 6(H,,logA). Thus, if p,q € 6, then —p, —g,€ ¢ by Ob-
servation 3, and hence np +mgq € S for all integers n, m by assumption (1). But then
assumption (2) implies that p and g must belong to the same straight line passing
through (0,0) (otherwise {np + mgq;n,m € Z} would form a lattice in R* which could
not be contained in {(¢,1) € R% el < 0}). It follows that o(H,, logA) itself is con-
tained in a straight line passing through (0, 0). If this line is vertical, then H,, = 0 and
w is trivially a ground state. If the line is not vertical, there exists § > 0 such that
A = —Be for all (¢, 1) € 6(Hy, logA). But then

A=ePHo |

and hence w is a -KMS state at value by Theorem 5.3.10.
Case II. G(H,, logA) # o(H,, logA). Then there exists ¢ € R such that
(80, —00) € G(Hy, log A). Assume that (g, 1) € 6(H,, logA) for some & < 0. Then (3)
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and (2) imply that 1> 0, and (¢, 1) € o(H,,, log A). But (1) then implies that
n(e, 1) + (g0, —00) = (ne + &, —00) € T for all n € N, and when 7 is so large that
ne + & < 0 this contradicts (2). Therefore, & > 0 for any (e, 1) € 5(H,,, logA). This
means that H, > 0 and o is a ground state.

We are now able to prove (4) = (1) of Theorem 5.3.22. The proof is based on the
following formula:

G| H » s 10g<A n > = E 6'([‘1'[97 lOgA)
< _®Iw D w =1
j=

which follows from the obvious facts that

Hi =Y1o..elem,0le. .1, A, - bt
® o j=1 Y X w J=1
Jj=1 j=1
Hence, if w satisfies condition (4), i.e., ®j_ o satisfies condition (5) for all n, it
follows from Observation 2 that the set

= U ZU(HU), logA) )

n>1

satisfies condition (2) of Observation 4. Conditions (1) and (3) of this observation are
clearly satisfied, and hence Observation 4 implies that w is a --KMS state at value
B € [0,00]. In particular,  is t-invariant by Proposition 5.3.3 or Lemma 5.3.16.

Finally, we prove that (5) = (1) if w is weakly G-clustering for an action o of a
group G on U such that oy 7, = 7,0, forallg € Gand 1 € R, and if  is «- invariant.
We show in this case that the requirements of Observation 4 are fulfilled with

T = 5(H,, logA) .

Condition (3) is then trivial, while condition (2) follows from Observation 2. It
remains to show condition (1). Let &, %, and & be the normal extensions of w, 7, and «
to M, = 71:(0(91) Theorems 4.3.22 and 4.3.23 then imply that &, restricted to EME,
has the three point cluster property:

inf @(AB'C) — ®(AC)d(B) | = 0
podD | GUBC) = a(4C)H(®) |

for all 4,B,C € EM,E. Hence it follows from Theorem 4.3.33 and the subsequent
remark that
X = 6(Hy, logA) = 6(H,E, log Ag)
has the semigroup property
T+ECX.

(Observation 3 even implies that T is a group.) Thus to show condition (1) in
Observation 4, it is enough to show that (e, —occ0) € ¥ and (¢’ ,4) € £ implies
(¢+¢,—00) € Z. But these conditions mean that

e€a(H,(1-E)), & €o(H,E).

Now as E is t-invariant, it follows from Proposition 3.2.40 that for any 0 > 0 there
exists 4, B € M, such that



KMS-States 107

A=(1-E)4E, AQ,+#0, B=EBE, BQ,#0,
6.(4) C(e—06,e+0), a(B)C(£—6,+0).
But as « commutes with t the last condition implies that
0:(Uo(9)BUs(9)") € (¢ =0, & +)
for all g € G. Hence it follows from Lemma 3.2.42 that
ov, (AU (9)BUu(g)"Quw) C (e+¢& — 26, e+ & + 20)

forallg € G. As (1 — E)4 = A, the latter vector liesin (1 — E)9,, forall g € G. Hence
if we can show that the vector is nonzero for some g € G, it follows that

6(Ho(1 = E))n(e+¢& —26,e+& +20) £D.

As 6 was arbitrary, this implies

(e4+¢,—00) €.

Assume, ad absurdum, that

AU,(9)BUw(9)" Qu = 0
for all g € G. Then AU, (g)BU,(g)"E = 0 by the definition of E. As

Un(9)BUal(9)" (1 — E) = Un(9)B(1 — E)Un(g)" =0
by the assumption BE = B, it follows that
AU (9)BU(g)" = 0
for all g, or AU, (g)B = 0. Thus
(4Q.,, AU,(9)BB*Q,) =0 .

But the weak G-clustering of o with respect to o and Theorem 4.3.22 next imply that

1490 I7118°Qu |1 = 0 .

But as AQ,, # 0 this implies B*Q,, = 0. But Q,, is separating for E9i, F > B* and
hence B* = 0. This contradicts the assumption BQ,, # 0. Thus

T+XCX

and the proof of Theorem 5.3.22 is complete.
We conclude this subsection with a discussion of various convergence
properties and several comments and examples concerning the existence of

KMS states. First we derive a justification for a terminology “KMS state at
+ 00” used in the definition of ground states and ceiling states.

Proposition 5.3.23.  Let (U, 1) be a C*-dynamical system, and {w,} a net of
states on U such that w, converges to a state w in the weak*-topology, i.e.,
lim w,(4) = w(4)
o

Sfor all A € . Assume that w, is a (v, B,)-KMS state, where 8, € Ru{+oc},
and that

lim B, = §



108 States in Quantum Statistical Mechanics

exists in Ru{+oco}.
It follows that w is a (t, B)-KMS state.

Proor. If | B |< co, we may assume that | B, |< oo for all « by passing to a subnet.
Hence the corollary is an immediate consequence of the auto-correlation lower
bounds in Theorem 5.3.15, since u,v — u log(u/v) is lower semi-continuous.
If B =+ oo, we may either assume that 8, = + oo for all «, or 0 < f, < + oo for
all o In the first case
—i(A476(4)) = lim —iw, (4*5(4)) > 0
for all 4 € D(0). In the second case note that by the auto-correlation lower bound

—iw(4'3(4)) = lim — o, (4°6(4))

> H ﬁl w, (4" A)log(w, (A" 4)/w,(447))

o

> Tim
oxL

1
ﬁ—(wa(A*A) —w,(447)) =0
for all 4 € D(6). The last inequality follows because

u log(u/v) = v((u/v) log(u/v)) > v(u/v—1) = u—v

by convexity of x — x log x.
The case § = —oo is similar.

EXAMPLE 5.3.24. Adopt the assumptions of Examples 5.3.2 and 5.3.20. The
unique (7, 8)-KMS state over the CAR algebra (), for ff € R, is the gauge-in-
variant quasi free-state wp with two-point function

wg(a*(flalg)) = (g, e (1 +e M) f) .
If there are no nonzero f € by invariant under U, = ¢ then
Jlim y(a*(1)alg)) = (g, En(0,0)) .

where Ey is the spectral family of H. Thus the KMS states converge in the weak*-
topology to the unique ground state constructed in Example 5.3.20. Note that if
f,g €1 are invariant under U, then

wg(a*(falg)) = (9,/)/2 .

Thus the wy are trace-states on the CAR subalgebra over the subspace of U-in-
variant vectors.

The next proposition, which is similar to the previous one, is sometimes
useful for proving existence of ground states and KMS states in C*-dynamical
systems which are thermodynamic limits. It also implies that if 90 has an
identity, the set of § such that (t, f)-KMS states exist, for a given group t, is a
closed subset of Ru{=+ co}.

Proposition 5.3.25. Let W be a C*-algebra with identity 1, and {t"},>1 a
sequence of strongly continuous one-parameter groups of *-automorphisms of
A converging strongly to a one-parameter group T, i.e.,
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lim |[7f(4) - 7 (4)]| = 0
h— 00

Jor each t € R and A € . Assume that there exists a (1}, ,)-KMS state v,
on W for each n, where {f,},>; € Rut oo converges to a p € Ru {+oo}, ie.,
lim §, =f.

n— 00

It follows that each weak*-limit point w of the sequence {w,} is a (z, B)-
KMS state on U. In particular there exists a (z, §)-KMS state on .

Proor. Let §, be the generator of " and § the generator of 7. By Theorems 3.1.26
and 3.1.28 there exists for each 4 € D(d) a sequence {4,},5; in U such that

lim 4, =4, lim 6,(4,) = 6(4) .

n— oo n—oo
Let w, be a (1", B,)-KMS state of U. Since A has an identity, Eg is compact in the
weak*-topology, Theorem, 2.3.15. Thus there exists a subset {w,, }, of {w,}, such
that n, — oo and w,, converges to some state w in the weak*-topology. We will show
that w is a (t, f)-KMS state.

If | B |< oo, we may assume that | 8, |< oo for all #, and by the auto-correlation

lower bounds, Theorem 5.3.15,

N2 n,

~ A 5 (An) = 0n (4" Ay, log [ 2nelAnsrns)
_lﬂn,wllz( e "K( ny)) 2 Wn, ny “ing og CU,,I(A A*) .

Hence, by limiting

~ipo(d(4)) > Tm{w,, (4; 4,,) 108 (on, (4], An,)/n, (40, 4;,)) }
> w(4*A)log(w(4*4)/w(44*))

where the last step uses the lower semi-continuity of u,v — ulog(u/v).
If B = +o0, we may either assume f, = oo forall o, or 0 < , < +oc for all a.
In the first case

—iw,, (4, 6(4,,)) > 0

for all «, and w is a ground state by limiting. In the second case w is a ground state
essentially by the reasoning used in the proof of Proposition 5.3.23.

EXAMPLE 5.3.26. Let U be a C*-algebra with identity, w a trace-state over U such
that ($,,, m,) is a faithful representation, and consider a sequence H, = H; € U such
that

o(4) = lim i[H,, A]

n—oo

exists for all 4 in a dense *-subalgebra D(5), of A. Now w o § =0 and § is closable
by Proposition 3.2.26 and if the subspaces (2 & 6)(D(d),) are dense in 2, the closure
§ of § is the generator of a group t of *-automorphisms of 2 by Corollary 3.2.57. If
(A) = e ge=™H: | then 1"(4) — t,(4) uniformly for ¢ in compacts, Theorem 3.1.28.
Now

wp,n(4) = w(e P 4) /(e
is a (7", f)-KMS state on U, since
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wg,.(AB) = w(e P AB) /(e FM)
= e el Be ) () = (2 (B)A)

for all 4,8 € A, and it is in fact not hard to see that this establishes a one-to-one
correspondence between (1", f)-KMS states and trace-states on 2. By Proposition
5.3.25, A has (r, f)-KMS states for all f € Ru {+c}.

Our fascination with KMS states throughout this section might mislead one
into thinking that such states always exist. We conclude with an example which
shows that this is not necessarily the case.

EXAMPLE 5.3.27. Our aim is to exhibit some C*-dynamical systems (2, 7), where
the U are simple C*-algebras with identity, and there exists a t-KMS state at one
and only one value ff € Ru{£oco}. This state will be unique. Furthermore, this is
possible both for finite and infinite B, and hence by rescaling of ¢ for any
p e Ru{£occ}.

Forn=2,3,..., +co, let ¢, be the C*-algebra generated by a sequence {S;};_, of
isometries

(1) SiSi=1, i=12,..
and if n < + co, assume that
(2.n) > osisi=1.

If n = 4 co, assume that

(2.00) dNSSi< 1t k=12,
i=1
It can be proved (see Notes and Remarks) that if ¢/, is another C*-algebra generated
by elements S,i = 1.....,n satisfying (1) and (2.n), then there exists a *-isomorphism
;@ — O, such that «(S;) =S!. Hence ¢, is uniquely determined up to *-iso-
morphism by relations (1) and (2.n), and by the arguments used in the uniqueness
proofs of CARs and CCRs, Theorems 5.2.5 and 5.2.8, it follows that each ¢, is a
simple C*-algebra. Now for each ¢

S;=1,(S;) = €"S;

satisfies (1) and (2.n), and hence 7, extends uniquely to a *-automorphism of ¢,,.
(This is the only point in the argument at which we use the uniqueness of the ,,.
Alternatively one could regard each 7, as a representation of relations (1) and (2.n),
and then form the direct sum representation @D, crlse Trivially (P, 576)(Si)
e X (P, xTs)(S:) defines a*-automorphism of the C*-algebra (7, generated by
this representation, and the remaining arguments do not change. Of course, the
simplicity of @, would need another proof.) Clearly ¢ — 7, is a strongly continuous
one-parameter group, which is periodic with period 2n. Hence

D(A) :2—1”/(;716{: (A)

defines a projection of norm one from ¢, onto the fixed-point algebra ¢ for .
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We next analyze this fixed-point algebra. It follows immediately from (1) and
(2.n) that

(3) S;S, = 5,‘1'1]; i,j = 1,2...,)’1

and hence each element in the *-algebra generated by {S;}!_, is a linear combination
of elements of the form

S.Sy
where yu,v are multiindices, e.g., = (j1, ..., jk),Ji € {1,2,...,n}, and
S =S,,S;,...5, .
Define the length of u = (ji,...,jx) as L(x) = k. Then
7(8,S) = eit(L(u)—L(v))S#S‘f
and hence
O(S,:Sy) = Or(w), Lw)SuS;y -

It follows that (] is just the closure of the linear combinations of elements of the
form S, S}, where L(u) = L(v). But if L(u) = L(v) = L(¢') = L(¥') it follows from (3)
that

S8y SuSy = 0y SuSy

i.e., the set of S,S* with L(p) = L(v) = k form a set of n* x n* matrix units. It follows
from (2.n) when n < + oo that these matrix units are linear combinations of » of the
corresponding matrix units for L(u) = L(v) = k + 1, and hence ¢, is a UHF-algebra,
i.e., O is generated by an increasing sequence {8}, of full n* x n* matrix alge-
bras, all with the same unit. If n = 4 0o, a variation of the argument above shows
that @7 can be represented as follows: If § is an infinite-dimensional separable
Hilbert space, then @ is the C*-algebra on H®H®--- generated by 1,
ZE(9)11®---,L4(HD®9H)®1® -, etc. It follows that ¢} admits a unique
tracial state which is faithful if n < co and is a character if n = + co.

Now, let w be a state on @, which is a T-KMS state at a finite value f € R. As

(1 (S,S))) = "D a(s,8)

it follows from the t-invariance of w, Proposition 5.3.3, that w(S,S?) =0 unless
L(u) = L(v). (Note that ¢, does not admit any tracial state because of relations (1)
and (2.n) and hence the case =0 is immediately excluded.) Now, Proposition
5.3.28 implies that the restriction of w to ¢ is a trace, which is faithful, since 0, is
simple. This shows that (0, t) does not have any KMS states for finite values of g,
and if n < + co we have shown that

“4) O(S,Sy) = 8y pn~H

(where 6, = 0if L(i) # L(v)). Hence w is unique, if it exists. But w is a KMS state at
value f if, and only if,

O(S,S3p(5,5)) = (S, S,S3)
ie.,

eI 0(S,,57.5,8;) = (S, S;503) -



112 States in Quantum Statistical Mechanics

It follows from (3) and (4) by tedious arguments that the left-hand side (LHS) of this
equationis nonzeroif, and only if, the right-hand side (RHS) isnonzero, and in this case

L(p) + L(p) = L(V) + L(v) -
Furthermore, when this condition is fulfilled, one has

LHS — ¢ #tt-ton ) n7 i LGw) 2 L)
=t A L) < LV,

—L(v") : N > s
RES — " , %f L(y') > L(v)
Wi L) < L(v) .

But L(p) + L(g') = L(v) + L(v') and hence L(p) > L(v') if, and only if, (/) < L(v),
etc. Hence it follows that the equation is satisfied if and only if
e PLWO=L) _ =L —L()
for all u,v, i.e., if and only if,
p=logn .
Now, assume 1 < 4+ oo and let @ be a ground on ¢,. Then
£ o(S7,(S))) = e w(S:S))

has a bounded analytic extension to the upper half-plane, and hence w(S:S;) = 0.
But then

o(l) = iw(S,-Sf) =0

i=1
which is a contradiction. To show nonexistence of ceiling states for all n, one notes
that

T o(Si(S)) = e "o(l) =&

does not have a bounded analytic extension to the lower half-plane. If n = +oo,
choose a representation for {S;}7¢ | such that there exists a unit vector Q € R(S;) " for
all i. If o is the corresponding state, then

w_ J1, forp=v=g, (SS:=1)
O(SpSy) = {0, otherwise.

It follows immediately that w is a ground state. Conversely, it follows from the
reasoning showing nonexistence of ground states for finite » that this is the only
ground state.

Conclusion. The C*-dynamical system (C,,t), n=2,3,...,+0oc admits a (z,f§)-
KMS state if, and only if, f = log n, (f = +oc if 1 = +cc). The corresponding KMS
state is unique.

5.3.2. The Set of KMS States

The KMS condition originated as a characteristic of Gibbs equilibrium states
in quantum statistical mechanics and for finite systems the condition com-
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pletely characterizes the Gibbs states (see Example 5.3.31). This coincidence
between KMS and Gibbs states appears to persist in many models after the
thermodynamic limit. The ideal Fermi gas provides a specific example. Thus if
a thermodynamic system is described by a C*-dynamical system (2, ) and one
accepts the Gibbs formalism it is natural to interpret the set K of (t, §)-KMS
states as the set of equilibrium states at inverse temperature . We will give
more fundamental reasons for this interpretation later in this chapter and in
the next chapter. If the model reflects the basic elements of physical reality one
expects for high temperatures that K contains a unique element but at lower
temperatures, i.e., larger f, it should contain many elements corresponding to
the various thermodynamic phases and their possible mixtures. Qur next in-
tention is to analyze the set K with this interpretation in mind. In particular it
is of interest to characterize the elements of K corresponding to pure phases
and to examine the decomposition of a general w € K in terms of these special
elements.

It is evident that the set Kp is a convex subset of the state space Eq but it
follows immediately from the auto-correlation lower bounds in Theorem 5.3.15
that this set is closed in the weak*-topology. Thus if 2 has an identity, Kz is a
convex subset of Eyg and consequently it is the convex closure of its extreme
points. These extremal (7, §)-KMS states appear as natural candidates for the
description of pure thermodynamic phases and then the separation of phases
coincides with the barycentric decomposition of KMS states.

In order to analyze Kj it is necessary to study the set of KMS states over an
associated #*-dynamical system (9, 7). We begin our analysis with a propo-
sition which implies, among other things, that a nontrivial one-parameter
group on an abelian algebra does not admit faithful KMS states. This indicates
that the KMS condition is not an appropriate characterization of equilibrium
for classical systems (see Notes and Remarks).

Proposition 5.3.28. Let M be a von Neumann algebra with a cyclic unit
vector Q,w the corresponding state, and taa-weakly continuous one-para-
meter group of *-automorphisms of M. Let

M = {4 e€M; 1,(4) =4 forall t € R}
be the fixed-point algebra of © and let
€, = {4 €M; w(4B) = w(BA) for all B € M}

be the centralizer of w.
If wis a --KMS state then it follows that

€, =D
In particular
MADY C M°
and if M is abelian, one has ©, =1, for all t € R .
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Proor. If 4 € M, then 4 € M, and 7;(4) = 4. Hence by the :-KMS condition
w(BA) = w(4B)

for all B € M,, and by the density of 9, in M one concludes that 4 € €.
Conversely, if w(4B) = w(BA) for all B € M, then

@(Bti(A)) — w(t,(4)B) = w(t—(B)4) — w(47_,(B)) =0

because w is t-invariant, Proposition 5.3.3. Hence, if Fp 4 is the KMS function
associated with the couple B, 4, we have

FgﬂA(t—l‘) = FBJ(Z‘), teR.
Now, if B € M., we have that
Fp 4(z) = o(t_(B)4)

by the edge of the wedge argument used in the proof of (3) = (1) of Proposition
5.3.7. Hence Fp 4 has an entire analytic extension in this case. But as an entire
analytic function it is determined by its restriction to R. It follows that

FB,A(Z_ 1) = FB’A(Z)

forallz € C, i.e., Fg 4 is periodic with period i. As F 4 is bounded in the strip —1 <
Im z <0, it follows that Fj 4 is bounded, and hence Fp 4 is constant by Liouville’s
theorem, i.e.,

(B*Q, 1,(4)Q) = Fp 4(t) = Fp 4(0) = (B*Q, 4 Q) .
Therefore as MM, Q is dense in H,
7, (A)Q = 4Q

for all t € R. But Q is separating for 9t by Corollary 5.3.9, and therefore 7,(4) = 4,
ie., 4 € M, and €, = M". The last statement of the proposition follows from the
fact that

MADM' C C, .

The next result is a key lemma in the analysis of Kj.

Proposition 5.3.29.  Let M be a von Neumann algebra with a faithful normal

state w, o, the corresponding modular group, and ¢ any other normal state
on M.

The following statements are equivalent.

(1) @ isaoc-KMS state.
(2)  There exists a positive operator T affiliated with MM such that

@(4) = o(T'2AT"?)
for all 4 € M.

If these statements are true, then T is unique.
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In particular o is the unique o-KMS state on I if, and only if, M is a
factor.

Proor. We may assume the existence of a separating and cyclic vector Q such that
w(d) = (Q, AQ)

for all A € M. Let J and A be the modular conjugation and modular operator
associated with (M, Q), Definition 2.5.10.
(1) = (2). Assume first that there exists a A > 0 such that

o< iw.
By Theorem 2.3.19, there then exists a positive T’ € 9 such that
p(d) = (Q,4T'Q) .
As ¢ is 0-KMS it is g-invariant by Proposition 5.3.3. It follows that
(AQ,A"T'A™"BQ) = (Q, 6_,(4*B)T'Q)

= ¢(0-(4"B))
= @(4"B) = (4Q, T'BQ) ,

for all 4,B € M and hence

A'TA™ =T
for all ¢t € R. Now, define
T=JTJ.
Then
TQ =JT'Q
=JI'A7'Q

=JATV2TQ = T'Q

where the third equality follows from the strong commutation of 77 and A that we
have proved previously. The fourth stems from the fact that JA~/24'Q = 4”Q for
A’ € M, Proposition 2.5.11. It follows that

0(4) = (Q, ATQ) = w(4T) ,

and it remains to prove that 7 € M. To this end, assume 4,B, C € M, and use the
KMS condition to compute
w(ATBC) = w(o;(BC)AT)
= ¢(0:(BC)4)
= ¢(0i(B)a;(C)4)
= ¢(0:(C)4B)
= w(0;(C)ABT) = w(ABTC) .
It follows that B and T commute and hence 7 € 9.
It ¢ is not bounded by a positive multiple of w, we form the new state

p=(w+¢)/2. As p is a 6-KMS state and faithful on I, it follows from the first
part of the proof that there exist positive operators T}, T> € MAM' such that
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o(d) = p(ATy) = p(1,*4T!"?) |
0(4) = p(AT>) = p(T*4T)?) .

Since o is faithful, the kernel of 7; must be zero, and hence Tl" exists as a positive,
possibly unbounded, operator affiliated with MAM'. Thus T = T>T; ! is a positive
operator affiliated with MNPV, But then

(T2 AT'?) = (T} TV ATy 7717

= p(1,”4T,7) = o)
for all 4 € M.
(2) = (1). Approximating T strongly by an increasing sequence of positive,
bounded elements in MAI we may assume that 7T is bounded. But then, if 4, B€ M,
©(AB) = w(4BT)
= w(ATB)
= 0(0i(B)AT) = ¢(0:(B)4) .

The uniqueness of 7 follows because 7 and A commute strongly by Proposition
5.3.28, and hence

V20 = AT P e,

where 2 is the natural cone associated with the pair {9, Q} by Proposition 2.5.26.
But the representative vector for ¢ in this cone is unique, by Theorem 2.5.31, and
hence 7' € (MNM), is unique.

The last statement of the proposition is now trivial.

We are now in a position to establish the principal affine properties of the set
of KMS states of a C*-dynamical system (2, 7). We will assume that 2 pos-
sesses an identity but this does not lead to any essential loss of generality. If A
does not have an identity, one can introduce 2 = C1 + A and extend t to A by
the definition

% (a1, 4) € W—7,((o, 4)) = (2, 7,(4)) € A .

There is a one-to-one correspondence between states w over 2 and states @
over A for which ||@|y|| = 1. This correspondence is given by extension and

restriction, i.e.,
O((2,4)) = %+ o(4) .

Moreover, as Wz = C1 + 2. if follows by using an approximate identity as in
the proof of Proposition 5.3.3 that this gives a one-to-one correspondence be-
tween the (t, §)-KMS states of (2, 7) and the (7, §)-KMS states of the C*-
dynamical system (2, 7) with ||@|y|| = 1. The principal advantage in assuming
the existence of an identity is that Ey is compact in the weak*-topology.

Theorem 5.3.30. Let (U, 1) be a C*-dynamical system and assume that A
has an identity. For € R let K be the set of -KMS states at value f.
It follows that:
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(1) Kpg is convex and weak*-compact.

(2) Kgis a simplex

(3) € Ky is an extremal point of Kg if, and only if, w is a factor state.

(4)  Let wy and wy be extremal points of Kg, then w, and w; are either
equal or disjoint.

(5)  If w € K, the unique maximal measure on Ky corresponding to w is
identical to the central measure corresponding to w.

Proor. If B#0, we may assume = —1 by rescaling t. Moreover, we already
proved (1) in the introductory remarks of this subsection.

(2) R.K_; is just the set of positive functionals on U which satisfy the -
KMS condition. If @, € R K_;, define p = w + ¢. Since w < p, ¢ < p, it follows
from Theorem 2.3.19 that w and ¢ and n,-normal, and Corollary 5.3.4 and
Proposition 5.3.29 imply that there exist positive operators T3, T> € np(Ql)"r\ m,(A)
such that

o(d) =p(A(T1) , o(4) = p(4T2)

for 4 € U, where p is the normal extension of p to n,,(%[)”. As 3, = n,,(QI)"m 7, ()
is abelian, the greatest lowest bound T; A 7> of T} and 75 exists in 3,- Define

(0 A @)(4) = p(A(Ty A T2))

for 4 € A. Then w A ¢ is a KMS positive functional by Proposition 5.3.29. If 7 is a
KMS positive functional such that t < w, T < ¢, then 7 < p and there exists a
T €(3,), such that

©(4) = H(AT) .
Butas 7, 7, T, € 3,, it follows that
r<Tt, r<n,
and hence
T<TI'A\T,.

Thus t <wA ¢, and so w A ¢ is a unique greatest lower bound of w and ¢ in
R K_;. It follows that R K_; is a lattice, and K_; is a simplex

(3) From Proposition 5.3.29 it follows that if w € K_; is given, then the
¢ € Ry K_; which are dominated by w are of the form

@(4) = &(4T) ,

where T € nw(%)'nnw(%)u and 0 < T < 1, and the correspondence between ¢ and T
is one to one. Hence o is extremal in K_; if, and only if,

(W) A, (A) =C1 .

(4) Asw and w; are factor states they are either quasi-equivalent or disjoint by
the proof of Proposition 2.4.27. (Compare also Lemma 4.2.8). But if they are quasi-
equivalent they are equal by Proposition 5.3.29.

(5) Let pg be the unique maximal measure on K_; with barycenter w, which
exists by Theorem 4.1.15. Let uc be the central measure of , i.e., uc is the or-
thogonal measure in M,,(Eq) corresponding to nw(QI)"r\ (W) . If g€ My(K_,)isa
measure of finite support, then u =3, 46, where 4; >0 and 3,/ = 1, and since
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"

sitive operators T; € 7,,(2 )N, ()" such that
CO,(A) = (I)(AT,) = (Qzuynw(A)TiQw) .

b(p) = b(pg) = w it follows that w; < w/4;. By Proposition 5.3.29, there exist po-

Applying Lemma 4.1.26 and approximating 7; by a linear combination of spectral
projections it is now simple to show that u < y- in the ordering of measures in
M,(EWN). As ;. can be approximated by finite support measures in M, (K_;), it
follows that

Ug = U -
On the other hand, Lemma 4.1.26 implies that z. is a limit of finite support measures
in M,,(Ey) of the form
H= Z)~i5(u, s
7

where

and P; are projections in nm(QI)"r\ (). But Proposition 5.3.29 then implies that
w; € K_y, and thus pu < g, since ug is maximal in M,,(K_;). Hence

He < Hy

and we conclude from Lemma 4.1.4 that
fe = Jig -

The remaining case, f = 0, can be deduced from the above by remarking that K,
is just the set of trace-states on U and these are just the KMS states on U for the
trivial dynamics 7, = 1.

Theorem 5.3.30 does not have an obvious analogue for W*-dynamical
systems (9%, 7) since 7 is then strongly continuous if, and only if, it is norm-
continuous (see Example 3.2.36). If one defines K3 as the set of normal states of
Wt which satisfy the -KMS condition at value f then Kj is a weakly closed
convex subset of the normal states but it is not necessarily compact nor does it
always have extremal points. For example, if the centre of 9t has no minimal
projections then K; has no extremal points. The simplex property (2) is re-
placed by the property that if @ € Ky and p is a state such that p < Aw for some
4> 0 then p € Kg if and only if there is positive operator 7 € MMM’ such that
p(A4) = w(AT) for all 4 € M. Properties (3) and (4) remain true whilst (5) no
longer makes sense.

Theorem 5.3.30 has many interesting implications especially for the tenta-
tive physical interpretation of Kg as the set of equilibrium states, of the system
(U, 1), at inverse temperature f. If Ky consists of one, and only one, state o,
this state is automatically a factor state. Thus if there is a unique equilibrium
state, it is a factor state. This is of particular interest because we have already
established that factor states can often be characterized by cluster properties
which reflect the absence of long-range correlations, or the absence of large
fluctuations for the values of space-averaged observables. In Section 2.6 we
elaborated these characterizations for quasi-local algebras and in Section 4.3
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for invariant states (see in particular, Example 4.3.24 and the discussion in the
Notes and Remarks to Section 4.3). But the absence of correlations or large
fluctuations is typical of pure thermodynamic phases and these various points
all indicate that pure phases should correspond to factor states and more
precisely to extremal KMS states. But if one adopts this interpretation, the
simplex property of K has a clear significance.

Under suitable separability conditions, e.g., 9, separable, the unique
maximal measure u, on Ky with barycenter w € Ky is concentrated on the
extreme points &(Kjp) of K. Thus w is represented in a unique manner as a
convex superposition of extremal KMS states. This decomposition then cor-
responds to the physical separation of an equilibrium state into pure ther-
modynamic phases. The symmetry, or lack of symmetry, of these phases is then
automatically determined and phenomena of broken symmetry, as discussed in
Section 4.3.4, occur if 3, is not pointwise invariant under the corresponding
symmetry group.

Theorem 5.2.30 also has interest in the analysis of concrete models. In such
applications one essentially reverses the foregoing reasoning. For example, if
one can show that a particular model predicts a unique (t, f)- KMS state, then
this state is a factor state and has good cluster properties. In particular this
demonstrates that the equilibrium states of the ideal Fermi gas described in
Theorem 5.2.24 are factor states. This could also be deduced by direct con-
struction of the corresponding representations as in Example 5.2.20 but in
more complex models, such as the quantum spin systems discussed in Chapter
6, the direct construction is not possible and the abstract proof of factoriality
and cluster properties is particularly convenient. On the other hand, for finite
systems, one can again reverse the line of reasoning and deduce uniqueness
from factoriality.

EXAMPLE 5.3.31. Let A = M, be the algebra of n x n matrices acting on the »-
dimensional space 9,. For H = H* € M, define 1 by

‘L',(A) — eitHAe—itH ,
then the Gibbs state

Tl‘g," (e_ﬁHA)

wp(4) = Try, (7).

isa (t, B)-KMS state but it is also the unique such state for the following reason. If
is a second (1,f)-KMS state and o +#wp, then (w+wp)/2€K; but
(w+ wp)/2¢ £(Kp). Thus the mixed state (w + wp)/2 is not a factor state. But all
states over M, are type-I factor states and this gives a contradiction. If A = L%($H)
and $ is infinite dimensional, a similar argument yields uniqueness. It is, however,
necessary to argue with the aid of the extension 2 = C1 + 2 of A obtained by
adjoining an identity.

Theorem 5.3.30 establishes that the unique decomposition of a KMS state
w into extremal KMS states coincides with the central decomposition and we
have argued that this should be interpreted as the separation of w into pure
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thermodynamic phases. But there are other possible natural definitions of a
pure phase and one might well suspect that purity corresponds to ergodicity
among the z-invariant states. Therefore, we next study conditions under which
the KMS decomposition coincides with the ergodic decomposition of w re-
lative to 7. Once again a condition of asymptotic abelianness is of crucial
importance.

Theorem 5.3.32  Let (U, 1) be a C*-dynamical system, assume that W has an
identity 1, and let Kg be the set of ©- KMS states at value f if p € R\{0}, and
Ky the set of t-invariant trace-states on W. Take w € Kg, and let . € M,(Kp)
be the unique maximal measure with barycenter .

The following conditions are equivalent:
(1)  There exists a unique maximal measure p; € M,(EY), and
Hg = Hg

where EY denotes the t-invariant states on .
(2) {W, w} is weakly asympiotic abelian in mean in the sense that

: 1 r
forall A, B, C,D € .
3) {U, w} is R-central.

In particular an extremal invariant (v, f)~-KMS state w is extremal in-
variant if, and only if
T

. 1

forall A, B, C, D € U, where f € R.

Proor. Let 9t = nm(QI)”, and let @ and 7 denote the normal extensions of w and t
to M. If p # 0, then @ satisfies the T-KMS condition at § by Corollary 5.3.4 and
hence Q,, is separating for M by Corollary 5.3.9. If w is a trace-state, @ is a trace-
state on M, and Q, is again separating for M by a simple application of Lemma
5.3.8. In any case [D'Q,] = 1 by Proposition 2.5.3, and the Kovacs-Sziics theorem,
Proposition 4.3.8, implies the existence of a unique normal G-invariant projection M
from 9 to M" where M* = {4 € M; 7,(4) = 4 for all 1 € R}.
Proposition 4.3.8 and Example 4.3.5 imply that

1 /7
MAHQ, = 1 e dt U, (1)AQ,,
@ = tim = [ au,0)

1
T—S— oo

1 T
1‘ T« t Qm
T—giloo T— S/S dt 4(4)

for all A € 9 and in particular the limit exists.
But then
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M(4)B'Q, = BM(4)Qq

1 T
— 1 / +
= T_l.lsr—l—»loo B T—s i dt ,(4)Q,
. [ A
= lim —— [ dti(4)B'Q,

T-S—oo T — 8 S

for all B' € M, and since the net T — § — (T — S)_lfgdt ,(4) is uniformly boun-
ded, it follows that

T
M) = lim /S dt (4)

exists in the strong operator topology. This ensures that the limit in condition (2) of
the theorem always exists, and as IM'Q,, is dense in §,, it follows from Definition
4.3.6 and Theorem 2.3.19 that conditions (2) and (3) are equivalent, and in fact both
conditions are equivalent to

M C MM . (%)

If J and A are the modular conjugation and the modular operator associated with
{M, Q}, one has

Uo(t)JAV2AQ, = Uy (1) 4*Qyy = 2,(4)*Qy = JA2U,, (1) 4Q,,

for 4 € M, and from the uniqueness of the polar decomposition S = JA? it follows
that Uy (t)J = JU,(¢) for all t € R. It follows that (x) is equivalent to

me = M AU,(R) =J(MAU,(R)')J (%)
CIMAM)J = MM .

By Proposition 4.3.3 this is, however, equivalent to M, (E%) containing a unique
maximal measure pz, which is subcentral, i.e.,

Mg < Uc

where uc is the central measure. Now, if 8 # 0, then ux = uc by Theorem 5.3.30 and
since trivially pug < pg, it follows that

Mg = U -
If =0, note that for any projection £ € M we have that
AeU- (Q,,AEQ,)

is a t-invariant trace on 2, and it follows as in the proof of Theorem 5.3.30 that
the extremal decomposition coincides with the decomposition into invariant traces,
ie.,

Hg = Hg -

Conversely Theorem 5.3.30 implies that ux = ¢ for B # 0, while g, < pc for f=0
since i is dominated by the measure corresponding to the tracial decomposition,
and the latter measure is equal to p. by Theorem 5.3.30 applied in the case © = 1.

The last statement of the theorem follows from the fact that w € £(Kj) is ex-
tremal invariant if, and only if|

g = g = 0o -
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Remark 1. In the course of the above proof it was established that condition
(2) and condition (3) are equivalent for any t-invariant state w such that Q,, is
separating for 7,,(20)". This gives a version of Theorem 4.3.14 in the case that
Q,, is separating and G = R.

Remark 2. An immediate consequence of Theorem 5.3.32 is the following
global statement concerning the set Kz of KMS states at value f € R. (We
adopt the convention that Kj is the set of z-invariant traces.)

The following conditions are equivalent for each fixed f € R.
(1) Kpis a face in EEJR‘;,
(2) (U, w) is weakly asymptotically abelian in mean for all w € Kp,
3) (W, w)is R-central for all w € K.

We only have to show that (1) is equivalent to

(') For each €Ky there exists a unique maximal measure
1y € My(ES), and

Heg = g

where . is the unique maximal measure in M, (Kg).

Since Kp is a simplex, this is again equivalent to
(1" For each w € Kz and each maximal measure p € M, (E%) one has
n(Kg) =1.

((1") clearly implies (1”) but (1”) and the simplex property of K imply that each
pair of maximal measures in M,,(Ey) must coincide.) The equivalence between
(1) and (1”) is a general characterization of closed faces in compact convex sets,
and is proved as follows.

(1) = (1”). If  is any measure in M, (E}), there exists a net pt, € M,,(E%) of
measures with finite support converging in the weak*-topology to u, by Pro-
position 4.1.1. But p,(Kz) =1 by the facial property of Kg, and hence
w(Kp) = 1.

(1") = (1). Assume that € Kj, and that

n
w = E j.ia),‘

i=1

is a convex decomposition of @ with w; € Ef. We have to show that w; € Kj.
Let u € M, (EY) be a maximal measure such that

i: Aibp; < 1L .

i=1

By the Cartier — Fell — Meyer theorem, Proposition 4.2.1, there exist measures
1 € M, (EY) such that
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,U:Z/li#i .

i=1

But as u(Kjp) = 1 by assumption (1”) it follows that u;(Kg) =1 fori=1,...,n
and hence

wi:/dp,«(w')w' €Kp .

It follows that Kj is a face in EX.

Remark 3. In the preceding remark we saw that Kj is a face in E5, under quite
general circumstances when f € R, but Kj is very seldom a face in Eqy, i.€., the
following conditions are equivalent:

(1) Kpgis a face in Eq.
(2) 7,(N) is abelian for all w € Kp

(Here we use the convention that Kj is the set of all trace states.)
(1) = (2). Let € Kp and let T be a positive element in 7, (2)". The po-
sitive linear functional

or(d) = (TQu, 10(4)Q), A€,

is dominated by a positive multiple of w, by Theorem 2.3.19, and condition (1)
implies that wr/||wr|| is in Kp. It follows from Proposition 5.3.29 that
T € 7, (A) N 71y, (A", and we have proved that

To(W) C 7, (A) N 71, (A" .

Since 7,,(2)" is anti-isomorphic to 7, (A)’ by the Tomita-Takesaki theorem, it
follows that 7, () is abelian.
(2) = (1). If w € Kp is such that n,,(U) is abelian, one has that

(W) = 71, (W) = 7, (AW "7, (A’

and hence all states dominated by a multiple of w are (1, §)-KMS states by
Theorem 2.3.19 and Proposition 5.3.29. It follows that Kp is a face in Eqr.

We shall see later that K, always is a face of Eg, Theorem 5.3.37.

Next we examine various relationships between automorphisms and KMS
states. In physical applications the automorphisms correspond to symmetry
transformations and thus the following result gives information concerning
symmetry properties of equilibrium states.

In Proposition 5.3.29 we proved that if ¢ is a one-parameter group of
*-automorphisms of a von Neumann algebra 9, then the set of o-KMS states
is affinely isomorphic with the set of normal states on a hereditary subalgebra
of the center of 9. This implies various relations between automorphisms and
KMS states.
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Proposition 5.3.33. Let (I, ¢) be a W*-dynamical system, and w a faithful
normal state on MM satisfying the (o, ) -KMS condition, for some f € R. Let
be a *-automorphism of M.

1t follows that:

(1) woaisa («'oa B)-KMS state on IN.

2 Ifwou=wand f+#0 then ac, = o, for all t € R.

(3) If wo: = o for all t € R then wo o is (o, f)-KMS.

4 If ao, = o for all t € R, algy gy is the identity and B+ 0, then
wou=qw.

Proor. (1) If 4,B€M, then by ‘applying Proposition 5.3.7 to the pair
(4), u(B), we obtain a function F in C,(Dp), analytic in Dy such that

F(t) = o(a(d)o(a(B))) = w o a(d(a" 6,4)(B)) ,
F(t+ip) = o(o,(a(B))a(d)) = w o a((a" ' o,a)(B)A4) .
Hence w o« is a («'oo, B)-KMS state by the same proposition.

(2) follows from the uniqueness of the f-KMS group associated with w, The-
orem 5.3.10, and (1).

(3) is an immediate consequence of (1).
(4) It follows from (3) and Proposition 5.3.29 that

(woa)(d) = o(T"24T'?)

for all 4 € 9, where T is a positive operator affiliated with 3 = M A WV In parti-
cular

w(4) = o(T'24T'?)

for 4 € 3. But if 3 = C(K) is the Gelfand representation of 3, there exists by the
Riesz representation theorem a unique probability Radon measure y on the compact
Hausdorff space K such that

o(4) = / dux) Ax) |

where 4 — A is the Gelfand transform. But then

/ dp(x)A(x) = / du(x) T A)
K JK

for all 4 € 3, and hence 7 = 1 by the uniqueness of u. Thus

woa=w .

The statements (1)—(3) of Proposition 5.3.33 are also true for C*-dynamical
systems (2, 7) by the same reasoning. If « is a symmetry of the system, i.e., a *-
automorphism of 2 which commutes with 7, and if w is a (z, §)-KMS state
then w o o is also a (z, f)-KMS state. If w o o # w the symmetry is said to be
broken by w. The following theorem states that under some apparently general
circumstances symmetries are not broken.
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Theorem 5.3.33A (Fannes—Vanheuverzwijn—Verbeure). Let (U, 7)be a
C*-dynamical system, 6 the generator of T, w a (t,)-KMS state of A with
B € R and o a *-automorphism of W such that ot, = 1,0 for all t € R. Assume
there exists a sequence of unitaries U, € D(0) such that

a(4) = lim U,AU;

Hn— o0

for all A € W and
sup ||6(U,)|| < oo .

It follows that

wod=w ,

i.e., the symmetry o is not broken by w.

Proor. Replacing 1, by 7_, if necessary we may assume > 0. But the case f =0 is
trivial so we may assume > 0.

OBSERVATION 1. Let I = |a,b] be a finite interval in R = R and assume that the
T-spectrum o.(A) C I. It follows that

0 < —ifw(4°5(4)) — w(4"4) log(w(4"4)/w(A4")) < B(b — a)w(4™4) .

Proor. The first inequality is the auto-correlation lower bound of Theorem 5.3.15.
For the second inequality note that the spectral restriction on A implies that the
measure

ity (2) = (Mo (A)Qu, dE(D)T0(4)Q)

introduced prior to Proposition 5.3.14 is supported on /. Therefore this proposition
implies that

—ifw(A*6(A4)) — w(4*A4) log(w(A*4)/w(44™))
= (10 (4)Qu, HoTw (4)Q0) — w(A474) log(w(4™A4) /w(4A47))

— 5 / dity(2)2 / duA(A)log( / ey, / bdm(z',)e’”-)
< —ap / iy / du,,u)log( / dity (. / e )

= (b —a) / dig(2) = pb— a4 A) .

OBSERVATION 2. There exists a C > 0 such that
w(44™) < Cw(a(447))

for all A € A.
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ProoF. Set K = sup,||6(U,)||. If 4 € A has bounded t-spectrum we can find a finite
sequence /, of positive C*-functions on R = [R each with compact support in an

interval of length at most one, such that >, 42 =1 in a neighborhood of o.(4).
Define

n ll

A, :/dti;,,(—t)r,(A) }
Then

w(44”) = / dvy( Z / dvy( = w.4;) .

For each # such that 4,, # 0 we now apply the auto-correlation lower bound to U, 4,
to obtain the first of the following inequalities:

(4,4, log(w (AnA,*,)/w(UmA A,U,)) +iB o(43U50(Un)4,)

n-m h—m

= o(4,4,) log(w(4,4,) | (Upud,ALUL)) + iBor (45U 6(UnA,))
= ifo(4,0(4n)) — w(4,4,) log(w(4,4,) [ (4,4},))
< —ifw(4;6(4,)) — o(4,4,) log(w(4;4,) ]/ o(4,47))

< Bw(d,4,) .

The second inequality follows from Observation 1. But
i (AU, 0(Un)An)| < BIO(Un)llo(A;4,) < B Kw(4,4,)
so from the previous inequality

log((A:4,) /&(Upd,AZUS)) < BIK +1)

n=m

or

(,O(A’:A,,) S CCU((],,,A,,A U*)

n=—m

where C = exp(f(K + 1)). Now taking the limit m — oo one obtains
o(d;4,) < Co(a(d.47)) .

But as [o, 7] =0, «(4,) = (2(4)), so adding these inequalities over n one finds
w(A"4) < Co(a(4A4*)) .

Since the elements with bounded z-spectrum are dense in 2, by Lemma 3.2.39 (4),
this inequality extends to all 4 € 2, and Observation 2 follows.

END OF PROOF OF THEOREM 5.3.33A: It is sufficient to prove w o « = w for extremal
(1, B)-KMS states w. But then w o « is an extremal (z, §)-KMS state. By Observation
2 and Theorem 2.3.19, w is a normal state in the representation defined by w o a. But
as wo o is a factor state, by Theorem 5.3.30 (3), it follows from Proposition 5.3.29

(or the simplex property of Kj) that w = wo a. This completes the proof of the
theorem.

Any normal faithful state of a von Neumann algebra Mt is a KMS state for a
unique automorphism group of 9, by Theorem 5.3.10. The converse is not
true however; an automorphism group does not necessarily have KMS states.
Proposition 5.3.28 implies, for example, that if T is an automorphism group
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which allows a faithful KMS state, then t leaves the center of 9t pointwise
fixed. Even this condition on t is not sufficient however, by the following
theorem, which states that any two groups which allow faithful KMS states are
related by an inner cocycle. This theorem is a partial restatement of Theorem
2.7.16.

Theorem 5.3.34 (Connes). Let w and ¢ be faithful normal states on a von
Neumann algebra M, and let 6® and 6% be the corresponding modular groups.
It follows that there exists a strongly continuous one-parameter family t— I
of unitaries in M such that

of (4) = To? (AT,
Liyy =Twf(Ty)
forall A € M, and all s,t € R.

Proor. Define a faithful normal state p on I @ M, by

”(GZ ﬁlﬁ)) :%(w(All)'*'(P(Azz)) .

Let ¢” be the modular group associated with p. As

o((5 0) (e 42)) =g =o((32 42)(5 5))

it follows from Proposition 5.3.28 that

(6 5))=( 0)

for all z € R. The same is true for (g ?) and hence ¢” leaves the subalgebra

_JfAn 0\
93?@‘])?——{( 0 AZZ) ; A,,Efm}

invariant. But p satisfies the KMS condition with respect to the automorphism group

defined by
Ay 0 — C":D(All) 0
0 Ay 0 al(4n))

Therefore, it follows from the uniqueness statement of Theorem 5.3.10 that

O'p A]] 0 _ 0';”(/111) 0
! 0 A22 0 O';/)(Azz)
Now, from the relations
1 0 00
o= (o 0)(7 )

0 0\/0 O
1 0/\0 1
it follows that

A0 ) D=0 (2 )
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and hence there exists a g-weakly continuous one-parameter family #+— I, € Mt de-

termined by
0 0\ _,//0 0
r, o) %\\1 o))"

Applying ¢? to the relation
0 0\/0 0\ /0 0\"/0 O
(1 0)(1 0) +(1 0) (1 0)‘1]’

[T =1=TIT, ,

it follows that

i.e., each T, is unitary.

Similarly, from
0 0y [0 0\/4 0\/0 1
0 4) \1 0 0 0/\0 0/

of (d) = Tyo? (AT} .

it follows that

Finally,

(. o) =5((V0)==((£ 2))
ﬂf((? 3))“((2 g»:(r,a;?(n) 8)

We conclude the analysis of (t,)-KMS states for finite § with an ex-
amination of disjointness properties.

In Theorem 2.7.17 we stated, and sketched a proof, that a von Neumann
algebra 9t with a faithful normal state w is purely infinite, or type-III, if, and
only if, 6*|gy is not an inner group of automorphisms of INE for any nonzero
projection £ in the center MM~ V. In fact it is this latter characterization of
type-IIT von Neumann algebras which is most useful in proving that a given
von Neumann algebra is type-III, and for our purposes it could be taken as a
definition.

Theorem 5.3.34 shows that this definition is independent of the particular
choice of faithful, normal state . The next theorem shows that the (z, §)-KMS
states are highly sensitive to variations of the temperature, i.e., variations of f.

Theorem 5.3.35. Let (U, 1) be a C*-dynamical system, and suppose that w;
and w; are KMS-states corresponding to two different values B,,p, € R.
Assume that m,, (N)" is a type-IIT von Neumann algebra.

It follows that the states w; and w; are disjoint.

Proor. Recall from the beginning of Section 4.2.2 that w, and w, are disjoint if,
and only if, 7, and m,, have no quasi-equivalent subrepresentations. Suppose



KMS-States 129

ad absurdum that n,, and n,, have quasi-equivalent subrepresentations. Then it fol-
lows from Theorem 2.4.26 that there exist projections E; € 3, = 7, (U)" N A 7, (A’
and an isomorphism o; 75, ()" E1—7e, (A)"Es such that a(n,, (A)E1) = R, (4)Es.

Now f; # 0 because if §; = 0 then &; would be a finite trace on 7, ()", con-
tradicting the type-III assumption. If f, =0 then 7, (2)"E; would be properly
infinite and 7,,(2)"E, finite, a contradiction. Hence we may assume f, # 0. By
Corollary 5.3.4 it follows that  extends to groups ' on ,, (%)" with respect to which
the normal extensions @; satisfy the (i, B;)-KMS conditions. By Proposition 5.3.28 it
follows that ! (E)) = E for all #, and hence 7! defines an automorphism group ¢ on
M = n,, (A)"E; such that

01(Tw, (A)E1) = T, (v:(4)) Er

for4 € At e R.
Next, Proposition 5.3.33 implies that the faithful normal states ¢; defined on I
by

_ dy(4) _ n(x(4))
@1 (4 = o (B @ )——@Z(Ez)

for i = 1,2, satisfy the (g, ;)-KMS condition. This follows because
oi(A4) = (e To)(4)
for A € M. Theorem 5.3.10 then implies

—_
tHG_Bl, =0,

is the modular group for w;,i = 1,2. Hence, by Theorem 5.3.34 there exists a unitary
cocycle I' in 9 such that

0;(4) = Ti0) (A)T;
for all 1 € R. As the state ¢, is both ¢'- and ¢?-invariant, it follows that
@ (4T,) = @, (070 (AT})) = @) (T, AT.I;) = ¢, (T, 4)

forall 4 € M, i.e., I'; is contained in the centralizer for ¢,. Hence Proposition 5.3.28
implies that ¢! (I;) = T, for all s. It follows that

oo =Toy(T) =TT,
i.e., t— 1T is a unitary representation of R. But now
O(B—pa)t = 0-120{1("4) =T, 4AI7

is an inner group of *-automorphisms of M. Hence, by rescaling, ¢! is an inner group
of *-automorphisms. It follows that 9 is a semi-finite von Neumann algebra, which
is a contradiction.

Theorem 5.3.35 applies in particular to KMS states satisfying the weak
asymptotic abelianess condition of Theorem 5.3.32. Recall from the proof of

that theorem that if w is a (t, §)-KMS state where § # 0, then
T

. 1
S—l%rilooﬁ : dt w(At,(B)C)

exists for all 4,B,C € .
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Corollary 5.3.36.  Let (2, 1) be a C*-dynamical system, let p € R\{0}, and
let o be a (1, f)-KMS state on W such that

. Lo
S—IYI"TOO 5-7), dtw(A[z,(B),C]D) =0 (%)
Jorall 4,B,C,D € W. Let (9,,, 7wy, Q) be the cyclic representation associated
with w.

It follows that there exists a projection E € 11,(W)" nn,(N) such that

(1) 7 (W)E is type-III.
(2) 7u,(W'(1 — E) is abelian.

In particular, assume that A does not have any characters and let w; and w-
be states on W satisfying the t-KMS condition at values B, [, € R, where
By # By Assume furthermore that w; satisfies condition () if B, #0 for
i=1,2.

It follows that @, and w, are disjoint.

Proor. Assume that o satisfies the hypotheses of the corollary and let @ and % be
the normal extensions of @ and 7 to M = r,,(A)", which exist by Corollary 5.3.4. The
center of M is contained in M by Proposition 5.3.28, and it follows from the proof
of Theorem 5.3.32 that condition (x) is equivalent to

M =MW

where M is the fixed-point algebra of 9 under the action 7. Now, let 1 — E be the
largest projection in MM ~ M’ such that Tlan(1 - fy 1S an inner group of automorphisms.
Then na;(‘ll)//E is type-III by the remark before Theorem 5.3.35, since 7 is a multiple
of the modular group. We may henceforth assume E = 0. Then there exists a unitary
group ¢ — U, in M such that

#(d) = U, AU

But then
T(Uy) = U, U, Uy = U
and so
U € M =MW .
Hence

2,(4) = U, AU = 4
for all 4 € M. But then
M=IM =MD,

i.e., M is abelian.
In particular, if 2 has no characters then we must have £ =1 in the above

construction, and thus the last statement of the corollary follows from Theorem
5.3.35.
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5.3.3. The Set of Ground States

In the previous subsection we analyzed various properties of the set K of
(7, B)-KMS states over a C*-dynamical system (2I,7). This analysis was re-
stricted to the case f € R and our next aim is to make an analogous analysis for
f = t+oo. Since both these latter cases are similar we examine only the set K
of (1,00)-KMS states, i.e., the set of ground states of (U, 7).

It follows directly from Definition 5.3.18 that K, is a weak*-closed convex
subset of the state space Eq. But K, need not be a simplex in contrast to the
case of K with f finite. An example is given by the choice 7, = 1 for all ¢, and
thus Ko, = Eq. Recall that Ey is a simplex if, and only if, 2 is abelian, Example
4.2.6. However, K, has one simple geometric property not generally shared by
Kp, it is a face in Eq (see Remarks 2 and 3 after Theorem 5.3.32).

Theorem 5.3.37. Let (W, ©) be a C*-dynamical system and assume that W has
an identity.

It follows that the set K, of © ground states is convex and compact in the
weak*-topology and K, is a face in Eqy.

Let w € K, and consider the following conditions:

(1) The pair (A, w) is R-abelian.

(2)  7,(W)'is abelian.

(3)  There exists a unique maximal measure py in My,(Ky)-

(4)  There exists a unique maximal measure pg in M,(ES).

(5) There exists a unique maximal measure [y in M,(Ey).

It follows that (1) = (2) & (3) & (4) & (5).
If any of these conditions are fulfilled, then

Hx = Hg = KUy = Uc >

where uc is the central measure in M,(Ey), and these measures are pseudo-
supported by the intersection of the ground states, the R-ergodic states and the
pure states.

In particular, if w is an extremal ground state, then w is pure and

1o(AW)' = £(9,) -

Proor. K is convex and compact by the remarks before the theorem and Theorem
2.3.15. If w € Ky, and ¢ € Ey with ¢ < o then, by condition (4) of Proposition
5.3.19,

0 < ¢(tr(4) 5 (4)) < Ao(tr(4) 77 (4)) =0

for all /'€ 2 with supp f C (—o0,0), and all 4 € A. Hence ¢ is a ground state by the
same condition. It follows that K, is a face in Eqy.

Let w € K be a fixed state, and let (9, 7w, Qw, Uy) be the associated re-
presentation. Then

U,(t) € 1 ()"
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for all t € R, by Proposition 5.3.19. It follows that
7[0)(91)/ = le(m),f—\ UIU(R)I

and hence (1) = (2) by Proposition 4.3.7. Furthermore (2) < (4) by the same
Proposition, and (2) < (5) by Theorem 4.2.4. Since K. is a face in Eqy, we have the
identification

Mw(Koo) = Mw(E‘JI)

and (3) < (5) follows.
Now, if condition (2) is fulfilled, we have

T (W) O 70, (A)” = 71,(A) = (W) N Uy (R)
and hence
He = Hy = HUg -
But py = uyg by the facial property of K.

Since this measure is maximal in M, (Ey), the pseudo-support property is a
consequence of Theorem 4.1.11.

If o € £(Ky) then pg = 6, is unique maximal in M,,(K,,). Thus condition (3) is
valid. This implies condition (5) and the identification Uy = O, 1.6., 0 € &(Ey).

Note that the implication (2) = (1) in Theorem 5.3.37 is not true in general.
A simple counterexample is provided by taking 7 to be the trivial action on a
non-abelian C*-algebra . Then any pure state on 2 is a ground state sa-
tisfying condition (2), but (2, w) is not R-abelian if dim($,,) > 2. However,
the implication corresponding to (2) = (1) is true in a global version of the
theorem. This global version can be formulated for more general faces F in Eg
than the face of ground states and also for more general groups G than R. Note
in particular that if ® € E§ and F is the closure of the set N9 of m,-normal t-
invariant states on 2, then F satisfies the hypotheses of the following theorem,
and therefore this theorem is a partial generalization of Theorem 4.3.9. We
emphasize that F is only assumed to be a face in EQG[, not necessarily in Eq.

Theorem 5.3.38. Let (U, G, 1) be a C*-dynamical system, where G is a lo-
cally compact, a-compact, topological group and U has an identity. Let F be a
closed face ofEQGI with the property that if € F and \y is a unit vector in the
space E,9,, of Uy-invariant vectors in $,, then the vector state o defined by
w'(d) = (f,mu(d)y) , A€,
is included in F.
The following statements are equivalent.
(1)  The pair (N, w) is G-abelian for all w € F.
Q) {me(A) L UL(G)Y is abelian for all w € F.
(3) Fis a simplex.
(4)  Each extremal state  in F is weakly clustering in the sense that
inf ) |w(A'B) — w(4d)w(B)| =0

A'e Co(tg(4

for all 4,B € N.
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(5)  Any state o in F such that {n,(A)VU,(G)} is a factor is ergodic.

(6) If wy and w;y are ergodic states in F and w, # w, then the covariant
representations (9, Tw,, Uw,) and (9, Tw,, Uw,) are not unitarily
equivalent (as covariant representations).

(7)  If oy and wy are distinct ergodic states in F, then the face generated
by wy and w; in EQGI is equal to the convex set {iw; + (1 — 2)wa;
2 €10, 1]} generated by w, and w,.

Remark. The special assumption on the closed face F used in this theorem is
necessary but the theorem is true without the assumption that G is g-compact
(see Notes and Remarks).

Proor. We will prove the following implications

We have | = 2 & 3 by Proposition 4.3.7 and Theorem 4.1.15. To prove 3 = 1 we
exploit a technique closely related to the one used in the proof of Theorem 4.3.9. By
the latter it suffices to show that

NS ={w';0 € NS, 0/(F,) =1}

®?

is a simplex, where Ng denotes the t-invariant m,-normal states over 2,

Fo = [1o(W)E,] € 1,(W)"' nU,(G)" ,

E,, is the projection onto the U,-invariant vectors in $,,, and we identify n,-normal
states with their g-weakly continuous extensions to 7, (2)". It follows from Theorem
2.4.21 that all @’ € NS have the form

o'(4) =Y (G mald))
k=1
where ¢, € 9, and ) ;5 &I = 1. But ' (F,,) = 1 implies w¢, (F,,) = 1 for all k and
hence F,,¢, = &, for all k. But this means that o’ can be approximated in norm by
states w” of the form

n

" (4) = S (T o) Tiny)
k=1

where E,n, = 1, and T; € m,(2)’. But then wy, € F by the special assumption on F,
and we have

of <Y |TelPwy,
k=1
by Theorem 2.3.19. Since F is a closed face, it follows that o’ € F. Hence
NS CF .

w —
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But since NS is a face of the simplex F, it follows that NY is a simplex, and (U, o) is
G-abelian by the argument used in the proof of Theorem 4.3.9.

(2) = (5): If{m,(W)UU,(G)} is an abelian factor, then {m,,(A)LU,,(G)} = C1
and w is ergodic by Theorem 4.3.17.

(5) = (6): Suppose that (6) does not hold, i.e., suppose that F contains two
distinct extremal covariantly equivalent states w; and w,. Let w = (w1 + @) /2.
Further let T be the unique positive element in 7, (2)’ such that

01(A4)/2 = (Qy, 1, (4)TQ,,)

for all 4 € A (Theorem 2.3.19). It follows from the G-invariance of w; that
T € U,(G)" and hence

T € {n,(WUU,(G)} .
Furthermore
@2(4)/2 = (Qu, T (4) (1 — T)Q0)
and hence
A= (Qy, 1,(4)(1 - T)TQ,)

is a positive, G-invariant, linear functional dominated by both w; and w, and it is,
therefore, a multiple of both w; and w; by extremality. Since @ # w; it follows that
(1-17)T =0, ie., T is a projection. Hence (H,,, T, Up, Q) is unitarily equivalent
0 (Do @ Doys oy B Taryy Uiy, ®Usyy, Dy © le/\/i) and, therefore, to (9, & Doy
T, @ Mooy, U, @ Uy, Qo @ 1/V/2) where 5 is a unit vector (distinct  from
exp{if}Q,, for all 0 € R) in E,H,. As {n,, (A)uU,, (G)} =C1, it follows that
{7(W LU, (G)} ~ My, where M, is the algebra of 2 x 2 matrices. But M, is a
factor, and @ = (w; x w,)/2 is not ergodic. Hence condition (5) is not fulfilled.

(7) = (6): If (6) does not hold, it follows from the preceding argument that there
exist distinct ergodic states w; and w; in F such that

{HU)(QI)UUM(G)}/ ~ M,

where @ = (w; + w;)/2. Hence the face generated by w; and w, is affinely iso-
morphic to the positive 2 x 2 matrices of trace one, and hence isomorphic to the
three-dimensional unit ball by Example 4.2.7. Thus condition (6) is not fulfilled.

(6) = (7): If w and w; are distinct ergodic states in F and property (6) holds,
then it follows from the argument used in proving (5) = (6) that

{7 © 7y (4); A € A} U{U,, ® U,y(g); g€ G} = {7+ (1 —T); 0,00 € C}

where T is the projection from $,, @ Do, ONL0 H,, . As the face generated by w; and
w; in EffI is affinely isomorphic to the subset of positive operators of trace one,
assertion (7) holds.

(6) = (4): Assume that the state w of condition (4) is ergodic, but not weakly
clustering, i.e., E, has dimension larger than one. If y € E,9, is a unit vector
orthogonal to Q,, then the state w; corresponding to y is contained in F by the
special assumption on F and w; # . By ergodicity

{TE(,,(QI)UU(D(G)}” =2(9,)

and hence

E(DT[w(QI)”Ew - y(E(usj(u) .
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But this implies that n is cyclic for n,(?), and hence the representation
(9w Tan» Uny, Q) is canonically unitarily equivalent with ($,,, 7w, Uy, Qw). Hence
condition (6) is not fulfilled.

In order to show (4) = (1) and finish the proof of the theorem we need an
unpleasant measure-theoretic lemma. The point of this lemma is to circumvent
difficulties which could arise from the possible nonseparability of 2.

Lemma 5.3.39. Let w be a state over a C*-algebra W with identity,
u €My (Ew) a probability measure with barycenter w,n a vector in §,, and
{4n},>1 a sequence in W such that

Z 17 (4n) Q0 — 1 ||[< 400 .

n>1

(1) It follows that m,(4,)Q, converges to some vector n, €9, for
u-almost all ¢ € Eqy.
2) IfBeUlet

@!(B) = (Mg, 7o (B)1,) -

Then @ wl(B) is p-integrable and
an(B) = [ dulo)wy(8) -
(3) If{4,},>, is another sequence in W such that

Z 170 (4,)Q0 —1l| < +o00

n>1

then my(A,)Q, converges to n, for p-almost all ¢ € Eqy .

Proor. (1) Let f, be the non-negative continuous function on Ey defined by

Fn(®) = 170 (An — Ani)) Q|| = 0((An — Ans1)"(An — Ann))'?
Then

/ () f+(0)

/ () p((An — Apsr)” (A — Ans1))
(

@ (An "An+1)*(An _An+1)) = ”nw(An ‘An—H)Qw“z .

Hence Y f, is a convergent series in L?(u) and therefore in L' (1), and consequently

D fa(9) <+o0

n>1

for p-almost all ¢ € Ey. For any such ¢,7,(4,)Q, is a Cauchy sequence which
converges to some limit #,,.
(2) Let

gn(@) = lImp(BA)Qy]| -
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By the triangle inequality
194(@) = gu+1(0)| < [1B]| £4(0)
and so {g,},>, is a Cauchy sequence in L?(y) converging pointwise to coZ,(B*B)l/ 2,
Thus this function of ¢ is square integrable, and
Jauto55) = tim [auto)one)?
= lim w(4;B"B4,) = ! (B*B) .

n— o0

Since A is spanned linearly by its positive part, it follows that

Wl (B) = [duto)ol®)
for all B € .
(3) The same argument as in the proof of (1) shows that
7 (dn — 4,)Q,)]| — 0
for p-almost all ¢ € Ey, and hence
I (4;) Q0 — 1|l — 0

for p-almost all ¢ € Eqy.

END OF PROOF OF THEOREM 5.3.38 Tt remains to prove that (4) = (1).
Letw € F,let 4,4" € Wand let u € M, (F) be a maximal measure representing w.

Since F is a face in E§, u is pseudo-supported by the ergodic states in F, Theorem
4.1.11.

Let » be a unit vector in E,%,, and {B,} a sequence in U such that
170, (Bn) Q0 — 1| < 2
By Proposition 4.3.4 there exist elements

ken
S (U) = > 2Un(g))

i=1

in Co(U,(G)) such that

1S5 (U)o (4B ) Qo — Ey Tty (A)n]] < 27"
and

1S5 (Uiw) oo (4'B)Qey — Eymiey (A < 27 .

Now, define

Ay =Sy (c(4By)), A4, =Sy (c(4'B,)) .
The relations above may be written as

170 (Si (2(4B1))) Q0 — Eomer(A)nl] < 27
and

[|70es (Sin (2(A'B))) Q0 — Erunw(A/)n“ <27
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By Lemma 5.3.39 (1) there is a Baire subset £ of F with u(E) =1 such that for
@ € E,1y(B.)Qy, 7p(4)Q, and 7,(4,)Q, converge to some limits 5,,&,, and &,
respectively, in 9.

For fixed g € G one has

170 (24 (B4)) Q0 = 1ll = [|Ua(9) (M (B) Q0 — m)| < 27"

and it follows from Lemma 5.3.39 (3) that n,(74(B,))Q, converges u-almost ev-
erywhere to 7,,. Since

Ty (T9(Bn))Qyp = Uy (9)7y(Br)Qyp — Ucp(g)mp
for ¢ € E, it follows that
Uyp(9)ny =1,

for p-almost all ¢ € F.
Now, define

D={(9,9) € GXE; Uy(g)n, =1y}
= {(g7 (P) € G x E; ¢((T9(Bn) - Bn)*(TH(Bn) _Bn)) - 0} .

Then D is a Baire subset of G x F, and we have proved that {¢ € F;(g, ) € D}
supports u for each g € G. The Haar measure y, on G is o-finite by assumption and it
follows from Fubini’s theorem that u, ® u is supported by D. Hence for p-almost all
@ € F one has that

U‘P(g)’]q) = rlgo

for pg-almost all g € G, and hence this relation holds for all g € G by the strong
continuity of U,. We conclude that

Mo € EpDy
for p-almost all ¢ € F.

Applying similar arguments to &, and é; we find a Baire subset £; C F such that
E,; CE,uis supported by E; and

r](py é(py éip € E¢5¢
for all ¢ € E;. In particular, if ¢ € E; is such that E, is one-dimensional, one has
’7(/) = (Qlﬂ’nw)Q#’ ’
‘qu = (Qw é(p) Q, = ”ango @(4n) Q(p )

and
Epnp(A)n, = (Qg, 1o (A)1,)Qp = lim ¢(4B,)Q, .
But ¢(4,) = ¢(4B,) and thus
So = Eomip(A)y = 0(4)(Qp,14)Q -
Similarly
é:,, = ¢(4)(Qy, M4)Qp
and hence
(1 1p(4')E) = @A) (A (R, 1,) = (Mg, T (A) &)

for all ¢ € E; such that E,, is one-dimensional.



138 States in Quantum Statistical Mechanics

Condition (4) is equivalent to the condition that E, is one-dimensional for each
ergodic state in F, by Theorem 4.3.22. Therefore, if we assume (4), it follows that the

set

{p € Ey; (Mg n(p(A’)irp) # (M, n(p(A)dp)}

contains no ergodic states. But this is a Baire subset of F, and it follows from the
maximality of u that the set has measure zero (see Theorem 4.1.11). By Lemma 5.3.9
(2) and the polarization identity, it now follows that

(’77 T[m(A’)E(unw(A)n) = hm (nw(Bn)Qa)) H(U(A,)TE(U(A,,)Q(,))

¥

lim Fdl‘((P)(nm(Bn)Q(pv n,,,(A')n(,,(A,,)Qw)

n— 00

/ (@) (1 Ty (A)E,)
F .

=/qu(<p)(nw%(/1)éi,,) = (1, 7o (4)Eume (4 )n)

Since this is true for all y € E,9,,, it follows that

E(un(u (A/)Ewnm (A)Eu) = Ewna} (A)Ewnw (A’)Eu)

for all 4,4" € A. The pair (A, w) is then G-abelian by Proposition 4.3.7.

Theorem 5.3.38 has several interesting corollaries. First we consider the set
of ground states of a C*-dynamical system.

Corollary 5.3.40. Let (U, R, 1) be a C*-dynamical system where W has an
identity, and let Ko, be the set of ground states for the system.
The following 15 statements are equivalent:

QY
@
A3)
4)

©)
(6)

()

The pair (U, w) is R-abelian for all w € K.

7o (A)' is abelian for all w € K.

K is a simplex.

Each pure ground state is weakly clustering in the sense that

inf |w(4'B) — wd)w(B)| =0
(ol [00B) ~ ola)o(5)

for all A,;B € A.

Any state  in K, such that n,(N) is a factor is pure.

If wi and w; are pure states in K, then w) and w; are either disjoint
or equal, i.e.,

(1)1(50)2 or w); =wy .

If o\ and w;, are distinct pure states in K., then the face generated by
w and w; in EY is equal to the convex set

{/1601 +(1— Nawa; A € [O, 1]}

generated by w; and w;.
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(4), (5, (6"), (7"): The statements obtained by replacing “pure” by “ergodic”
in (4), (5), (6), (7), respectively.

(4", (5", (6"), (7"): The statements obtained by replacing “pure’ by “‘ex-
tremal in Ky, in (4), (5), (6), (7), respectively.

Proor. The set K, is a face in Eq by Theorem 5.3.37, and hence K is a face in E§[
It follows that if w is a ground state, the statements “w is pure,” “w is ergodic,” and
“@ is extremal in K., are all equivalent, and hence the unprimed statements in the
theorem are equivalent to the primed ones.

We next show that the face F = K, has the special property required in Theorem
5.3.38. If w is a ground state and ¥ € E,$,, is a unit vector defining a state through

o'(4) = (b, mo(A)Y)

then the cyclic representation ($,,%a, Uw,Qw) corresponding to «' is unitary
equivalent to the representation

(P9, ProP, PULP,Y) ,
where P € {n,(A)uU,(R)} is the projection defined by
P = [m,(Wy] .
It follows from Proposition 5.3.19 (5) that o' is a ground state. Thus Theorem 5.3.38
applies to F = K, and it remains to show that the statements (1)~(7) of that the-
orem are equivalent to statements of (1)~(7) of this theorem in the special case of
ground states. This is clear for statements (1), (3), (4), and (7), and since Proposition

5.3.19 implies that
Uy(R) C 7, ()"

for all w € K, the equivalence for statements (2) and (5) follows immediately.
Statement (6) of Theorem 5.3.38 takes the form

(6"). If @ and w; are pure ground states and w, # wy, then the representations
(Dey» T ) and (9o, Ta,) are not unitarily equivalent.

But since two irreducible representations are either unitary equivalent or disjoint,
this is equivalent to statement (6) of the corollary.

The implication (1) = (6) in Corollary 5.3.40 is related to a result which
was of fundamental importance in the development of quantum field theory,
Haag’s theorem. This theorem demonstrated that the examination of the
ground states of a given dynamics necessitated the examination of a variety of
unitary inequivalent representations. A more local version of this implication is
as follows.

Corollary 5.3.41. Let (U, R, 1) be a C*-dynamical system, and let w; and w3
be extremal ground states on W such that (W, w;) is R-abelian for i =1,2.
It follows that w; and w; are either disjoint or equal, i.e.,

CU]J)COZ or Wy =y .

Proor. Assume that w; and w, are not disjoint. Then =, and =, have equivalent
subrepresentations, and since 7, (U)" = £($,,) by Theorem 5.3.37, it follows that
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w; and w, are quasi-equivalent (and even unitary equivalent). Hence (w1 + @) /2 is
a factor state by Proposition 2.4.27. Since the set of ground states is convex and the
set of invariant states ¢ such that (21, @) is R-abelian is convex as a consequence of
Corollary 4.3.10, it follows that (w; 4+ w;)/2 is a ground state and (U, (w1 + @,)/2)
is G-abelian. Theorem 5.3.37 implies that oy +2)/2 (A is abelian, but since this is a
factor, one deduces that (w; + w,)/2 is a pure state. Hence

W] =wy = ((J)] +u)3)/2 .

The last corollary concerns the set of all G-invariant states. It is a partial
generalization of Corollary 4.3.11.

Corollary 5.3.42. Let (W,G,t) be a C*-dynamical system, where G is a
locally compact, o-compact, topological group and N has an identity, and
define F = E§ as the set of all G-invariant states on .

It follows that all the statements (1)~(7) in Theorem 5.3.38 are equivalent
for F.

Proor. F = Eg[ clearly satisfies the requirements of Theorem 5.3.38.

We know that all extremal ground states are pure, by Theorem 5.3.37. It is
remarkable that if o is a general ergodic state on a C*-dynamical system
(A, R, 7) with energy spectrum unequal to the whole real line, then w is either
pure or can be decomposed into pure states with lower symmetry in a manner
analogous to that given in Theorem 4.3.37.

Theorem 5.3.43. Let w be an R-ergodic state on a C*-dynamical system
(W, R, <), and assume that the spectrum of the associated unitary re-
presentation U, of R is not the whole real line.

1t follows that w is either pure, or there exists a pure state & and a positive
real number T such that

T
(1) old) =7 [ drafz ()
0
for all A € A,
(2) @ is periodic with period T, i.e., &o1; = @,
(3) @ and & o, are disjoint, ® & & o 1,, whenever 0 <t < T.

Furthermore, a pure state & with the properties (1)~(3) is unique up to
transformations by t,.
Proor. Let M = r,,(A)". Since
U ()MU, (1) = M
for all # € R, one must have
U ()M U, ()" = M

for all € R. Hence one can define 7 on M’ by
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w(4) = Up()AUL ()", AeM .

But since Q,, is separating for I, one has

o:(M) = 0(Uolywq)
in the notation of Definition 3.2.37. Now it follows from the ergodicity of w, and
Theorem 4.3.17, that

M NU,(R) =Cl, ,
i.e., 7 is ergodic on M’ in the usual sense. Therefore, the argument used in the proof
of Theorem 4.3.33 implies that o, (V) is additive. But o, (') is symmetric by
Lemma 3.2.42. Hence the spectrum o, (9') is a group and since ¢(U,) is not the
whole real line there are only two possibilities.

Case 1. . (M) =0.
In this case the action 7 on M is trivial, i.e.,
M C Uy(R)
and hence
M =M NU,(R) =C1, .

It follows that =, is irreducible and w is pure.

Case 2. o.(W') = 2nZ/T for some T > 0.
It follows from ergodicity, as in the proof of Theorem 4.3.31, that the spectral
subspaces

()" ({2mn/T})
are one-dimensional, and there exists a unitary operator
Ve @) ({-2n/T})
such that the linear span of the powers V", n € Z, of V is dense in M. In particular

M is abelian.
Note that

T;(V) — ei2m/TV
and hence the spectrum of V is equal to the unit circle,
a(V)=T.
The Gelfand transform, Theorem 2.1.11B, identifies the C*-algebra € generated by V
with C(T), and the restriction of 7, to € identifies with rotation through the angle
2nt/T.
Define a probability measure x on T by
.“(C) = (Qu, CQW)

for C € €, where C denotes the Gelfand transform of C. By z-invariance, p is the
normalized Haar measure on T. Put F, = [I'Q,]. If 4 € A is an element with
bounded z-spectrum, then

an‘D(A)Fw € FmgﬁFm = ﬁRIFw
is an element in MM'F,, with bounded t-spectrum and hence
Fwnm(A)Fw e CF, .
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It follows by norm continuity that
Fyn,(WF, CCF, .
Thus, if 4 € U, there exists a unique C € € such that
Fony(A)F, = CF,
and hence a unique function
y € Ty (4) = E()

in C(T) corresponding to 4. Since @,(1) = 1 and &,(4) > 0 if 4 > 0, it follows that
o, is a state for all y € T. (If 1 ¢ 2, one uses an approximate identity and Proposition
2.3.11.) Now if D € € we have
(Q(m TC(:)(A)DQU)) = (Q(uyF(unu)(A)Fw DQ(U)
= (QIUV CDQU))

=/mmﬁmﬂw:/@m@wmm.
T T

Since € is dense in M = M" AV, it follows from this expression, Proposition
4.1.22, and Theorem 4.2.4, that

o) = [ duta, 4

identifies with the central decomposition of w, and this is just the unique extremal
decomposition in this case.
Since w is t-invariant we find

- - - - 2mt
JLatro,41060) = @, m02) = [ au)a eanb v+ )

and as this is true for all D € C(T) it follows, by continuity, that
@y 420/ 7(A) = @(1,(4))
forallt € R,y € T, and 4 € A. Thus we may define
=y
and then the central (= extremal) decomposition takes the form

T
o(4) :%/0 dti(z,(4))

Since @ o ¢ is pure for p-almost all ¢, is pure. If & were equivalent to @ o «, for
some 0 < ¢ < T, then & o &, would be equivalent to @ o o 45 for all s € R, and this
contradicts the fact that the decomposition of  is the central decomposition. The
uniqueness statement follows from the uniqueness of the central decomposition.

Remark. Since the decomposition in Theorem 5.3.43 is the central de-
composition the corresponding measure is an orthogonal measure. Moreover
one concludes, a posteriori, that the decomposition coincides with that of
Theorem 4.3.37 with H = TZ, but the H-ergodic states {t’@®; ¢ € H} are in fact
pure. Finally one can establish that the assumptions of Theorem 5.3.43 do not
imply that the pair (2, ) is H-abelian and hence the result is not a direct
consequence of Theorem 4.3.37.
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The important feature in Theorem 5.3.43 is the occurrence of a periodic
structure. The construction used in the proof allows one to conclude a strong
uniqueness statement for the decomposition of ergodic states of systems for
which 7 is periodic.

Corollary 5.3.44. Let (U, R, 1) be a C*-dynamical system where 1 is periodic
with period T, and assume that w is an R-ergodic state on .
It follows that there exists a pure state @ such that

T
o(4) = 7 /0 d16(x,(4))

for all A € N, and any two translates @ o 5 and @ o 1, of @ are either equal or
disjoint. Furthermore, @ is unique up to translation by 1.

Proor. The periodicity assumption on 7 implies that the unitary representation U,
is periodic with period 7, and hence

o(U,) C 21Z)T .

If w is pure we may set @ = w, if not we use the @ of Theorem 5.3.43 and note that
the period T of t is an integer multiple of the period T occurring in Theorem 5.3.43.

This last result partially complements the discussion of the uniqueness of the
ergodic decomposition given in Chapter 4. It should, however, be emphasized
that the periodic assumption which is crucial for the uniqueness of the extremal
decomposition in Corollary 5.3.44 is largely incompatible with the conditions
of asymptotic abelianness which are relevant for uniqueness of ergodic de-
compositions. More precisely, if (2, G, 1) is a C*-dynamical system based on a
compact group G one can establish that (2, w) is G-abelian for all w € Eg if
and only if the fixed-point algebra A" is abelian. The latter situation is atypical
if A is simple and G is compact.



5.4. Stability and Equilibrium

5.4.1. Stability of KMS States

In the previous section we analyzed properties of individual KMS states and
affine properties of the set of KMS states. But hitherto we made no attempts to
justify the interpretation of KMS states as equilibrium states of quantum-
mechanical systems. The purpose of this section is to remedy this omission.

We have noted several times that the finite-volume Gibbs states are the
unique KMS states and that the KMS property, or at least the accompanying
modular structure, has a tendency to persist in the infinite-volume limit. Thus
empirical acceptance of the Gibbs formalism indicates that the KMS property
is a suitable characterization of equilibrium and this motivated the foregoing
analysis. Now, however, we attempt to derive the KMS condition from various
general, physically motivated, properties, notably properties of ergodicity and
stability. As a preliminary we analyze the stability properties of KMS states
and ground states under perturbation of the dynamics.

In Section 3.1.4 we discussed perturbations of generators of Cy- and Cj-semi-
groups and we now apply this theory to groups of *-automorphisms t of C*- and
W*-algebras. We are particularly interested in perturbations by bounded sym-
metric derivations, and the algebraic structure leads to several refinements of the
general theory. For example, the derivation property ensures that the perturbed
group 7 is a group of *-automorphisms and hence it is norm-preserving by
Corollary 2.3.4. This strengthens one of the conclusions of Theorem 3.1.33.
Next recall that every bounded symmetric derivation § of a ¥ *-algebra M is
inner by Corollary 3.2.47, i.e., there is an H = H* € I such that

5(4) = ilH, A]

for all 4 € M. A similar result is true for representations of C*-algebras,
Corollary 3.2.48. Thus, it is natural to concentrate on inner derivations. The
perturbation series for ¥ then assumes a distinctive form in terms of com-
mutators and t, and <7, are related in a simple algebraic fashion by a unitary
co-cycle.

Proposition 5.4.1. Let (U, 1) be a C*- or W*-dynamical system and let &
denote the infinitesimal generator of t. Furthermore, for each P = P* € 9
define the bounded derivation dp by D(5p) = W and 5p(A) = i[P, A] for A € A.
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It follows that 6 + 6p generates a one-parameter group of *-automorphisms
Pof U given by

T (A) = 7(4) + Z"n/otd” /o” e _,/0’"-1 dty[t;,(P), [+~ [24, (P), 2(A)]]] -
n>1

Moreover, one has
ACIED WEAT)) page

where T° f € W is a one-parameter family of unitary elements, determined by

t t r-1
Ff:ﬂ+2i"/ dtl/ dtz--~/ diyt,, (P) -1, (P)
0 0 0

n>1
t n -1
=11+Zi”/ dn/ dtz---/ d,©, (P) -7, (P) ,
=1 Jo 0 0 "
which satisfies the co-cycle relation
7, =Tfq(If) .

All integrals converge in the strong topology for the C*-system and in the o-
weak topology for the W*-system. The integrals define norm-convergent series
of bounded operators and

e (4) = w(A)] < (1171~ 1)al,  TF — 1] < (1P 1)

Proor. We give the proof for the C*-system. The W*-case follows by transposition
from the predual as in the proof of Theorem 3.1.33.

The first statement of the proposition can be obtained from Theorem 3.1.33 by
suitable replacement of X by 2, etc. but it is most easily deduced from the proof of
the latter theorem. This proof established that t* is the unique solution of the
integral equation.

t
L) =)+ [l (P) el ()]
0
Alternatively ¥ is the unique solution of the integral equation
t
L) =)+ [ dnelea (Pl

Solution by iteration gives the perturbation expansion of t¥. The automorphism
property of t¥ follows with the aid of the derivation condition, e.g.,
d
dt
Next consider I'? defined by the first series. The nth term in this series is well-
defined and has norm less than |¢["||P||"/n!. Thus I'¥ is a norm-continuous one-
parameter family of elements of o with I’y = 1. Consequently I'” is invertible for all
t € [—to, to] for some # > 0. Next one has
drr art

i = lrfT;(P) N 7 - ‘—ITI(P)rf’* s

(7 (4)t](B)) =0 .
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in the strong sense and hence
awrrr)
dt

Therefore, "I =1 and I'? is unitary for ¢ € [—to,%]. Unitarity for other ¢ will
follow from the co-cycle relation. To establish this relation we first note that

arr
=)

and I |, =T But t,(I'7) = T*") and hence

=0.

d
ST n(TY) = Tt (4(P) = il o (TY)t(P) -

Moreover, TTt(I'7)|,_, = 7. Thus s— I7 . and s—I7¢(TF) satisfy the same
first-order differential equation and boundary condition, for each ¢ € R. Therefore,
the two functions are equal and can be obtained by iteration of the integral equation

X =TT 41 [ a5y o(P)
0

Next the unitarity and norm continuity of I'” ensure that ¢ — l"ff, (A)T7" defines a

strongly continuous one-parameter group of *-automorphisms of 2. Let § denote the
infinitesimal generator of this group and set 4 = (A2 +d 4 0p) ' (B) for 4 € R\{0}.
One has

: d
(r+8)) = (214 ) O, g
= (7 t((Av+ 6+ 0p) (AT )|,og = B
But (12 + )" is bounded, by Proposition 3.1.6, and hence

A= (21407 (B) = (hr+5+5p)"'(B)
for all B € A. It then follows from Theorem 3.1.10 that

7 (B) = lim (1 % (5+5r)) (8)

n—oc

. t o\ —H .
= lim (z - ;5) (B) =T’r,(B)I”

n— 0o

which gives the desired relation between 7 and t.

Now if one perturbs ¥ by a perturbation —P, then the final group of auto-
morphisms is 7 because it has the generator (5 + 6p) — dp = 6.
Therefore, one must have

where

g

. rt 13}
Ff:ﬂ+2(~i)"/ dt./ dzzm/ dt, 7, (P)---1h(P) .
n>1 J0 70 70
Consequently
o = ()"t (4)(TT) .
But then
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SR = W (P)ED) = i) () -

Thus, (") and I'” satisfy the same first-order differential equation and boundary
condition at ¢ = 0. Therefore, I7 = (I'”)* which is the second identification of T”.
Finally the estimates on 1 — 7 and I'” — 1 are straightforward.

Throughout the sequel we use the notation introduced in Proposition 5.4.1 for
the perturbed automorphism group t” and the related co-cycle I'”. This pro-
position establishes that the map P € A+ t* € Aut U is continuous with re-
spect to the norm topology on U and the strong topology on the
automorphism groups. If (2, 7) acts on a Hilbert space and 7 is unitarily
implemented, one easily attains continuity properties for strong convergence.
Moreover, the group t is unitarily implemented and the co-cycle I'” has a
simple identification.

Corollary 5.4.2. Adopt the assumptions of Proposition 5.4.1 but also assume
that W acts on a Hilbert space $ and

1(4) = U, AU* |

where U, = exp{itH} is a strongly continuous one-parameter group of unitary
operators.
It follows that

(4) =Uf4u*, 1P =UfU., ,
where
U = explit(H + P)} .

If, finally, P, is a sequence of selfadjoint elements of U which converges
strongly to zero, then

Jim (7~ Tyl =0, lim [|((4) — ()] = 0,
forally €  and A € N, uniformly for t in finite intervals of R.

Proor. If U” is defined as in the statement of the corollary and X, = UU_,, then
dX,
7171 = iU’ PU_, = iX,1,(P)

and Xy = 1. Thus, JX; is the unique solution of the integral equation
t
X =1]+i/ ds X;15(P) .
0
This solution can be obtained by iteration and one finds X, = F‘,D , where I'” is defined

as in Proposition 5.4.1. The identification of ¥ follows immediately from this pro-
position. Moreover

|2]
mﬁumwsA ds|PaU_Yl] -
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But strongly convergent sequences are uniformly bounded and hence I'"" converges
strongly to the identity, with the appropriate uniformity, by the Lebesgue-dominated
convergence theorem. The convergence of ™ to t then follows from the re-
presentation

o (4) = Tl ()T

EXAMPLE 5.4.3. Let () be the CAR algebra over the Hilbert space ) and 7 a
one-parameter group of Bogoliubov transformations such that ,(a(f)) = a(U.f)
with U; = exp{itH}. The simplest symmetric perturbations are given by quadratic
elements, a*(f)a(f) or combinations of such elements, e.g.,

a’(falg) +a*(glalf) = (@ (f +g)a(f +9) —a (f —g)alf —9))/2 .

The group t” resulting from a quadratic perturbation is also a group of Bogoliubov
transformations because for

P=>"Jia (f)a(f)
j=1

one has

opla(f)) = 1> 4 falf) -
j=1
It follows that ;' (a(f)) = a(U] f) with U} = exp{it(H + ¥_  4,E;)} where E; is the
projection on fj, i.e.,
Ejg = (1;9)f;

for all g € b.

Quadratic perturbations of Bogoliubov transformations of the CCR algebra can
also be introduced for regular representations but as the creation and annihilation

operators are unbounded these perturbations are only affiliated with the re-
presentation.

Next we examine stability properties of KMS states w over a dynamical
system (21, 7) and establish that each such state has a vector state »” which is a
KMS state for the perturbed evolution t°. Subsequently, we deduce that the
(r, p)-KMS states and the (¥, B)-KMS states are in one-to-one correspon-
dence. If the KMS states are identified as equilibrium states of a physical
system, these properties correspond to stability of the pure phases, and the
overall phase structure, under perturbations. These results are obtained with
various perturbation series which are easily understood in the finite-dimen-
sional situation.

Let M, denote the C*-algebra of n x n matrices on the n-dimensional Hilbert
space 9, and for H = H* € M, define the automorphism group t by

T[(A) — eitHAe—iIH .
The perturbed group < corresponding to P = P* € M, is then given by

Tf(A) — eit(H+P)A€—it(H+P) .
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Moreover, by Example 5.3.31, the state

TI‘@IX (e‘ﬁHA)
TI‘;:," (e‘/‘H)
is the unique (t, §)-KMS state and the state

_ Trg,“ (e‘ﬁ(H +P)A)
- Trg,"(e—/?(H +P))

w(d) =

o”(4)

is the unique (<7, f)-KMS state. But w” can be expressed in terms of  in
several ways.
First,

_ w(AFf;;)

CUP(A) a w(rf};)

where
1—173 — o~ BUH+P) pH

1, b)
ie., f} is the analytic extension of the co-cycle I, which relates t° and t, at

the point if. This identification follows simply from cyclicity of the trace. But
one has

B 1 Su—1
l"f;; =1+ Z(—l)"/ ds) / dsy - / ds, tis,(P) - - tis, (P)
s 0 0 0
and this allows @® to be expressed as the ratio of two perturbation series. This
ratio can then be rearranged as an expansion of @’ in terms of w. Somewhat
surprisingly, the terms of this latter expansion are integrals of truncated
functions.
Similarly one finds the symmetric form for w” in terms of w

w((Ff}/z)*A(Ff}/z))
w((rﬁf/z)*(rf}z/z))
and this yields a different set of expansions. This symmetric expression is

particularly useful for the study of the associated representation because one
may choose Q,» such that

o’(4) =

o nw(l"gg/z)ﬂw
P = —— ot
“nw(rgi/z)Qw“

and then deduce an expansion of the cyclic vector.

Stability properties of general t-KMS states can now be analyzed by ex-
ploitation of these algorithms for w” Q,», etc., and the perturbation series for
the I'Y, to construct t”-KMS states. In the finite-dimensional case the various
series are evidently well-defined and uniformly convergent but in the general

case this is less evident. The necessary estimations are consequences of the t-
KMS condition.
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The major features of stability of KMS states are shared by C*- and W*-
dynamical systems. Discussion of the W*-case is however more complex be-
cause it depends upon approximations in the strong operator topology while
the C*-case can be handled by uniform approximation. We next state the
common results, give the detailed proof for C*-systems, and outline the proof
for W*-systems.

Theorem 5.4.4. Let (N, 1) be a C*- or a W*-dynamical system acting on a
Hilbert space © such that

T[(A) - UzA[j[* B

where U, = exp{itH} is a strongly continuous one-parameter unitary group,
and Q a normalized U-invariant cyclic vector such that the associated vector
state, w(A4) = (Q, AQ), is a --KMS state.

The following statements are valid:

()

€)

If P=P" €U, then Q € D(P(z)), where
P(z) = 1., (P) - - 1., (P) = & pe'Gr1=2)H p .. pe=izil

for all z=(z,...,z,) in the tube D" defined by

“1)2
D) — zza<Imz <Imz---<Imz, <0} .
a

The vector-valued function 2(z)Q is holomorphic in the tube 'D(_nl) /20
strongly continuous and uniformly bounded on its closure D(_"l) /2 and
sup [[2(2)Qf < |I1P]" .

e
zed"

2

If P="P* €U, then Q € D(e¥+P)/?) and the vector QF = eH +P)/2Q)
has the strongly convergent perturbation expansion

QP:Q+Z/ dSl"'dSnTiS,,(P)“‘Tjsl(P)Q .
—1/2 <5< <5, <0

n>1

Moreover, the state w® defined by

P (QF,4Q7)
@

is a ©°-KMS state and it is the unique t*-KMS normal state if, and
only if, W' is a factor.
For each A € W and P = P* € U, the truncated function

Fyti,... ty) = or(4, 1, (P),...,7,(P))
is the boundary value of a function F4(z)(= wr(4,t.,(P), ..., 1, (P)))

Zn

which is holomorphic in the tube 'D(_"l) , continuous and uniformly
bounded on its closure TD(Z)I, and
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sup [Fa(z)] < 2'n!|iP"]| 4] .
ZED(_"])

Moreover, if 2||P|| < 1 the perturbed state o is determined by the
uniformly convergent series

P(4) = w(4
o (4) w(>+;/_

x dsy - --dsy, or(4, Ts,(P), .. ., Tis, (P))

1<s1 < <5, <0

and hence

lim [|o®* — || =0
o

for each net P, = P% € W such that ||P,| — 0.

Remark. The convention = —1 which we adopt in the theorem is con-
venient but slightly confusing for later applications. With this convention the
perturbation corresponds to the addition of the “energy” P to the Hamiltonian
H,i.e., the generator of the modular unitary group. If, however, one rescales by
replacing 7, with t_g and simultaneously replaces P by P, then H is replaced
by H — P. Thus, the perturbation corresponds to the subtraction of the ‘“‘en-
ergy” P. This is most easily seen by examining the perturbation of Q. With
B = —1 one has
QP — e(H+P)/2Q .
But the rescaling 7,+— 7_g corresponds to the replacement H+— — fH and
hence for general f§ one has
QFP — o(=BH+BP)2¢y _ ~BH-P)[2¢)

Proor. We examine first the C*-system.

(1) First choose P, € A, such that ||P.|| < ||P|| and ||P; — P|| — 0. This is
possible by Proposition 2.5.22 and one has

(Z.(z) = Zu(2)Q| < illfzn(PL)---fzj(PL—PM)-“fz.(PM)QII :
j=1

For z € D‘_”f 2 the right-hand side can be estimated by repeated application of the
three line theorem, Proposition 5.3.5, to the vector-valued functions

F(z) = 15,(0n) -7, (01)Q

where the Q; € U, are subsequently identified with P;, Py, etc. Thus, the maximum
value of the norm of F is attained at one of the n + 1 points

1
5

where s; = Im z;.. But at such a point

S|=85=-=5=— Sj+1=sj+2:"':~9n=0:
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\F(ti—i/2, .. t;—i)2, 1, 1))
<l 1951 Plle=ifa(14(Q)) - 14 (1))

= 12ull* 11 Pl (05) - ()P < TT QAP -
j=1

The equality of the second line follows from the t-KMS condition (at value f = —1)
in the symmetric form derived in Proposition 5.3.3. Therefore, one has

I(ZL(2) = 2u(@)Q < 1P = Pacll Y IPLIF 1Pa]"
j=1

forallz € D(’j), /2- Hence 2, (z)Q is a Cauchy sequence uniformly on D('i)l ,- Because
of the uniformity and the choice of P, € U, the limit function Q(z) has the holo-
morphy and continuity properties stated for 2(z)Q. Moreover, by the same estimates

1@ < Jim |2:.()Qf < [[P]"

forallz € :D(ﬂ)l/z. It remains to identify Q(z) and 2(z)Q.

It follows from Corollary 5.3.4 and Theorem 5.3.10 that A = ¢’ is the modular
operator for the pair (UA”,Q) and in particular AQ C D(A*) whenever
—4<1Imz < 0. But A” is closed and hence

A"PQ = lim AP, Q .
This establishes Q(z) = 2(z)Q for n=1. Next assume the identification for
n < N — 1. In particular for z € 3@1/2
PL APy NG Qs pATEY-13) P pAIEI—RIpQ
But one also has
AiZNPLAi(ZNvl_ZN)PL o Af(ZI—z:)PLQ —Q(2)

by the previous estimates. Thus, as A®" is closed, one obtains Q(z) = 2(z)Q.
The bound on || 2(z)Q|| follows by choosing O; = Pin the previous set of estimates.
(2) Assume P € U, and define Fﬁ by

s ) Sn—1
I’ =1+ Z(—l)" / ds) / dsy - / dsutis,(P) -+ Tis, (P) .
Jo 0 0

n>1

Each term in the series is well-defined because P € ., the series converges uni-

formly, and QF = I'? ,Q. Now calculating with convergent power series one con-
cludes that I‘f; € A, and

Ty(T}'A) = T (4)Th
for all 4 € A,. Therefore,
(F}ii/ZQ7 TﬁZ(A)T}ii/Z(B)r’;i/ZQ) = (r_,»/z(l“fj/zA*)Q, T—i/l(rﬁ/zB)Q)
= (F}i[/ZQ7 BAF‘:./ZQ)

for all 4, B € A, where the second step uses the symmetric form of the -KMS
condition, Proposition 5.3.3. But Q is separating for 2 and hence l"’:i/ZQ;é 0.
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Therefore, the vector state w” is well-defined and is a t”-KMS state by Proposition
5.3.3. Next note that I'* is invertible.

s S| Sn—1
! =1]+Z/0 ds,/o dsz..-/o dsytis, (P) - - - Ti5, (P)

n>1

and hence the set of vector states of w and w” are identical. Thus, the equivalence of
the uniqueness of w®, as a t*-KMS normal state of w, and the factor property of w
follows from Theorem 5.3.30 or Proposition 5.3.29.

Next choose 2, € U, such that |P, — P|| — 0 and define Q™ and © by the
perturbation expansion given in the theorem. It follows from the estimates of (1) that
Q7 — Q|| — 0. Moreover, ||z*(4) — <f(4)|| — 0 for all 4 € A and ¢ € R by Pro-
position 5.4.1. Therefore, o converges to a state w” and this state is a 7*-KMS state
by Proposition 5.3.25. By the same approximation procedure one concludes that the
vector states of w and w” are identical and the uniqueness-factoriality equivalence
follows as before.

It remains to identify Q° and e +P)/2Q).

First, define Q°(z) by

=0+ Z z"/ dsy - dsyTis,:(P) - Tisz(P)Q
n>1 “1/2< 51 <+ <5, <0

then Q" (z) is holomorphic for Re z € (0, 1) and strongly continuous for Re z € [0, 1]
as a corollary of the estimates of (1). Moreover, QF (1) = Q°. Now let D denote the
union, over the intervals I C R, of the ranges of E(I) where E is the spectral family of
H + P. If ¢ € D one has

(@ *PRo, Q) = (0, Q7(2))

for pure imaginary z. But both sides are holomorphic for Re z € (0, 1) and con-
tinuous for Re z € [0, 1]. Hence they are equal for Re z € [0, 1] by the edge of the
wedge theorem, Proposition 5.3.6. Since D is a core for e +P)/2_ one concludes that
Q € D(e+P/2) and

QF = QF(1) = P2

(3)  Again we choose P, € U, such that ||P;|| < ||P|| and ||P; — P|| — 0. Setting

f4,1(2) = o(dz;, (PL) - - 72, (PL))

one has

lfA,L(Z)_fA,M(Z)| < i'w(ATz,,(PL>"'TZj(PL_PM)"'TZI(PM))I .
j=1

But if Q; € U, repeated application of the three-line theorem gives
sup |w(At, (Qn) -+ -7, (O1))]

(n)
zeD)

< sup  sup|w(dty, (Qn) -+ 7-i(Q)) - T —i(O1))]

1<j<nteR"

= sup supo(z,(Q)) -t (@), (On) -+ 74, (Qj+1))| < HAIIﬁ ol
i=1

1<j<nteRk"
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where the second step uses the -KMS condition. Combination of these estimates
establishes that f; ; is a Cauchy sequence uniformly on ’D(ﬁ)l and thus the limit
function f, is holomorphic in 33('1)1 and continuous on its closure D(_"f. Moreover,

sup [fa(2)| < 4] [IP]" .

IED‘_"}

But the truncated functions are finite linear combinations of products of the non-
truncated functions and if we define F as the appropriate combination of the £, it
follows that F; has the correct holomorphy and continuity properties and the desired
boundary value.

To derive the uniform bound on F, we first take P € 2, and remark that
or(d, ©,(P), ..., 1, (P), T—i(P), ..., 1, —i(P))
= or(t,(P),. ., 7, (P), 4, 7, (P), ..., 7, (P)) -

This equality follows from the definition of the wr in terms of @ and the -KMS
condition. It then follows as above that

Sup IFA(Z)| S Sup Sup|wT(T1,(P)7'~~urt1 (P)7A7TI,.(P)7'~-:rf,+|(P))l N
zeb(:l]) 1<j<nteRr"

Now recall that a function F over the index set J§ and its truncation F7 are related
by

F(I)y=Fr(I)+ Y Fr())FU\J) ,
acJCI

where « is any point in /. Next assume that |[F(7)| < 1 and |Fr(I)| < 2/1-1(j7] — 1)!
for |I| < n where n > 2 and |I| denotes the number of points in 1. For |[/| = n 4 1 one
obtains from the foregoing equation

1+ Z ncm_lzm—l(m _ 1)|

m=1

n 1 1
n n 1yl
:2}’!'{(2 ﬂ!) +Z(n—m—|—l)' 211—m+l}

m=1

[Fr(1)]

IN

< 2";1!{1/8 el - 1} <2l

We may apply this result to truncated functions wy(A4, 4s, ..., 4,) with [|4;]] < 1.
One has |w(4142 - 4,)] < 1 and |w7(4;)| < 1, |or(4;, 45)| < 2. Hence

or(dr, ... 4)| < 227 (n = 1)1

for all » > 1 by induction.

Combination of the conclusions of the two preceding paragraphs immediately
gives

sup [F(z)| < 2'n ||| 4]

z€DT

for P € A, and the general result follows by uniform approximation. Thus, we have

established the existence and convergence properties of the perturbation series given

in the fourth statement and it remains to identify this series with ” when 2||P|| < 1.
Let P € A, and define w’(4) by wf(4) = w(4) and
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wf(A) = / dsy - - - ds, w(Ats, (P) - - - s, (P)) -
—1<5 < <5,<0

It follows that

n>0

But 1"5 € U, and it satisfies the analytically continued co-cycle relations

Thepn =Thu(Th), w(T?,) = (%), ()™ = (7%,
Therefore,
w(ATZ) = (AT, 5 ip(T7,)))
= o(I'7,AT7, )
= o (D)o (T%), 7, ) = " (@) (?) .

These two identities lead to the relation

D o Hof(4) = (M) > ref(1) .

n>0 n>0
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But it follows from the representation of w” given in (2) that A € R— w*” has a

power-series expansion

0(4) = 3 1)

n>0

with a nonzero radius of convergence. Thus, by multiplication and term-by-term

comparison of power series one obtains
o (4) = O (4) + Yol (A)of(1) .
r=1
In particular as @f(4) = w(4) one finds

@t (4) = of (4) — o)t (1) = /(: ds wr(4,ts(P)) .
Now for I = {iy,...,i;} adopt the notation
wr(4; I) = or(4, ts, (P), ..., s, (P))
w(4; I) = o(dts, (P) -~ tis,, (P)) -
We assume that

d)f.’(A)=/ dsy - -ds,wr(4; {1, 2,...,r})
—-1<5 < <5, <0

)

for » < n—1 and then use the relation (*) to prove that it is valid for » = n. First,

from (*)one has
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n
ol (4) =aF(4) + Z/ dsy_pit1...dsyor(A;{n—r+1,... ,n})
1 <51 <o €5, <0

r=1
></ dsy...ds,—,o(G{l,...;,n—1r}) .
<5 < <50 p <0

But by change of integration variable one finds

o (4) :@fj(A)+/ dsi-dsy S r(d; No(1; 1\J) |
—1<s < <5, <0 Jcl
where [ = {1,...,n} and the sum is over the strict subsets of /. But the general
relation between a function and its truncations gives

> or(d; Nl I\) = w(d; 1) - or(4; 1)
Jcli

and hence

af(4) = of(4) —/ dsi - ds,{w(4; 1) — or(4; 1)}
—1<5 < <5, <0

=/ dS['”dS,,CL)T(A;]) .
J-l<s < <5, <0

This establishes the correct identification of the perturbation series for P € 9,. For
general P the series is obtained by uniform approximation.

Thus, the proof of the C*-version of Theorem 5.4.4 is complete. The W *-version
can be established by the following variation of the above arguments.

The first statement of the theorem is established by an inductive reasoning which
necessitates a multivariable version of the three-line theorem. This allows one to
define Q° for all selfadjoint P € 1. Next one proves that if Py, — P in the strong
operator topology, then Q™ — QF strongly. This is an imaginary time version of the
last statement of Corollary 5.4.2 which follows from a double approximation pro-
cedure. One first introduces regularizations.

A 2
Py = \/;/dt e (Py)

and P;, of Py and P, and then Py ; — Py and P; — P strongly by Proposition
2.5.22. Next, one uses the explicit form of the regularization and a change of vari-
ables to deduce that

Jim ([ A% Py, j A TPy ATRPY 0
— 00
— APy N TPy AT TR Q| =0

forall z € D(_"I)/z, and a similar result for P; and P. But one can also conclude from
the uniform boundedness of convergent sequences, the Lebesgue-dominated con-
vergence theorem, and the regularization that

AT Py APy APy JQ — AP AP, - AR PO = 0
— 00

for all z € D(_"]) ,- It now follows from these two estimates and the uniform bound-
edness property of the first part of the theorem that

i [ AT Py ATy AR PYQ - ATPATI TP ATTEPQ| = 0
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Another application of boundedness and the Lebesgue-dominated covergence the-
orem finally yields the desired convergence Q™ — Q. But the t-analytic elements
form a strongly dense subspace of 2, by Proposition 2.5.22, and hence the continuity
of QF allows the further discussion to proceed through approximation with analytic
elements in the same manner used for the C*-version of the theorem.

Note that the vectors Q” are cyclic and separating for 2 (or for U” in the
C*-case) as a consequence of the 1-KMS condition, Corollary 5.3.9. But if
P e U, then Ff; € A, and

oF = I‘fi/ZQ = I"’_),»/A, Tvi/4(r[ii/4)Q

by use of the analytically continued co-cycle relation. Moreover,

T(I7) = (TP )% .

—15 —15
Therefore,

= r'l—)z‘/ztAl/zTi/‘l(Flif/4)Q
1/2 *
= r}—)i/élA / lﬂljf/4'Q = Ffi/ll‘]r}ii/flg ’

where J is the modular conjugation associated with the pair (%, Q). This
establishes that Q" lies in the natural cone 2 corresponding to (2. Q), Defi-
nition 2.5.25, and this conclusion extends to all P = P* € A by strong ap-
proximation of P by analytic elements and the continuity of P+ Q. Thus,
QF /19| is the unique normalized representative of the t"-KMS state o
contained in the cone 2, Theorem 2.5.31. This allows one to readily identify
the modular operator associated with o”. For example, if A = exp{H} is the
modular operator associated with (2, Q) and if

Ap = el +P=IPT

then by a perturbation expansion
(4) = ALAAL"

for all 4 € A and r € R, i.e., Ap implements the modular group of the pair
(2, QF). But the Trotter product formula, Corollary 3.1.31, shows that
A;l// = lim (Ait/n eitP/n JeitP/NJ)nw )
H— 00

This representation demonstrates that A;’, 2 C 2 and hence Ap is the modular
operator for the pair (2, Q) by Corollary 2.5.32.

The conclusions of Theorem 5.4.4 extend to (r, f)-KMS states, for any
B € R, by rescaling. Thus, for each (z, f)-KMS state o the theorem provides a
recipe for construction of a (¥, f)-KMS vector state w”. The following cor-
ollary summarizes the properties of this map w — .
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Corollary 5.4.5. Let (U, 1) be a C*- or W*-dynamical system and for
P=P*ec W, peR, associate with each (t, f)-KMS state w a (z*, p)-KMS
state " by

Q) 1, (4)Q")
SO e

and

B/2 51 Snel
QP = Qa) —+ Z(—l)” / dS] / dS’_) s / dsn ﬂ:(u(‘fis,, (P) c Ty (P))Qw .
0 0 0

n>1

It follows that the map %5 w— o is an isomorphism of the set of (t, B)-
KMS states onto the set of (¥, B)-KMS states which maps extremal points
into extremal points. The inverse map is given by (7)™ = y7.

Proor. The map 7 is well-defined, and it maps extremal points into extremal
points, by Theorems 5.4.4 and 5.3.30. Next assume that P& ,, then
of = n,‘,(l";;, /Z)Q,,,. But the image of »” under y;P is then determined by the vector

. _p » B/2 s1 Su-1 » ,
Q = nm(r,'/j/z)Qw + ZA ds) /0 dsy--- ) dS,ITEw(Ti.” (P) T T, (P)riﬂ/Z)Qw .

n>1

It follows readily from the second identification of I'? in Proposition 5.4.1, and
analytic continuation, that

~ —P _
Q7 =, (M) ™ ma(T2)Q0 = Q0

Thus, y;”y® = w and interchanging t and t* one also has y7y; 0" = o”. This
establishes that (2 )_1 = y;f and y? is an isomorphism. The result for general P
follows by approximation with a sequence of analytic elements and use of the con-
tinuity property Q™ — QF.

It should be emphasized that the map )7 is not affine.

There is a second ““time-dependent” approach to the stability of KMS states
which is less complete than the above but is of interest for various reasons.
First, it emphasizes different physical aspects; it is dynamical rather than ki-
nematical. Second, it plays a fundamental role in the subsequent attempts to
justify the KMS condition as a characteristic of equilibrium. Third, it applies to
ground states and ceiling states for which the above “time-independent”
analysis has no analogue because the whole modular structure is lacking.

To illustrate the difference between the two approaches and to explain the
time-dependent time-independent nomenclature we first recall the discussion of
the finite-dimensional system which preceded Theorem 5.4.4. In this example
the relation between the perturbed state w” and the unperturbed state w arose
by expansion of the o density matrix in terms of the ® density matrix. But
these density matrices determine the probability distribution of the various
kinematic states of the system and hence this method is basically a time-in-
dependent, or kinematic, way of linking the appropriate equilibrium dis-
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tributions. The second approach is distinct in that it is time-dependent and
consists of attempting to identify the perturbed equilibrium state as the evolute
of the unperturbed state under the perturbed dynamics. Conversely, the ori-
ginal state should arise by evolution of the perturbed state under the original
dynamics. This latter phenomenon, which is often referred to as return to
equilibrium, is not universal but depends intimately upon some form of er-
godicity of the system (2, 7) and purity of the state w. It appears that the
necessary ergodicity should be some form of asymptotic abelianness. Proper-
ties of this type for the dynamical group correspond to dispersion, with time, of
local disturbances. Their role in the time-dependent approach is illustrated by
the following result which establishes the tendency of perturbed KMS states to
return to equilibrium. :

Proposition 5.4.6. Let (U, 1) be a C*-dynamical system, where W has an
identity, and t* the perturbed evolution corresponding to the perturbation
P = P* ¢ W. Further let o® be a (z¥, B)-KMS state for f € Ru{Z 00} and
a weak*-limit point of tfw” as t tends to infinity.

If (U, 1) is asymptotically abelian in the norm sense, i.e., if

sim |14, w(B)] =0
for all A, B € U, then w is a (z, B)-KMS state.

Proor. If § =0, then o’ is a trace and w is a trace, i.e., a (r, 0)-KMS state. Next
assume B € R\{0} and let § denote the generator of . The generator of t¥ is § + Jp
where 6p(4) = i[P, A]. The (z, §)-KMS condition now follows by verification of the
auto-correlation lower bounds of Theorem 5.3.15. Explicitly one has

o (1,(4%)w(4))

P (v (4)7,(4%))

< lim —ifo” (z,(4%)(6 + )(z:(4))

= —ifa(4*6(4)) + Jim fof (o (A7)[P, w(4))
= —ifw(4*5(4)) .

w(A*A)logZEj;ii < 11_1210 of (1,(4%)7,(4)) log

The first step uses the lower semi-continuity of u, v+— u log (u#/v), the second uses
the auto-correlation lower bounds for w”, the third relies on 67 = 6, and the fourth
follows from asymptotic abelianness. Similarly, if = 4 00, i.e., ” isa t¥ ground state,

i (A*5(4)) = ~i lim o (z/(4*)5((4)))
> — lim o (w(49)[P, w(4))) =0

and w is a 7 ground state. The case f = —oo is identical.

This proposition does not establish the existence of the limit of tfw” but if
there is a unique (t, §)-KMS state, this follows because all limit points must be
equal. In fact, one can deduce a stronger result for § € R by use of the time-
independent theory.
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Corollary 5.4.7.  Let ” be an extremal (7, B)-KMS state for f € R\{0}
and assume that (W, t) is asymptotically abelian in the norm sense.
1t follows that the limit

w(4) = lim o (1,(4))
t— o0
exists for all A € A, and  is the unique (z, B)-KMS vector state of w".

Proor. Corollary 5.4.5 establishes the existence of an extremal (z, §)-KMS vector
state w, of o, and w is a factor state by Theorem 5.3.30. But it then follows from
Example 4.3.24 that

lim w(A47,(B)C) = w(AC)w(B)

t— 00
i.e., m,(7:(B)) converges weakly to w(B)1, for all B € . But w” is a vector state of o
and hence

w(d) = Jim o (1, (4)) .

Thus asymptotic abelianness and extremality imply the existence of the limit
states and as the argument works equally well as 1 — —oc one deduces that the
two limits are equal. In fact, if one replaces the pointwise limit by a mean value
one can deduce an existence result without extremality of w”. One exploits the
mean ergodic theorem and the methods of Section 4.3. Again the mean over
positive ¢ and the mean over negative ¢ are equal.

In order to further develop the time-dependent formalism it is useful to
introduce a stronger notion of asymptotic abelianness.

Definition 5.4.8. A C*-dynamical system (2, 1) is defined to be L' (Ay)-
asymptotically abelian if

| atla, (@)l < +o0
for all 4, B in the norm-dense *-subalgebra 2.

This strong form of asymptotic abelianness is useful because it implies the
existence of the norm limits y, of rftu,, as t — oo, for all P € Ay, Propo-
sition 5.4.10. Thus, if @ is a "-invariant state,

Jim o () = lim o (o m(4) = o (r..(4)

exists. The problem with such conditions, however, is that they are difficult to
verify in particular models. This is not surprising because these conditions
express a form of ergodicity. Nevertheless in the simplest example, the ideal
Fermi gas, the L' property can be verified.

EXAMPLE 5.4.9. Let U be the CAR algebra over L*(R') and A, the even C*-
subalgebra, i.e., the subalgebra generated by even polynomials in the annihilation
and creation operators a(f) and a*(g). Next let t denote the free evolution discussed

in Section 5.2.4. Thus ¢ is a group of Bogoliubov transformations, z,(a(f)) =
a(U, f), and
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UNE = @0y [ dp(per i,

If v > 3, define Ay as the *-subalgebra of A, formed by even polynomials of the
a(f) and a*(g) with f and g of compact support. It follows that the pair (2, 1) is
L'(Ap)-asymptotically abelian. This is established by first noting that if 4, B € ,,
then ||[4, t,(B)]|| is bounded by a sum of terms of the form

1/2
constant x [/A d'x |(U,f)(x)|z] .

This follows from the CARs because we have chosen an even subalgebra and the
compact support property. To estimate these bounds we note that

(.10 = ™ [y 103) [ arp et
— (_4nit)—\'/2/dy f( ) —i(x—y)? /412—1';1! ,

where we have used the Fresnel integral

/ d'p & = (in/1)*

But then

e ix /41 —ipt

(U N)(x) = )™

/dy e—t) /41f(y) 1\}/7f
Therefore,

A
< o1

where |A'] is the volume of the support A’ of f. Hence,
Y ) , AN 1/2
[ axswne| =| [ @ e <o ELAD
A" (4n)t])

where A" is the support of g. Thus, the bound for ||[4, t,(B)]|| is integrable for all
v > 3.

If v=1, 2, then (2, 7) is not L'(y)-asymptotically abelian with the above
choice of Ay. If, however, one redefines Ay as the algebra of even polynomials in
a(f) and a*(g), where f,g are in the domain D(X?) of the multiplication operator,
(X2f)(x) = x> f(x), and their Fourier transforms vanish in a neighborhood of the
origin, the property is again valid. To see this one simply remarks that

(U))] < (4] ‘/Z/d‘

[VAIR

5

£lg, Uf) = ( ) /d‘pg(p)ﬂp)<l ai)_ il =1
- (5)2 / d‘¢(%%j>7mf(p>)ef<f-“ﬂ

Now the right-hand side can be bounded by the Cauchy-Schwarz inequality and use
of the special properties of f and g, e.g., f vanishes in a neighborhood of the orlgm
and 8f/8p,,87f/8pj eL“(IR‘) Thus, one finds |(g, U,f)| < constant x |¢|™> and
(2., 7) is once more L'(Wp)-asymptotically abelian.
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Note that the integrability conditions arise directly from the action of U on
L*(R"). Thus, if one considers the full CAR algebra 9, then (2, 1) is LY(Uy)-
asymptotically abelian in a slightly more intricate sense. The commutator norms
l[4, =(B)]|| are integrable whenever 4, or B, is an even element of a subalgebra 2,
built with appropriate test functions but the anti-commutator norms || {4, t(B)}|| are
integrable if 4 and B are both odd elements.

The motivation for the introduction of L!(2y)-asymptotic abelianness is
provided by the following.

Proposition 5.4.10. Ler (A, 1) be an L'(Ay)-asymptotically abelian C*-
system. It follows that the limits

Vﬂ:(A) = l_llftn Tlit‘C,(A)

exist in norm for all A € W and P = P* € . The y, are norm-preserving
*-morphisms of W which satisfy the intertwining relations

P£T = TPV:E -

If W has an identify, then the adjoints v’ are affine transformations of the
states Eq into Ey with the following properties:

(1) The vy map <"-invariant states into t-invariant states and extremal
tP-invariant states into extremal t-invariant states.

(@)  The i map (¥, B)-KMS states into (v, B)-KMS and extremal
(t*, B)-KMS states into extremal (1, B)-KMS states Jor all
B € (Ru{xo0})\{0}.

(3)  If B € R\{0} then the maps vy coincide in restriction to the (¥, B)-
KMS states.

Proor. By differentiation and integration one obtains the estimate

12,70 (4) =22, 7 ()] < /JdSIl[P’ ()]l

h
and hence

pe(d) = lim < z(4)

t

exist in norm for all 4 € Wy and P = P* € Ay. But as Ay is norm dense and * and t
are norm-preserving the limits must exist, and satisfy ||y, (4)| = ||4|, for all 4 € 2.
As limits of *-morphisms the y. are automatically *-morphisms and the intertwin-
ning property follows because

V<(n(4)) = _1}1;1 P ts(4) = llfin el tes(d) = T y2(4) -

Since the y,. are *-morphisms their adjoints are affine maps of the dual which map
positive functionals into positive functionals. But y,(1) = (1) and hence %, must
map Ey into Ey.

(1)  If o” is tP-invariant, it follows that
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(11 ") (1(4)) = 0 (y21(4)) = & (777 (4)) = (yi")(4)

because of the intertwining property. Moreover,

(720" (A(B)) = 0 (7. (A)7 (7 (B))) -
Thus, if w” is extremal t*-invariant and M is an invariant mean over R, then

M((740")(42(B))) = M(e (1 (4)" (v2(B)))) -
= (0" (7:(4)0" (72(B)) = (") () (v20")(B)

where the second step follows from the mean ergodic theorem and the criteria for
extremality given by Theorems 4.3.17 and 4.3.22. But (2, 1) is asymptotically abelian
and hence this cluster property is equivalent to extremality of yiw by the same
theorems.

) If o is (zF, B)-KMS

(a0")(4) = Tim_of (u(4) = lim_of (z(4))

and yio’ is (t, B)-KMS by Proposition 5.4.6. If o’ is extremal w is extremal, by
Corollary 5.4.7, for all § € R\{0}. Now if f = + 0o and " is an extremal (<, B)-
KMS state, i.e., an extremal ¥ ground state, then w” is pure by Theorem 5.3.37 and
tP-invariant by Proposition 5.3.19. In particular, «” is extremal t"-invariant and
yLw’ is extremal t-invariant by the first statement above. But yLo® is a t ground
state by Proposition 5.4.6 and hence it is an extremal t ground state by Theorem
5.3.37. The argument for f = — oo is identical.

(3) If o” is an extremal (7, B)-KMS state for § € R, then yLof = w =77 o,
where o is the unique (z, B)-KMS vector state of w”, by Corollary 5.4.7. Therefore,
the maps y% coincide on the extremal points of the (<7, §)-KMS states and because
they are affine they must coincide on the convex closure of these extremal points. But
this is exactly the set of (¥, B)-KMS states by the Krein-Milman theorem.

The *-morphisms y, are algebraic analogues of the wave operators, or
Mopller matrices, which occur in quantum-mechanical scattering theory and
hence we refer to them as Moller morphisms. They provide a global comparison
of the two evolutions t and t¥. These morphisms are not necessarily *-auto-
morphisms because they may not be invertible. Their kernels are zero but their
ranges may be strict subalgebras of . In scattering theory the formation of
bound states is a typical phenomenon which signals the lack of invertibility of
the Moller matrices and in statistical mechanics lack of invertibility of the
Mpller morphisms y, certainly occurs if the perturbation P isolates finite
subsystems. The formation of bound states, or the isolation of subsystems, is
indicated by the appearance of a point spectrum for the perturbed evolution.
But if y, or y_ is invertible, the intertwining relations give

ety =1

and hence the point spectra of 7 and t* are identical. Conversely, if the point
spectra differ the y, are not invertible.
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Although the ranges of the y. are not automatically equal to A the
morphism and isometric properties imply that they are C*-subalgebras 2, and
the intertwining property shows that these algebras are t’-invariant. It is then
interesting to note that if (2, t) is asymptotically abelian in the norm sense, the
(A4, =) are asymptotically abelian in the same sense, e.g.,

17 (4), 7 GBI = [l (14, (B = 4, w(B)]I| -

Similarly if the pair (2, 7) is L'(2p)-asymptotically abelian the (,1") are
L'(y, (y))-asymptotically abelian. Thus, stability of the various forms of
asymptotic abelianness under perturbations of the group is directly related to
the invertibility of the corresponding Meller morphisms. In fact, stability of the
L'-condition is essentially equivalent to invertibility of V4. (Assume (2, 1), is

L!'(Ap)-asymptotically abelian in order that y4 exist. If the y, are invertible,
Ay = A and (A, °) is L'(y,(Wy))-asymptotically abelian. Conversely, if
(A, 7P is L' (7, (UAp))-asymptotically abelian, the limits

Bi(4) = lim t_,<F(4)
t— *oo
exist for all 4 € A and P = P* € y.(Ap) and for those P € Ay Ny, (Ap) one
has g, =yzl.)

EXAMPLE 5.4.11. Let 2 be the CAR algebra over L2(R") and t the free evolution
given in Example 5.4.9, with 4 = 0. Let P = a*(f)a(f) be the quadratic perturbation
of Example 5. 4 3 and then 7 and 1 are both Bogoliubov transformations ,(a(f)) =
a(U,f) and t(a(f)) = a(U/" f). The groups U and U have infinitesimal gen-
erators —V? and —V? + AE where E is the projection on f. It is a standard result of
scattering theory (see Notes and Remarks) that the strong limits

Weg= lim U* Uy

exist on L*(R"). Thus the Meller morphisms .. exist on U and y_ (a(f)) = a(W.f).
Moreover, the . are given by

(W= 9)(p) =/d"q W.(p.9)i(q)

where
() flg 1
Wi(p,q) =96(p—q)— pzfip;zf:(tql?s A~ (q)
and
. If Pl
jL/ d’p —prEic

If A(0) > 0, the Wy are unitary and the y. are invertible. If, however, A.(0) <0

ie., if
- 2
fapll2l <y
p
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the W, are isometric but not unitary. In this case —V? + AE has an eigenfunction f;
and the ranges of the W, are exactly the orthogonal complement of f;.
These results extend to more general quadratic perturbations and, for example, if

P=—(a*(V2f)a(f) +a*(f)a(V>f)), then
P (a(f) = eV Na(f)

One of the most significant features of the time-dependent formalism is the
set of “stability” conditions necessary for conmsistency with the time-in-
dependent formalism. The origin and nature of these conditions, which we
intend to derive below, is readily understood by examination of an extremal -
KMS state w from the two different points of view. The time-independent
formalism expresses w as a vector state of a unique t*-KMS state o which is
related to w by the convergent perturbation expansion of Theorem 5.4.4. After
rescaling this assumes the form

B S sn—1
o (4) = w(4) —i—Z(—l)"/O ds1/0 dS2-~~/0 ds, wr(4,ts,(P),. .., s, (P)) -

n>1

Now consider the orbit of w under the perturbed evolution t*. The time-
dependent formalism indicates that under certain general ergodicity hypotheses
w evolves into a t”-KMS state. It is natural to define the system as stable if the
evolved state is the unique t-KMS vector state of w, namely, o”. Explicitly
this definition of stability requires that

w’(4) = . liril w(f(4)) .
It then follows from the t-invariance of w and the definition of ¥ given in
Proposition 5.4.1 that
o’ (4) = . lirin o(t_, 77 (4))
0 t t,—1
— o) + lim Zi"/ dtl/ dt, / dty ([, (P), [+« [r (P, AI]]) -
—t —t —

t—+oo
- n>1 4

Thus one obtains two seemingly different series expansions for w” and the
identity of these series, term by term, yields the stability conditions. The sim-
plest and most important is the first-order condition.

Theorem 5.4.12. Let w be a (1, §)-KMS state over the C*- or W*dynamical
system (U, 1) and assume that w is strongly clustering, i.e.,
lim ”(41,(B)) = w(4)w(B)
t—+o0
for all A, B € A.
It follows that

T B
T1—i>I£oo A dtw([4, r,(B)])zi/O ds wr(4,71;5(B))
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and hence
T
lim dto([4,7,(B)]) =0

— 0 -T

for all A,B € .

Proor. For each 4,8 € U the function ¢+ w(47,(B)) is the boundary value of a
function, which we denote by z— w(47.(B)), analytic in the strip D;;0 < Im
z<f (or B<Imz<0if < 0),continuous on the boundary of the strip, such that

sup o (4z(B))| < [l4][|B] -

zE€EDy
Now the (t, )-KMS condition gives
o(Arp(B)) = w(BA)

and therefore
T T
/ dt w(At,(B) — t,(B)4) = / dt w(4t,(B) — A, 5(B))
0 0
p

:i/ ds (At (B) — Atr1.(B))
0

The second identity follows because the integral of z+— w(47.(B)) around the par-
allelepiped with corners at (0,0), (7,0), (T, 8), and (0, §) is zero. But

(Atr 1 15(B)) = (Uy(is/2) 7 (A")Qu, Un(T)U,(is/2) 7, (B)Q0)
and the strong clustering condition is equivalent to the weak convergence of Uan(T)
to the projection on Q, as T — = oco. Therefore,

lim_odrr. 4(8)) = o(4)o(B) = o(4)o(w(B)).

It then follows from the Lebesgue-dominated convergence theorem that
B B
lim ds w(Atr+5(B)) =/ ds w(A)w(tis(B)) .
0

T—+o0 Jy

Combination of these results gives the first statement of the theorem and the second
follows by subtracting the two cases T — =+ co.

The stability condition

T
lim dtw([4,7(B)]) =0
~oo J_p
will be of special significance in Section 5.4.2 where we demonstrate that under
suitable ergodicity hypotheses it is equivalent to the KMS condition for
B € Ru{£oo}.
Comparison of the two perturbation formalisms also gives higher-order
stability properties for KMS states.

Proposition 5.4.13.  Let w be a (t, B)-KMS state over the C*- or W*-dyna-
mical system (W, ) with § € R and assume that o is strongly clustering.
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It follows that
T T,
lim --- lim dty - dt, o([t,(B), [ -~ [t4(B), 4]]])

Ty -+ T,— o0

0 Iy
B S| Sn-1
= (—i)"/0 a’sl/0 dsz---/0 ds, or(4,Tis,(B), - - - Tis, (B))

forall 4, B € AU.

Proor. Let B € U, and introduce B(sy,...,s;) = T, (B) - - - 1, (B). We first argue
that

Tj B Sj-1
[ s [T dsol, @), Gy o)
t 0 0

j

Sj
0

B
= —i/ dS] / de+|CO(C‘C,j(B(S|,...,Sj+1)) — C‘CTH‘(B(S],...,SJ-+1)))
0

for all C € A. This follows by an application of the KMS condition and con-
tour integration as in the proof of Theorem 5.4.12. The KMS condition allows

one to reexpress the left-hand side as the difference of two terms L; and Lo,
where

Tj+1 B Sj-1
Ly =/ dl‘j+|/ dsl"'/ dsjo(Cty;,, (B(B;s1;---,57))
t 0 0

J

Tji+1 B Sj-1
L2=/ dt,+,/ ds,.-./ ds; o(Cr,,., (B(st, . .-15,,0)) -
t 0 0

j

Next by a change of variables s, =sty1 —s¢+f, k=1,...,j—1, and s} =pf—-s
and a subsequent shift of the contour of integration one finds

Tj+1 B Sj-1
L, :/ dtji / dsy... / ds;jo(Cry,, , (B(B —sj,81 = 8j, -+, 8j-1 = 5;,0)))
! 0 JO

J

B Sj
=L|+i/ dS|.../ dsji
0 0

X {CU(CT;j(B(ﬁ—Sj+Sj+],...,Sj_] —Sj+Sj+1,Sj+1)))
—(Ctr, (BB =i+ Sj+15---58j-1 = S+ Sj+1,8+1)))} -

Another change of variable gives the desired identification of L; — L,. A similar

identity is valid for a general B € 2 by approximation with analytic elements as in
the proof of Theorem 5.4.4.
Next define C and X by

C(try-- o ty) = [1,(B), [ - - [t4,(B), 4]]] ,

T\ T Tn
X(Tl,...,T,,)z/ dt dtz..l/ dt, o(C(t1,...,1,)) -
0 tho1

1

Application of the above identity and strong clustering gives
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lim X(T],,..,T,,)

Tty Ty — 00

n—1

) Ti T
= —(="7  lim / dt.../ dt;o(C(ty, ..., ¢t
Z (=) Tl %00 1 ] J (Cln J))

i=1 ey
B

Sn—j—1
X ds / dsp—j (B(s1, ..., 55-)))
Jo 0

B Spet
+ (—i)"/ dsy - - / ds, w(AB(s1,...,s,))
0 0

for n > 2 and for n = 1 one obtains the result of Theorem 5.4.12.

The proof is conducted by induction. Theorem 5.4.12 gives the n=1 case and
we now suppose the result is true for j=1,2,...,n — 1. The above identity then
gives

lim  X(Ty,...,T,)

Tty Ty— £ 00
n—1 B Sn—j-1
=Y [T [T a0, ). )
j=1 0 0
p Sn-1
) | dsorth @), (8)
0 0
B Sn-t
+ (—i)”/ dsy - / dsy (A, (B) . .. ti5, (B))
0 0
B Sn-1
= (_l.)”/ ds; / ds, CUT(A1TI'S”(B)7'"=rin(B)) )
0 0

where we have changed the integration variables and used the general relation be-
tween a function and its truncations. (For a similar argument see the conclusion of
the proof of Theorem 5.4.4.) This completes the induction and the proof.

To conclude the discussion of stability of KMS states we examine various
properties of ground states, i.e., KMS states at the value +o0o. All our com-
ments apply equally well to ceiling states.

The principal difference between ground states and -KMS states, in the
present context, is that the ground states have a tendency to be less stable.
There exist C*-systems (2, 1) and perturbations P such that (2, 7) and (U, 7°)
have unique ground states which are disjoint. Thus these states, which are
automatically pure by Theorem 5.3.37, generate unitarily inequivalent irre-
ducible representations (see Example 5.4.15).

We begin with a positive result concerning existence of ground states of
perturbed C*-systems.

Proposition 5.4.14.  Let (U, 1) be a C*-dynamical system with a ground
state w and assume W has an identity.

It follows, for each P = P* € U, that the perturbed system (U, 1) has a
ground state.
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Proor. The ground state w is t-invariant, the corresponding unitary representation
U, (f) = exp{itH,} € n,(A)", and H, >0, by Proposition 5.3.19. Moreover Cor-

ollary 5.4.2 establishes that t* is unitarily implemented by the operators

U(}:(t) _ eit(H(,)+nm(P)) .

But H, + n,(P) is lower semi-bounded and hence one may find a 2 € R and a
sequence of unit vectors ¥, € 9,, such that H, + n,(P) > A, but

Jim |(Ho + 70 (P) = o)l = 0

Now let w, be the sequence of vector states associated with the i, and o a limit
point of this sequence in the weak* topology. It follows from the estimate

(W T (A%) [Hoy + 7 (P) = Moo, o (ADW,) = = AIP I (Hoy + 700 (P) = 200)0,|

that w” is a ground state of (2, ).

The following example shows that w” is not necessarily 7,-normal.

EXAMPLE 5.4.15. Let U be the CAR algebra over L>(R"), 7 the free evolution,
and P = a*(f)a(f) the perturbation discussed in Example 5.4.11. It follows from
Example 5.3.20 that (2, 7) has a unique ground state wy, the gauge-invariant quasi-
free state with the two-point function

wo(a"(g1)a(92)) = (92, Tg1) »
where

(To)(p) =a(p), if p* <
=0, if p2>u .

But Example 5.4.11 establishes that the Mgller morphisms 7. corresponding to the
perturbation AP exist for all 1 € R and are invertible if

i<{/ d"pp-lsﬂp)iz}_l .

Therefore, the T and t*° ground states are in one-to-one correspondence, by Pro-
) P y

position 5.4.10, for small /, i.e., there exists a unique t** ground state. This ground

state is given by wéP = yZ*wo and it is the gauge-invariant quasi-free state with two-

point function

oif (a*(g1)alg2)) = Wieg2, TWogi) = (g2, WiTW.g1) |

where W, is the Megller matrix of Example 5.4.11.

There are various possibilities for wff which depend upon the support properties
of the Fourier transform f of f. If supp f C {p? < u}, then wy is " -invariant and
™ = wy. If supp f € {p? < u}, the states are distinct but two cases occur which
can be differentiated by examination of the particle density.

The state wg has finite particle density because

N,\(wo) = Zwo(a*(fn)a(fn)) = %/, d"p
n>1 - sk

for any orthonormal basis {f,},>, of L*(A). Hence, wo is locally normal with
respect to the Fock representation. The particle density of w** is given by



170 States in Quantum Statistical Mechanics

Na(@™) = (2n)™" / &'p &'q in(p—q) / & Wo(p.AWe(rq) |

P<pu

where

in(p) = [ @xer
A

and W. (-,-) is the integral kernel of the Meller matrix /¥, given in Example 5.4.11.
Now if supp fn{p? = u} = &, then Ny(w™’) < + oo by explicit calculation. On the
other hand, if supp fn{p* = u} # O, the integral for Ny(w*") can diverge because
of the sharp cutoff in the r-integral. But it follows from the special structure of quasi-
free states (see Notes and Remarks) that w*” is locally normal if, and only if, it has
finite particle density. Thus, w*” is not locally normal and hence the two pure states
o and o*” must generate unitarily inequivalent representations.

The foregoing example demonstrates that ground states are less stable than
KMS states at finite values of . There exist T ground states which do not have
¥ ground states as normal states. The phenomenon which occurs in this ex-
ample and destroys the normality is quite general and is usually called an
infrared divergence. The energy difference between the perturbed and un-
perturbed systems is finite because P is bounded, but this energy is shared by an
infinite number of particles each with an infinitesimally small energy. A similar
situation occurs for the ideal Bose gas. All particles in the ground state have
zero energy but a bounded perturbation can introduce an infinite number of
infra-particles.

Another aspect of instability of ground states is given by examination of the
condition

T

lim [ dt o(l4, %(B)]) =0 .
T— co T

In Theorem 5.4.12 we showed that each strongly clustering (z, f)-KMS state w
satisfies this condition for all 4, B € U but for ground states this condition can
fail for certain 4 and B; in particular for those 4 and B which give emphasis to
low-energy excitations. If w is a strongly clustering t ground state, the Fourier
transform of

1€ R, Un()Y) — (Vs Qu)(Qus ¥)

where U,, is the unitary group implementing t on $,, and ¢ € §,,, measures the
energy distribution in the vector state . The next result demonstrates that the
stability condition is satisfied if, and only if, these measures give zero weight to
the origin, i.e., if, and only if, infra-particles are absent.

Theorem 5.4.16. Let (N, 1) be a C*- or W*-dynamical system, o a strongly
clustering t ground state, and U, (t) = exp {itH,} the unitary group which
implements t in the cyclic representation (9., T, Qo).



Stability and Equilibrium 171

The following conditions are equivalent:

(1) lim ' dt w([4,w(B)]) =0
T—ooJ_ T

for all A, B € AU.

(2) Tlim ' dt{w(A4t,(B)) — w(4d)w(B)} =0
—oo )
forall A, B € AU.
T

@ Jm [ a0 U0~ Q)@ 1) =0

for all y € $,,.

(4) There exists an ¢ > 0 such that
o(Hy) C {0}ule, o)

where o(H,,) denotes the spectrum of Hy,.

Proor. The state w is automatically t-invariant, Proposition 5.3.19, and hence
o(41(B)) — o(4)o(B) = (1(47)Qu, Us (1) 70 (B) Q)
- (nw(A*)Qa)y Qw)(wa nw(B)Qw) -

Therefore (3) = (2). But (2) = (1) trivially. To prove (1) = (3) it suffices to consider
¥ such that (y, Q,) =0. Now w is pure by Theorem 5.3.37 and hence (9, 7,,) is
irreducible. Therefore, it follows by an application of the Kadison transitivity the-
orem identical to the application in Example 4.3.24 that one may find 4 € U such
that 7,(4)Q, = ¥ and 7, (4*)Q, = 0. Therefore,

T T
Tlijnm /_Tdt (Y, Uy(t)y) = Tli_r}loo/_rdt o([4*,u(4)]) =0 .
It remains to prove (3) & (4).

(3) = (4): Let H be the restriction of H, to a closed, separable, U, -invariant
subspace & of $, 6 CQ,,

= ["app

the spectral decomposition of H, and dv the measure in the corresponding spectral
representation. Then

T oo
/ dt (, €M) =/ d(, E(p)e) 2p~"sin pT
-T 0
for all ¢,y € K. Hence condition (3) implies that

o0
lim/ dv(p) g(p)2p~'sin pT =0
T — o 0
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for all g € L'(dv). But the uniform boundedness theorem then implies that the
functions p — 2p~'sin p7, are uniformly bounded in L*>(dv) for all sequences T,
such that 7, — oo. It follows immediately that v([0,£)) = 0 for some ¢ > 0, i.c.,

o(H) C[g, o0) .

In principle, ¢ could depend upon K but as the closed subspace generated by a
countable number of such K is still separable and U,,-invariant it follows by an ad
absurdum argument that we may choose & independent of the subspace.

(4) = (3): Adopt the above notation. The strong clustering assumption means
that

Tlin:gm/dV(p)f(p)eiT” =0

for all f € L'(dv). But if g € L'(dv), then the function f defined by f(p)=g(p)/p is
also in L' (dv) because ¢ > 0. Hence,

lim /dv(p) g(p)2p~'sin pT =0 .

— o

Therefore,

T
lim / dt(y, o) =0
T — > T
for all p, € $, © CQ,,.

The existence of an energy gap in the excitation spectrum, i.e., the spectrum
of H,, is not generally expected for ground states of nonrelativistic systems.
Infra-particles are usually present because of a mechanism referred to as
Goldstone’s theorem. Thus the stability condition, condition (1) of Theorem
5.4.16, is not generally expected for strongly clustering ground states. Never-
theless, this condition is satisfied for those 4, B € U which give no weight to
zero energy, e.g., if 4, B € AG(R\[—¢,¢]) for some & > 0, where A denotes
the spectral subspace of Definition 3.2.37, then

T
lim / dt w(A7,(B)) =0 .
T — T

This follows by noting that ¢ +— w(A4t,(B)) is the boundary value of a function
which is analytic in the upper half plane and the choice of 4 and B ensures that
this function decreases like exp{—¢ Im z}.

Although the stability criterion for ground states is not valid on the whole
C=algebra when infra-particles are present, it is possible that it holds on a dense
Ctsubalgebra. This is the situation if (2, ) is L;(y)-asymptotically abelian,
Definition 5.4.8, as we next demonstrate. Subsequently we discuss the stability
of such systems with the aid of Meller morphisms.

Theorem 5.4.17. Let (U, 1) be an L'(y)-asymptotically abelian C*-
dynamical system.
1t follows that
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/_oo dt (4, 7(B))) = 0

oo

for all A, B € Wy, and for all (v, B)-KMS states w with f € Ru {£ oo}.

Proor. First adjoin an identity, if necessary, and extend 7 to A =CI1+ A by
setting 7,((«, 4)) = (o, 7,(4)). We have already noted, in the discussion preceding
Theorem 5.3.30, that there is a one-to-one correspondence between the (7, f§)-KMS
states of (2, 1) and the (7, §)-KMS states @ of (U, 7) with ||@]y|| = 1. Thus we can
assume that U has an identity.

Next assume f € R and that o is an extremal (z, B)-KMS state. Therefore, by
Theorem 5.3.30, w is a factor state. But the L'-asymptotic abelianness, and the
continuity of 7, imply that (2, t) is asymptotically abelian in the norm sense.
Therefore, w is strongly clustering by Example 4.3.24. Thus, the stability condition
follows from Theorem 5.4.12. This condition immediately extends to finite convex
combinations of extremal (z, B)-KMS states. Using L!(2y)-asymptotic abelianness
the condition may be expressed as

w(/_z dt 4, T,(B)]) —0

and this relation extends to any (z, f)-KMS state by the Krein-Milman theorem.
Finally, consider the cases § = &+ co. As they are similar we assume that f = + occ.
First for ¢> 0 define 7, by #.(4) = (2m)"/*/e for 4 € [e, 2¢] and 7,(2) =0

otherwise.

By Fourier transformation one has

2e
x(t) = ¢! / die™ = 32 (sinet/2)/(et/2)
€
and hence
lim y, () =1 .

e—0

Thus, another application of the Lebesgue-dominated convergence theorem,
L' (Ap)-asymptotic abelianness, and Fourier transformation gives

o) = tim, [ ot s @)

—tim A [ A (A7)0, Fu(A)70(47)Q0) > 0

e—0¢ /o

forall4 € Ay. We have used E, to denote the spectral measure associated with the
unitary group U, which implements t and the second step follows from the ground
state condition, i.e., the support of E,, is in [0, co0). An identical argument with 7,(4)
chosen to have support in [—2¢, —¢] gives however

/ Tt o () = — lim L [ d(re(4) 0, (1)1 (4)Q0) <0 .

0 =08 | o
Therefore,

/oo dt o([4,7,(4")])) =0

for all 4 € Ay. The general result follows by polarization.
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We conclude this section with a discussion of a different type of stability
condition which is expressed in terms of perturbed states and is often valid if
the system (21, 7) satisfies a condition of asymptotic abelianness.

Let (2, 7) be a C*-system which is asymptotically abelian in the norm
sense, and let w be an extremal (z, f)-KMS state for some § € R. (If =0,
we adopt the convention that w is an extremal invariant trace.) It follows from
Theorem 5.4.4 and Corollary 5.4.7 that there exist perturbed states w” of A for
all P = P* € U such that:

(1) ' is t*P-invariant for P = P* € U and A sufficiently small.
(2) A+~ o™ is continuous at A = 0 in the sense
lim *(4) = w(4)

forall4 € A, and all P=P* ¢ A.
(3) The stability properties

Jim o (1,(4)) = w(4)

hold for all 4 € A, P=P* € A, and 4 sufficiently small.

In fact, the w*” exist for all A € R and are n,,-normal for pe R AfB=0,
one may choose o = w for . € R and P = P* € 9, the asymptotic abe-
lianness is irrelevant, and property (1) follows because ¥ and t are related by
an inner co-cycle I'”, Proposition 5.4.1.)

In the introduction to the next subsection we show that the existence of a
family of states with properties (1)—(3) is a stronger stability condition than the
condition

/_OO dt o([4, ©(B)]) =0

o]

occurring in Theorem 5.4.17. It is not known if a version of Theorem 5.4.17 is
valid with the stability properties (1)—(3) but some special cases can be handled.
If wis an extremal T-KMS state at value f € Rand o is the t"~KMS state given
by Theorem 5.4.4, and (2, 7) is asymptotically abelian, then it follows from
Theorem 5.4.4 and Corollary 5.4.7 that the stability properties (1)-(3) are valid.
If w is a ground state with an energy gap, i.e., the condition
o(H,) € {0} U [¢,00) of Theorem 5.4.16 is fulfilled, then it follows easily from
resolvent identities that H,, + An,(P) has a unique (up to a phase) normalized
eigenvector ** of minimum energy for / small enough. One may verify that
the corresponding vector states w*’ satisfy properties (1)~(3) and in this case
the w*” are still m,-normal. There do, however, exist ground states @ where
properties (1)—(3) are valid but the w* are not n,-normal. This is a con-
sequence of the following proposition applied to the free Fermi gas.

Proposition 5.4.18.  Lez (2, 1) be an L' (Wp)-asymptotically abelian system,
and assume that (U, 1) has a unique ground state .
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It follows that for each P = P* € Uy there exists a ground state o’ for
(U, 7P). If {0} is an arbitrary family of such ground states, then

‘limo o (4) = w(4)
A —
and

lim o (1,(4)) = w(4)

t— + o0

forall4 € A, P=P € A,

Proor. The existence of ground states of (2, ") follows from Proposition 5.4.14
and we let ” be an arbitrary ground state of the system. The assumed asymptotic
abelianness ensures that the Mgller morphisms

yi(A) = lim r’i,r,(A)
t—+oo

exist for all P =P* € Uy, Proposition 5.4.10, and the yi define *-isomorphisms
between A and % (2). These *-isomorphisms also satisfy the intertwining relations

P_ _ PP
YU =TV

for all # € R. Hence, the C*-dynamical systems (7 (), ") have unique ground
states @/ which are defined by ¥ o2 = w. Since @"|,pq is a ground state, it
follows that

o’ o yi =w
and hence
o(d) =7 (4) = lim o(5(4)) .
t— £ oo
Now by the estimate
)=l < 1) [ aelp,
which is valid for 4 € Uy it follows that
lim |14 (4) — 4] = 0
for all 4 € A. Combining this with
o (v (4)) = w(4)
one concludes that
_limow’?(A) =w(4) .
Thus properties (1)—(3) are valid.
Note that the discussion of the preceding paragraph is applicable to the free
Fermi gas if one works with the even C*-algebra 2, over L>(R") (uniqueness of

the ground state follows from Example 5.3.20) and hence properties (1)—(3) are
valid for this model. Nevertheless, Example 5.4.15 demonstrates that the
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corresponding w” are not m,-normal, and the absence of an energy gap in the
spectrum of H, implies that the ground state cannot satisfy the stability
properties of Theorem 5.4.16. The latter fact can also be shown by an explicit
calculation on elements 4 = a*(f)a*(g), B = a(f)a(g) where f and § are suf-
ficiently singular at the Fermi surface p? = pu.

5.4.2. Stability and the KMS Condition

In the previous subsection we studied various stability properties of KMS
states and our next aim is to establish that stability of a state can imply that the
state is a KMS state. Roughly one deduces that all extremal t-invariant states
of asymptotically abelian dynamical systems which are stable under local
perturbations of the dynamics are necessarily KMS states at some value
B € Ru{xoo}. In fact, no completely satisfactory result of this kind occurs
unless one has L!-asymptotic abelianness. We will, however, prove two theo-
rems in this direction. The first presupposes stronger clustering properties than
are implied by extremality but relatively weak requirements of asymptotic
abelianness. The second theorem is proved under weak clustering assumptions
but with L'-asymptotic abelianness of (2, 7).

Let us begin with a description of the stability properties which are central
to both results. These properties arise from a reconciliation of two distinct
ways of envisaging perturbations of a system, the time independent and the
time dependent, in a manner already partially described in Section 5.4.1. First,
assume that w is to describe a state of equilibrium of the system (21, 7) then it is
physically reasonable to postulate that w is t-invariant, i.e., the values of ob-
servations are stationary in time. Now consider a local perturbation P of the
dynamical group. One could well expect the perturbed system to have a t°-
invariant equilibrium state »”, which differs from o in a substantial way only
in the immediate neighborhood of the localization region of P, and such that
the set of states w* for A € [—¢, ¢] approximate o in the sense ™’ (4) — w(A4)
as [A| — 0 for all 4 € . This is the time-independent point of view. Second,
envisage the evolution of the perturbed states w*” under the dynamical group .
If the group 7 is sufficiently ergodic, then one would expect the spatial effects of
redistribution caused by the perturbation P to gradually disperse and the states
™ should evolve to the state w, i.e., one should have

lim o™ (1,(4)) = w(A4)
[t} = oo
for all 4 € A. This is the time-dependent point of view. But then differ-
entiating and integrating one obtains
r Toid
lim dt o’ ([P,7,(4)]) = lim dtzEa)"P(ri’;r,(A))

T— T T— o0 T

= Jim (/" (er(4)) = 0 (c1(4))}/2 = 0
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by use of the t*’-invariance of w* and the time-dependent postulate. For-
mally, one then finds

/ dt ([P, x/(4)]) = /llimO/ dt o ([P, (4)]) = 0
by the time-independent postulate, and the exchange of limit and integral
would, for example, be justified for P, 4 € Uy if (U, ) is L (Wy)-asymptoti-
cally abelian. Thus, one concludes that the equilibrium state w of the dyna-
mical system (21, 1) should satisfy the stability requirement

oo
/ dt o([P, ©(4)]) =0
—00

for all P, 4 € U, or at least for a sufficiently large subset of P and 4, e.g.,
strictly local elements of a quasi-local algebra.

The foregoing heuristic discussion relies upon a property of ergodicity of
(U, 1), or of (A, 7, w), which we did not specify exactly. We postulated that the
system was sufficiently dispersive, or mixing, to ensure that the perturbed states
return to equilibrium. This problem has already been discussed in Section 5.4.1
and Propositions 5.4.6 and 5.4.10, and some form of asymptotic abelianness is
certainly sufficient. But it also appears necessary to postulate that w is rela-
tively pure in order to ensure uniqueness of the limits of w*(7,(4)) as
t — % oo. Therefore, this discussion of the behavior of equilibrium states w is
based on four types of postulates:

(1) t-invariance, i.e., stationarity in time,

(2) ergodicity of (2, 1), e.g., asymptotic abelianness,

(3) relative purity of w, e.g., extremality of w among the t-invariant states,
(4) stability under perturbations.

These four postulates lead to the quantitative expression

T
lim dt w([4,7,(B)]) =0
T—oof T
for 4, B € U, of stability and our aim is to show that they also imply that w is a
KMS state. (The relation between stability and the KMS property is in fact not
so suprising when one remarks that the above stability condition reexpresses
the KMS condition at zero energy in the form given in Proposition 5.3.14.)
The first result of this type is the following.

Theorem 5.4.19. Let (U, 1) be a C*- or W*-dynamical system and w a state
over . Assume that

lim |7 ([z,(4), B])|| = 0

lt|— oo
for all, A, Be W, and all Y € §,,. Furthermore, assume that w satisfies the
following conditions:
(@) w is t-invariant.
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(b)  The functions
t— |o(Pt,(4)) — o(P)w(4)| ,
f'—’fgg lw(P175(P2)w(4175(42))) — 0(P174(P2))(A417,(42))]

are L'-functions for all Ay, Py, A>, and P> in a norm dense (o-weakly
dense) t-invariant *-subalgebra Wy.
(¢c) w is stable in the sense

lim ' dt w([4,7(B)]) =0
T—oo T

forall A, B € U,.
It follows that w is a (t, f)-KMS state for some f € Ru{+co}.
Proor. By elementary reasoning one may assume that 2, is invariant under reg-
ularization with L'-functions. The cluster properties of w adopted in the hypotheses

of the theorem are preserved under this regularization since the convolution of two
L'-functions is an L!-function. For example, the stability condition gives

[t otass @), = [ ar aspyolian®). =)

=/ds f(s)/dt o([At(B), . (C))) =0
if A4, B, C € Uy and f € LY(R).
Next, for P;, 4; € Ay and i = 1,2 define F,, p, and Gy, p, by
Fu, p(t) = o(Pit(4)) — o(P)o(4;) ,
Ga,, P (1) = o(t(4:)P;) — o(4;)w(P;)

for t € R. The =-KMS condition can be reexpressed in terms of the Fourier trans-
forms of these functions as in Proposition 5.3.14. We derive the condition from a
series of observations concerning these functions.

OBSERVATION 1. t—Fy p(t)F4 p,(t) — Ga, p,(t)Gy,. p,(2) is an L'-function
and

/ dF s, 5y (OF s, (1) = Gy 1y (0)Gi, ()} = 0

Proor. By the stability condition one has

0= / "t o([Pras(Pa), (1, (42)])

o0

:/ dt{FAlfx(Al),PIf:(Pl)(t) - GAxT.r(Az), PIT.\‘(PZ)(t)} .
—0oC

But it follows from the second clustering assumption and the t-invariance of w that

the integrand is dominated by an L'-function uniformly in s. Now from the first

clustering assumption
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lim w(Pt3(4)) = w(P)w(A4)

for A, P € Ay. But using the asymptotic abelianness one also has
Jim o(P1e(P2) (A ty(42))) = lim o(Pi[z,(P2), 7(A1)]tr+ s (42))
—Fsl_i,n;o @(P11(A1)Ts(P21:(42)))
= o(P1t,(4;))0(Pyt:(42)) -

From this and similar relations and the Lebesgue-dominated convergence theorem
applied to the above integral in the limit s — oo, it follows that

0= /_oo dt{w(Pi1,(41))o(Pa1,(42)) — o(t:(41)P1)w(t:(42)P2) }

o0

2/_00 dt{FAI;Pl (t)FAz,Pz (t) — Gy, p, (t)GAzsz (t)}

+oPol) [ " dt(Fay py ()~ Gay i (1)
roEal) [ diEn) - Gan )

:/_Do dt{FAl,Pl (I)FAz,Pz(t) - GAhPl (t)GAz,Pz(t)} .

o0

Now, all the functions Fy, p, and G, p, are L'-functions, by assumption, and
hence their Fourier transforms F,, p, and Gy, p, exist as continuous functions van-

ishing at infinity.
OBSERVATION 2

fAIyPI(p)?AZ,PZ(-p) = aAl;Pl (p)aAz,Pz(_p)
for all p € R=R and all 4;,P; € As.

Proor. Since Fy, p,, Gy, p, € L'AL>® C 2, it follows by Parseval’s theorem and
Observation 1 that

/_: dp Fy,,p,(P)Far,p(—p) = /_: dp G, (P)Garpy(—P) -
If fis an L'-function, one computes that
Fuytan.ra(0) = (P / ds f(8)11-:(42)) - / ds £(s)o(42)oo(Ps)
=/ds S(8)Fuy,p (s + 1) .

Taking the Fourier transform of this convolution one obtains

Fe 4, p(P) = Fappy(P) f (=)

Similarly, one derives

~

Gey (4, p(P) = G, (D) f ()
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Inserting these relations in the earlier relation, with 4> replaced by t,(42), one
obtains

| o P (PP (-2 (5) = [ " dp Gay ()G (—0)F () -

As I?A“pi and E;,M are continuous in p it follows by letting f converge to the point
measure 0, that

ﬁAl,PI(p)ﬁ‘.‘lz,Pz(—p) = GAI,PI (p)GAz-,Pz(_p) -
Now, introduce the unitary group

Un(t) = el = /ei[p dE,(p)

implementing 7 in the cyclic representation ($,,, 7, Q) associated with w.

OBSERVATION 3. If the spectrum of H, is not contained in
[0,+ c0) or in (—oo, 0], then for any p € R there exists a pair 4, P € 9, such that

Fip(p) #0 .

Proor. Let % C R be the set of p € R such that I?A,p(p) # 0 for some 4, P € 2j.
By asymptotic abelianness and two-point clustering, one has

. 1 /T
Tllmoo ﬁ/_Tdtw(A‘c,(B)C) = w(4C)w(B) .

for all 4,B,C € Ay. Hence, it follows essentially as in Theorem 4.3.33 that the
spectrum ¢(U,,) is additive,
(Uy) + o(Us) C a(U,,) .
Now E,, = E,({0}) is the projection onto CQ,, and hence
Fip(p)dp = d(m(P")Qu, Ew(p)Tu(A)Q0) — (10(P*)Qur, i (4)Q,)5( p)dp -
The continuity of ﬁqﬁp then implies that ¢(U,,) cannot contain isolated points. Hence,
a(U,) =R

by Example 4.3.34. But it follows from this, and Proposition 3.2.40, that % is dense
in R. We argue that % = R by contradiction. Assume that po¢ %, i.c.,

/ dt E{P(l‘)e_ipol =0
for all 4,P € y. Next set 4 = 411,(42) and P = P ,(P>) in this relation and take

the limit s — oo. It follows from the clustering assumption and the Lebesgue-
dominated covergence theorem that

0 :/ dt e Fy, p, (1)F 4, p, (1)
+ o)(Az)co(Pz)/dt e PUE, b (1)

—|-(r)(A1)(l)(P1) / dt e_ip”tF,;::p:(t) = /[[t €~ip°lFﬂ,)_,D1 (t)E43.P3(t) .
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Replacement of 4; by t_,(4;) gives
/dt e—ipotFAhP‘ (—S + l‘)FAz’pz(f) =0

for all s € R. But by Fourier transformation in s one then obtains

Fap (= P)Fapp(po+p) =0

for all peR. Now, if p+poe« we can find 4, and P, such that
F4, p,(po+ p) #0, and hence
FAlel (P) =0

for all p € pp — %. But the latter set is dense and ?Ahp] is continuous; hence If?,,,,pl is
zero everywhere and we conclude that

o(Pt,(4)) = o(P)w(A4)

for all P, 4 € Ay and ¢ € R. This implies that w is a t-invariant character. In par-
ticular, dim $,, = 1 and U, (f) = 1 for all 1. This contradicts the assumption that the
spectrum of U, is not one sided. (Incidentally, @ is a t-KMS state for all
B € Ru{% oo} in this case.)

OBSERVATION 4. If 6(H,) is not one sided, then there exists a unique con-
tinuous positive function ® on R such that

ﬁA,P(p) = CD(p)aA,P(p)

for all p e R.

PROOf. If p € R is fixed, there exist, by Observation 3, elements 4;, P, € ¥, such
that F4, p,(—p) # 0. Define

aAhP](_p)
(D(p) - 2.:\‘1‘11,}31 (_P) .

Then

ﬁA,P(P) = q)(p)aA,P(P)

for all 4,P € Ay by Observation 2. One can show as in Observation 3 that
Gap(p) #0 for some 4,P € A and hence @ is uniquely determined by the last
relation. Furthermore, as F, p, is continuous we can use 1?,41, p, and Gy, p, to define
® in a neighborhood of p, and hence ® is continuous.

It follows immediately from the definition of F4 p and G, p that

FA:P(Z‘) = Fpa‘A~ (—t) = GAt)pt (l) .
Hence, F,y 4 and Ga 4 are real for 4 € Uy and
Fap(=p) =Gru(p) -
Therefore, @ is real and satisfies the relation
®(—p) = (p)".
But ®(0) = 1 by a direct application of the stability condition. Thus ® is positive.



182 States in Quantum Statistical Mechanics

We are now prepared for the end of the proof of Theorem 5.4.19.

If 6(U,,) is one sided, w is a KMS state at £ oo by Proposition 5.3.19. Thus we
assume from now on that ¢(U,,) is not one sided. If H,, = [ p dE,(p) is the spectral
decomposition of H,, and E,, is the projection onto CQ,,, then

Fup(t) = / ¢P(P*Qyy, (dEo(p) — Ed(p)dp)AQ) |

G plt) = / (A7 Qy, (dEo(~ p) — Eud( p)dp)PQ)

for A, P € Uy. Here, and in the sequel, we identify 2 and =, (). Observation 4 then
implies that the spectral measures are absolutely continuous with respect to Lebesgue
measure, and

(P"Qu, (dEw(p) — Eud(p)dp
Since @ is positive with ®(0

(P*Qu, dEo(p)AQ,) = (D(p)*4*Quy, dEu (— p)®(p) PPQ,) .
Hence, %,Q,, C D(®(—H,,)""?) and

A4Q, ) O(p)(A"Q, (dEw(—p) — Eod(p)dp)PQy) -
, it follows that

)
)=

(P*Q{INAQ(U) :( ( Hw)IPA Qw (I)( {D)I/OPQU)) .

Now 7,(2p) is strongly* dense in M, = n,(A)”, by Theorem 2.4.11, and as
CD(—H(,,)I/ ? is a closed operator it follows from the above relation that

M, € D(O(~H,)'"?)
and by continuity
(B, 4Q,) = (O(~H,) > 470y, ®(~H,,) *B* Q)
for all 4, B € 9,. From this it follows that
AQ,=0=4"Q, =0

for all 4 € M,,. Hence Q,, is separating for M, by Lemma 5.3.8. Since M, Q,, is a
dense, U,-invariant, subset of $,, which is closed under regularization with functions
in L', it follows by the reasoning used in the proof of Theorem 5.3.10 that 9t,Q,, is a
core for ®(—H, ,L,)l/‘ But 9t,Q,, is also a core of A‘/', where A is the modular
operator associated with the pair (9, Q). Moreover, as

(®(—H,)' 49, ®(~H,)'*BQ,) = (BQ,,4°Q,) = (A'240,,,A'*BQ,)
for all 4, B € 9, it follows from the remarks before Lemma 5.2.13 that
O(—H,)> = A2
Now identify t with its normal extension to 9,,, and let
oi(A) = ATAAT"

be the modular automorphism group. As w is t-invariant, it follows from Proposi-
tion 5.3.33 that

T0s = 05T

for all t,s € R. But as w is separating for 9, one has
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B’Eé?(fua (B»|w(AB’C) — w(B)w(4C)| =0
for all 4, B, C € M,, by Theorem 4.3.23. Now Theorem 4.3.33 and the subsequent
remark imply that the joint spectrum of H,, and log A is additive. Since

log ®(—H,) =log A
and 6(H,,) = R by Observation 3, it follows that the function p+ log ®(p) is linear,
and there exists, a f € R such that
D(p) =ePP .

But then

e o = A

Hence w is a -KMS state at value f§ as a consequence of Theorem 5.3.10.

Remark. Instead of the clustering conditions imposed on w in Theorem 5.4.19,
one could require that the truncated rn-point functions o)(T") satisfy strong
clustering properties for n = 2,3,4, i.e., if 4;,---,4, € Uy there exists a non-
negative, nonincreasing, integrable, function g4, - - - 4, on R, such that

0F (20 (A1), -, 7, (4)] < gar.oa, (P It = 1))
LJ
forn=2,3,4and ¢; € R.

We now show that the clustering properties of the state imposed in Theorem
5.4.19 can be weakened if one imposes a stronger form of asymptotic abe-
lianness. In fact, the following theorem essentially characterizes extremal (t, §)-
KMS states of L'-asymptotically abelian systems as stable factor states. The
only discrepancy in this characterization occurs if f = 0 because the extremal
(7,0)-KMS states, i.e., the extremal traces, are not necessarily factor states. Of
course, this discrepancy is absent if 9 has a unique trace-state.

Theorem 5.4.20. Let (U, 1) be a C*-dynamical system which is L'(2)-
asymptotically abelian in the sense of Definition 5.4.8, and w a t-invariant
state over U. Assume that
(1)  Either
lim oz, (41)7,(42)7,(43)) = o(41)w(42)w(43)

inf |t;—t;
iséjl == eo

for all Ay, A2, A3 € N, or w is a factor state.
(2) o satisfies the stability requirement

[ arop, i =o

0]

forall A4, P € U,.
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It follows that  is an extremal (v, §)-KMS state for some f € Ru {+oco}.
PrOOF. As t— 1,(B) is uniformly continuous for each B € Uy, it follows from the
L!'(2)-asymptotic abelianness that
lim 4, 7Bl =0
for all A, B € Ay, and hence for all 4, B € A. Thus if w is a factor state it follows
from Example 4.3.34 that
lim  w(t, (41) - 1,(4n) = o(d) - o(4,)

inf |t;—tj|— o0
i#J

for all n € Z, and 4; € . Therefore, it suffices to prove the theorem under the
three-point clustering assumption.
If {E,} is an approximate identity on 2, it follows from Proposition 2.3.11 that

lim 7, (E,)Q, = Q,
o

and using this one easily proves the two-point cluster property
lim w(47(B)) = w(4)w(B)
t— oo
from the corresponding three-point property. Also, as in the proof of Theorem

5.4.19, we may assume that 2, is closed under regularization by L'-functions.
Let us define

Fi(t) = Fyq, p,(t) = 0(P1;(4))) — o(P))w(4;) ,
Gi(t) = Gu, p,(t) = o(t(4:)Pi) — o(4)w(P))
for 4;, P; € Ay.

OBSERVATION 1. ¢ Fy(f)F5(t) — G,(£)G,(¢) is an L'-function, and

/_ h d{Fi(t)F>(t) — GI()Ga (1)} =0 .

Proor. By the stability requirement we have

0= Kw dt CU([P[TS(Pz),‘L}(A]‘L':( 3))]) =1 (S) =+ [g(S) +[3(S) +14(S) s

where

/OC dt o P1 Ty P”) Tt(A])]TH-s(A")) B

8

8

/ dt w P|‘C, A])[TS(P7) TH—t( )]) ’

8

3

:/ dtCl) [P[ Tt Al)]TtTS(A7)TS(P")) )

8

3

dt w ‘L't A] P|,‘L’,+S(A7)]TS(P7

— 00
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The integrands of I, and I are dominated by L!-functions which are independent of
s, and using the two-point clustering and the Lebesgue-dominated convergence
theorem we obtain

lim (1(6) + 160} = [ at Py, i)

+‘/_°° dt w([P1,r,(Al)])w(r,(Az)Pz)

~ [ at{Fun 0F2 5,0~ Ga (0G0}

where the last step uses the stability condition. Hence it is enough for Observation 1
to show that

lim /;(s) = lim Is(s) =0 .

§— 00 §— 00

But, by a change of variable,

ne) = [ "t ey (P[Pl )Jtr15(42))

(oo}

Again the integrand is dominated by the L'-function ¢ —||Py|| ||[P2, 7.(41)]] [|42],
which is independent of s, and the limit of the integrand as s — oo is

o(P1)o([P2, (A1) w(42)

by the three-point cluster property. Thus, by the Lebesgue-dominated convergence
theorem,

lim () = o(Py)o(dy) /_ " dt o([Pyy (1) =0 .

One shows that lim;_, o I4(s) = 0 by a similar reasoning, and this ends the proof of
Observation 1.

Now, from the relations
Fap(t) = Gpa(—1), Fyu)p(t)=Fap(t+s),
and Observation 1 it follows that
/ dH{F\(0)Gals — ) — G (Fa(s — 1)} =0 .
Define Hyp = F4,p — G4,p and set Hy = Hy, p, SO
H(t) = Fi(t) — Gi(¢) .
Then H, is an L'-function, and from the relation above we obtain

/ dt{H\ (1) Ga(s — 1) — Gy () Ha(s — 1)} = 0 .

and
/dt{Fl(t)Hz(s — ) —Hi(t)F2(s—1£)} =0 .

If U,(f) = [P dE,(p) is the spectral decomposition of U, let

K = W4, Py Vi = Va4, P
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be the measures defined by
dp(p) = (PiQu, dE,(p)4iQ0) — a(Pi)o(4:)6(p)dp
dvi(p) = (47Qu, dE,(—p)PiQy) — w(di)w(P;)d(p)dp .
Then

Fi) = [ érdulp) G0 = [ éran(p)

and thus
du(p) — dvi(p) = H{p)dp ,

where H; is the Fourier transform of H;. From the convolution relations above we
now obtain

OBSERVATION 2

for all 4;,P; € A,.

Next, define a subset S C R by
S={p e R ﬁA,p(p) #0 for some 4,P € Ay} .

OBSERVATION 3. S is an open set, S = —S and 0¢S.
Proor. S is open since each IA{A, p is the Fourier transform of an L'-function, and
thus is continuous. The symmetry follows from the relation

dpﬁA,P(p) = (P*Qu)szw(p)AQm) - (A*QnudEru(_p)PQw)
= _dpi—}P,A(_p) s

and F[A,p(O) = 0 by this same relation (or stability).
OBSERVATION 4. There exists a well-defined pair y, v of o-finite measures on S

such that
du, p(p) = Hip(p)du(p), dvap(p) = Hyp(p)dv(p)

for p € §, and, furthermore
du(p) = —dv(-p) -

Since S is open, S is the union of an increasing sequence of compact sets,

Proor.
and as each ﬁA, p is continuous, it follows that there exists a countable partition
{81, S2,---} of S into Borel sets, and elements 4;, P; € Uy such that

\Hi,p,(P)| > 1

for p € S;. Now, define
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_dpy, p(p) dv(p) = dva, r.(P)

du(p) = —= ; ==
HAi, Pi(p) HA,,P,(P)
for p € S;,i=1,2,--- Then u and v are well-defined o-finite Borel measures on S,

and Observation 2 implies that

dpy p(p) = Ha p(p)du(p), dva, p(p) = Ha p(p)dv(p)
for all 4, P € Uy and all p € S. Finally,

du :dﬂA,,P,-(P) _ dvp,4(=p)
HAi, Pi(p) _HPx,A.‘(_p)

Now, the Radon-Nikodym theorem implies that there exist || + |v|-measurable
functions ; on S such that

du(p) = i (p)d(Jul + V)(p), dv(p) =va(p)d(lul + V))(p) -

Since  du(—p) = —dv(p) we have d(lu|+)(p) =d(lul +M)(~p) and
V1 (=p) = =¥ (p). Define subsets So, Se, and Sy of R by

So={p € $;¥i(p) =0}, Sx={p € S;¥s(p) =0},
SI=R\(S0 USOG) .

— —dv(~p) .

Since ¥, (p) = 0 if, and only if, ¥, (—p) = 0, we deduce immediately

OBSERVATION 5
So = —Sw, S;y=-5;

in the sense that the sets differ only on a set of |u| + |v|-measure zero.

Define a Borel function ¢ on R\S., by

B onS\Sw
o(p) =

1, on R\S .

OBSERVATION 6
duy p(p) = ¢(p)dvar(p)
on R\S... Furthermore, ¢(p) > 0 and ¢(—p) = ¢(p)~" on S (except for a set of

|¢| + |v|-measure zero).

Proor. It follows from Observation 4 that

dus p(p) =¥\ (p)Hap(p)d(ld + V) (p) |

dva,p(p) = Yo (p)Ha p(p)d(1 + ¥)(p)
for p € S, while

dpy p(p) — dvap(p) = Hyp(p)dp =0 .

for p € S¢. As duy. 4(p) >0 and dvy.4(p) >0 for all p#0 and all 4 € Ay, it
follows that ¢(p) > 0 and since ¢(p) # 0 for p € Sy, one has ¢(p) > 0 for p € Sy.
Thus ¢(p) = ¢(—p)~" is a consequence of ¥, (p) = —,(— p).
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OBSERVATION 7. If E, is the projection-valued measure corresponding to H,,,
then

Ey(Sp) =0
and, consequently,

Ey(Se USf) =1.

Proor. From the relation

dpy p(p) = ¥ (P)Hup(P)d (| + 1) (p)
it follows that
14,p(So) =0
and hence, as 0¢ S, by Observation 3,
(P*Qu, Eo(S0)AQ0) = 1y p(So) = 0
for all 4, P € U,.

OBSERVATION 38

(P*Q{ovEm(Sf)AQw) = (QD(_HUJ)I/ZA*Q(D, @(_Hw)l/ng(u)
forall 4, P € M, = m,(A)".
Proor. By Observation 6, one has
(P"Qu, dEy(p)AQ0,) = duy p(p) + 0(P)o(4)o( p)dp
= ¢@(p)dva,p(p) + o(P)w(4)d(p)dp
= (¢(p)"*4*Qu, dE,(~ p)o(p)*PQ,)
for p € R\Sw, and 4,P € Ay, where we have identified 2 and 7, (). Integrating
over R\S,, = Sy U Sy, we obtain from spectral theory that
W, C D((p(_Hw)l/zEw(_(S/ USH)))
and
(P Qy, EU,(Sf)AQw) = (P*Qa,,Ew(Sf U 8§p)A4Q,,)
= (QD(_Ha))l/ZA*Qwv QD(_H(»)I/.?PQU))

where we have used the relations E,,(So) and E,(—(S;USp)) = E,(S; U Sa) which
follow from Observations 5 and 7.

Since Uy is strongly* dense in M,, by Corollary 2.4.15, this last equation extends
toall 4,P e M,.

Next define
Ep =M Q,) .
Then E; € M,,.
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OBSERVATION 9
Ew(Sy) = Ew(Sp)Er = ErEu(Sy) -

Proor. Since

e o e~ = N/
for all ¢ € R, it follows that E; commutes with e and hence

Eo(Sp)Er = ErEo(Sy) -
By Observation 8, one has
(Ew(S) (1 — Ef) P*Qu, Eul(Sy) (1 — E)AQ,)
= (0(~Hao)"4"(1 ~ Ef)Qu, o(~Hu) *P(1 ~ E;)Q0) = 0

for all 4,P € M, and hence

E,(Sr) 1 —Ef)=0.

Now, Q, is cyclic and separating for the von Neumann algebra Mz = £, M, E,
on g = Er$H, by Lemma 4.3.13. Define Hg = H,E; = EfH,, and let A and J be the
modular operator and modular conjugation associated with the pair (Mg, Q).
Then

Hp = / p dEg(p) = / p dEL(p)Ey
is the spectral decomposition of Hg. As e leaves Q,, invariant and defines an auto-
morphism group of Mg, it follows as in the proof of (3) = (2) in Theorem 3.2.61 that
JHgJ = —Hg
and hence
JEg(B)J = Eg(—B)
for all Borel sets B C R. In particular, it follows from Observation 7 that
E; =JE;J = JEp(S; U Seo)J = Ep(—(S; U Sx))
But
Er(—Sx) = Eg(Sp) =0
by Observations 5 and 7. Thus,
Ep = Ep(=Sy) = Eu(S)Es

and Observation 9 implies:

OBSERVATION 10
Ef =Eu(Sy) .

Now, Theorem 4.3.22 implies that E,, = E,,({0}) is a one-dimensional projection,
and as Q,, is separating for M it follows from Theorem 4.3.23 that

inf AB'C) — w(B)w(AC)| = 0
B,Eclgzmw))!w( ) — o(B)o(AC)|
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for all 4, B, C € Mz. As Hr and A commute strongly by Proposition 5.3.33, (2), it
follows from Theorem 4.3.33 and the subsequent remark that the joint spectrum X of
(log A, Hg) is a closed additive subset of R*>. But since Q,, is separating for Mg,
Lemma 3.2.42, (2), implies that ¥ is symmetric, and we conclude

OBSERVATION 11. The joint spectrum X of (log A, Hg) is a closed subgroup
of R2.

We next show

OBSERVATION 12. E,(Sy) is not one-dimensional, then S is dense in R and
O'(HE) =R.

ProoF. ¢(Hg) is a group by the remarks before Observation 11, and as 0 is a simple
cigenvalue of #,, it follows from the assumption and E,,(S,) = E, that ¢(Hg) # {0}.
But ¢(H) cannot have any nonzero isolated points because this would imply that H,,
has a nonzero eigenvalue A with a corresponding eigenvector ¥ such that

Uy () = ™y
But then

(W, 0 (7:(B))Q) = (Uu (=), 10 (B) Q) = ei;'l(‘/hnw(B)Qw)
for all B € A. Therefore, choosing B such that
(¥, 10 (B) Qo) # 0

this contradicts the fact that
tlim T (1 (B)) = w(B)1

in the weak topology. It follows from Example 4.3.34 that
O'(HE) =R .

OBSERVATION 13
G(HE) + O'(Hﬂ_E) C O'(H1|_E) .

Proor. This is demonstrated as in the last part of the proof of Theorem 5.3.22.

OBSERVATION 14. The restrictions of the measures duy pand dvy p to SpUSs
are absolutely continuous with respect to Lebesgue measure, and

0, pGSo

d = —~
har(p) {HA,P(P)dpv P € S s

vy p(p) = { “Har(P)dp, P €S
0, P E Sw -

Proor. This follows from the relation
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diy p(p) —dvap (P) = Hyp(p)dp
together with the equations
dpg p(p) =0, p € So, dvyp(p) =0, p€Sx .
Next, define subsets S.. C R by
Sy = ({pHi+(p) =0}, S_= () {piHsw(p) <0} .
A€, A€
Then S+ are closed sets, and since
S= J {pHis(p) #0} .
AeMN,
by polarization, it follows that
S+ NS_-NnS= @ .

But the measures duy, 4 (p) and dv, 4 (p) are non-negative for p # 0, and hence it
follows from Observation 14 that

Soo € 84, So CS_

except for sets of spectral measure zero. By subtracting the latter sets from S, and Sy
we may assume that the inclusions are strict and hence

ggs—ka S_OQS-7

where the bar denotes closure. Therefore, one has

OBSERVATION 15
SN SoNS CSNS_NS=T .

Now, by Observations 7 and 10, one has
E,(Sw)=1-E;
and thus

OBSERVATION 16
o(Hi—g) CSu .

We now finish the proof of Theorem 5.4.20. We consider two cases:

Case 1. E,(Sy) is not one-dimensional. In this case ¢(Hg) = R by Observation
12. We show, ad absurdum, that E; = 1. If not, ¢(H; - g) = R by Observation 13 and
hence S, = R by Observation 16. But then Sy = —S,, = R by Observation 5, and
hence SonSyNS =S. But S # & since S, € S, and hence this contradicts Ob-
servation 15. It follows that E; =1. Now E,(S;) =1 by Observation 10, thus
E,(Sx) = 0, and we may assume that S, = Sy = & by modifying ¥, ¥, on sets of
|| + |v|-measure zero.

It follows from Observation 8 that

(A2 4*Q,, A'?PQ,) = (P*Q,, 4Q,)
= (¢p(=H,) 4" Qy, 0(—H,,)'PQ,,)
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forall4, P € M,. As M,Q s a core for A%, and H,, and A'/? commute strongly, by
Proposition 5.3.33, (2), it follows from this relation and a joint spectral re-
presentation of H, and A that

A= ¢p(-H,) .
It follows that

Z C {(log(p(~p)), p); p € R} .

Now, X cannot have any isolated points by the reasoning used in Observation 12,
and X is a closed subgroup of R? by Observation 11. As o(H,) = R it follows that
Y must have one of the forms:
) Z="r,
(2) X is an array of equidistant straight lines, not parallel with the log A axis,
one of which contains the orgin.
(3) X is a straight line through the origin not coinciding with the log A axis.

In case 3, there exists a § € R such that £ = {(-fp, p); p € R} and thus log A
= _ﬁH(U’ or
A= Pl

But Theorem 5.3.10 then implies that w is a -KMS state at value . Hence to
complete the treatment of Case 1, we must eliminate possibilities (1) and (2) above.
There are now two possibilities:

Case la. H; 4 =0 for all 4 € Ay. In this case

w(AA") = F4 4(0) + w(4)w(4")
= Gy, 4+(0) + 0(4)w(4*) = w(47A)

forall 4 € QIOAand hence w is a trace, i.e., w is a (z,0)-KMS state.

Case 1b. H, 4(po) # 0 for some 4 € Ay and py € R. Since H,, 4 is continuous,
we may assume that py # 0 and that Hy +(p) # 0 for all p € (pg — &, po + &), where
& is some positive number. From Observation 6 and the relation

dpy 4 (p) = dva s (p) = Ha 4 (p)dp
we deduce that
(¢(p) = Ddva.a(p) = Hyu-(p)dp
(1= @(p) ™ )duy - (p) = Ha 4 (p)dp .
As E@\A* is a real function we have two possibilities: ﬁIA,,p(po) >0. If Hy 4 (po) > 0,
then Hy 4 (p) > 0 for p € (po — ¢, po + ¢). We now deduce from the relation

dva.(p) = Hya(p)dv(p)
that v is a positive measure on (pg — ¢, po + ¢) and
(¢(p) = V)dv(p) =dp

on this interval. It follows that ¢(p) > 1 for p € (po — &, po + £) except for a set of

|v|-measure zero. But du(p) = ¢(p)dv(p) and so ¢(p) > 1 for p € (po — &, po + €)
except for a set of y-measure, and hence spectral measure, zero. Thus we may choose
@ such that @(p) > 1 on (pg — ¢, po + ¢). But this means that the set

{(log (¢(=p)), p); p € R}
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does not contain any point of the form (d, p), whered < 0 and —p € (po — ¢, po + ¢€).
As ¢ is contained in this set, this excludes possibilities (1) and (2).
The case HA 4+(po) <0 is treated by noting that H,, 4 (=po) = _EA,A'(])O)-
Case 2. E,(Sy) is one-dimensional. If E,(S;) = 1 in this case, it follows that e is
a t-invariant character, and hence w is a KMS state at all values f € Ru{*oco}. If
E,(S;) #1, then E,(Se) =1 — E(Sy) # 0 and S # J because Sy, C S. We argue,
ad absurdum, that S,, # R. If not, then Sy = =S, = R and hence Son Sy n S
= § # @ in contradiction with Observation 15. Thus S, # R, and by Observation 16

J(Hw) qu {0}7&'é R .

But since ¢(H,,) has no isolated points, it follows from Example 4.3.34 that o(H,,) is
contained in one of the sets £[0, +00), and thus w is a ground state or a ceiling state,
i.e., w is KMS state at value + oo or —co

By summarizing the results of the last two subsections, we obtain an almost
completely satisfactory theory for the connection between stability and the
KMS condition for C*dynamical systems (2, 1) which are L!()-asymptoti-
cally abelian in the sense of Definition 5.4.8. Assume that 2 has an identity 1,
and let w be a t-stationary state on 2. If P = P* € U, it follows from Pro-
position 5.4.10 that the Mgller morphisms

v = lim 1,
t—+oco

exist strongly for A € R. Furthermore, one has the intertwining relations

AP, AP
ViTt-—T Y+

and
lim y*(4) = 4
21 Oyi( )

for all 4 € A by the estimate

+ o
17 (4) — 4]l < 12] /0 dls| 1P, z()]|

which is valid for 4 € 2,.
Now, there exists a unique state w*” on y**() satisfying

o (7 (1)) = 0(4)

and w*’ is t*7-stationary by the intertwining relations. But w* extends to a
state of A by Proposition 2.3.24, and applying an invariant mean to this
extension composed with *° we obtain a state w*” on U such that the relation
above remains valid, and

1 ™ is t*P-stationary.
y

Next, it follows from the estimate

|0 (4) — o(4)| = |0 (4 =y (4))] < |14 =y (4)]]
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(2) A is continuous at 1 =0 in the sense
li AP A4) =
lim o (4) = w(d)
forall 4 € A.
Now, define a state w*’ on 2 by
Wi (4) = (7P (4)) .

From the relation

o™ (1(4)) = 0 (X x,(4))
it follows that

(3)  The limits lim, . = 0™ (t,(4)) exist for all A € A, and
lim o (1,(4)) = w(4), Jlim ™ (t,(4)) = 0 (4) .

We call any family {w*"; P = P* € g, |1| < &,} of states satisfying require-
ments (1)-(3) (including the existence of cof ) a family of perturbed states of w.

Corollary 5.4.21.  Let (U, 1) be an L' (Wy)-asymptotically abelian C*-dyna-
mical system, and assume that W has an identity. Let w be a t-stationary state

of W, and let {o*’; P = P* € Wy, || < &,} be a family of perturbed states of
w. Consider the following conditions:

(1) w is an extremal T-KMS state at value p.
(2) (a) o has the three-point cluster property

lim  o(t, (41)7,(42)1,(43)) = o(41)w(42)w(43)

inf ti—tj]—= o
I
(b)  w satisfies the stability property
lim [0 (4) — w(4)| /.= 0

forall 4 €N,

It follows that (2) implies (1p) for some p € Ry {+oc0}. Conversely (15)
Jor B € (Ru{£o00})\{0} implies (2) and (13) for B =0 implies (2) when
(2)(a) is replaced by the weaker cluster property

M(w(4(B))) = w(4)w(B)
for all A,B € W, and any invariant mean M on R.

In particular, (1g) for some f € Ru {£ oo} and (2) are equivalent if w is a
Jactor state or if W has a unique trace-state.

Furthermore, the family of perturbations {w*’} can be chosen such that
w*f = w in the following cases:

(A) if (1) holds with p € R
(B) if (1) holds with = + oo and there exists an ¢ > 0 such that
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0(Hy) € {0} U [e,+00)

(©) if (1) holds with B = + oo, and (U, t) has a unique ground state. In these
cases o' can even be taken to be a T"-KMS state at value p.

Proor. We first show that the stability condition (2)(b) is equivalent to the by now
familiar condition

/_0o dt ([P, (4))) = 0 )

o0

for all 4, P € y. But this is a consequence of the relation
t
PPe(A) = A — i / ds (P, 5,(4)])
0
which gives
o) = () = o) —id [ ds ([P (a)
0
W () = oG A) = () =i [ ds o (P

and hence

o0

(@) —at)/a=—i [ dsa(psa)
The Lebesgue-dominated convergence theorem and requirement (2) on the family
{@*} now immediately imply that the two stability conditions are equivalent. Thus,
it follows from Theorem 5.4.20 that (2) implies (1) for some € Ru{too}. But (1p)
for f € Ru{+oo} implies (x) by Theorem 5.4.17.
Now, (1p) for € R\{0} implies that w is a factor state by Theorem 5.3.30 (3)
and if (1) is true for f € {+o0}, then w is pure by Theorem 5.3.37. Thus, w is a
factor state in both cases, and it follows from Example 4.3.34 and the asymptotic
abelianness that
Mmoo, (A1) -7, (4n) = 0(4)) - - 0(4,)
inf|t;—t;]— oo
i#j

foralln € Z; and all 4, € A.

If (15) holds for f = 0, i.e., w is an extremal invariant trace, then w is an extremal
invariant state by asymptotic abelianness, and thus

Mw(A4t(B)) = w(4)w(B)

by Theorems 4.3.17 and 4.3.22.

If w is assumed to be a factor state, one derives n-point clustering as above, and
hence (2) and (1p), for some f € Ru{+too}, are completely equivalent.

But if 2 has a unique trace-state, then every extremal (7, §)-KMS state w must be
a factor state. For 8 # 0 this follows from Theorem 5.3.30. (If § = 0, then w is the
unique trace and is automatically a factor state.) The equivalence and (2) and (1p),
for some f € Ru {£oo}, follows once again.
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The last statement of the corollary follows from Corollary 5.4.7 and Theorem
5.4.4 in case A, Proposition 5.4.18 in case C, and the remarks preceding this pro-
position in case B.

A slightly annoying feature of the stability requirement (2b) of Corollary
5.4.21 is the small order in A behavior required for w*’(4) — w(4). One may
avoid this by assuming stability in norm of the limits lim,_, 1 ., @ o . To be
more precise, assume that 7 satisfies a uniform L'-asymptotic abelian property
in the sense that

t (I[P, 7P ()]
is an L!-function for all 4, P = P* € Ay and / sufficiently small. Proposition
5.4.10 and its subsequent remark then imply that the Meoller morphisms

y}f: lim rff:r,
t—+o0

exist strongly and are *-automorphisms of 2. Furthermore,

AP _ _JP. P
YT =T V4

Define states w?” by
—1 . A
ol (4) = () (4) = lim (< (4))
and then w* P are t*F-stationary states. Now the stability condition
li o=
an}) |0l — o] =0

implies that  is a -KMS state for some value f € R U {+ co}. This is seen as
follows. First, note that the states %’ have a property of return to equilibrium,
1e.,

lim w/f(t,(4)) = lim o (:*1,(4)) = o' ("7 (4)) = w(4)

t— 400 t— 400

and
lim o™ (,(4)) = w(4) .

— — 00

Thus, letting 7 — oo and S — — oo in the relations
T
o (er(4) = 4)/2 = =i [ droif (P u(a) |
0

0
W (4= d)/2 = =i [t (P
N

we obtain

0]

(@ ~ )4 = i [~ droi, (P (+)

—00

Theorem 4.3.17 implies that the two states ot = wo (y2F)” "are centrally er-

godic with respect to the action ¢/ = y%7,(y%)”" and hence it follows from
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Theorem 4.3.19 that the @’ are either equal or disjoint. But ||0*f — o*|| < 2
for small A by the stability requirement, and w’f and w* cannot be disjoint by
a straightforward extension of the argument used to prove Corollary 2.6.11. It
follows that

=

+

CL)AP /;P

for small 4. Hence, letting 1 — 0 in (%) we find the standard stability condition

/ dt ([P, (4)]) = 0
—00
and w is a T-KMS state at some value f§ € Ru{£ oo} .

The stability required for the state in Corollary 5.4.21 could be viewed as a
stability against contamination of the system. The perturbation of the Ha-
miltonian represents the introduction of an impurity into the system. One
could alternatively envisage another kind of stability, namely, that the system
(2, 1) in the state w is stable in coexistence with another system (%, 7') in a
state ', i.e., the joint system (A ® W, t ® 7') is stable in the sense of condition
(2) of Corollary 5.4.21. One then has directly

/ dt (FOF' (1) - GG (1) = 0 |

where F,F', G, and G’ are defined as before Observation 1 of Theorem 5.4.19.
If @' has strong clustering properties and is a v'-KMS state at value f € R, one
can now proceed as in the proof of Theorem 5.4.19 to show that w is a T-KMS
state at the same value f§, without assuming any purity of w. Assuming purity
of w, it is enough that ' is not a ground, or ceiling, state to reach the same
conclusion.

5.4.3. Gauge Groups and the Chemical Potential

In the previous subsection we described how the inverse temperature f§ enters
the formalism of thermodynamic equilibrium from requirements of stability.
But in the description of equilibrium states of the ideal Fermi and Bose gas in
Sections 5.2.4 and 5.2.5, these states were also characterized by a second
parameter yu, the chemical potential. Equilibrium states ¢ were considered to
be states which are 1y,-KMS states at value f8, where ¢+ y,, is the group of
gauge automorphisms of the algebra, i.e., t— 7y, is the group of Bogoliubov
automorphisms induced by the unitary group ¢ +— ¢1 on the one-particle space.

In order to see how the chemical potential enters one has to examine the role
of gauge invariance more closely. The setting of the problem is described by the
following definition.

Definition 5.4.22. A field system is a sextuple (&, 2, G,1,7,6) where § is a
C*-algebra with identity, called the field algebra, G is a compact group, called
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the gauge group, and g € G — y, is a continuous, faithful, representation of G
into the *-automorphism group of §. Further A = §, the fixed-point algebra
under the action of G, is called the observable algebra and t — 1, is a con-
tinuous one-parameter group of *-automorphisms of &, called the time-trans-
lation group. Finally, ¢ is a fixed *-automorphism of § such that
=1, o€ {7559 € G} .
The groups 7,7, and ¢ are interrelated by
0l = 71,0, O"))g = ')’gO', Ttyg = ngt ’

forallte R,g € G.
Define the even and odd subalgebras of § by

F,={4€ Fod)=4}, F_ ={deFo4)=-4}.

Then § is assumed to have the following asymptotic commutation property
with respect to t:

lim {|[4,7(B)]|| =0

lt]— o0
if4€yBc,,and
Jim_ 14, (8} =0

if4Be§_.

In typical applications the field algebra, or the algebra of quasi-local op-
erations, is the algebra generated by creation and annihilation operators a:(f)
and a;(f), where the index i/ denotes the different particle types and their
transformation properties under internal symmetries. The group of these
symmetries constitutes the gauge group G. In an example of scalar particles the
index 7 would range over 1,2,...,n, for some n € N and G would be the n-
dimensional torus T". An element g € G is parametrized by #n angles
0 < ¢; < 2m in this case, and the action of the corresponding automorphism Vg
is explicitly given by

v9(a; (f)) = €a;(f), vg(a(f)) = e alf) .

As G represents inner symmetries of individual particles one expects y to
commute with time translation 7, and one also expects y-dependent quantities
to be macroscopically unobservable. Hence the name observable algebra for
A = F’. The other concepts occurring in Definition 5.4.22 have been explained
earlier (see, for example, Definition 2.6.3).

Since T and y commute, it follows that  is globally t-invariant. Moreover,
as o € y; one has AW C F, and hence A is asymptotically abelian with respect
to 7. The results of the previous section then justify the KMS condition as a
criterion for a state w of 2 to be an equilibrium state. But in Sections 5.2.4 and
5.2.5 the equilibrium states ¢ of the ideal Fermi and Bose gases were defined to
be KMS states at value f for some group of automorphisms of the form
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t € R 1y, where ¢t ¢ is a one-parameter subgroup of G given by the
chemical potential. Conversely, ¢ — & determines the chemical potential. But
the restriction of # — 7,y,, to U is just 7|y, and hence w = |y satisfies the -
KMS condition at value .

The aim of this section is to show that knowledge of the state w = ¢y is
enough to determine the chemical potential under quite general circumstances.
This is achieved in two steps:

(1) If w is an extremal t-invariant state of 2, then w has an extremal -
invariant extension ¢ to &, and any two such extensions ¢, and ¢,, are
related by

@1 =¢07,

for some g € G.

(2) If, in the situation described by (1), 7, is a faithful representation of U
and o is a -KMS state at value g € R\{0}, then there exists a con-
tinuous one-parameter subgroup ¢ — &, of G such that ¢ isa £ +— 7,y -
KMS state at value f.

We first prove these two results, and subsequently make several remarks
pertaining to variants, the case f = 0, etc.

Before the actual proof of these theorems, we characterize the extremal
invariant states of field systems by cluster properties. In the case that the
system is asymptotically abelian, i.e., 6 =1, these properties follow already
from Theorem 4.3.17 and Example 4.3.5. For general ¢ we use a method of
proof which is similar to that used to characterize states with trivial even
algebra at infinity in Theorem 2.6.5.

Proposition 5.4.23. Let (&,%U,G,t,y,0) be a field system, and ¢ a t-in-
variant state of §. Then oo = @, i.e., golg_ = 0. The following conditions
are equivalent:

(1) o is t-ergodic.

(2) o has the clustering property

T
m 7-5 s dt p(Aw(B)) = ¢(4)p(B) -
Furthermore, in this situation one has

T

(A1 = lim dtmy(:(4))

T-S—o00 T — 8 S
where the limit exists in the strong operator topology. Finally,
T

L ﬁ | dto(dn(d)y,(Bu(B))) = ex, 5o (A1, (B))0(d'7,(B)

for all A, A', B, B' € §,,g € G, where the convergence is uniform in g, and
ewp=—1if A, B€ §_and ey p = +1 otherwise.
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Proor. Let ¢ be a t-invariant state on §. If U, is the unitary group which im-
plements 7 on $,,, and E, is the projection onto the U,-invariant vectors, it follows
from Example 4.3.5 that

T

. 1
] S—»oo T S/ dtm,(t,(4 —T—l}ilztloo 75/ dt U, (t)m,(4)Q,

= Eymy(4)Q,
forall4 € §.

The last assumption of Definition 5.4.22 and the relation above imply that the
following limits exist

: T
Jim s [ dem ) @10,
. LT
= &4,87y(B) (T_lgiloo 7-5 )5 dtn,p(r,(A))Q,P>
= EA,an(B)E{pn{p(A)Qrp
and, by uniform boundedness, the limits
M(A4) = Tl;rgoo T—% / dtmy(t,(4

exist in the strong topology. Now, if 4 € &, then M(4) commutes with =, (F) and
M(4) is t-invariant, hence
M(4) € {my(F)uU,(R)} )

for4 e §,.
If4€§_, then 4* € §_, and we have

X . 1 T .
(@A) By )20) = tim 7= [ atop(as ()
T

. 1 .
—_T—lg'TooTTS ¢ dt (1, (4)A")

= —(Qp, 1y (A)Epmy (4)"Q,)
and hence, applying this on (4 + 4*)/2 and (4 — 4%)/2i ,
E,my(4)Q, =0 .
In particular, ¢(4) = 0 for all 4 € §_ and this implies that
pos=¢ .

Let U, (o) be the unitary implementing ¢ on 9,- Then M(4)U,(c) commutes with
7,(%), and it is also t-invariant, hence

M(A)U, (o) € {mp(F)LUp(R)} )

forde §_.
We now prove (1) = (2). Ergodicity of ¢ is equivalent to

{7y (F)VU,(R)} = CT
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by Theorem 4.3.17. If 4 € §_, it follows from (*) that
M(4) = (Qp, M(4)Q)1 = @(4)T .
If 4 € §_ (") implies
M(A)Uy(6) = (Qp, M(A)U,(0)Q)1

= (Qp, M(A)Q)1 = p(A)1 =0,
where the last relation follows from the first part of the proposition. Hence

M(4)=0= @A)
for 4 € §_, and by linearity

for all 4 € §. Thus

T
Jim 77 [ dtos(8) = @0, 5 (MBIR,) = o4)0(8) -

Conversely, (2) = (1) is an immediate consequence of Theorems 4.3.22 and
4.3.17. It remains to establish that

T
i s [ de s, B ) = or. s, (B)o 1, (8)

for 4, 4', B, B' € §, uniformly for g € G. Since G is compact and g ~ 7,(B) and
g 74(B') are continuous, it follows that

g go(Ar,(A’)yg(B‘c,(B/)))

is equicontinuous in g when ¢ ranges over R. Hence, the uniformity of the con-
vergence in g follows once we can show pointwise convergence. But this follows
immediately from the two-point cluster properties of ¢ and the asymptotic com-
mutation property

Jim_ )8 = e, aBe(4)] = 0

together with the fact that y,(¥,) = . forall g € G, as a consequence of gy, = y,0.
We now state the first main theorem of this section.

Theorem 5.4.24. Let (&, U, G, 1,7, 0) be afield system, and w an extremal -
invariant state on .

It follows that w possesses an extremal t-invariant extension ¢ to the field
algebra §. Moreover, two such extensions ¢, and @, are related by

Py =207,
for some g € G.

Proor. We first prove the existence of ¢ by a method analogous to that used to
prove Proposition 2.3.24. This proposition implies that w has an extension to a state
of § and, by applying an invariant mean to this state composed with 7, we deduce
that the set E of t-invariant extensions of o to states of § is nonempty. But E7 is
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clearly convex and weak* compact, and thus it contains an extremal element ¢ by the
Krein-Milman theorem. If ¢ = 1| + (1 — 1)¢p,, 0 < 4 < 1, where ¢, and ¢, are 1-
invariant states of §, one has = |y =A@ |y + (1 — L)p,|yq and hence
?1lyt = @2l = @, by the extremality of w. It follows that ¢, = ¢, = ¢ since ¢ is
extremal in £7.

[0
To prove uniqueness of ¢ up to gauge transformations, fix an extremal t-in-
variant extension ¢ of w and define

={9€Gpoy,=0p} .

In the sequel we denote by C(X) the C™-algebra of continuous functions on the
compact set X, and for f€ C(G) and g € G we define

(p(9))(s) = f(sg9), (A9)f)(s)=flg™"s) ,
for s € G.
OBSERVATION 1. The norm closure of
Co(G) = {0 g € G 0(y,(4)); 4 € §}

in the continuous functions C(G) on G coincides with C(G,\G).

Proor. Indeed C,L(G) is selfadjoint since @) = ") for 4 € §, and multiplicative
since by Proposition 5.4.23,

L S/ dt " (g) = o (g)0®)(g)

for 4,B € §, uniformly for g € G.
Define an equivalence relation ~ on G by g, ~ g5 if, and only if, f(g,) = f(g2)
for all f € C}(G). It follows by the Stone-Weierstrass theorem that

Co(G) ={feC(G);g1 ~g2= flg1) = f92)} = C(G/ ~) .
But G/ ~ = G,\G because

g1~ g2 @(y,,(4)) = @(y,,(4)) for all 4 € §
< p(4) = (p('))gzg]—l(A)) forall4 € §
A4 gZer S G«p =02 € thgl .

Hence

Cy(G) = C(G,\G) .

OBSERVATION 2. Let K;,i = 1,2, be closed subgroups of the compact group
G, and identify C(K;\G) with the space consisting of the functions in C(G) which are
invariant under all left translations A(k;), & € K;,i = 1,2. It follows that each “-iso-
morphism of C(K|\G) into C(K>\G) which commutes with the right translations
p(9),9 € G, is of the form A(/) for some h € G such that K> = hK A~

Proor. The transposed map ¢* of ¢ maps the pure states K;\G of C(K,\G)
continuously onto the pure states K;\G of C(K;\G) and hence defines a



Stability and Equilibrium 203

homeomorphism ¢*: K;\G — K;\G which commutes with right translations by
geaG.
Thus

0" (Kag) = 0" (Kzeg) = 6" (Ka)g = (Kih™)g

for all g € G, where h € G is any element such that ¢*(K;) = K14~!. By transposition
we obtain ¢ = A(h). Since of, f € C(Ki\G), has to be invariant under all
AMky), ky € K,, we must have

F7k ) = (af) k5" g) = Mka) (o) (g) = of(9) = f(h"'g)

for all ky € K», f € C(K1\G), and hence h~'k5' € K1h~! or K C hKh~'. A similar
argument with ¢ replaced ¢~' shows the reverse inclusion, and

K2 = hth—] .

We now resume the proof of the uniqueness part of Theorem 5.4.24. Let ¢, and
@, be two extremal t-invariant extensions of w to &, and K; = G,, the corresponding
stabilizers in G. Now the element

/dg V4(4"1,(B))
G

belongs to U for all 4,B € §, and thus gives the same value of ¢, and ¢@,. It follows
that

A B M B
@, 0 i) = /dg¢§A "(9)0 (9)

. 1 r .
jtim s [ ([ aav,arson)

: L .
dim_ g [ o [amnrsio)

A B
= (5", o} ))LZ(KZ\G) ;

where we used Proposition 5.4.23. It follows that there exists a linear isometry V'
from L?(K;\G) onto L?(K,\G) defined by

Vo' = ¢

EN
=

El

for 4 € . Since

1 T
i dt 0“4 B) () — oW (7)0®
L oy B (9) =¢"(9)0(9)

uniformly in g € G, it follows that

A B A B
V(e1el”) = 05 05”

for A,B e §. If T; is the representation of C(K;\G) on L*(K;\G) obtained from
pointwise multiplication, one then has

L)) =Vh(N)V”

for f € C(K;\G). As the T; are isometric, one concludes that V'is a *-isomorphism of
C(K;\G) onto C(K>\G). The computation

V(e o™ }g) = ¢2(344(4)) = {p()V 0" }(g)
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shows that ¥ commutes with the right regular representation p, and Observation 2
yields a g € G such that €0<2A) = l(g)(pEA) forall4 e U, ie.,

¢(4) = 901()’9-1 (4))

for all 4 € . This ends the proof of Theorem 5.4.24.

The main result on the existence of the chemical potential is the following.

Theorem 5.4.25. Let (§,U,G,t,7y,0) be a field system, and o an extremal
©-KMS state over W at value p € R\{0} such that the corresponding re-
presentation of W is faithful. Then each extremal t-invariant extension ¢ of o
to § is a KMS state at value B for a one-parameter group of *-automorphisms
of § of the form t — TV, Where t — &, is a continuous one-parameter sub-
group of the center of the stabilizer G, = {g € G; ¢ o Vg = @} of ¢. The group
t— &, is uniquely determined by o.

Proor. The proof of this theorem requires at several points the spectral theory of
the group G, i.e., the theory of the unitary representations of G. Since we have not
developed this theory for general compact groups, we will content ourselves with
proving the theorem for the slightly more transparent case of abelian groups G. The
extension to general G is accomplished by replacing characters with irreducible
representations (which are automatically finite dimensional), and products of
characters with tensor products of representations. As a final remark on non-abe-
lian G, note that if ¢ satisfies the 77.,-KMS condition at value f € R\{0} for some
one-parameter group t+— ¢, in G, then @ is ty:-invariant by Proposition 5.3.3 and as
¢ is t-invariant it follows that &, € G, for all ¢. But if g € G, then ¢ = @ o 7, and
hence Vg1 TeVe, Vg = TYe, By Proposition 5.3.33, thus g~ '¢é,9 = &, ie., ¢ — £, is con-
tained in the center of G. Throughout the sequel of the proof G is assumed to be
abelian.

Let {Sf),/,, Ty, Uy, Q,} be the covariant representation of the C*-dynamical system
{& R x G,,7 x 7}, and let {M, R x Gy, T x y} denote the corresponding W*-system,
ie, M=mn,(F)", etc., and let F and M be the fixed-point algebras of the action
of G, on & and M, respectively. By integrating over the compact group G, one
easily shows that MM is the weak operator closure of §°, but in fact we can show
more.

OBSERVATION 1
M = 7,(A)" .

Proor. Let G be the dual group of G, and if y € G, let
F{x}) = {4 € Fy,(4) = 1(9)4}

be the corresponding spectral subspace of § (see Definition 3.2.37). Define the subset
2z, C G by

L, ={x€G; thereisan 4 € & ({x}) with o(4) #£ 0} .
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OBSERVATION 2. I, is a closed subgroup of G with annihilator G,,
Z¢=G$={x€G;x(g)=lforallgeGq,} ,
G,=%,={geG; ylg)=1forall yeZ,} .

Proor. Ify, ¥ € Z,thereared € & (x), 4 € F (1), with p(4) # 0, p(4') # 0. But
then A7, (4") € & (xx') and as

. LT ) :
Jim s [ drodn(a) = o)ela) £0
by Proposition 5.4.23, it follows that ¢(47,(4’)) # 0 for some ¢. Hence yy' € X, and
%, is additive. On the other hand, if 4€ & (x) then A" € §F(7) and as
@(4*) = p(4) it follows that X, is symmetric. I, is then a closed subgroup of G
since G is discrete. '

In general we have

@(14(4)) = x(9)e(4)

if 4 € & (x). Thus if y € Z, and g € G, we must have x(g9) = 1, i.e,,

G,CZ, .
Conversely, if g € Zi, and 4 € § (x) then

?(74(4)) = ¢(4) if yeZ,
=0=0¢(4) ify¢Z, .

Hence g € G, and the reverse inclusion

¥, CG,

holds.

OBSERVATION 3. 9% is the von Neumann algebra generated by the
AeF (1), x €, e,

e ={ s}

1EZ,

Proor. If 4 € §(x),x € Z,, Observation 2 implies that 4 € M, and hence the
inclusion D is valid. To show the converse, note that any 4 € 9 has the weak-
operator convergent Fourier expansion

A=), 4G) = [ doto)4) -

1€G

Thus if 4 € M it follows from the uniqueness of this expansion that

(x(g) = DA(x) =0

for all g € G, and all y € G. Hence y € G if A(y) #0 and as G} = £, by Ob-
servation 2, the reverse inclusion follows since
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A= Ay

1€,
We now finish the proof of Observation 1. The inclusion
M D, (A"
is evident since A = F°. To show the converse, it suffices, by Observation 3, to show

thatif 4 € §(x),x € Z,, then 4 € n,(A)". But since 7 € T, by Observation 2, there
exists a B € §(¥) with ¢(B) = 1. But by Proposition 5.4.23 the limit

. émmﬁ/[]m“’ (u(B)A) = p(B)A =4

exists in the strong-operator topology. As 7,(B)4 € §% = U for all ¢, Observation 1
follows. :

Since 7, (A)" C 7, (F)" CM% it follows from Observation 1 that

(W) = 7, (F%)"

and hence Corollary 5.3.4 implies that the restriction of ¢ to F° is still a t-KMS
state at value . Hence, replacing U by F°° and G by G,,, it suffices to prove Theorem
5.4.25 in the case that G, = G, i.e., we may assume that ¢ is gauge invariant from
now on. (Note that ¢ € G,, by Proposition 5.4.23.) With this assumption we prove:

OBSERVATION 4. The set C2(G) of functions of the form
g€ G (dy,(B)) ,
where 4, B € §, linearly spans a norm-dense subspace of C(G).

Proor. [C7(G)] is closed under multiplication, because Proposition 5.4.23 implies
that

. 1 T
im g | o), (BeB) = e won, ()0 (4'7,(B)

when 4, 4, B, B’ € §_, uniformly in g. Thus

9= @Ay, (B))p(d'7,(B"))
is contained in [C2(G)|, when 4, 4, B, B' € §,, and by linearity this is still true for
general 4, A', B, B' € §.

We next show that [C2(G)] is closed under complex conjugation. First, note that

as 7, () is strongly dense in M, [CZ(G)] is also the norm closed linear span of the
functions

(p(A,B); g— (Q(w Ayy(B)Qf/J) )
where 4, B € M. But B has a weak-operator convergent Fourier expansion
B=Y B(z), B()= /Gdg 1(9),(B)
7€G

and hence it is enough to consider elements B which are eigenvectors for ; 7, 1.€.,
74(B) = 7(g9)B. If BQ, =0, then ¢5) =0 and there is nothing more to prove. If
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BQ, # 0, then BB* # 0. But since BB* € M and ¢lye is a KMS state at value §, it
follows from Corollary 5.3.9 that ¢|yc is faithful and hence @(BB*) #0, ie.,
B*Q, # 0. But y,(B*) = x(9)B*, and hence

@B (g) = o€ B)(g)

for a suitable C € M. Now, Cé(G) is globally left and right invariant under trans-
lations by G by the relations

Mg)pW B = B p(g) ol B) = gl 7(B)

Hence, it follows from the Stone-Weierstrass theorem, as in the proof of Observation
1 in Theorem 5.4.24, that

Ny, = {9 € G;0(dy,(B)) = ¢(4B) for all 4,B € ¥}

is a normal subgroup of G and

[C5(G)] = C(G/N,) .

But N, is trivial because if A€ N, and B €9 ({y}) for some y € G, then

B — y(h)B € M ({x}). But
¢((B = x(M)B)" (B — 1(h)B)) = ¢((B — x(A)B)"(B — 7,(B))) =0
by the definition of N, and as
(B — x(h)B)* (B — 1(h)B) € M
and @|ye is faithful it follows that

B = y(h)B =7,(B) .
By Fourier expansion we find that B =y,(B) for all B € M. But y is a faithful
representation of G on §, and m, is a faithful representation of ¥ as we shall
subsequently show. It then follows from the last relation # = e. Hence N, = {e} and
one concludes that Observation 4 is valid.
To establish faithfulness of 7, we assume that 4 € § and 7n,(4) = 0. But then the
Fourier expansion of 7, (4) takes the form

7o (A) = Zn(p(A(x)) ,
7€G
where

A(p) = /G dg7(0)1,(A) € F -

However 7,(4(x)) =0 by the uniqueness of this expansion, and hence
7o (A(2)"A(x)) = 0. Since A(y)"A(x) € U, it follows from the faithfulness of m,|y that
A(x)"A(x) = 0. Thus 4(y) =0 and 4 = 0.

We now complete the proof of Theorem 5.4.25. Since ¢ly is a -KMS state at
value f8, we have

/dgw(A*Tr(A’)fz/x(vg(B‘n(B’)))) = /dgw(y'g(B‘t,(B’))A*fz(A’))

when 4, 4', B, and B’ are entire analytic for 7. If 4, 4, B, B’ € §. it follows from
this relation and Proposition 5.4.23 that
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8A',B/dgco(A*Vg(ffﬁ(B*)))q)(A'vg((fiﬁ(B'))) =83f,A/dgqo(vg(B*)A*ﬁP(?g(B')A') :

Now, using &, C§,, 3 C¥, FF CF,F.§ S, and the fact
that q’|i’?, =0, it follows that both sides of this equation are zero if &y B 7 €p 4, and
as a consequence

/ dg (4", (ts(B') oAy, (1(B))) = /dgw(ygw*)A*)w(vg(B')A') .

This relation extends by linearity to all entire t-analytic 4, 4, B, B’ € §. Using
7ig(B*) = 1_i3(B)" this may be written as

(s@E8B)r A oW aB)y = (o B) 5 4))

)

where (, ) denotes the scalar product in L*(G), and (sf)(g) = f(g") for all g € G.
Replacing B’ by 7_;3(B’) in this relation we obtain

(-8B A) | G BYy _ (4. B) g

If 4; and B; are entire analytic for t and «; € C,i = 1,...,n, we obtain from this
relation

(a8, 4)y

n n
( Z o s (B A (4, B’)) — (Z o; ol B 5 p(T-in(B), A’)) .

i=1 i=1

As [C2(G)] = C(G) by Observation 4 it follows that we may consistently define a
linear operator S on L*(G) by

n
D(S) = { Z o @ B); 4, B; entire analytic for r}
i=1
and
n n
S( o (P(Ai’B')> = % SQD(LW(B‘V)A[) :

One then obtains the relation

(S¥,9) = (¥, So)

for Y, ¢ € D(S). Hence S is a densely defined symmetric operator.
Using the relations

(4. B) (4), B)

=g B - plg)et P = o
one then deduces that § commutes with the left and right regular representations of
G on L*(G). Since Si(g) = A(g)S for all g, it follows that S commutes with the
projection

Mg)o (4, B) (d,7,(B) ,

Ez=/Gdgmﬂ»(g) =/Gdgx(g)p(g)

onto the one-dimensional subspace of L?(G) spanned by the element g +— %(9)-
Hence S is essentially selfadjoint with spectral decomposition of the form

5= S(E, |

71€G
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where S(y) € R. Now, as the set of ¢*-£) spans C(G) by Observation 4, there exists
for all y € G a pair 4, B of t-analytic elements such that

E;WB £0 .

If one defines
B = [ dax@,(8) |

then By is still t-analytic since y7 = 7y. Moreover,
P B) = E,p4 B £ 0
and in particular
CP(B%B-—I) #0 .
Furthermore, B = 1;5/5(B;) satisfies
o8 ¢ E,C(G)
since
%2 (g) = o(t_ip2(By)tig2(v,B5)) = 1(9) 0" B)e) .
We then compute
0 < @(B3B3) = o((t_ip/2(B))(1_ip/2(B))")
= ¢(1-ip(B)B")
=S¢®P(e) = 5(x)¢(8"B)
and this implies

S() >0 .

It follows that § is a strictly positive selfadjoint operator and hence 5" exists for all
t e R

The weak clustering of ¢ implies, by an argument which is by now standard, that
S D) = (o )S (o)) .
In particular using B = By, etc.,
S(') = S(0S()
for all elements ¥, € G. But this implies
5 (p Ui 1) = 5 (M) (o))
and hence
t— 55" =AdS"

defines a one-parameter group of *-isomorphisms of C(G) acting by multiplication
on L?(G). Since this action for each t commutes with left and right translations, it
follows from Observation 2 in the proof of Theorem 5.4.24 that for each ¢ there exists
a ¢, € G such that

Ad §" = A(&p)



210 States in Quantum Statistical Mechanics

But as the automorphism Ad 5" of C(G) is uniquely determined by the underlying
homeomorphism of G, ¢, is unique, and hence ¢+ ¢, is a continuous one-parameter
group in G. Thus,

O = TrYe,

is a continuous one-parameter group of *-automorphisms of .
Now, if 4, B € § are entire analytic for the two commuting groups ¢ and t, then
the one-parameter curve

s e (B)

in L*(G) has an analytic extension to ¢t = if. But

o E(g) = o(dy:r,u(B)) = 5 o4y, (B))
and so this extension is given by
So(dy,tip(B)) = (By_y(4)) = ¢(7,(B)4) -
In particular
¢(4oy(B)) = ¢(BA)

which is just the KMS condition at value j.
In the course of this proof we showed that =, is a faithful representation of & ;
hence the uniqueness of the group ¢ ¢, follows from Theorem 5.3.10.

We end this section with several remarks concerning Theorem 5.4.25. If G is
a compact Lie group, the one-parameter group ¢+ ¢, is defined by an element
in the Lie algebra of G which may be called the chemical potential of ¢. Since
any two extremal t-invariant extensions ¢; and ¢, of w are related by a gauge
transformation, Theorem 5.4.24, it follows from Proposition 5.3.33 that t— ¢,
is uniquely determined by w up to the transformation

(t— &) (=g ' Eg)

for g € G. Hence, if G, = G for some ¢, or G is abelian, then the chemical
potential is uniquely determined by w alone. Note also that #— ¢, is trivial,
Le., the chemical potential vanishes, whenever G, is trivial, i.e., ¢ has no gauge
symmetry whatsoever. In the usual case G = T = R/Z, the chemical potential
is a real number, and if it is nonzero ¢ is gauge invariant, i.c., G, =T for
all .

In the situation covered by Theorem 5.4.25 assume that &g is a closed

subgroup of G, i.e., t—¢& is periodic, and define subgroups Gy and H, of
R x G by

Go =R xG,, Hy={(t,&);t€R} .

Then Hy is a closed, normal subgroup of Gy and Gy/Hy is compact. Now
79 = T X y defines an action of Gy on §, and since ¢ is extremal t-invariant, ¢ is
extremal to-invariant. Assuming for simplicity that ¢ = 1, i.e., § is asympto-
tically abelian with respect to z, it follows easily from the compactness of ég
that § is asymptotically abelian with respect to — T/y¢,» and hence it follows



Stability and Equilibrium 211

from Theorem 5.3.32 that the decomposition of ¢ into extremal KMS states
for t+— 1,7, at value f, coincides with the decomposition into extremal Ho-
invariant states. (This decomposition also coincides with the central decom-
position by Theorem 5.3.30.) But then it follows from Theorem 4.3.37 that
there exists a state ¢ € éa(EgO) such that this decomposition is given by

o(4) = / 96 (0ql)

where dg is normalized Haar measure on Gy/Hp, and one may choose ¢ to be
t— 7,7¢,-KMS. Thus, all the translates ¢ o1q, are 1y,-KMS, and they are
extensions of @ to &, but they are not necessarily time-invariant states, they are
only periodic in time.

In our treatment of the chemical potential we assumed some form of
asymptotic abelianess of the system (&, R, ). This assumption is usually not
satisfied in quantum spin systems, and for the treatment of such systems it is
more appropriate to consider o which are invariant under space translations in
some direction in addition to being time invariant. If « is the space-translation
automorphism, then it is natural to assume that

lim ||da,(B) — &4 pon(B)A|| =0
|n|— o0
for 4,B € &, and then one can build up a theory of the chemical potential by
considering extremal o-invariant extensions ¢ of w to §. Theorem 5.4.25 re-
mains valid in this setting by virtually the same proof.

Finally we note that a modified version of Theorem 5.4.25 remains valid
when § =0, i.e., when w is a faithful extremal t-invariant trace-state of 2. In
this case an extremal t-invariant extension ¢ of w to § is not necessarily a
trace-state. Nevertheless, there exists a continuous one-parameter subgroup
t— ¢, of G, such that ¢ is a KMS state (at value —1) for #+— y; . This follows by
essentially the same proof, normalizing such that Ad §" = AEZ).

5.4.4. Passive Systems

Passive states of a dynamical system (21, t) were introduced in Definition 5.3.21
as states satisfying

—iw(U*3(U)) > 0

for all U € Uo(W)nD(0), where J is the generator of t and %, () is the
connected component of the identity of the group #() of all unitary ele-
ments of 2. This notion reflects a property of stability of equilibrium states
which is basically kinematic. For Gibbs states of finite systems it is a con-
sequence of the principle of minimum free energy. This was discussed in
Section 5.3.1 prior to Theorem 5.3.15 and it follows from this discussion that
io(U*6(U)) is exactly the difference in energy of the state  and the perturbed
state wy where wy(4) = w(U*AU). We next demonstrate that this energy
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difference can be directly interpreted as the energy transferred from the system
when it undergoes a series of external changes. But this transferred energy is
the mechanical work performed by the system and thus one establishes that a
state is passive if, and only if, it is unable to perform work in a cyclic process.
This is the second law of thermodynamics. Combination of this result with the
characterization of t-KMS states at positive f given by Theorem 5.3.22 then
provides a different justification for the t-KMS condition as a characterization
of equilibrium.

It is first necessary to have a “‘time-dependent perturbation” analogue of
Proposition 5.4.1.

Proposition 5.4.26. Let (N, 1) be a C*- or W*-dynamical system and let §
denote the infinitesimal generator of t. Furthermore, assume that
t € R— P, = P} € Wis a norm-continuous one-parameter family of selfadjoint
elements.

It follows that there exists a unique one-parameter family of *-auto-
morphisms t° of W satisfying

dt
and tf(A) = A, for all A € N. This family is given by
1/ (4) = u(4)

-+ ';i”/o dtl/o dl‘z.../o dtn[‘fz,,(P;,,), ["'[Ttl(Pf1)>Tt(A)]]] .

Moreover, one has

(4) = 17 (5(4) + i[P,, 4])

7 (4) = Tt (A7

where T* is the unique iterative solution of Fg =1 and

ar’
dtt - lrfT,(P,) 5
i.e., one has
t It th1
l"f:ﬂ—l—Zi”/ dt / dty - -- / dt,,’tt"(P,")'~-‘L',1(P,]) .
n>1 0 0 0

We will not give the proof of this proposition as it is essentially identical to
that of Proposition 5.4.1. The principal difference introduced by the time de-
pendence of the perturbation is that the group property of =¥ and the cocycle
property of I'” are no longer valid. Nevertheless, one can interpret the time
development of states and observables in the same manner as when the per-
turbation is time independent.

We next consider perturbations ¢+ P, with the property P; = 0 for t < 0 or
t>T and we also assume that ¢+ P, is norm-differentiable. This type of
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perturbation can be thought of as a smooth, and temporary, alteration of the
external conditions. But changing the external conditions transmits energy to
the system, i.e., mechanical work is performed by the external forces. If o is the
state of the system at ¢ < 0, then at time ¢ the state is given by o, = 7w and
the work performed on the system can be calculated by summation of the
incremental energy changes of w, for all # € [0, 7]. Explicitly one divides [0, T
into N intervals (#, t;+1) which are sufficiently small that , is essentially
constant on each interval and defines the work by

]\'l
Lo (0) =Y w,(P,—P,,) .

i=1

Thus in the limit N+ oo this definition takes the integral form

v [[an () - [ae(o(4))

An alternative way of calculating the work performed on the system is to
subtract the energy of the initial state w = w, from the energy of the final state
w7. But

or(d) = o(T7 o (AT7)

and analogy with the finite system, discussed prior to Theorem 5.3.15, indicates
that this energy difference should be given by —iw(I'7§(Th*)). This explains the
following result.

Lemma 5.4.27. Let (N, 1) be a C*- or W-dynamical system and o a state
over W. Furthermore, let =¥ denote the perturbation of © arising from a
norm-differentiable family {P},.y of selfadjoint elements P, € D(8) such
that Py =0 for t <0, t > T, and do(P,)/dt = 6(dP,/dt). Where & is the
generator of t.

It follows that

T
L' (w) = /0 dtw<ff (%)) = —iu)(rl;é(l";’:)) :

where T% is the unitary element relating ™ and 7.

Proor. The derivation ¢ is closed and it follows from Proposition 5.4.26 and the
analysis of Section 3.2.2 that I'7 € D(3), ¢+ (I'") is differentiable, and

d arr
—o(I)=6(—+) .
a’t(’) ((dr>

Therefore

T P P
—io(Tho(IT) = —i/ dtw<dr’ STy + 175 <d§; )) )
Jo

dt

But the differential equation for I'” immediately yields
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~io(T78(07)) = /Ordtw(rfn(Pz)fS(rf*) ~ I7o(u(P)TT))

:_/Tdm(rfr,((S(P,))r;’*) .
0

The second step uses the derivation property of ¢ and dt = 6. But remembering
that T'” relates t and <” one can reexpress this as

T
—io(TEO(TE)) = — / dto((5(P,)) -
0

On the other hand one may integrate by parts and use Py = 0 = Pr to find

)= [ dzw(("d—t) @)=~ drol6(R)

This establishes the desired equality.

Combination of Lemma 5.4.27, Theorem 5.3.22, and an approximation
argument then gives the following characterization of t-KMS states.

Theorem 5.4.28. Ler (N, 1) be a C* or W*dynamical system and w a state
over . Consider the following conditions.

(1) o isa(zt,p)-KMS state for some B € [0, oo] and w is t-invariant.
(2)  The work performed on the system is positive, i.e.,

v [[an(e(2) 0

Jfor every norm-differentiable family {P,} . of selfadjoint perturba-
tions P, € W such that P, =0 for t <0 and t > T.

It follows that (1) = (2) and if there exists a group G and an action o« of G
as *-automorphisms of W such that w is a-invariant, o commutes with T, and w
is weakly a-clustering, then (1) < (2).

Proor. (1) = (2). First, assume that {P,}, . satisfies the condition of Lemma
5.4.27. Tt follows from the passivity property established in Theorem 5.3.22, and
Lemma 5.4.27 that

L (w) = —io(TH3(T5)) >0 .

Second, if P, ¢ D(0), then one replaces it by the regularization

P = \ﬁ / dse™™ o (P,) .
T

In the C*-case one has ||P} — P,|| — 0 and ||dP}/dt — dP,/dt|| — 0 by Proposition
2.5.22 and it follows easily that L7 (w) — L7 (w). Hence

LP(w) = lim L (w) >0

n— o0
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by the argument of the previous paragraph. In the W*case the argument is a little
more delicate. As w is t-invariant the group 7 is implemented by a unitary group U,
in the representation (9,,, 7,, Q). But if P! are the above regularizations of P;, one
then has

I

lim |7, (P — Py s”192071-1/2/dse—szunw(fs,ﬁ(P,)—p,)l,z,||

+[[(Un(s/vn) = Dmo (P} =0

for all Y € $,,, and similarly for dP/dt. It follows immediately from the uniform
boundedness of strongly convergent sequences, and the Lebesgue-dominated con-
vergence theorem, that 7, (I'”" — T'7) — 0 in the strong-operator topology. There-

fore,
. (dP! n dP?} .
o4 (5E)) = (ool () Uu-imarT 02

(e(5)

and another application of the Lebesgue theorem gives

LP(w) = lim L (w) >0
H— 00

< lim n_l/z/dse”SZ{IIP,H [(Un(—s/+/n) — Dyl

as before.

(2) = (1) : We argue that condition (2) implies that w is passive and then apply
Theorem 5.3.22.

Let U belong to the connected component % () of the unit element in the group
of all unitary elements of . It follows that there exists a finite sequence {4;}, <y of
selfadjoint elements 4; € A such that ||4;|| < = and

N
U=Hei’4j .

j=i
(This follows because ||U; — Us|| < 2 implies U; = Use! by spectral analysis.) Next
let 6 denote the generator of ¢ and assume that 4; € D(6) for all j=1,2,...,N.

Therefore, U € D(6) by Lemma 3.2.31. Now if fis a twice-differentiable function on
R such that f(f) =0 for t <0 and f(r) =1 for t > T we define U, by U, =1 for
t<0,U,=Ufort>T,and

U, = & ... il t=iT/N) ;1

for jT/N <t < (j+ 1)T/N. Further define perturbations P, by

LdU,
P =—-it_ | U —
t ”:t( f dt) »

i.e., P, and U, are linked by the differential equation
au,
dt
Thus, U, = l"f and in particular U = l"’;-. But P, satisfies the conditions of Lemma
5.4.27 and hence

=iUr(P,) .
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—io(US(U)) = LF(w) >0 .
Finally, the case that U € D(0) but 4; ¢ D(0) is handled by approximation. We omit
the details.
Remark. There is one simple but interesting application of the identity
L7(0) = —io(T58(I5)
of Lemma 5.4.27. Assume that A=A, @ Wy, 1=17 ® 12, and w = v @ w»,
where w; is a (t, §;)-KMS state with f; >0, i = 1,2. Thus (2, t) can be envis-
aged as two independent systems. Next consider an external interaction
{P:},cR. of the type considered in Lemma 5.4.27 which temporarily links the

systems.  Astisa product, 0 = §; ® 1 + 1 ® 0, where §; is the generator of 7;
and hence

L"(0) = L{(0) + L§(o) ,
where
Li(0) = —io(T7(6 @ )([F)) ,  L5(w) = —io(T7 (2@ 6,)(IF)) -

These latter quantities represent the mechanical work performed on the first
and second subsystems, respectively. But w is a (7,1)-KMS state where
T, =11, gt @ T2, g, and hence

BILT (@) + BoLE (0) = o(TH (161 @1+ B2 ® 62)(TF)) > 0
by Theorem 5.4.28. Thus setting ; = 1/7; one finds
(Ty — TH)LY () < TP (0) .

Now if T} # T», then w cannot be a (z, §)-KMS state for any > 0. Thus, it
could happen that L”(w) < 0. If, however, T} > T then one must also have
L?(w) < 0 and

—LP(U)) < T| - T2
“L{(w) = T

This is Carnot’s formula which states that the efficiency of a heat motor is
limited by (T} — T»)/T) where T} and T» are the temperatures of the heat source
and heat sink, respectively.
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Sections 5.2.1, 5.2.2, and 5.2.3

The study of the CCRs and CARs over ) = L*(R*) was a direct outcome of
attempts to combine quantum mechanics and classical field theory.

The CCRs were introduced by Dirac [Dir 1] in 1927 in the context of
radiation theory and are generalizations of Heisenberg’s commutation rela-
tions in quantum mechanics. The CARs were introduced by Jordan and
Wigner [Jor 1] in 1928 for the purpose of quantizing the electron field. These
authors also proved that the CARs over an n-dimensional Hilbert space gen-
erate the full 2" x 2" complex matrix algebra. Since the late 1920s the theory of
creation and annihilation operators has been developed by many people in a
multitude of specific contexts, e.g., many-body physics, quantum optics, sta-
tistical mechanics, relativistic field theory, etc. Much of the analysis is, how-
ever, of a heuristic nature. Rigorous mathematical analysis of the commutation
relations, and the associated algebras, only began in the 1950s, e.g., essential
selfadjointness of @(f) was first proved in 1953 by Cook [Coo 1] who estab-
lished that the ®(f)+ i1 have dense ranges. Cook also gave a precise de-
scription of the Fock space, introduced by Fock in 1932 [Foc 1], and the
corresponding representation of the CCRs. Consequently, this representation
is often called the Fock-Cook representation.

The abstract structure of the creation and annihilation operators was also
studied in the 1950s, notably by Friederichs [[Fri 1]] and Segal (see [[Seg 1]] for
a description of the subject during this period). In particular Segal emphasized
the C*algebraic structure and introduced several new features and results. For
example, it was traditional to analyze the CARs over a real Hilbert space | in
terms of “fields”

O(f) =27"(a(f) +a*(f))

and their “conjugate fields”

(f) = —i27(a(f) - a*(/))
but Segal emphasized the advantages of considering complex | and a single
field.

The algebraic uniqueness of the CCR algebra, Theorem 5.2.8, was estab-
lished in 1971 by Slawny [Sla 1] by the method we have described.
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The Stone-von Neumann uniqueness theorem, Corollary 5.2.15, was an-
nounced by Stone in 1930 but the first published proof was given by von
Neumann [Neu 4] a year later. The lack of uniqueness for systems over infinite-
dimensional spaces Iy caused a lot of confusion which was not fully clarified
until the late 1950s, and early 1960s. Until 1950 it appeared that most people
tacitly believed that a Weyl system over a general Hilbert space ) had a unique
regular irreducible representation. Counterexamples appeared in various dis-
guises in the 1950s. Segal realized that various canonical transformations of the
Bogoliubov type were not unitarily implementable (see [[Seg 1]]), van Hove
subsequently showed [Hov 1] that the uniqueness hypothesis led to a para-
doxical “orthogonality of two complete orthogonal sets of eigenfunctions in
Fock space,” and Haag [Haag 4] established a general result which implied the
existence of inequivalent representations. The work of Haag also clearly de-
monstrated that representations which are inequivalent to the Fock re-
presentation are crucial from the physical point of view. Roughly stated, Haag
showed that each dynamics has a distinct set of relevant representations and
different dynamics lead to inequivalent representations. (A precise statement of
this type is given in Corollary 5.3.41.) Another aspect of inequivalent re-
presentation was provided by the work, in 1954, of Géarding and Wightman
[Gar 1]. These authors proposed a classification of the (regular) representations
of the CCR and CAR algebras based upon properties of a number operator
and, in particular, a result of the type given by Theorem 5.2.14. Various ver-
sions of this theorem were subsequently proved by several authors, e.g.,
Dell’Antonio, Doplicher, and Ruelle [Ant 1], Dell’Antonio and Doplicher [Ant
2], Chaiken [Cha 1], [Cha 2], and Courbage, Miracle, and Robinson [Cou 1].
Our discussion is an extension of this last reference. It should be emphasized
that the CCR version of Theorem 5.2.14 may be false if n, () is defined by
summing || a,,(f)¥ || over all /in a fixed orthonormal basis of b (see [Cha 1]
for counterexamples) but the CAR version remains valid.

In 1964 Haag and Kastler [Haag 9] proposed a C*algebraic reformulation
of quantum field theory which emphasized the quasi-local structure of the field
algebra. They also clarified the importance of the global C*structure and the
existence of inequivalent representations for the discussion of topics such as
physical equivalence and superselection rules.

Truncated functions were introduced in quantum field theory by Haag
[Haag 5] who realized their convenience for describing cluster properties (see
Example 5.2.19). Analogues of these functions occur in other disciplines, e.g.,
cumulants in probability theory, Ursell-Mayer correlation functions in classical
statistical mechanics, etc.

Bogoliubov exploited automorphisms arising from transformations of the
one-particle space b in his 1947 investigation of the equilibrium states of the
Bose gas [Bog 1] and subsequently these automorphisms have been called
Bogoliubov transformations. The names one-particle automorphism, or quasi-
free automorphism, also occur. Combination of the Fock state with a Bogo-
liubov transformation immediately yields a quasi-free state and this was one of
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the origins of such states. They also naturally occur as equilibrium states of the
ideal gases and other noninteracting systems. The general notion of a quasi-
free state as a state whose higher-order truncated functions vanish was in-
dependently introduced by Robinson [Rob 3] and Shale and Stinespring [Sha
1]. Robinson concentrated, however, on translationally invariant states while
Shale and Stinespring only examined gauge-invariant states. The general the-
ory was subsequently developed by numerous authors, e.g., Araki, Balslev,
Dell’Antonio, Manuceau, Powers, Stermer, Verbeure (for a review up to 1969
see the proceedings of the Cargése Summer School [[Car 1]]). One of the most
striking early results was due to Powers who constructed a one-parameter
family of mutually nonisomorphic type III factors as the weak closures of
representations of the CAR algebra from quasi-free states [Pow 1]. Explicitly,
the weak closure of n,, (), where w; is the gauge-invariant quasi-free state
given by

w;(a(f) alg)) = Mg, f) ,

is a factor of type III;/;_; in the sense of Definition 2.7.24, for 0 < 4 < 1/2.
Subsequently, the quasi-free factor states have been completely typed by
properties of their two-point functions and criteria for quasi-equivalence of
such states have also been given. For example, every gauge-invariant quasi-free
state of the CAR algebra is a factor state and if w4, and wy, are such states
with two-point functions given by

wAi(a(f)*a(g)) = (g> Aff)’ i= 1’ 2a
then Ty, is quasi-equivalent to Ty, if, and only if, A}/ 2 A;/ % and
(1 —4)"* = (1 - 4,)'?

are both Hilbert-Schmidt operators. The sufficiency of these latter conditions
was derived by Dell’Antonio [Ant 3] and Rideau [Rid 1] while the necessity was
established by Powers and Stermer [Pow 5].

Note that in particular =, is quasi-equivalent to the Fock representation if],
and only if, 4'/% and (1 — 4)"* — 1 are both Hilbert-Schmidt operators. But as
2> ((1 =AY —1)? the latter condition is redundant, i.e., Ty, 1S quasi-
equivalent to the Fock representation if, and only if, A4 is of trace-class. But the
trace of 4 defines the number of particles in w,,

Tr(4) = ) wa(a(f)a(fi)) = n(wy) -

i>1

Hence, w, is normal with respect to the Fock representation if, and only if,
it has finite particle number.

It is interesting to note that the equivalence between A being trace-class and
T, being quasi-equivalent to the Fock representation 7, is formally clear
from the identity

w4(B) = Tr(I'(4)B) ,
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where B is represented in the Fock representation. One uses that I'(4) is of
trace-class if, and only if, 4 is of trace-class.

The generalization of these results to the CCR algebra and nongauge-in-
variant states was obtained by Araki [Ara 10], [Ara 11], Araki and Shiraishi
[Ara 12], and van Daele [Dae 3].

Sections 5.2.4 and 5.2.5

The ideal gases are discussed in most standard textbooks on statistical me-
chanics (see, for example, Huang [[Hua 1]] or Landau and Lifschitz [[Lan 1]])
and it is common to perform the thermodynamic limit implicitly. Rigorous
proofs of the existence of these limits are in fact quite recent. The most difficult
case, the Bose gas in the region of condensation, was treated by Cannon [Can
1], and Lewis and Pulé [Lew 1], in 1973-1974. But both these works were
partially based upon unpublished lecture notes of M. Kac. Our discussion is
somewhat different and is based upon unpublished lectures of D.W. Robinson.
The algebraic structure of the Gibbs thermodynamic limit states had, however,
already been analyzed by Araki and Woods [Ara 8] for the Bose gas and by
Araki and Wyss [Ara 9] for the Fermi gas. The Araki-Woods paper showed for
the first time that equilibrium states lead to type III factors.

The ideal Bose gas exhibits more complex condensation phenomena than we
have described. Theorem 5.2.30 establishes that if A; is a parallelepiped with
edges whose lengths tend to infinity in a homogeneous manner then at high
densities a finite proportion of the particles occupy the lowest energy state, i.c.,
the ground state. But it is also possible to have a finite proportion of the
particles occupying the energy levels in an arbitrary small band above the
ground state with no macroscopic occupation of the ground state itself. This
latter phenomena is referred to as generalized condensation. In general there
are two critical densities pg. < p,. If the density p < p,. there is no form of
condensation, if p € (p,., p.] generalized condensation occurs and for all
p > p, the system condenses into the ground state. For example [Ber 2], if A,
is a parallelepiped with sides L; > L, > ... > L, with L; — co and (L, ...L,) /
Ly — oo but log Ly/(Ls...Ly) — B then p, = p,. + Br~'. Thus properties of
condensation are sensitive both to shape and to boundary effects. The general
theory of both forms of condensation was developed by van den Berg, Lewis
and Pulé [Ber 3] and a variety of examples given by van den Berg, Lewis and
Lunn [Ber 4]. But these papers were the sequel to various earlier investigations,
see, for example, Girardeau [Gir 1], Schultz [Sch 1] and van den Berg and
Lewis [Ber 1]. Other references and background material are given in these
references.

The allusion to negative temperatures made in the footnote following
Lemma 5.2.25 can be understood by reference to the models of magnetic
materials discussed in Chapter 6. The equilibrium states for these spin systems
are defined for all values of ff and a change of sign of § corresponds to a change
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of sign of the interaction. Thus if the temperature could be lowered beyond
absolute zero, an attractive interaction would immediately become repulsive,
and vice versa. Consequently, ferromagnetic materials would become anti-
ferromagnetic, and conversely. But these two phenomena are physically quite
distinct and hence the passage to negative temperatures would be heralded by a
sudden change of magnetic properties. Such transitions have been observed,
for example by Abragam and Proctor [Abr 1] in experiments on lithium
fluoride and the same authors give a more detailed theoretical discussion in
[Abr 2].

Section 5.3.1

The KMS condition was first introduced in quantum statistical mechanics by
Kubo [Kub 1] in 1957 and Martin and Schwinger [Mart 1] in 1959 as a con-
dition satisfied by thermodynamic Green’s functions. This condition was sys-
tematically exploited in the analysis of Green’s functions by Kadanoff and
Baym [[Kada 1]]. It was first formulated in C*-algebra language by Haag,
Hugenholtz, and Winnink [Haag 6]. The original formulation of this condition
is the one used in Proposition 5.3.12.

During the same period, 1966-1967, that Haag, Hugenholtz, and Winnink,
investigated the algebraic formulation of the KMS condition, Tomita devel-
oped the essential points of the theory of the modular automorphism group
(see Chapter 2). Although it was apparent that some connection existed be-
tween these two formalisms no complete synthesis was provided until 1970
when Takesaki [Tak 3] published his investigation and elaboration of Tomita’s
theory. In particular, Takesaki proved that the modular automorphism group
satisfies the 7-KMS condition with f = — 1 and that this condition uniquely
determines the group t when the state is given (Theorem 5.3.10). In the in-
tervening period, 1967-1970, various other authors working on the KMS
structure established partial results in this direction. For example, Winnink
[Win 1] obtained the uniqueness of = from the KMS condition and also [Win 2]
proved that this condition implies invariance of the state and pointwise in-
variance of the center of the corresponding representation. Both these in-
variance results were obtained independently by Hugenholtz and the state
invariance was also obtained by F. Rocca and M. Sirugue.

The multidimensional version of the edge of the wedge theorem, alluded to
prior to Proposition 5.3.6, is discussed in [[Stre 1]], while more general forms of
the Paley-Wiener theorem, Proposition 5.3.11, can be found in [[Her 1]], [[Ree
2]], [[Rud 1]]. The three-line theorem can be found in the books by Titchmarsh
and Rudin [[Tit 1]], Proposition 5.3.5 or [[Rud 1]], Theorem 12.8.

The earliest correlation inequality of the type encountered in Theorems
5.3.15 and 5.3.17 was given by Bogoliubov [Bog 2] who proved in 1962 that the
Gibbs state w of a finite system at inverse temperature f satisfies

(4, B))* < ~iBew(44" + 4" A)o([B",6(B)]) /2 .
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This inequality was extended to general (t,f)-KMS states in 1972 by
Garrison and Wong [Gar 1]. Basically, it follows from the Cauchy-Schwarz
inequality applied to the Duhamel two-point function, introduced before
Theorem 5.3.17. A detailed derivation and an application is given in Chapter 6
(see Section 6.2.6, Lemma 6.2.51).

Alternative upper bounds for the Duhamel function which improve the
Bogoliubov inequality were subsequently derived for Gibbs states by Berman,
Bruch, and Fortune [Ber 1] and by Roepstorff [Roe 1]. Falk and Bruch [Fal 1]
and Roepstorff [Roe 1] also derived lower bounds. Roepstorff’s results were
extended to general KMS states by Naudts and Verbeure [Nau 1]. This gen-
eralization relied partially on earlier work of Naudts, Verbeure, and Weder
[Nau 2]. Subsequently, Fannes and Verbeure [Fan 1], [Fan 2] established a
converse to these results by showing that the KMS condition could be derived
from the Roepstorff inequality.

Independently Sewell, partially in collaboration with Araki, had been at-
tempting to prove the equivalence of a maximum entropy principle and the
KMS condition for spin systems (for details and references to this development
see Chapter 6) and the Fannes-Verbeure result provided the strategy for pas-
sing from the entropy principle to the KMS condition. Sewell [Sew 1] deduced
the correlation inequality of Theorem 5.3.15 from the argument outlined prior
to this theorem and also showed that this inequality implied the KMS con-
dition. The converse implication followed for spin systems by the earlier work
of Araki and Sewell [Ara 22]. For general KMS states it was given in the
lecture notes of Araki [Ara 13].

Generators of positivity-preserving semigroups on C*-algebras have been
extensively studied in connection with the theory of irreversible quantum
processes, [[Dav 1]], [[Eva 1]]. If the semigroup is norm continuous, one can
give several equivalent characterizations of such generators, and the most
complete result in this direction was proved by Evans and Hanche-Olsen in
1977, [Eva 1].

Theorem. Let y be a bounded map on a C*-algebra W with identity such that
P(d*) = 9(A) for all 4 € .

The following conditions are equivalent:

(1) € is a positive map for all t € R,.

2 (l—-y)" lisa positive map for all large positive reals 1.

(3) If4e€U,.,BecWsatisfy AB =0, then B*y(4)B = 0.

@) IfAec U, and o € Ey satisfy w(4) = 0, then w(y(4)) > 0.
(5) (4% + Ay(N)A > y(4)4 + Ay(A4) for all selfadjoint A € A.
©) () +Uy(NU > yp(U"U + U*(U) for all unitaries U € A.

Note that in the special case y(1) = 0 conditions (5) and (6) follow from the
condition

VA7) > p(A47)4 + A™y(4)
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mentioned prior to Theorem 5.3.15 and in Proposition 3.2.22, but in fact the
latter condition is strictly stronger than (5) and (6). An explicit example, [Eva
1], is given by A = #(C?), the complex 2 x 2 matrices, and y(4) = A’ — 4,
where A4’ is the transposed matrix of A4,

(20)-G )

In fact the groups generated by a generator y satisfying the strong condition are
characterized by the generalized Schwarz inequality, i.e.,

Corollary [Eva 1]. Let y be a linear map on a C*-algebra W such that
P(4*) = y(A)* for all 4 € A.
The following conditions are equivalent:

(1) €7(4*4) > €7(A%)e""(4) for all A € U, t € Ry-

2) yA*4) > y(A)A+A4*y(4) forall A € A.

One has an even better understanding of norm-continuous semigroups of
completely positive maps on von Neumann algebras. The notion of a com-
pletely positive map between two C*-algebras U and B was introduced by
Stinespring in 1955 [Sti 1]. Let A, = A ® L (C") be the C*-algebra of all n x n
matrices with entries in . A linear map ¢ : A— B is said to be n-positive if
the induced map ¢, : U, — B, defined by

€9((Aij)?,j=1) = (@(Aij));l,jzl

is positive. ¢ is said to be completely positive if it is n-positive forn = 1,2,3, ...
For example, an automorphism of a C*-algebra is completely positive, while an
anti-automorphism of a non-abelian C*-algebra is positive, but not 2-positive.
For all # there exist maps which are n-positive but not n + 1-positive.

There does not seem to be any deep inherent reason for studying completely
positive maps among all positive maps except that they are relatively easy to
handle due to the following result, which is often referred to as Stinespring’s
theorem.

Proposition [Sti 1]. If U is a C*-algebra with identity, and ¢ : W —L(9) is a
linear map, then ¢ is completely positive if and only if it has the form

o(4) = Vn(A)V

for some representation 7 of W on a Hilbert space ], and some bounded linear
map V: 9 — K If Wand $ are separable, then K can be taken to be se-
parable. If W is a von Neumann algebra and ¢ is normal, then n can be taken
to be normal.

The observant reader may have noticed that this proposition was actually
established during the proof of the generalized Schwarz inequality, Proposition
3.2.4, where it was also established that a positive, identity-preserving map
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from an abelian C*-algebra into another C*-algebra is completely positive. One
can also show that a positive, identity-preserving map from an arbitrary C*-
algebra into an abelian C*-algebra is completely positive, in particular states
are completely positive [Sto 1].

During the course of the proof of Proposition 3.2.4 we established that the
generalized Schwarz inequality

P(Ne(4°4) > p(4) p(4)

is always valid for a completely positive map ¢. Araki proved in 1973 that this
inequality follows from 2-positivity alone [Ara 23]. In 1976 Evans [Eva 2]
proved that if ¢: W+ L(9H) is a n + 1-positive map, where n > 1, then the
matrix inequality

(@7 4); ;=1 = (0(4;B)o(B"B) ' 0(B"4)));

is valid for all B, 4, As,..., A, € A (with the proper interpretation of
@(B*B)™"). In particular

B B)[(@(474))); j=1 = (@(4]B)p(B"4))); ,_,
and, setting B =1,

lello(i4))); =1 = (e(47) o))} = -

For n =1 this is just the generalized Schwarz inequality. One can show con-
versely that if a bounded linear map ¢: AW Z($) satisfies these inequalities
for all n, then ¢ is completely positive.

If A is a von Neumann algebra on a Hilbert space $ (or A = L%(H)) it
follows from Stinespring’s theorem and Theorem 2.4.26 that a normal map
@: W — Wis completely positive if and only if it has the form

=> vav,
o4

for a suitable set {V,} C £(9), where the convergence is in the weak-op-
erator topology. The set can be taken to be countable if § is separable, and
finite if $ is finite dimensional.

The following theorem is a generalization of the derivation theorem, Cor-
ollary 3.2.47, to generators of norm-continuous semigroups of completely
positive maps. It was proved in some special cases by Lindblad and in-
dependently by Gorini, Kossakowski, and Sudarshan in 1976, and was ex-
tended by various authors until the final version was proved by Christensen
and Evans in 1978 [Chr 1]. The latter paper contains a complete history and
bibliography of the subject, and the final result is

Theorem [Chr 1]. Suppose that t € Ry e is a norm-continuous semi-
group of completely positive maps on a C*-algebra W acting on a Hilbert space
9. Then there exists a completely positive e map ¢ from Winto its weak closure
A and a selfadjoint element H = H* € A such that the generator y has the
form
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7(4) = [iH,4] —{R,4}/2 + ¢(4) .
Here R = (1) — y(1)and {-,-} denotes the anti-commutator.

In particular, if the maps ¢ are normal the map ¢ can be taken to be
normal and y has the form

y(4) = [iH, 4] = (R, A}/2+ ) V;AV,

for suitable V, € Z(9).
The theory for generators of norm-continuous, normal, completely positive
semigroups on von Neumann algebras can thus be summed up as follows:

Corollary. Suppose that t € Ry — € is a norm-continuous Cj-semigroup on
a von Neumann algebra M on a Hilbert space 9, such that (1) =1 for all
teR,.

The following statements are equivalent:

(1) € is a completely positive map for each t € R,.

2) (yen ) > (y®1)(4*)4+A*(y ® 1)(4) for each 4 € M L(C")
and each n = 1,2,3, ... (here 1: L(C") — ZL(C") is the identity
map).

(3)  There exists a set {V,} of operators in £ () such that R = Y ViV,
is a bounded operator in M, and such that y_, ViAV, € M whenever
A € M, and a selfadjoint operator H = H* € M such that

y(A) = [iH, 4] — {R,A}/2+ > _V;4V,

for all A € M.

To prove that (3) = (1) in this corollary, one uses that y,,y,, and y; defined
by

) =[iH 4], 74)=—-{R,A4}/2, »4)= Z VeAV,
are all generators of completely positive semigroups, i.e.,

e (A) — e"HAe_”H, e (A) — e—(t/Z)RAe—(t/Z)R ,

) = t" n
en) =3 Zyi)

and then the Trotter product formula, Corollary 3.1.31, implies that y gen-
erates a completely positive semigroup.

The theory of non-norm-continuous semigroups of positivity-preserving
maps has not been developed very much, but there exist some results on quasi-
free evolutions on the CCR and CAR algebras (see Evans’ review paper [Eva 3]
for results up to 1980). For other results in this direction see [[Bra 1]], [[Rob 2]]
and [Arv 1].



226 States in Quantum Statistical Mechanics

The connection between the Duhamel two-point function of a KMS state
and various quantities of linear response theory has been described by Naudts,
Verbeure, and Weder [Nau 2].

Ground states, as described in Definition 5.3.18, are versions of the positive-
energy vacuum states studied by innumerable authors since the early 1950s and
Proposition 5.3.19 is an algebraic reformulation of standard results in this field.
The set of ground states of a C*-dynamical system was studied by Araki in 1964
[Ara 7], and Sirugue and Testard in 1971 [Sir 1] examined these states as
f — oo limits of (, f)-KMS states.

The notion of passive states and Theorem 5.3.22 is due to Pusz and Wor-
onowicz in 1977 [Pus 1].

The results on convergence of KMS states are more or less folklore, but the
proofs by means of the auto-correlation lower bound appear to be new.

The algebras ¢, in Example 5.3.27 were introduced and studied by Cuntz in
1976 [Cun 2]. An alternative definition was suggested by Evans in 1979 [Eva 4].
Let $ be an n-dimensional Hilbert space, where 2 < n < Ry. Define COf as the
C~-algebra generated by creation and annihilation operators on the full (un-
symmetrized) Fock Space

5(5) = D(@'s)

r=0

Evans’ definitions are then
0, =05/ L%(F9)), 0n =0", .

Then the group 7, on 0, is induced from the group I'(e”)(-)T'(e™*) on 0F,
where

Pe

r(eit) — (®reit) — eiNt
r=0

and N is the number operator. (In particular N > 0, so the ground state for
(0ns, 7) identifies with the Fock vacuum state.)

The algebras O, have several interesting properties, e.g., although the weak
closure of 0, is a hyperfinite von Neumann algebra in any representation (¢, is
nuclear), O, is not the inductive limit of an increasing sequence of type I C*
algebras.

Example 5.3.27 is due to Olesen and Pedersen [Ole 5]. More refined ex-
amples will be described in the Notes and Remarks to Sections 5.3.2 and 5.3.3.

Sections 5.3.2 and 5.3.3

The simplex property of Kg and the coincidence of the central decomposition
with the decomposition of KMS states emerged from studies of the set of KMS
states by Araki, Hugenholtz, Lanford, Ruelle, and Takesaki in 19671970,
[Ara 14], [Ara 15], [Lan 4], [Rue 5], [Tak 3]. The possible breakdown of Eu-
clidean symmetry in the decomposition of KMS states has been discussed by
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Emch, Knops, and Verboven [Emc 1]. Various invariance properties of the
type given in Proposition 5.3.33 were initially derived by Sirugue and Winnink
[Sir 2]. The absence of breakdown of symmetry in Theorem 5.3.33A was
proved by Fannes, Vanheuverzwijn and Verbeure [Fan 4] and will be discussed
further in the Notes and Remarks to Section 6.2.6.

Connes’ cocycle theorem, Theorem 5.3.34, is a key result in the classification
theory for von Neumann algebras and was proved in 1973 [Con 4]. The dis-
jointness of KMS states at different temperatures, Theorem 5.3.35, was de-
monstrated by Takesaki in 1970 [Tak 5]. The type III property of the weak
closure of a KMS representation of asymptotic abelian systems, Corollary
5.3.36, was shown by Araki and Stermer in 1972 [Ara 16], [Ste 5], and with a
little more work they could show that the type III part occurring is actually
type III;.

Although Remark 2 after Theorem 5.3.32 has no later applications it is
rather striking because it equates a physically natural algebraic-ergodic prop-
erty, weak-asymptotic abelianness in mean for all w € Kp, with a purely geo-
metric property, the facial property of K. Equivalences of this type occurred in
the decomposition theory described in Chapter 4, e.g., ng is a simplex if and
only if (U, w) is G-abelian for all w € ES, but these involved slightly more
artificial ergodic assumptions, e.g., G-abelianness or G-centrality.

Parts of Theorem 5.3.37 and Corollary 5.3.40 can be recovered from Araki’s
1964 paper [Ara 7]. The characterization (4) in Corollary 5.3.40 for separable
C*algebras is due to Dang-Ngoc [Dan 2]. The idea of considering more general
faces in ng than the set of ground states, as well as characterizations (5)—(7) in
Theorem 5.3.38 are essentially due to Batty [Bat 1] [Bat 2] and he also proves
the theorem without any topological restriction on the group G. If B is a C*
algebra, Fis a closed face in Eg and w € F he defines PL as the projection onto
those vectors # € §,, such that

(1,7 ()n) € RyF .

These vectors form a closed subspace in $,, since F is a face. Using the facial
property of F, it follows that Pf ¢ n,(B)", and w is said to be F-abelian if
PP, (B)"PL is abelian. The face F is said to be abelian if every state in Fis F-
abelian. The F-multiplicity of w € F is defined to be the dimension dim
PLS,).

Batty [Bat 1], [Bat 2] proves that the following conditions are equivalent

F is abelian.

For each w € F,n,(B)’ is abelian.

F is a simplex.

Every pure state in F has F-multiplicity 1.

Any factorial state in F is pure.

Any two distinct pure states in F are disjoint.

If w;, w, are distinct pure states in F then the face generated by w;
and w; in Eg is equal to the convex set {Aw; + (1 — A)w; 4 € [0,1]}.

Nk W=
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He proves this without any separability assumption whatsoever by invoking
Pedersen’s noncommutative integration theory [Ped 3] rather than the more
pedestrian measure theory used in our proof of Theorem 5.3.38.

In order to prove Theorem 5.3.38 from the above theorem Batty relies upon
a very useful observation due to Ed Effros and in more rudimentary form to
Kastler and Robinson [Kas 1]. Let 2 be a C*-algebra with identity, G a discrete
group and t an action of G on A. Let A ®; G be the crossed product of A by
the action 7, Definition 2.7.2. Then U and G are canonically embedded in
AR G. If 4 €Wand g € G we use 4, g also to denote the images of 4, g in
A @, G. Then there is a bijective correspondence between the state space of
A ®. G and the set of all bounded functions @ : G+ A* such that d(e) is a
state and @ is positive definite in the sense

n

> g9y, (4;4)) > 0

hj=1

for any 4; € A, g; € G. The correspondence is given by p — ®,, where

®,(9)(4) = p(4g) .

The correspondence is a homeomorphism for the weak*topology on Eyg,c and
the topology of pointwise weak™convergence on the space of functions from G
into A*. In particular, if o € E§ the function @, (g) = w, for all g € G, is
positive definite. This establishes an affine homeomorphism between EQG[ and
the closed face F§ of states p on A ®, G with the property

p(g1 Ag2) = p(4)

for all ¢y, g» € G,4€ WA. If p is such a state, and v = Ply, then $, =9,
my(4) = my(4) and m,(g)= U,(g). Thus if F is a face in ES then its image
Fy in F§ is a face in F§, and hence in Eqgy_g. One now shows for o € F that
P,= Pg*’ is exactly the projection onto the vectors 5 € E,$, such that
A4 € W (,my(4)n) is contained in R, F. If the statements of the previous
theorem of Batty are translated into this new situation, we see that the fol-
lowing conditions are equivalent for each closed face F ¢ EQG[:

1. P,m,(A)'P, is abelian for all w € F.

2. {mu,(AWUU,(G)} is abelian for all w € F.

3. Fis a simplex.

4. Each extremal state in F is weakly clustering in the sense that

: /
A,EngG(A))|w(A B) —o(A)w(B)| =0
for all 4,B € .
5. Any state w € F such that {r,(W)UU,(G)}" is a factor is ergodic.
6. If w; and w, are distinct ergodic states in F then the covariant

representations (9,,,, 7, Uy, ) and (D> Twrs Uw,) are unitarily
equivalent (as covariant representations).
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7.  If w; and w, are distinct ergodic states in F then the face generated
by o and w; in E§ is equal to the convex set
{Aw; + (1 — V)wa; A € [0,1]}.

As P, < E, Condition (1) of this theorem is weaker than Condition (1) of
Theorem 5.3.38. The special condition on F in Theorem 5.3.38 immediately
implies P, = E,. Since Condition (1) of the theorem is equivalent to
E,m,(N)"E, being abelian, Proposition 4.3.7, this shows that Theorem 5.3.38
is also true for general groups G.

Batty also gives examples of C*dynamical systems based on simple C*al-
gebras where the sets of ground states form n-dimensional simplices, n=1, 2....

Let (2, 7) be a C*-dynamical system and assume that U has an identity. For
each f € [—o0, 0], let K be the set of (z, f)-KMS states of (U, 7). In particular
Kioo(K-) 1s the set of ground (ceiling) states. Define T(U, t) = Upge|_oo 00 K5
with the topology inherited from the weak*-topology on Eg. Further endow
this space with the fibre bundle structure as a bundle of compact convex sets
defined by the map w — f(w) where f(w) is the ff such that o € K. In order for
the latter map to be well defined we assume that Kz nKj, = & for f; # fs, i.e.,
that the one-parameter group defined by t on /3 for any z-invariant closed
two-sided ideal 3 C U is nontrivial. The bundle T(, 1) is called the tem-
perature state space of (U, 7).

It follows from Proposition 5.3.25 that T'(21,7) is closed in Eq, and hence
compact. By Theorem 5.3.30, each Kj is a simplex if f € R and by Theorem
5.3.37 both K., and K_, are faces in Eg. The explicit computation of the
temperature state space of (U, 7) is in general a very hard task, as we will see in
Chapter 6, but there are a few cases, apart from Example 5.3.37 where it can be
achieved. In 1979, Bratteli, Elliott and Herman [Bra 14] proved that if F is an
arbitrary closed subset of [—oo,00] then there exists a C*-dynamical system
(A, 7) such that A is a simple C*algebra with identity and (21,7) admits a
(z, B)-KMS state if and only if f € F. The C*algebra 2 was obtained as the
crossed product of an AF-algebra by an automorphism with 7 the dual action.
(A C*-algebra is said to be an approximately finite dimensional C*-algebra or an
AF-algebra if it contains an increasing sequence of finite-dimensional *-sub-
algebras with dense union. (Particular examples are the UHF-algebras of
Example 2.6.12, [Bra 1]). The analysis in [Bra 14] was extended by Bratteli,
Elliott and Kishimoto in 1980-83 [Bra 18], [Bra 19]. They proved that each
metrizable simplex bundle R €  +— Kjp can be realized as the finite § part of the
temperature state space of a C*dynamical system (2,t) where U is simple,
separable with identity and t is periodic with period 2z. (The formal definition
of a locally compact bundle of compact convex sets can be found in [Bra 19],
page 210). This is even proved for the chemical potential-inverse temperature
state space in [Bra 19]. The construction can be made such that F,, are
isomorphic to the state spaces of two arbitrary simple AF-algebras A with
identity. Furthermore, if F., are arbitrary faces of the state spaces of AE* one
can perturb the dynamics t by an inner perturbation P, as in Proposition 5.4.1,
to obtain a new C*-dynamical system (2,t") such that the finite 8 part of the
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temperature state space is as before, but the set of (¥, 4+ c0)-KMS states is
affinely isomorphic to F,. The paper [Bra 18] concludes by showing that any
metrizable simplex is affinely isomorphic to a face in the state space of a simple
AF-algebra with identity. Hence Fi., can be taken to be arbitrary metrizable
simplices (but this certainly does not exhaust all possibilities for Fy.., see, for
example, Corollary 5.3.40).

For quantum spin systems, as described in Chapter 6, there are a few specific
systems where the temperature state space has been completely analyzed. In
addition there are many partial results. These matters will be discussed in
Sections 6.2.5-7 and the associated Notes and Remarks. In this case the sim-
plices Kj; are always nonempty, Proposition 6.2.15, and generically there is a
critical inverse temperature f§. such that Kp consists of only one point for
|Bl < B, Proposition 6.2.45, and B, = +co for one-dimensional systems,
Theorem 6.2.47. This feature is also shared by the only other non-trivial C*-
dynamical system (2, ) for which T(2, 7) is known in detail. This example was
analyzed by Bost and Connes in 1995, [Bos 1], [[Con 1]]. Their C*-dynamical
system is intimately connected with the statistical theory of the distribution of
prime numbers. It is defined as follows: Let @ be the rational numbers and

define
r:{<1 b);a,bef@,a>0} |
0 a
Using the formulae

(500 o) =(o ™amy (b o)y = (4 7).

one checks that I' is a group under matrix multiplication. Let Iy ~ Z be the

subgroup
FO:{<(1) ’;); neZ} -

It follows from the identity

(0 D6 9 -6 i)

that the I'g-orbit through 7Ty, when I’y acts on the left on I'/Ty, con-
tains exactly ¢ points when y = (é 2)and a = p/q with p, ¢ mutually prime.
Since all these orbits are finite, one may define the Hecke algebra H(I',T) as
the algebra of functions f on I')\I'/T’y, with finite support, with product

S+ = D o))
71 €ELO\T
where f, /" € $(I',I'y) are viewed as [y-biinvariant functions on I'. The C*-

algebra A is defined as the norm closure of $H(I',T) in the regular re-
presentation 2 on L?(I'o\I'), defined by
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ANHOG) = Y. fOHEm) -

y1€f\I"

The algebra is closed under involution, since A(f)" = A(f*) where
f*(y) = f(y~1): The automorphism group 7, on W is defined through its action
on $(I',To) by

w(f)(y) =d" f(7)

(o 4)-

In fact t is the modular automorphism group for the state on
M= A(H(T,Ty))" given by the unit vector corresponding to the coset
Iy € TH\T, i.e., this state is a (zr,—1)-KMS state.

There is a natural action ¢ of the group W = X ,(Z/pZ) on U commuting
with 1, where p ranges over all prime numbers. For 0 < f < 1 there is a unique
(1, B)-KMS state ¢4 on (2, 1) which is a type I1I; factor state. Moreover, for
1 < B < oo each extremal (z, §)-KMS state is a type I factor state and if ¢ is
any such extremal state then the map W > g— ¢ o g, is a homeomorphism
between W and the set of extremal (z, f)-KMS states. All of these are com-
puted explicitly in [Bos 1].

Corollary 5.3.41 is related to a famous theorem of Haag proved in 1955
[Haag 4] which gave an important impetus to the C*algebraic approach to
quantum field theory. Let U be the C*algebra generated by the time zero fields
in a free, relativistic, irreducible quantum field theory (we refer to the mono-
graph by Streater and Wightman [[Stre 1]] for definitions and a complete ac-
count of the theorem), and let r,free be the free time evolution,

if

,L_tfree (A) — enHOAe—thO

bl

where Hy is the free Hamiltonian and 4 € A. Now, assume that there exists
another relativistic field theory on the same Hilbert space with the same time-
zero fields and time evolution 7i". Moreover, assume that for each ¢ € R there
exists a unitary operator ¥ (¢) such that

o (4) = V(O ()

for all 4 € A. Haag’s theorem then states that the new theory is unitary
equivalent with the free theory. The operators ¥ (¢) played a large role in the
early attempts of constructing interacting quantum fields in the so-called in-
teraction picture, but Haag’s theorem implied that the interaction picture only
exists when there is no interaction. A program of circumventing these diffi-
culties by using automorphisms of C*-algebras instead of unitary operators on
Hilbert space was proposed by Guenin in 1966 [Gue 1] and this program was
followed in the early days of constructive quantum field theory. Around 1972
these methods were replaced by the more powerful probabilistic methods of
Euclidean quantum field theory (see Notes and Remarks to Chapter 6).
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Modular theory and the theory of KMS states have entered into quantum
field theory for various reasons some of which are discussed in Chapter 5 of the
book by Haag [[Haa 1]]. First, the relativistic vacuum is separating for the W*-
algebras of observables corresponding to space-time regions whose causal
complement contains a non-empty open set. Hence the field theory has a
modular structure. Bisognano and Wichmann [Bis 1]. [Bis 2] established an
unexpected identification between the modular automorphisms for wedge-
shaped regions and the Lorentz boosts in the relativistic symmetry group. The
wedge-shaped regions provide the simplest examples of horizons (see Rindler
[Rin 1]) and the Bisognano-Wichmann result has an interesting interpretation
in terms of the Hawking temperature of the corresponding black hole (see
[[Haa 1]] page 248). In general wedge-shaped regions are the only ones for
which the modular automorphisms correspond to point transformations in
Minkowski space. Hislop and Longo [His 1] have, however, extended this
identification to other regions for theories with a conformal invariance. Sec-
ondly, Jaffe, Lesniewski, Osterwalder and Wisniowski [Jaf 1] [Jaf 2] have in-
troduced a super-KMS condition in the context of Connes’ theory of entire
cyclic cohomology of quantum algebras [[Con 1]]. This concept allows one to
deal with situations such as supersymmetric field theory on noncompact
manifolds for which the Hamiltonian has continuous spectrum. It relies on the
existence of a super-derivation whose square is the generator of a one-para-
meter semigroup on the quantum algebra. The analytic properties of this su-
per-derivation were discussed further by Kishimoto and Nakamura [Kis 6].
This super-KMS condition was partially inspired by work of Kastler [Kas 4].
Thirdly, Bros and Buchholz [Bro 1] [Bro 2] have suggested a relativistic for-
mulation of the KMS condition for thermal equilibrium in which the group of
time translations is replaced by the group of space-time symmetries. This
suggestion is based on the observation that the relativistic correlation functions
have stronger analyticity properties than those characteristic of the usual KMS
condition.

Theorem 5.3.43 was proved by Kishimoto [Kis 4] and he also generalized
the Borchers-Arveson theorem, Theorem 3.2.46.

For classical systems the KMS condition is not an appropriate condition of
equilibrium because it forces the dynamics to be trivial. An alternative char-
acterization was proposed by Katz [Kat 1] and has the form

w({frg}) = ﬁw(g{va}) ’

Here f is the inverse temperature, H is the Hamiltonian, and {, } is the Poisson

bracket:
_ of 9y _ 8f@
e = Z(a%‘ Opi Opi0qi)

This condition has been studied by several authors and the equivalence be-
tween states satisfying this condition and canonical Gibbs states has, for ex-
ample, been established in [Aiz 1].
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Section 5.4.1

The perturbation expansion for IV = UPU_, in Proposition 5.4.1 and Cor-
ollary 5.4.2 goes back at least to work in the late forties by Tomonaga [Tomo
1], Schwinger [Schw 1], Feynman [Fey 1], and Dyson [Dys 1], (see also [Ara
19]), while the direct expansion of 77 was defined by Robinson in 1973 [Rob 8].
The existence of a normal t”-KMS state o” for the perturbed dynamics ¥, and
the expansion for the corresponding vector Q” in Theorem 5.4.4 is due to Araki
in 1973 [Ara 20] (see also [Ara 21]), while the expansion of w” in terms of the
truncated functions of w in the same theorem was derived by Bratteli, Kishi-
moto, and Robinson in 1978 [Bra 13]. Note that Theorem 5.4.4 is a partial
converse of Connes’ cocycle theorem, Theorem 5.3.34, and the investigation of
w® was partially inspired by Connes 1973 paper [Con 4].The notions of per-
turbed state and perturbed dynamics were extended to some unbounded re-
lative Hamiltonians by Donald [Don 1] [Don 2] using completely different
methods from those of Araki.

The time-dependent approach to stability was initiated by Robinson in
1973, [Rob 8], and Definition 5.4.8, Example 5.4.9, and Proposition 5.4.10
come from this paper.

The morphisms y,. are not always automorphisms under the assumptions of
Proposition 5.4.10. This problem has been discussed by Golodets [Gol 1] and
Maassen [Maal]. Proposition 5.4.13 and most of the remaining results in this
section were proved in [Bra 13].

Example 5.4.11 is basically the second quantization of quantum-mechanical
scattering theory with a rank-one projection as perturbation, i.e., interaction.
The abstract theory of this problem is described fully in Kato’s book on per-
turbation theory [[Kat 1]] and in particular the Mgller matrices are proved to
be unitary. This latter result was crucial in the Birman-Kato proofs of unitarity
of the S-matrix for physically more relevant scattering problems.The explicit
form of the kernels of the Mgller matrices can be found in a variety of places,
for example, in Newton’s book on scattering theory [New 1].

The equivalence of normality and finite density for quasi-free states which is
used in Example 5.4.15 has already been discussed in the Notes and Remarks
to Sections 5.2.1-5.2.3. It is a special case of the criterion for quasi-equivalence
of representations generated by two quasi-free states.

Section 5.4.2

The original idea of deriving the KMS condition from conditions of stability
and purity of a state appeared in a paper by Haag, Kastler, and Trych-Pohl-
meyer in 1974 [Haag 7]. This paper assumed L'-clustering of the truncated n-
point functions for n=2,3,---,6. By exploiting the additivity of the joint
spectrum of the Hamiltonian and the modular operator, Bratteli and Kastler
were subsequently able to replace 6 by 4 [Bra 12]. However, both these papers
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had a gap in the proof (Observation 3 of Theorem 5.4.19 was not explicitly
proved). This gap was finally filled by Hoekman [Hoe 1]. The proof of The-
orem 5.4.19 is based on these three papers.

In 1977, Haag and Trych-Pohlmeyer [Haag 8] suggested that one could
replace the L'-clustering assumption of the truncated n-point functions up to
n = 4 by simple three-point clustering.

im o (), (42)7 (45)) = o(di)o(42)o(4;)

inf |t —¢;
.-'2/" JIH

or alternatively by the assumption that w is a factor state, in the presence of an
L'(y)-asymptotic abelianness, and they proved Observation 1 of Theorem
5.4.20 under these assumptions. The proof of the theorem itself was however
incomplete. The final version of Theorem 5.4.20 was proved by Bratteli,
Kishimoto, and Robinson [Bra 13]. The stability condition (2b) of Corollary
5.4.21 was also suggested by these latter authors, while the stability condition.

li AP =0
,11210 o) — ol

in the subsequent remarks was proposed by Haag and Trych-Pohlmeyer [Haag
8]. The final remark of this section is due to Kastler [Kas 2].

Section 5.4.3

The theory of the chemical potential presented in this section was developed in
1975-1976 by Araki and Kishimoto [Ara 17], and Araki, Haag, Kastler, and
Takesaki [Ara 18]. We benefited greatly from the lecture notes by Kastler in
preparing this section [Kas 3].

Section 5.4.4

This section is based entirely on material from the 1977 paper by Pusz and
Woronowicz [Pus 1].



Models of Quantum Statistical
Mechanics






6.1. Introduction

In the previous chapter we examined various applications of the formalism of
*-algebras to quantum statistical mechanics. These applications principally
concerned equilibrium properties of macroscopic systems and fell into one of
two categories. First, we analyzed thermodynamic limit phenomena of specific
particle models by use of the Gibbs ansatz for the equilibrium states. Second,
we examined the structure of a set of states, the KMS states, which appeared
appropriate for the description of equilibrium. The first of these approaches
was developed for the ideal quantum gases in Sections 5.1 and 5.2, while the
second was contained in Sections 5.3 and 5.4. It should be reemphasized that
the thermodynamic limits of the Gibbs equilibrium states of the ideal Fermi gas
are exactly the KMS states of the C*-system formed by the CAR algebra and
the corresponding free evolution. For the Bose gas, however, the situation is
more complex because the free evolution 7 is not a strongly continuous group
of *-automorphisms of the CCR algebra 2 and hence (21, 1) does not form a
C*-system. Thus, it is not evident that one can use a global C*-structure to
characterize the set of equilibrium states. Nevertheless, the Gibbs equilibrium
states w are faithful states of the CCR algebra 2, the free evolution 7 has
extensions 7 to the corresponding von Neumann algebras 7,,(2)”, and the
(o (W", %) form W*-dynamical systems for which o is -KMS. Thus, the
modular or KMS structure is still a characteristic of the equilibrium states
but it is manifested state by state without the synthesizing C*-dynamical system.
The aim of this chapter is to extend these investigations by examination of a
larger class of models. In the latter half of the chapter we analyze point par-
ticles interacting at a distance but before this we describe a simpler, but more
artificial, type of model, quantum spin systems. Spin systems were first in-
troduced in the discussion of magnetic properties of crystalline substances but
have subsequently been reinterpreted as models of liquids and gases with re-
straints on the movements of the constituent particles. There are two ad-
vantages in examining spin systems. First, there is a certain understanding of
the collective effects occurring in these models which lead to phase transitions
and, second there is a fairly well-developed analysis of the KMS structure, at
the C*-level, of these models. The results for continuous systems are much more
modest, however, and even the collective phenomena are barely understood.
Basically there are two directions for analysis, the existence and properties
of the dynamical evolution, and the properties and structure of the equilibrium



238 Models of Quantum Statistical Mechanics

states. For most quantum spin systems the evolution can be handled in-
dependently of the equilibrium structure but for more general models, in-
cluding continuous systems, this is not the case. There is virtually nothing
known about the evolutions of continuous systems of interacting particles
except in, or close to, equilibrium and even in the equilibrium situation
knowledge is scant.



6.2. Quantum Spin Systems

6.2.1. Kinematical and Dynamical Descriptions

Basically a quantum spin system consists of a set of particles confined to a
lattice and interacting at a distance. There are, however, two possible physical
interpretations of these models, either as a lattice gas or as a spin system. The
first views each point of the lattice as a possible site for a finite number N of
particles, i.e., each point of the configuration space can be either empty or
occupied by 1,2, ..., N particles. These particles then interact with one another
and this leads to an evolution in which one envisages the particles jumping
from lattice site to lattice site. The second interpretation assumes that every
lattice site is permanently occupied by a particle but the particles have various
internal degrees of freedom, e.g., the particles could have an intrinsic spin with
several possible orientations. The interaction between the particles then follows
from a coupling of the internal degrees of freedom and this yields, for example,
an evolution in which the spin orientations are constantly changing.

In some applications of these models it is important that the lattice L has a
symmetry. For example one commonly examines the case L = Z', i.e., the
lattice is a v-dimensional cubic array, and then the configuration space of the
model is invariant under the group of lattice translations. More complex
symmetries are also possible.

Invariance properties of this type reflect the traditional view of crystals as
objects with a regular spatial order. There are, however, other crystalline
structures, quasicrystals, which appear to lack a precise spatial symmetry.
Experimentally quasicrystals are characterized by a discrete diffraction spec-
trum which is incompatible with any translation symmetry. The determination
of the quasicrystal structure from the diffraction data is, however, extremely
difficult if not impossible. One possible model of quasicrystals is by a lattice
associated with an aperiodic tiling of the configuration space R' but there
appears to be no compelling evidence for any particular aperiodicity. Lattices
constructed from aperiodic tilings have a homogeneous structure, but no
complete spatial symmetry, and homogeneity rather than symmetry should be
the essential feature for any model of a crystal. In the sequel we will see that
for some properties such as the construction of dynamics it suffices to assume
that the lattice L is a countable set of points. We assume throughout that L is
both countable and infinite. For many results some homogeneity is required
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and we usually assume symmetry and specialize to the simplest case, L = Z*
although other symmetries or weaker homogeneity properties would often
suffice.

The kinematic structure associated with a quantum spin system has already
been described in Chapters 2 and 3. It consists of a quasi-local UHF algebra
constructed over the finite subsets of L. (See Examples 2.6.12 and 3.2.25.)
Explicitly, one first orders the set of finite subsets of L by inclusion. Next, one
associates with each point x € L an (N + 1)-dimensional Hilbert space $ (y and
with each finite subset A C L the tensor product space

5/\ = ® 5{Y} :
xeA

The local C*-algebra 2, is then defined by Ap = Z(H,). If Aj n Ay =T,
then Ha, ,a, = D, ® D, and Ay, is isomorphic to the C*-subalgebra
Ap, @ Tp, of Ay, | a,, where T4, denotes the identity operator on H,,. Iden-
tifying Ap, and A, @ 14, one concludes that the algebras {A}, -, form an
increasing family of matrix algebras whose union is a normed *-algebra, which
is incomplete because L is infinite. The norm completion A of this union is a
quasi-local C*-algebra when equipped with the net of C*-subalgebras 2, (the
orthogonality relation | between the A is defined by A| LA, if A| n A, = O).

The local algebras 2, represent the physical observables associated with the
particles at the points of A and the algebra 2 corresponds to the observables of
the complete spin system. The quasi-local structure of 2, |J A Uy, is sum-
marized by the following;

(D) Wy, C AUy, ifA CA,
(2) A= U QI/\ P
ACL

where the bar denotes uniform closure,
(3) U and each A, have a common identity 1,
(4) [Q[/\l ) C‘)I/\z] =0
whenever A; N A, =,
(5) A is simple.

The first four properties follow by construction and the fifth follows from
Corollary 2.6.19. The first property reflects the isotony of observables and the
fourth the quantum-mechanical independence of observables associated with
disjoint subsystems.

If L = 7", then the group Z’ has an action t as *-automorphisms of 2. This
action was constructed in Example 4.3.26. Referring to this construction one
finds that the translations t have the properties

(6) (a) if4e Ay, then 1, (4) € Uy,
(®)  Jim |[l4.5(8)] =0

for all 4,B € A.
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The asymptotic abelianness follows from conditions (2), (4), and (6a), and
ensures that the theory of ergodic states described in Chapter 4 is applicable to
the group Z' of lattice translations. Physically the group 7 corresponds to
translations in the configuration space and the asymptotic abelianness de-
monstrates that any pair of observations becomes independent when per-
formed sufficiently far apart.

Classical-mechanical spin systems can be described in a similar algebraic
fashion. One associates with each x € L a maximal abelian C*-subalgebra
€ C Z(9yy) and defines the local algebra €x by

€ =X €y

xeA
for each A C L. The global C*-algebra € is introduced by

cs:chA.

ACL

If L = 77, the €y, are chosen such that the group 7 of space translations leaves
Q€ invariant, i.e., one takes

Cloryy = 1,84
for all x, y € Z".

EXAMPLE 6.2.1. Assume N = 1, then each $y,) is two dimensional, 2y, is an
algebra of 2 x 2 matrices and each such matrix can be decomposed as a sum of
multiples of the Pauli matrices o (= 1), 6%, 63, 6} defined in Example 4.2.7. Thus if |A|
denotes the number of points in A, then 2, is a full algebra of 214! x 2/Al-matrices
corresponding to polynomials in the Pauli matrices {o7;i =0, I, 2, 3, x€ A}. A
general element of the quasi-local algebra U is a function of the ¢} which can be
constructed as the uniform limits of polynomials. If L = 7, one has 1,(¢7) = 67",
etc. In this latter case the classical algebra is *-isomorphic to the C*-subalgebra
€ C U generated by the third-component Pauli matrices {0%; x € L}.

This model is often referred to as a spin—% system because a quantum-mechanical
spin-% particle has exactly two degrees of freedom. The general case corresponds to
spin-N/2 because spin-N /2 particles have 2(N/2) + 1 = N + 1 degrees of freedom.

The foregoing structure defines the kinematics of the quantum spin systems,
i.e., the instantaneous observables. We next consider the dynamics and for this
purpose it is necessary to introduce interactions. An interaction ® is defined as
a function from the finite subsets X C L into the hermitian elements of 2 such
that ®(X) € Wx. Each ®(X) represents the energy of interaction of the set of all
particles in the finite subset X. Now in the spin system the particles are con-
sidered to be fixed at the lattice sites and hence the total energy of interaction in
a subset A consists of the interaction energy of all subsystems. This total energy
is defined to be the Hamiltonian He(A) associated with A. Explicitly

Ho(A) = ) ®(X) .

XCA

Clearly, Hp(A) is a hermitian element of ,.



242 Models of Quantum Statistical Mechanics

An interaction @ is said to be of finite range if the only non-zero con-
tribution to the energy arises from finite clusters of neighboring particles. In
order to make this precise one must assume that the lattice has some rudi-
mentary form of homogeneity or symmetry. If, for example, L is equipped with
a metric d(-;-) then we define L to be homogeneous if the metric has the
following two properties. First, d(x;y) > 1 for all x, y € L. Second, for each
r > 1 there are at most a finite number N, of points y with d(x;y) < r uni-
formly for x € L. The interaction @ is then defined to have finite range if there
exists a do > 1 such that ®(X) = 0 whenever D(X) =sup, , . y d(x; ) > do.
The minimum possible value of dg is called the range of ® and there is no
mutual interaction between particles whose separation is greater than this
range. Lattices that are homogeneous include 7*, equipped with the usual
metric, or more complicated periodic sublattices of R", and the lattices asso-
ciated with aperiodic tilings of R".

If L =7", or some other subgroup of R’, one can also consider transia-
tionally invariant interactions. These are the @ satisfying the additional re-
quirements

DX +x) = 7. 0(X)

forall X C 7" and x € 2.

If € C A is the abelian algebra describing a classical spin system and
®(X) € €x C Uy for all X C L, then @ is called a classical interaction.

The set of interactions of a quantum spin system forms a real vector space
when equipped with the obvious linear structure (®; + ®,)(X)
= ®;(X) + ®2(X) and (A®)(X) = 2D(X). Moreover, the finite-range interac-
tions form a real vector subspace. Subsequently, it will be convenient to con-
sider certain real Banach subspaces of interactions. For example, if
X CL—¢(X) > 0is a family of positive functions, one can specify a norm by

0]l = sup > @(x)||E(X)

xel X>x

and then introduce a Banach space B: of interactions by
B: = {®;[|®]|; < +oo} .

This method, and variations of it, will often be used in the sequel. The (X)) will
always be taken as a simple functions of the number of points |X| in X and the
diameter D(X) of X if L = Z". The conditions [®||. < +oo often have a phy-
sical interpretation. For example, if £(X) = 1 and one defines

Eo(x) = _ ®(X) .
X>x
it follows that Eg(x) € A and ||Ee(x)]| < [@]|;- But Eq(x) corresponds to the
energy of interaction of particles at the point x € L with their surroundings.
Thus this choice of ¢ corresponds to a restriction of finite energy per particle.
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Note that if one considers only translationally invariant interactions, then
each of the Banach spaces B; contains the subspace of finite-range interactions.
This follows because.

sup Y OL)[IEX) = D P £(X)

xeZ" X>3x X320

and the right-hand side is a finite sum, and hence bounded.

EXAMPLE 6.2.2. Let L = 7" and consider the spin-} system described in Example
6.2.1. The simplest interesting interaction is a one-body and two-body translationally
invariant interaction, ie., ®({x}) =t ®({0}), ®({x,y}) = . @({0,y —x}) and
®(X) =01if | X |> 2. One such choice is determined by

({0}) = ho

3
O({0,x}) = > jix)eloT
i=1
where & € R and the j; are real functions over Z". This model is usually referred to as
the anisotropic Heisenberg model if the j; 3 0 and j; # j; for some pair i, j; the
isotropic Heisenberg model if j, = j, = j, # 0; the X-Y model if j; # 0,i = 1,2 but
Js = 0; the Ising model if j, = j, = 0. In each case the energy of the system confined
to A consists of two parts

3
dohay, > > x=yete] .
xeA x,yeAN i=1
The first contribution corresponds to the interaction of the spin-% particles with an
external electromagnetic field of strength / at x and the second corresponds to an
interaction, at a distance, of particles x and y.

The dynamical evolution of any system can be defined in terms of the
evolution of the associated observables. For a finite spin system confined to
A C L, with interaction ® and Hamiltonian Hg(A), this evolution is given by
the Heisenberg relations 4 € A, — t(4) € Ay, where

T;\(A) — eiIHq)(A)Ae—fIHq)(A) ,

ie, € Rt} is a one-parameter group of *-automorphisms of the matrix
algebra A,. We now want to analyze this evolution for various classes of
interactions and for systems which consist of a large number of particles. The
standard method of approach to this type of problem is by asymptotic ex-
pansion in terms of inverse powers of the total number of particles. The first
term of such an expansion corresponds to the approximation that the system
has an infinite number of particles and this approximation then coincides with
the thermodynamic limit discussed in Chapter 1 and applied to the ideal gases
in Chapter 5. Thus, computation of the time evolution of a fixed observable
A4 € Ay, consists of calculating limits
7(4) = lim t(4)
A—

1
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of the evolutes t/(4) as the system grows indefinitely in size. We adopt for
simplicity the convention that A — co indicates A eventually contains any
finite subset of L.

There are various possible senses in which the limits t,(4) might exist and
these govern some of the basic properties of the evolutions T, e.g., the con-
tinuity of the map ¢—1,(4). For many classes of interactions the limits
actually exist in the norm sense for all 4 € A, and all Ag C L. Therefore, the
evolution T extends by continuity to a strongly continuous one-parameter
group of *-automorphisms of the quasi-local algebra

A= | ] wp

and (U, 1) forms a C*-dynamical system. For more general interactions the
limits only exist in certain representations and the evolution determines a *-
system. Our immediate purpose is to describe the C*-results.

There are several methods of proving the existence of the norm limits of the
evolutes t(4). Each method applies to a slightly different class of interactions
and emphasizes a different physical feature of the interaction. All known

methods are either implicitly, or explicitly, dependent upon the equations of
motion

of t8(4). Here §, denotes the bounded derivation defined by
oa(4) = i[Hp(A),4], AcU .

First we examine convergence of the t* via convergence of the infinitesimal
generators 6. For this one needs the following version of Proposition 3

Proposition 6.2.3. Let ® be an interaction of a quantum spin system sa-
tisfying

po(x) =D _[®(X)] < +o0
X3>x

forall x € L.

It follows that there exists a derivation 6 of the quantum spin algebra N
such that

D) = [ Ua
ACL
and for A € WAy,
Sy =i Y [®X),4].

XnA#£D

The derivation & is norm-closable and its closure § is the infinitesimal
generator of a strongly continuous one-parameter group of *-automorphisms t
of W if, and only if, one of the following conditions is satisfied:
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either
5 possesses a dense set of analytic elements
or
(t+ad)(D(3)) = A, «c R\{0} .
Finally if 5 generates the group t and if

_L_;\ (A) — eith;(/\)Ae—ichp(/\)

dim_[[5(4) — <2(4)]| =0
for all A € U, uniformly for t in compacts.

ProoF. First for 4 € Uy,

iy [ow),4)

XnA#D

< ; XZSXII{@(X), AJ| < 2 AllA] sup pa(s) < +oo

and hence ¢ is a norm densely defined derivation. But § satisfies the hypothesis of
Proposition 3.2.22 and thus +6 are dissipative. Consequently, é is norm-closable by
Lemma 3.1.14 and

1+ «d) ()| > |||

for all « € R, and 4 € D(5), by Lemma 3.1.15. The criteria for § to be a generator
follow directly from Theorem 3.2.50.
Finally, if 6, is the bounded derivation defined by

0Aa(4) = i[Ho(A),A]

for all 4 € U, then

Jlim [134(4) - 5(4)] =0
for all 4 € D(5). Thus

Jim [z(4) — e (4)]| = 0

for all 4 € A, uniformly for ¢ in compacts, by Theorem 3.1.28.

Remark. Proposition 6.2.3 has a converse, i.e., any derivation & of the
quantum spin algebra U with D(6) =|J, ., Ux can be obtained from an
interaction ®. To see this first note that the last remark in Example 3.2.25
implies that for all finite sets A C L, there exists an H(A) = H(A)* € U such
that

o(d) = i[H(A), 4] (%)
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for all 4 € A». Moreover, H(A) is determined by & up to addition by elements
in Ay N A= Ape. Here A° denotes the complement of A and

To normalize /(A) we define a projection Ex of norm one from 2 onto A
for any (finite or infinite) region A as follows. Write 2 = Ay ® Wpe, and let ©
be the unique normalized trace on the UHF algebra W e Then E, is defined

by
(ZA ®B> ZT(B)

for 4; € Ay, and~B,~ e QIAC; i )
By replacing H(A) by H(A) — Exc(H(A)) we may choose an H(A) satisfying
(%) and

Ex(H(A) =0, ()

and conditions () and () determine H(A) uniquely.
Now, define

H(A) = Ex(H(A)),  W(A)=H(A) - H(A)
and define inductively

(D) =0, D)= - o

XS A
Then one has

= > X)), HA)=H(A)+W(A) .
XCA

Using the normalization condition one can now show that
W(A) = Al/imoo W(A;A)
where the limit converges in norm, and
WAN) =D {OWX); Xn A£D, Xn A“£ T, XC A} .
To prove this note that if A; C A, the following computation is valid
E (H(A)) — H(Ay) = En,(H(A) — H(A))
=t(H(A) — H(A1))
= (Ex(H(A))) — t(Exg(H(A1))) =0 . ()
Here the second equality follows from
H(A) = H(A) € Apn A=Ay

which is a consequence of (x), while the last equality follows from (xx).
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Next one computes that if A C A’, then
H(A\A) = Ema(H(A))
= EA'\/\ (]:I(AI) - H(A))
— EE((N) - (M) = E(FI(N) — BH(A) , ()

where the first two equalities follow from () and (xx), respectively, and the
last from

H(A) —H(A) € Upe .
We can now derive a manageable expression for the surface term W (A;A'),
W(A;N)=H(AN)—H(N\A) — H(A)
= En(H(N)) = Ex(H(N') — H(A)) - H(A)
= Ey(H(A)) — H(A)

for all A’ 2 A, where () was used in the second step. But £ N (4) — 4 in norm
when A’ — oo, for all 4 € 2, and hence

A;lm W(A;A) =H(A) —H(A) = W(A) .

The first specific result on existence of a time evolution is based upon the
first criterion of the above proposition and is applicable to interactions for
which the many-body forces are negligible in a suitable sense.

Theorem 6.2.4. Let @ be an interaction of a quantum spin system satisfying
the requirement

jof, = " e (sup 3 1|<1><X>||) < too

n>0 x€L Xoax
- |X|=n+1

for some 4 > 0, and define a derivation & by
= U Ay
ACL
and

S()=i Y [@X)4], A€Uyp .
XnA#J

It follows that D(6) is a norm-dense *-subalgebra of analytic elements of the
closure & of 5. Therefore, § generates a str ongly continuous one-parameter
group of *-automorphisms t of W and

Jimz,(4) — 2 (A)] =0

for all A € N, uniformly for t in compacts, where

T{‘(A) — eith,(/\)Ae—ile(/\) .
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Remark. Less severe restrictions on the growth of ||®(X)| with |[X| may be
imposed at the cost of making the elements of D(6) non-analytic, but never-
theless 0 remains a generator. (See Notes and Remarks.)

Proor. Once we have established that each element of D(J) is analytic for ¢
then the remaining statements follow directly from Proposition 6.2.3 because
pa(x) < ||@||, for all x € L.

Now take 4 € A,. One has ®(X) € Uy, and A, and Wy commute whenever
X n A = . Therefore,

) =1 > [@(X), [ - [@(X1), 4]]]

XinSH#D,..XunS1#D
where Sy = A and

Si=X;uX;_1U---UXIUA

for j > 1. But
and

1S < 1XGI+ 1G] + -+ Xl + A =7
Thus

8" <2 > [Len+--+ o+ [ADI®], 4]

.y, 20 i=1
where

o, =sup > OX)] -

X€EL x3x
[X|=n; +1

But a” < n!i™"e" for A,a > 0 and hence
6" (Il < 2/2)" @I ]l4]In Texp(A|A]) -
This establishes that 4 is an analytic element for § with radius of analyticity
b > (2/2]0]),), ie.,
2" | o
S8 ()] < + oo
n>0"""

for |¢] < (4/2]|®]|,), and the proof is complete.

EXAMPLE 6.2.5. Assume ® contains only one- and two-body interactions, i.e.,
®(X) = 0 for |X| > 2. The conclusions of Theorem 6.2.4 are then valid whenever

ingH@({x})ll <+oo,  supY [ @({x, 1}l < +oo .

xeLyel

If L =7" and @ is translationally invariant, these conditions reduce to the single
restraint
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> o0, yhll < + o0 .

0£yez

This is obviously satisfied if ® is of finite range and in general it can be
understood as a restriction on the range of the two-body interactions.

The evolution 7 constructed in Theorem 6.2.4 can be considered as a
function of the interaction ® and the perturbation estimates used in the proof
establish that 7 is continuous in @. For example if ®; and ®, both satisfy the
requirements of the theorem, and if d¢, and d¢, denote the generators of the
corresponding groups t® and 12, then

n—1

tn m n—m-—
) =) = Y S 5 (60, — b0)" 7 (4)
0

n>1" " m=

Hence for 4 € U, the above estimation procedure gives

D _ D n g " m n—m— 1
Iz (4) = > () < 1 7 >l
m=0

n>1
x (|1 — @], 14| ™M

ot : 2t -
< % |®; — (D2[|/1||A||6A|A| (l - TI o ”’)

2l -
< (1-2jea,)

whenever (2[7]/4)|®;]|, < 1,i = 1,2. Continuity for general 4 and small ¢ then
follows by approximation of 4 by strictly local elements. Finally, continuity for
all 4 and ¢ results from the group property of ¢+ 7®.

The second result concerning the existence of dynamics emphasizes prop-
erties of the energy interaction across the surface of each finite subset A C L.

This energy is defined by
Wo(A) = Z O(X)

XnA#O0
XnA £ QD

where A again denotes the complement of A. The following theorem, which is
a consequence of the result of Section 3.1.4, covers two cases which are typi-
cally applicable to one- and two-dimensional systems respectively.

Theorem 6.2.6. Let @ be an interaction of a quantum spin system satisfying
the requirement

po(x) =) _ ®X)]| < +o00
X3x

for all x € L, and define a derivation § by
D)= |J Ua

AcCL
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and

S(A)=i > [®X),4], AUy .
XnA#D

Assume that there exists an increasing sequence A, C L such that A, — oo
and

either Z oX)|| <M
XA #0
XA #OD
for some M >0
or OX)|| < O(n)e ™
XnAn#0
XA, #O

n+m
for some o > 0.

It follows that the closure & of & generates a strongly continuous one-
parameter group of *-automorphism of W and, furthermore,

Tim [[g(4) — ()| = 0

for all A € W, uniformly for t in compacts.

Proor. This result follows from Theorem 3.1.34, and the discussion subsequent to
the theorem, when one makes the identifications X = U, X, = Ax , S =5, and
Sn,m = On+m,0 = 5n+n17 where

5,,(14) = i[H‘I)(An)vA]

for all 4 € 2.

Thus under the first assumption of the theorem the result follows from the dis-
cussion at the end of Section 3.1.4 because

1S 1x, = Swoll = 106 = dn)lar,, II <2

3 CD(X)‘ <M .

X #D
XA 2D

Similarly, the second assumption of theorem implies that

I L, = Swmll = 1106 = Gnim)lag,, | <2

XnAn#D
e
XoAS  FO

o(x) } — O(n)e™™

and the result follows from Theorem 3.1.34.

Theorems 6.2.4 and 6.2.6 both give conditions on the interaction which are

sufficient for the construction of dynamics. The conditions of Theorem 6.2.4
imply that

sup [0({x})] < oo .
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i.e., the interaction energy is uniformly bounded on the lattice. Theorem 6.2.6
does not impose this type of boundedness and ||®(X)|| could grow indefinitely
provided that the surface energies are appropriately bounded. Thus, Theorem
6.2.6 appears more general than Theorem 6.2.4. Unfortunately, the bounds of
Theorem 6.2.6 are rather restrictive and essentially limit the result to one- and
two-dimensional models. These applications are illustrated by the following
examples.

EXAMPLE 6.2.7. Let L =Z,A, = [—n,n], and assume that ® is a translation in-
variant interaction. It follows that

> o)

XnhAn#D0
XA #D

<23 D)) -

X350

Thus if the right-hand side is finite the first case of Theorem 6.2.6 is applicable. This
requirement differs from that of Theorem 6.2.4 insofar the possible growth of

lof, = > o)l

E)
|X|=n+1

with n is less restricted. On the other hand, the range of @ is more restricted. For
example, if @ is a two-body interaction, i.e., if ®(X) = 0 for |[X| > 2, then the con-
dition becomes

> o0, x})l| < +oo .

x#0

Thus, the two-body interactions should decrease roughly as |x| ™2~

EXAMPLE 6.2.8. Let L = 72,
An = {x;x = (x1,%2) € 22, |xi| <myi=1,2}
and assume that @ is an interaction with finite range dg. It follows that

>

x € A\ An—dg

®(X)
Xnhn#O

<
XnA"_H"#@

<4ndp sup

X
Z ) x € An\An_dq,

X3

x X3x
D(X)>m

D(X)>2m

CD(X)H .

But the right-hand side vanishes identically if m > dg and hence the second case of
Theorem 6.2.6 is applicable.

The third and final method of discussing the dynamics of quantum spin
systems applies only to a subclass of the interactions covered by Theorem 6.2.4
but it establishes more detailed propagation properties. This method only
applies to regular lattices, e.g., L = Z’, and differs from the previous methods
insofar it establishes the Cauchy convergence property of A ti(4) directly.
The starting point of the method is the estimate
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e (4) wﬂ/w—rrw»H

/t ds ™ ([Ho(A)) — Ho(A), r,Ajs(A)])H

/dw 2 4]
v(:'/\]\/\v X3>x

which is valid for Ay € Ay, and 4 € A,,. Thus to prove the Cauchy property
one must estimate the commutators occurring in the last summand. These
estimates can be understood as bounds on propagation velocities. We discuss
this interpretation subsequently.

IN

Proposition 6.2.9. Let ® be an interaction of a quantum spin system on the
lattice L = 7" and assume that

[®]l; = su XN + 1P D (X)) < + 00
p

xeZ'X>5x

Sfor some ). > 0. Let t denote the evolution associated with ® and A C 7" and
x € 7% 1, the action of space translations.
1t follows that

), Bl < hall Y sup @ﬂQﬂ%wmwm

S cewy, Il
Jorall 4 € Wy and B € A .

Proor. First define
Clp(x,0) = [17)(4), B

and remark that

. 0
Ch 1) = € p(x,0) + /ﬂgqm@

= C 5(x,0) + /ds oM ([@(X), 4]),B] .
) X350
Next define

Ch g, t
C‘B(.X7 t) = sup sup w
Acz ey 4]

The integral relation for C4 5> and several applications of the triangle inequality,
yields the integral inequality

d Mlox), 4
Cp(x,t) < Cp(x,0) + Z/ ds sup sup e (200, 4. Bl )
500 Aczoaewy, 14

Next we seek a majorization of the integrand in terms of Cj.
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Let e(ix, jx),ix,Jx =0,1,...,N, be a set of matrix units for Ay,;. Each [©(X), 4]
has a unique decomposition of the form

[@X), 4] = Y Co({ich, Ui}) [ ] elieric)
(iU} x€X
with coefficients Cy € C satisfying

ICo({ix}, eI < [[[@X), 4l < 2 DX 14| -

Substitution of this decomposition into the integrand of the above inequality, use of
the linearity properties of commutators and the triangle inequality then gives the new
integral inequality

Co(x,1) < Cp(x,0)+ > > 2V + ) @) /0 " ds Cp(x+ y,s) .

X350 yeX

But this takes the simple form

Il

Cp(x,t) < Cp(x,0)+2 Z e(y) dsCp(x + y,s) ,

yez’ 0
where
e(y) = Y (N + 1Mo .

X30

X3y
Iterating this last inequality yields

Z Cp(»,0 / 4"0 0= 2O
0<0;<2n

yez’

where & is the Z'-Fourier transform of ¢. (This use of Fourier transformation is where
the regularity assumption L = Z’ is important.) As  is analytic and periodic one may
change the integration to an integration along Im 6 = y to estimate

/ 40 0= 50| < =y / 20 |AHEO+)|
(2n)"

(2n)"
But

80 + iy) Z e 0+'7)ya

yez'

Hence, using &(y) > 0, one concludes that

B0+ < 3 ePely) = &) -

yez¥
Consequently
| 2RO+ | < G2lein)
Combination of these estimates immediately yields the bound

Cp(x,1) Z Cs(y,0)e —(x=y)y G2lele(@)
yezZ

But choosing y = ((x — y)/|x — y|)A with 1 > 0 gives
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i) = 3 D0 (V)P (x) e/

X30 yeX

<IN + )P @)D < o), -

X30

Consequently

)<Y Coly,0)e ol

yelZ'

The statement of the proposition now follows from the definition of Cp.

Corollary 6.2.10. If

TN4),B
C(x7t) = sup sup w ’
acz ey |4IlIBI

then C(x,0) < 20,0 and hence

Clx,1) < 2exp{—[d|(Alx[/|z] = 2[|@[],)} -

These estimates now allow a new discussion of dynamical evolution for a
suitable class of interactions.

Theorem 6.2.11. Let @ be an interaction of a quantum spin system on the
lattice L = 7" and assume

@], = sup > XNV + 1P 0x)]| < + 00
xeZ" X>3x

for some ). > 0. Further let T denote the evolution associated with ® and A.
It follows that t™ converges strongly to a one-parameter group of *-auto-
morphisms © of U, i.e.,

Jim (| (4) - ()] = 0

Jor all A € W, and the convergence is uniform for t in compacts.
Moreover, for A,B € Wyqy one has

T, 7:(4), B 1] LA/l — i
[|[zez:(4), B]|| } < 21l4| |1B]le [e] {Alx]/le] - 2| @]l .} ;
[l [zt (4), B]]|

where x € 7" 1, denotes space translations.
Finally if ®, and ®, are two interactions of the above class and T and ®
the appropriate automorphism groups, then
g2 el .
e_ 0
el 2

xez’

() = ()] < 4]l 1ol 1|01 — ]
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Sor all A € Uy, where |||, = min(||®]|,, ||D2|,) and

= mi — .
e = min r —

Proor. Prior to Proposition 6.2.9 we established the estimate

Iz (4) — 772 (4)] < / ds||[@(X), 7> (4)]
xEA,\Az Xox

whenever 4 € Wy, with Ag C Ay C A. But then decomposition of ®@(X) in terms of
matrix units, as in the proof of Proposition 6.2.9, yields the estimate

[t =@l < S0 S eV + 1)

xeA\A2 X3x

I [t,(B), T2 (4)]]|
<3 e sup B

Therefore, an application of the bound of Proposition 6.2.9 gives

@) =@l < Y S+ Do) 2 4]

XEA|\I\~a X>ox

xS S e / ds 20

yEX z€Ag

But —|y —z| < —|z —x| + |x — y| and |x — y| < D(X) for x, y € X. Thus one obtains

I () = sl <2l Do DoKW + 1) o)

xeA\Ay X 3x

il
3 o / ds &210l;
X e s e
0

z€Ao

< [l Aol (X1l — 1) Z oo
xeA\A2

Hence t}(4) converges in norm for all strictly local 4 and the convergence is
uniform on compacts. Convergence for general 4 follows by continuity.

The second statement of the theorem follows directly from Corollary 6.2.10.

The final statement follows from the estimate

12 (4) — < (4 u</0 ds 3 [@1(X) - (), > (4)]|

Xcz¥

and an argument similar to the above.

EXAMPLE 6.2.12. Assume @ is translationally invariant and contains only two-
body interactions. The condition of Theorem 6.2.11 then reduces to the condition

3 [ @({0, 1Pl < oo

xez"

for some 4 > 0, i.e., the interaction must decrease exponentially with distance.
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Let us now consider in a little more detail the significance of the foregoing
commutator estimates. If 4 € gy, then 4 corresponds to an observation at
the origin and 7,7,(4) can be thought of as an observation at the point x at time
t. The commutator [t,7,(4), B] with B € Uy, then gives a measure of depen-
dence of this observation on the observation B at the origin at time ¢ = 0, i.c.,
the commutator measures the effect of the observation t,7,(4) at the origin.
Thus, the estimate

Feee(4), Bl .
20 18] “"p{ 't'[m 2”@”‘]}

shows that this effect is exponentially decreasing with time outside of the cone

|x] < |¢] (2”;&> :

Thus physical disturbances propagate with velocities less than

Vo = inf 2121
A A

Another way of arriving at this same qualitative conclusion is to reexamine
the essential localization of 7,(4). The estimate used in the proof of Theorem
6.2.11 shows that

ll7(4) — T2 A)|| < |4 (20 — 1) Z o

xeA°

< 2]l [0l l 3 e HleIol:

xeA°
for 4 € Wygy. But if A = {x;|x| < V|¢| + D}, then
Z e < Sv/ dr ¥ le ™ |
YEAC r>V|t|+D—-1

where S, is the surface area of the v-dimensional unit sphere. Therefore,
() — M (A)]| < 201Al] @, F(|ef)ye =2
where V; = 2||®||,/2 and F(|¢]) has the form
F(|t]) = |t|Pv_y (V]t] + D)e P

where P,_; is a polynomial of order v — 1. Thus, if ¥ > Vg and & > 0, one may
choose D such that

[z(4) = M (A)]| < el 4]|
for all r € R, i.e., 7,(4) is essentially localized in a cone
|x| < Volt| + D .

This conclusion that the propagation of physical effects is exponentially
damped outside of a causal cone determined by a group velocity Vg is essen-
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tially restricted to interactions which are exponentially decreasing in config-
uration space (see Example 6.2.12). If the interaction decreases more slowly,
then one would expect the damping to be less important but no quantitative
results in this direction have been obtained.

Although these results show that propagation takes place only in a causal
cone with asymptote determined by Vg the method provides no information
concerning the distribution of effects within the cone. The characteristics of this
distribution depend much more intimately on the details of the interaction. For
certain interactions the maximum velocity of propagation is sensibly smaller
than the estimate Vg and it is typically zero for classical interactions such as the
Ising interaction.

EXAMPLE 6.2.13. Consider the spin-} Ising model introduced in Example 6.2.2. If
A4 € Uy, is of the form

A = ayo4 + a3o;

with ag,a3 € C, then the commutation relations [d3, 03] =0 and the identification
o =1 show that 4 is a fixed point for the Ising evolution, i.e.,

() =4 .

Alternatively if

A =a,c +ad" ,
where a+ € C and o, are the spin raising and lowering operators defined by

o = (¢t ic5)/2 .
then one finds

1(4) = areoo’ +a_e™og |

where

Hy =" jslx—y)] .
yez'
Thus the time development ¢+ 7,(4’) has a multiperiodic nature which is.periodic if
® has finite range. In this latter case 1,(4) remains localized within a distance dg (the
range of @) of the point x. Finally a general element of 2y, has the form 4 4 4’ and
combination of the above cases gives the generic behavior.

The Ising model illustrates a behavior typical of classical interactions. If
€ C U is a classical spin algebra and @ takes values in €, then all elements of €
are fixed points of the corresponding evolution. This follows because € is
abelian.

More interesting types of propagation are expected for models such as the
Heisenberg model and the X-Y model. To analyze the dynamics of the latter
we first describe a connection between the kinematics of the one-dimensional
spin-} system of Example 6.2.1 and the corresponding CAR algebra of
Theorem 5.2.5.
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EXAMPLE 6.2.14A Consider the spin-% model with L = Z. The C*-algebra of local
observables U, is generated by polynomials in the Pauli operators
{0};i=10,1,2,3,x € A} and the corresponding quasi-local algebra A" is isomorphic
to the UHF-algebra ®32 ___M>. An explicit matrix representation of the Pauli op-
erators was given in Example 4.2.7. They satisfy the Pauli relations

(P =1, & =0, &

— X XX
AR A 791 = TO+19; =105

a
where addition of the indices is modulo 3. Moreover, [, af ]=0if x # y.

Now define the Fermi algebra U as the C*-algebra generated by elements
{ay,at;x € Z} satisfying the anticommutation relations

{a,a}} =6, {aq,a} =0

forallx, y € Z. In Theorem 5.2.5 it was established that A7 is also isomorphic to the
UHF-algebra @2 ___ M, but due to the anticommutation at large distances there
cannot be an isomorphism between 2" and A” which respects the spin structure.
Nevertheless one can embed A” and A* in a larger UHF-algebra  in such a way
that A~ AP is the C~-subalgebra of even elements, i.e., the C*-subalgebra gener-
ated by even polynomials in the a and a*, or in the ¢. The embedding is defined as
follows.

Let ©_ be the automorphism, of order 2, of A" defined by

a, ifx>1,
®_(ax)_{—ax ifx<0 .

The crossed product A=A ®e_ Z,, of W and this action of Z, = Z/27, is then the
C*-algebra generated by A" and an operator T € U satisfying 7> = 1,7 = T* and
TA = ©_(4)T for 4 € A", One can check that 2 is also isomorphic to ®2 ___ M.

X=—00 =

Now realize the Pauli algebra U” as the C*-subalgebra of U generated by
o1 =TS:(ax +a;), o3 =iTS(a;—a}), o}=2a%a, —1
where
2oy ifx>1,
Se=41 ifx=1
_,0f ifx<l
The operators then satisfy the Pauli spin relations and this defines an embedding of

A” into A. (The significance of the operators TS, = S, T is explained by noting that
one has the formal relation

s

x—1
78, = H a3.)

y=—00

Next define an action ® of the group Z, x Z, on A by
0(i,))(a) = (~1)ax, ®(i,j) (@) = (~1)'a}, O, j)(T) = (-1)'T

foralli,j=0,1, and let QAIﬁ denote the four spectral subspaces of A defined by this
action (see Section 3.2.3). Then one checks that 9, , is the even subalgebra of "
alluded to in the previous paragraph and
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au = A+ U
Q[P = ‘Z[.*_.{_ +§«\[__ .

The even subalgebra QAIJrJr = AP~ A is itself isomorphic to @

is 22 Mo
An interesting automorphism ¢ of 2 is defined by
o(ay) = aey1, o(T) = U§T = TO'; .

One checks that ¢ restricted to A is the twosided quasi-free shift and its restriction
to AP is the twosided shift. Thus these shifts coincide on the even subalgebra.
Finally note that 9 is also generated by the spin raising and lowering operators

oy = (01 £i03)/2
which satisfy the relations
{oh, ) =1, o}, 0 ]=03 .
The ¢%, 0%, commute if x # y. The ay,a’ can be recovered from the ¢ by
ay = TS,0-, a; =TS0, .

We now use this description of the kinematical structure of the spin-% system to
analyze the time development of the X—Y model.

EXAMPLE 6.2.14B Consider the X-Y-model of Example 6.2.2 for v=1 but
assume, for simplicity, that ji(x) =0 for |[x| # 1. On the algebra 2 the local
Hamiltonian then has the form

n—1 n
Hy = Ho([-n,n]) = =J > (1 + )i + (1 =p)a3as) +h > 6
n—1

* * * _x
=2J E (@faxs1 + ay, ax +yaial, | + yacyax)

X=-—n

+h > (ala,—1) .

X=-n

Therefore the Hamiltonian Hg defines a time development of QI which leaves thé two
subalgebras A" and A invariant. Assume, for simplicity, that # =0. The in-
finitesimal time change of the a is then given by

do(ay) = ’1E%i[H,,,ax] = —2iJ(@rr1 + a1 +y(al + a5 y)) -

For h = (f,g) with f,g € [5(Z) it is now convenient to introduce

B(h) =a"(f)+alg) =D fid;+_g;a; -
7 7

One then computes that the derivation d¢ generates the one-parameter group

w(B(h)) = B(e™ h)
where

_( U+Uur) yU-UY
K_<—y(U—U*) —(U+U*)>

and
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Uf);=fiers (U f);=Fia -
The time evolution of T € A is given by 1,(T) = TV, where

V, = lim Te™ Te i

n— o0

o1
= lim @~ g=itH, _ / dt]/ dty . / dty 1, (A) ..., (4) ,
h—0o0

by Theorem 3.1.33, with
A= lim (®_(H,) — H,) = —4J(aja\ + alay + y(aja; + arap)) .

n— 00

These formulae give the time-development on au. Next, using Fourier transforma-
tion, one deduces that K has a Lebesgue spectrum on [—2,-23] U [2y,2] with uni-
form multiplicity 4. Therefore ™% h—0 weakly as ¢— +oo for all
h € I,(Z) ® 15(Z). Hence the limits

0.(4) = lim V,4V;
t— +oo
exist for all 4 € A" and define automorphisms of A7, In fact
©(B(h)) = B(Ush)

where U. are unitary operators which can be computed explicitly. Using these ob-
servations, and a method similar to that of Example 5.4.9, one now establishes the
following twisted asymptotic abelianness for 4,8 € A” : if 4,B ‘II++ then

Jim [l[4,7(B)]] =0,
if 4€A__and B e A, then
Jim || 47(B) - O, (w(B))d| =0 ,
and if 4 € QAI++ and B € A__ then
lim [|47,(B) — 7(B)®..(4)[| =0 .

t— oo

These general conclusions remain valid if 4 # 0. Note that it is also possible to show
that the automorphisms ®~ do not extend to 9 (see Notes and Remarks).

A special case which is illuminating is the case y =0, i.e., the isotropic X~V
model. Then the infinitesimal time change is given by

do(ay) = lim i[H,,a;] = 2iJ(a}_, + dl, ) + 2iha’
h— 00
and this can be integrated by Fourier transformation to give

7(a}) = Z Gi(x — y)a,

yez

where
G;(x) — (27’[)_1 / dgezxﬂ it(4J cos 0+2h) .
0

Thus if 4 = ajay = 6%6° = (69 +1)/2 then ||[ty7,(4), 4]|| is proportional to |G,(x)|.
But one finds that |G,(¥r)| decreases exponentially with ¢ if |V| > 4|J| and decreases
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like |¢| /2 if |V'| < 4|J|. Within the cone |x|/|¢| < 4|J| there is propagation which is
essentially homogeneous and decreasing proportionally to |t|_1/ % and outside the
cone the propagation effects are exponentially small.

Throughout this subsection we have analyzed the time development of
quantum spin systems as a norm limit of the local dynamics. For many in-
teractions, e.g., long-range interactions, it is possible that the appropriate limits
only exist in certain representations. (See Notes and Remarks.)

The periodic time behavior exhibited by the Ising interaction in Example
6.2.13 is easily seen to be typical of classical interactions and of course all
elements of the classical subalgebra € are left invariant. On the other hand it is
not at all evident that the propagation exhibited by the X—Y model in Example
6.2.14 is typical of quantum interactions although this is believed to be the
case.

6.2.2. The Gibbs Condition for Equilibrium

Throughout the rest of this section we analyze the equilibrium states of
quantum spin systems and we often assume that the dynamics is given by a
strongly continuous one-parameter group t of *-automorphisms of the quan-
tum spin algebra 2. In this paragraph we compare the traditional Gibbs de-
finition of equilibrium and the definition through the 7-KMS condition.
Subsequently we discuss other characterizations of equilibrium.

First define the local Gibbs state associated with the interaction @ by

. TI‘@A (e_H°(A)A)

(DA(A) - TrSjA (e—Hm(A))

for all 4 € A,. Occasionally it is useful to indicate the dependence of wp on @
and then we use the notation w?. It is also natural to insert a factor f € R,
corresponding to the inverse temperature, in front of Hp(A) but for simplicity
we often omit f3.

Although w, is defined as a state on 2, it has an extension to a state on U
by Proposition 2.3.24. Let w$ denote an arbitrary such extension. The ther-
modynamic limit of w, as A — oo can now be analyzed with the aid of the »§.

The spin algebra 2 contains an identity and hence the state space Eqy is
compact in the weak* topology. Therefore, there exist nets of extensions wﬁ of
wp, such that A, — oo and wﬁz converges in the weak* topology to a state w
over U, i.e.,

lim wﬁd(A) = w(A4)
for all 4 € A. Hence, w is a thermodynamic limit point of the local Gibbs states
in the sense that

w(A4) = lim wa,(4)
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for all 4 € A, and all A. Henceforth we define a state w® over U to be a
thermodynamic limit point of the local Gibbs states o? if it is the weak* limit of
a net of extensions of w® to A

It is a consequence of the general analysis of Chapter 5 that the thermo-
dynamic limit points @ are KMS states.

i L . B
Proposition 6.2.15.  Let ® be an interaction of a quantum spin system, w A
the local Gibbs states

_ Trg, (e /™M)

i
w (A) - )
A Trg, (e~ PHo(A))

Ae A,

and ™ the local automorphism groups
™(4) = o) go=itha(N) 4 e qQp
Assume that ™ converges strongly to an automorphism group t, i.e.,
Jim [[e4) — 5(4)]| = 0

forall A€ Wandtc R.
1t follows that every thermodynamic limit point wP® of a)ﬁm isa(t,f)-KMS
state over .

ProOF. As U is separable wf® is the weak* limit of a sequence of extensions of the
local Gibbs states. Therefore the result follows from Proposition 5.3.25.

This proposition shows that the thermodynamic limits of the usual Gibbs
states are KMS states and our aim is to derive a converse of this statement and
thus deduce that the Gibbs equilibrium states are completely characterized by
the KMS condition. It is, however, overly optimistic to expect a strict converse
to the proposition. The difficulty is that the foregoing notion of Gibbs state is
too restricted. The state w® describes a closed system, i.e., a system completely
isolated in A and lacking interaction with the exterior. But external interac-
tions, or interactions across the boundary of A, are of relevance whenever
multiple phases, i.e., multiple thermodynamic equilibrium states are possible
because these interactions influence the relative proportion and disposition of
the phases. Thus, variation of the external interactions is necessary if one
wishes to describe all equilibrium distributions. Hence, it is necessary to
broaden the notion of Gibbs states to allow these external effects. There are
two approaches. Either one may modify the interaction near the boundary of A
in order to reproduce the boundary effects or one may consider the system as a
subsystem of a larger system. Although these methods are conceptually dif-
ferent they are technically similar. We adopt the second point of view and refer
to the subsystem as an open system, i.e., open to external interaction. We next
introduce a set of states which describes equilibrium for open systems.

For orientation let us first examine the Gibbs state w, of a finite spin system
with interaction f®. If A C A is a subsystem then the restriction of the Gibbs
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state wys to W, is not the Gibbs state wp of Wy. The restricted state describes
particles in A interacting with particles in the external region A"\ A. If, however,
the state w, is modified by removal of the interaction across the boundary of A
and A"\A, then the restriction of the modification is equal to wx. In order to
express this quantitatively reintroduce

Wa(AsA) = {®WX); X0 A£D, X A #D,X CA},

the energy of interaction across the border of A and A"\ A. Now subtraction of
this external interaction corresponds to a perturbation of the state w, in the
sense of Section 5.4.1 with the perturbation P = fWg(A ; A"). Explicitly

P,(A) _ TrsjA/ (e—/in.(A )+PA) _ TTSjA, (e—lqu;(/\)e—BHq;(A \A)A)
A Trfw (eh—ﬁH‘b(A’)_HD) Trf)/\/ (e—ﬂHq,(A)e——/qu,(/\'\A))

and therefore
Wy = 0pA @ O -
In particular %, |or, = wa.
Next consider the infinite system and assume that the interaction energy
Wo(A)= > ®X)= lim We(A;A)
A'— o0

XUA£D
XOACZQD

is well defined, i.e., the limit exists in norm. This energy represents the inter-
action of the subsystem A with the remainder of the system in the complement
A€ of A. The above observations then motivate the following definition.

Definition 6.2.16. Let @ be an interaction of a quantum spin system such that
the surface energy We(A) is a well-defined element of U for all A C L.

A state w over U is defined to satisfy the Gibbs condition with respect to @
if the following conditions are fulfilled.

"

(1) o is faithful, i.e., Q, is separating for 7, ()

(2) OJP"zcuA®(I)

for all A C L, where w, is the local Gibbs state corresponding to @, @
is a state over Wpe, w’* is the perturbation of w constructed in The-
orem 5.4.4, and Pp = fWy(A).

All limit points of the local Gibbs states satisfy the Gibbs condition. This
follows from combining Proposition 6.2.15 and the following result.

Proposition 6.2.17. Let ® be an interaction of a quantum spin system and t™
the corresponding local automorphism group. Assume that

(1) 2 converges strongly to an automorphism group 1, i.e.,
lim {77 (4) — z(4)] =0
A— oo

forallA e Wandt € R.
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(2)  The surface energies Wo(A) are well-defined elements of W for all
ACL.

It follows that every (t,)-KMS state satisfies the Gibbs condition with
respect to O, for all B € R.

Proor. If =0, the implication is trivial. If § # 0, it suffices, by rescaling, to
consider the case ff=—1. First let Q= —(Wq(A)+ Ho(A)) and consider the
perturbation t""€ of the local groups tA" for all A’ > A. It follows from assumption
(1) and the definition of 72 that t"€ converges strongly to an automorphism group

2 which acts trivially on 2, and which leaves A, invariant. Similarly if P =
—Wa(A), one finds

rP:rA®rA s

where we identify v with its restriction to A <. But the corresponding perturbation
of of w is a t”-KMS state by Theorem 5.4.4.
Next for 0 < B € A« define the state wf over A, by

o) = 2520
As tF = " @ " the t"-KMS condition for w” implies that wh is a tA-KMS state.
But w, is the unique such state by Example 5.3.31. Therefore, b = v, and
" (4B) = wp(4)w” (B)
forall4 € Ap and 0 < B € e, ie.,
of =op @0y, -

Thus the Gibbs condition is valid.

The converse of this proposition is valid under slightly more stringent
conditions on the interaction ®. We first derive a result in which these con-
ditions are stated in an implicit form and subsequently give alternative explicit
assumptions which also imply the converse.

Theorem 6.2.18.  Let @ be an interaction of a quantum spin system and t the
corresponding local automorphism group. Assume that:

(1) < converges strongly to an automorphism group t, i.e.,
lim ||z'(4) — 7(4)] =0
A— oo

forall A€ Wandt c R.

(2)  The surface energies Wo(A) are well-defined elements of W for all
ACIL,

3) D= ] u

ACL

is a core for the generator § of t.
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Then the following conditions are equivalent for each ff € R:

(1)  w satisfies the Gibbs condition with respect to .
2) wisa (t,B)-KMS state.

Remark. If § is a symmetric derivation defined on D, then one can always find
an interaction @ such that § = 4, and the surface energies Wy (A) are well-
defined elements of . This follows from the Remark before Theorem 6.2.4.
The surface energies are not well defined for all interactions defining J, how-
ever. The same remark applies to later theorems on variational principles in
this section.

Proor. If § =0, both conditions state that w is a trace. Thus by rescaling it suffices
to consider the case f = —1. Moreover, throughout the proof we identify =, (2) and
A.

(1) = (2). By assumption, o is separating. Let o denote the corresponding
modular automorphism group. Now for each P = P* € U the perturbed state o is
also separating and has modular automorphism group ¢” where ¢” is the pertur-
bation of ¢ introduced in Proposition 5.4.1. Choosing P = —Wg(A), the Gibbs
condition implies that w” = wy ® @, where wa(= w;®) is the local Gibbs state on
A4 and @ is a state on WUye. As w’ is separating, it follows that both wp and & must
be separating. But the modular group of w, is the group t* and we let 7 denote the
modular group of @. Now of = wy ® & satisfies the modular ((z, —1)-KMS) con-
dition with respect to © = 1" ® 7 and therefore by the uniqueness of the modular
group, Theorem 5.3.10, one has ¢ = t* ® 7. In particular ¢*|g, = *.

Next let J, denote the generator of o. It follows that the generator .- of ¢” is
given by D(d4+) = D(d,) and

0s(4) = 6,¢(4) — i[P, A]
for all 4 € D(3,). Thus as ¢” and t* coincide on 2, one concludes that A C D(J,)
and
8o(4) = i[Ho(A), 4] + i[Wo(A), 4]
=i > [@(0),4]= lim oy (4)
XnA#£D
for all 4 € Ay, where we have introduced d,:, by D(d,/) = D and
5A'(A) =i Z [(D(X),A] )
XcN

and the limit exists in the norm sense.
But if § is the generator of 7, it follows from Theorem 3.1.28 that ¢ is the graph
limit of 6, as A’ — oo, hence 4 € D(§) and

0(4) = 35(4)
for all 4 € D. But D is a core for 6. Hence D is a core for 6, and 6 = d, by Theorem

3.1.19 and Proposition 3.2.52. It follows that t = o, i.e., w is a (7, —1)-KMS state.
(2) = (1). This follows from Proposition 6.2.17.

If we combine this theorem with Theorem 6.2.4 we obtain a statement which
involves the interaction in a much more explicit manner.
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Corollary 6.2.19. Let ® be an interaction of a quantum spin system
satisfying

n>0 YeL ysx
| X|=n+l

@[, =" e (su;z > ||<D(X)ll> < too

Sfor some A > 0 and let t® be the associated automorphism group (see Theorem
6.2.4).

The following conditions are equivalent:

(1) o satisfies the Gibbs condition with respect to p®.
(2) wisa (z® B)-KMS state.

Proor. The restriction [|®||; < +oo is sufficient to ensure that We(A) is well
defined. The other two hypotheses of Theorem 6.2.18 then follow from Theorem
6.2.4. Hence the two conditions are equivalent.

A similar result can be derived from the assumptions of Theorem 6.2.6.

EXAMPLE 6.2.20. Suppose L is homogeneous, the interaction @ is of finite range
and

sup ||OX)] < +co .
XcL

Then the assumptions of Corollary 6.2.19 are satisfied and a state w is a (z®, §)-KMS
state if, and only if, it satisfies the Gibbs condition with respect to S®.

6.2.3. The Maximum Entropy Principle

The Gibbs states of isolated, i.e., closed, systems can be characterized by a
principle of maximum entropy at fixed energy. This principle was outlined in
Section 5.3.1 prior to Theorem 5.3.15 and it is often referred to as the principle
of minimum free energy. Our intention is to give a more detailed description of
this principle for quantum spin systems and to extend it to open systems.
The notion of entropy first arose in thermodynamics as a measure of the
heat absorbed, or emitted, when external work is done on a system. In the
subsequent development of classical statistical mechanics this quantity was
related to the order, or disorder, of the microscopic particles which constitute
the system. Thus, the principle of maximum entropy describes equilibrium as
the state of maximum disorder compatible with a given energy or particle
density, etc. The concept of entropy was then abstracted from statistical me-
chanics and used in both probability theory and information theory. In the
former it constitutes a measure of the “uncertainty” and in the latter it mea-
sures the information content although a direct justification of these latter
interpretations is difficult. Nevertheless, the entropy arises naturally in the
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formalism of the law of large numbers and it is apparently this fact which leads
to its general utility (see Notes and Remarks).

The relative entropy S(u|v) of a probability measure u € M;(X) with respect
to a positive measure v € M, (X) is usually defined by

s = = [ av(o) () ()10 (%) (0

()

if p is absolutely continuous with respect to v, and —oo if this is not the case.
Thus if X is discrete with a finite number of points wi,...,®,, and
,u(w,) = pi’v(wi) = {4 then

n

S(uly) = - Z(Pi log p; — pilogq:) -

i=1

In particular the entropy, S(p), of the measure u with respect to the measure
which gives unit weight to each point is given by

S(w) =-=>_ pilogp; -

i=1
In the sequel we need to generalize both these concepts, the entropy S(u) and
the relative entropy S(u|v), to the states of quantum spin systems, and for the
discussion of open subsystems it is also necessary to introduce a third concept,
the conditional entropy. We begin by recalling the relevant description of a
closed subsystem.

Each state @ of the local (matrix) subalgebra 2, of the quantum spin
system is determined by a unique density matrix p, on 9, in the form

CU(A) = Trﬁ/\ (pAA)
for all 4 € A,, and the entropy Sp(w) of w is defined by
Sa(w) = —Trg, (pplogpa) -

If {pi}1<i<, is @ complete set of eigenvalues of py, this definition takes the
classical form

Sa(w) = “Zpilogpi .
i=1

(The function —x log x is always defined by continuity to be zero atx = 0.) If ¢
is any other positive functional on 2, then ¢ is also determined by a positive
trace class operator g, i.e.,

@(4) = Trg, (oa4)
and one can define the entropy of w relative to ¢ by

S(w|p) = —Trg, (palog ps — palog oA) -
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Thus if p, and o5 commute,
n

S(wlp) = = (pilog pi — pilog q;) |
i=1
where {g;},.,., are the eigenvalues of . Therefore S(||-) is a natural
extension of the classical relative entropy. The next lemma establishes that this
generalized relative entropy is negative and the subsequent proposition
demonstrates that this negativity is equivalent to the principle of maximum
entropy, at fixed energy, for the Gibbs state of A,.

Lemma 6.2.21.  Let A be a positive n x n matrix and B a strictly positive n X
n matrix.

It follows that
~Tr(4log4 — AlogB) < Tr(B — A)
with equality if, and only if, A = B.

Proor. Let {ai},.;., and {b;}, ., be complete sets of eigenvalues of 4 and B
with corresponding orthonormal eigenvectors {y/}, <i<nand {YF}, <i<n- One has

~Tr(4logd — 4logB) = Za, loga,+ZZa,) Wi v?) )| logh; .

i=1 i=1j=1
But

Z| Vi )P logh; < logZW V) [Pb; = log(y', BY?)

j=1

by convexity of x — log x. Therefore,

n a; a;
—Tr(4logd —AlogB) < Y (¥, BY{)S — ———log——
Zl Wi, By (v, BY)
< (¥}, By Tr(B—4) ,
St a0 - ) -
where the second inequality follows from the convexity of x — —x log x in the form
—xlogx<1l-x.

This gives the desired inequality. But we have used two estimates and equality occurs
in the first if, and only if, there is a relabeling j — j(/) such that W is proportional to
l// and equality occurs in the second if, and only if, a; = )- Hence equality occurs
in the total estimate if, and only if, 4 = B.

Proposition 6.2.22.  Let w and ¢ be states over the local subalgebra of the
quantum spin system with corresponding density matrices p, and o .
It follows that the relative entropy Sx(w|@) is negative, i.e.,

Sa(@lg) = =Trg, (pplogpy — pplogar) <0
and Sx(w|p) = 0 if, and only if, w = ¢
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Moreover if w‘,l\’ is the Gibbs state of W corresponding to the interaction @,
then

Sa(@]w}) = Sa(w) — o(Ho(A)) +log Trg, (e#eW)
where the entropy Sx(w) is given by
Sa(w) = —Trg, (pplogpys) -

Consequently a)% is the unique state which maximizes the functional
[(ORS: EQ[A — FA(CU) = SA(Q)) — CO(Hq;(A))
and the maximal value is given by

log Trg, (e =)y .

Proor. The first statement follows from Lemma 6.2.21 with the choice 4 = p, and
B = o because

Tr(4 —B) =Trg,(pp —0A) =1-1=0 .

The other statements follow from the first by noting that the Gibbs state is de-
termined by the density matrix

e Ho(A)
OA = 4,].,1_5/\(‘2_1_10(/\)) .

Remark. The function

€ Ey, — o(Hp(A)) — B~ Sa(w)

is often called the free energy of the spin system at inverse temperature . Thus,
the Gibbs state wf® is the unique state which minimizes this energy. The term
free energy is also used for the minimum value

FA(B®) = —p'log Trg, (e-ﬂHo(A))

of this function. In the lattice gas interpretation this latter quantity corre-
sponds to the pressure.

In order to extend the maximum entropy principle to open systems it is
necessary to analyze properties of the entropy Sx(w) both as a function of the
finite subsets A C L and of the state w € Eq,. Moreover, one must extend the
notion of relative entropy to pairs of states of the total spin system. We begin
by analyzing the entropy.

First, remark that as x € [0,1] — — x log x is positive, the entropy must be
positive. Next, note that if v is chosen to be the (normalized) trace-state over
A4, then Sp(w|v) < 0 implies that

Sa(w) < log{(N + 1))*l} .
Thus
0 < Sa(w) < |Allog(N+1) .
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Moreover, S(w|v) = 0 if, and only if, @ = v and hence Sj(w) attains its upper
bound if, and only if, w is the trace-state.

It should be emphasized that Sx(w) is an extensive quantity, i.e., it is es-
sentially proportional to |A|, and hence the total entropy

of a state w is only finite under exceptional circumstances. A more suitable
global measurement of entropy is the entropy per unit volume

. SA(CO)
All—llnoo |A|

of w and we will examine this quantity for translationally invariant states in the
next subsection.

EXAMPLE 6.2.23. Let w be a product state over 2, i.e., if Pyxy denotes the density
matrix determining wlm(,,’ then the density matrix p, which determines wly, 1s given

by
Pa = H ®P(x) .

xeA
It follows immediately that

Sa(@) = Siy(w) .

xeA

Hence A — Sa(w) is monotonically increasing and the total entropy

lim SA((D) = ZS{X} (w)
A—oo xeL
is well defined but it is only finite if x — S(,} (w) is summable. But Sixy(w) = 01if, and
only if, cuj.ﬂw is pure and Sy, (w) is small if, and only if, wlglm is “almost pure” in the
sense that one eigenvalue of p {x} 18 close to one and the others are close to zero. Thus,
for w to have finite entropy the restrictions w|y ., must be predominantly “almost

pure.”” Thus, finite entropy is only possible for states which are pure in this very
strong sense.

Probably the most important property of A — Sp(w) is strong sub-ad-
ditivity.

Proposition 6.2.24.  The entropy A C L — Sx(w) € R of each state w over
A, satisfies the strong subadditivity inequality

S/\l U Ay UA; (CU) - S/\l U/\:(w) < S/\| UA}((U) - SAI ((1))
Sfor all mutually disjoint Ay, Ay, A3 C L.
The proof of this proposition consists of a rather long, but elementary,

series of arguments based upon convexity and positivity or convexity combined
with complex analysis. As this proof is not very illuminating we omit the details
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(see Notes and Remarks) and satisfy ourselves with comments on two special
cases.

Note that Sz(w) = 0 by definition and hence setting A; = & in the strong
subadditivity inequality one finds the usual subadditivity property

Sh; s (@) < Sp, () + Sy, (w)

for Ay, n A3 = . This explains the terminology strong subadditivity. More-
over, the ordinary subadditivity follows directly from Lemma 6.2.21 by
choosing 4 = pp, ,a, and B = pp, @ py,.

Strong subadditivity is also easy to derive whenever the various p, com-
mute. For example, if w is faithful, the p, are invertible and

(SAI UAUA;3 (CL)) - SAI VA (w)) - (SAI VA3 ((1)) - S/\l ((1)))
= — TrnglquuA3 (pA‘ UA UA: logX) )

where

_ -1
X = PAUALUAPA P A OAPA LA -

But convexity of x — —x log x gives —xlog x < 1 —x. Hence
—logx < x'-1

and strong subadditivity follows immediately. Nonfaithful w can be handled
by approximation.

The next proposition summarizes various properties of the function
A, w — Sp(w). Some of these properties will only be relevant in the following
subsection when we discuss translationally invariant states and interactions.

Proposition 6.2.25. For each A C L the function
® € Egyy = Sp(w) € R
is continuous, when Eq is equipped with the weak* topology, and concave, i.e.,
Sa(Aw1 + (1 = D) wz) = ASa(w1) + (1 — 2)Sa(w2) -
Further it satisfies the “‘convexity” relation
SA(Awr + (1-2)wy)
< ASa(@1) + (1 — A)Sa(wa) — Alog A — (1 — A)log(1 — 2)
and the triangle inequality
1S (@) = Sna(@)] < Sayons (@) < S, (@) + Sps (@)
for all disjoint Ay,A; C L.

Proor. If w, — w in the weak* topology on Eg, then u)a,lglIA — w|91A in the weak*
topology on Egy,. But 2, is a matrix algebra and hence wylq;, — g, in the uniform
topology. In particular, the density matrices p% corresponding to Wyg, converge in
norm to p,. Thus, if {47} and {4;} denote the eigenvalues of p% and p,, arranged in
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decreasing order and repeated according to multiplicity, perturbation theory implies
that ¥ — 1;. Therefore

Sp(w,) = Zi‘log)“ = " Ailogi; = Sa(w) |

i.e., Sj is continuous.
. 2 . . .
To prove concavity let pE\l) and pE\‘> denote the density matrices corresponding to
oy and w; over Ap. Let £y and E> be two mutually orthogonal rank-one projections

in Ay for some A" with A n A’ = and define w as the state over Wy 4 With
density matrix

VoE +(1-1Q ek .

P =1py
One has
Sa(@) = Sa(Zor + (1 — 2)w)
and
Saon (@) = Sy (@) = ASa(w1) + (1 — 2)Sa(wr) -

Thus concavity follows from subadditivity.
Next note that

i)+ (1= 2)pf) > 2pll) >

and hence

log(Ap}’ + (1= 2)p}) > log ap

(This last conclusion follows from the representation

* 1 1
logA—logB= | di -
og a4 miog /0 (B T A+ M])

for A, B > 0 and Proposition 2.2.13.) Therefore

—ATrs, (py log(2py + (1= D)p)) < —iTrg, (o} log 2p))
= —/Llog A+ ASp(wy) .

Similarly

—(1 = W)Trg, () Tog(2p}) + (1 - 2)p))
—(1=2)log(1 = 2A) + (1 — A)Sp(wy) .

The “‘convexity” relation follows by addition.

The right-hand side of the triangle inequality is subadditivity which results from
Proposition 6.2.24. To establish the left-hand side we proceed as follows.

Let p be a density matrix on the a-dimensional space $ with eigenvalues
{4} i<, and corresponding orthonormal eigenvectors {i,}, <;<n Further let §" be
an m-dimensional space with an orthonormal basis {¢;}, <i<m Wherem > nIf E is
the one-dimensional projection on $ ® $ with range

,1/2
! E:Z/“i/ Vi@,
i=1

it follows that
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Trgpe (E(@®1)) = Trg(pd) |

Trgeg (E(1®B)) = Trg (0'B)

where p’ denotes the density matrix on $' whose first n eigenvalues are Z;, with
corresponding eigenvectors ¢;, and whose remaining eigenvalues are zero.

Thus it follows from these observations that if w is a state over 2, then one can
find A" with An A’ = J and a state @ over U, , » such that (1) ®ly, = o, (2) the
density matrix corresponding to @ is one-dimensional, i.e., @ is a pure state, and (3)
Sa(@) = Sp(w) = Sy (@). By a similar argument it follows that if & is any pure state
on Uy ,a = Up @ Wy, then Sy (@) = Sy (@).

Therefore, replacing A by AUA’, we can consider w, over U, ., to be the re-
striction of a pure state @ over W,/ 4~ for some A” C L. It follows from purity that
Saon’ uar (@) =0 and Sy a7 (D) = Sa(@) = Sa(w). Finally an application of Pro-
position 6.2.24 with the identifications A; = A’, Ay = A, A3 = A”, and o = @ gives

=Saun (@) < Sp(w) = Sy (w) -
Thus by interchange of A and A’ one concludes that

Saun (@) 2 [Sa(@) = Sy (@)] -

Proposition 6.2.24 is basically a statement concerning the difference
Saua (@) — Sy (w) and Proposition 6.2.25 gives further information concern-
ing this difference which we summarize in the following.

Proposition 6.2.26. For A C L consider the functional

(A, @) € A° x Ey = Sp p(0) = Spon (@) — Sy (@)
It follows that:
(1) For w € Ey fixed, N' C A°— Sp p/(w) is decreasing.
@ ISaa(@)] < Sa(w) < |Allog(N +1).

(3) For A and A fixed w = Sp n(@) is continuous if Eq is equipped with
the weak™ topology.
(4)  For A and N fixed w— Sy p(w) is concave, ie.,

San Aoy + (1 = 2)wz) > ASp pr(1) + (1 = 2)Sy pr(@2)

and satisfies the “‘convexity” relation

San(Zop + (1 = D)wz) < ASp pr(@1) 4 (1 = 2)Sy ar(@2)
— AlogZ — (1 —2)log(l — 4)

for 0 < A< 1 and wy,w, € Ey.

Proor. (1) This is a reformulation of Proposition 6.2.24.
(2)  This follows from the triangle inequality of Proposition 6.2.25.
(3)  Again this follows from the continuity of Sx(w) given in Proposition 6.2.25.
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AU
and p/\_z;/\" Next let £, and E; be mutually orthogonal rank-one projections in 20,

for some A" with A"n(AUA’) = &. Now define o as the state over U, o With
density matrix

4) Let w; and w», be states A, with corresponding density matrices p(l)
, AUA p g

p=2py\ y @E + (1= 2)p5)  ©E; .
Thus
Saon (@) = Sy (@) = Sy o (doy + (1 — L)w))
and
Saononr (@) = Sy pr(w) = ASy p(@1) + (1 = 2)Sy pr(@2)

Concavity of S, ,» now follows from Proposition 6.2.24.
The convexity relation for S, o is a consequence of the concavity of Sy, and the
convexity relation for Sy, established in Proposition 6.2.25.

The difference Sy, o'(@) — Sy (w) measures the entropy of the spin system
on AUA’, in the state w, minus the entropy of the system on A’. Thus, it
measures the entropy of the A-subsystem in interaction with the A’-subsystem.
Therefore, the entropy of the A-subsystem in interaction with the remainder of
the lattice system is given by the limit of this difference as A’ — A°. The limit
exists because A'HSA’A/(co) is decreasing by Proposition 6.2.26 (1) and this
limit is often called the conditional entropy. It represents the entropy of the A-
subsystem conditioned by interaction with the exterior.

It is also referred to as the entropy of the open A-subsystem in contra-
distinction to Sa(w) which measures the entropy of the isolated, or closed,
subsystem.

Definition 6.2.27. Let Sy(w) denote the entropy of the subsystem A of the
quantum spin system in the state w € Ey. The corresponding conditional en-
tropy Sa(w) is defined by
Sa(@) = inf (Syon (@) — Sy (@)
A'CA

= lim (Sy n (@) — Sy .
A,I_T’I/l\c( Ao (@) = Sy (@)

The conditional entropy S,\(w) is again an extensive quantity, i.e., essentially
proportional to [A[. In fact, if @ is a product state, then Sx(w) = Sa(w) and we
have already argued that Sx () is extensive (see Example 6.2.23). Several basic
properties of S)(w) follow immediately from Propositions 6.2.24-6.2.26.

Proposition 6.2.28.  The conditional entropy Sx(w) has the following prop-
erties:
(1) For w € Ey fixed, the function A C L S)(w) € R satisfies
(@) (Strong superadditivity)
ShuArun; (@) = Saun (@) > Sa o (@) — Sy, (0)

Jor Ay, Ay, and A3 mutually disjoint.
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(b) ISa(@)] < Sa() -

(2) For A C L fixed, the function w € Eq— Sx(w) € R is upper semi-
continuous if Eq is equipped with the weak* topology and

ASp(@1) + (1 = A)Sp(w2) — Alog 4 — (1 — 2) log(1 — 1)
> 5’,\(1(01 +(1- /1)(02) > )»S'A((D]) +(1- A)S’A(wz)

for 0 < A <1 and wy,w, € Eqy.

Proor.
(1a) By definition

S'AIUAZ UA;3 (C()) - S‘/\1‘~»'/\2 (CL)) - S'A] VA3 (w) + S'A] ((D)

= li SAgUA|UA, -5
Ao—»(mlkl}}\w/\,)f{( AgUA; /\.U/\s(w) /\o(w))

— (SAguAiuAUA; (@) = Sagun; () — (SagunruAsuAs (@) — Sagun, (@)
+ (SAQU/\|UA2U/\3 (60) - SAoquul\z (w))}

= Ao (Allig}\zuA;)c{_Sl\oUAZU/\z (w) + Saouns (w) + ShouA, (CL)) — Shy (CU)}

>0

where the inequality follows from the strong subadditivity of Sy (w).
(1b) This is an immediate consequence of (2) of Proposition 6.2.26.
(2) By definition S, is the infimum over the family of functions Sy, — Sx. But
these are continuous by Proposition 6.2.26 (3) and hence S, is upper semi-con-

tinuous. The concavity-convexity relations follow directly from (4) of Proposition
6.2.26.

Proposition 6.2.22 established that the Gibbs states of a closed subsystem
are given by maximizing the entropy at fixed energy. But the conditional en-
tropy measures the entropy of an open subsystem of the infinite system and our
aim is to demonstrate that the states satisfying the Gibbs condition are exactly
those which maximize the conditional entropy with the conditional energy
fixed. By conditional energy we now mean the energy of the open subsystem,
i.e., the subsystem in interaction with its surroundings. This principle of
maximal conditional entropy is also referred to as local thermodynamic stability.

If one refers to Proposition 6.2.22 one sees that the maximum entropy
principle for closed systems follows from the negativity of the relative entropy
of finite systems. The same is basically true for the infinite spin system but in
order to establish this it is first necessary to generalize the notion of relative
entropy. We next extend this notion to pairs of faithful states of 2, i.e., states @
such that Q, is separating for 7,,(2)". In fact we define relative entropy for
pairs of faithful normal states of a von Neumann algebra and then use this to
discuss the corresponding notion for states of a C*-algebra. (It is possible to
introduce the relative entropy of nonfaithful states but this is not directly
relevant to the discussion of equilibrium states.)



276 Models of Quantum Statistical Mechanics

Let 9 be a von Neumann algebra acting on a Hilbert space $ and let
£1,& € H be two vectors which are both cyclic and separating for 9. Next
reintroduce S, ¢, as the closure of the operator defined on M¢E, by

Se 5,48 =A%, .

This operator was already discussed in Chapter 2 and in particular Lemma
2.5.33 established closability. Let

B 1/2
See, = Je, 607

denote the polar decomposition of S¢, ¢,. The selfadjoint operator
ACVhCVz =8¢ Sflafz

[SHS)
is called the relative modular operator of (M, &, &,). 1t is instrumental in the
following, useful, definition of relative entropy.

Definition 6.2.29. Let w; and w; be two faithful normal positive linear func-
tionals over a von Neumann algebra I, and Q; and Q, the unique vector
representatives of @; and w; in the natural positive cone 2 = 2o = 2q,. The
relative entropy of w; and w, is defined by

S(on|an) = /OOO d(Qu, E(1)Q) log . |

where E is the spectral family of the relative modular operator Aq, q,, i.e.

Ag, g, =/ dE(A)A .
0

Let w; and w, be two positive forms over a C*-algebra such that their
unique normal extensions @; and @, to M = (n,, S 7., (A))" are faithful. The
relative entropy of w and w; is then defined by

S(a)lla)z) = S(CZ)1|(;)2) .
We now analyze various basic properties of the relative entropy.
First note that A 7o /70, = (42/41)Aq,, o, and hence
S(llwl Mga)z) = )»15(0)1 |0)2> + /11 log(ig/ﬂ.l)wl (1]) y
and in particular
S(iwﬂ&wg) = /lS(w1|co2) s

ie., (w1, ;) — S(w|w,) is homogeneous of order one.

Next remark that logA < 2 — 1 and hence

oo
S(orlon) < [ d@n, EQ)G- 1)
0

= (Q1,A0,,0,Q) — (Q, Q) = (D, D) — (Q,Q)) .

Thus if w; and w, are states, (,Q;) = 1 = (Q,Q), and one concludes that
S(wi|wy) is negative. Moreover, S(w|w,) =0 if, and only if, E(1) is con-



Quantum Spin Systems 277

centrated at the point = 1. But this only occurs if Ag, o, =1 and hence
S(wi|wy) = 0 if, and only if, w; = w,.

In contrast to the entropy and conditional entropy the relative entropy of
states of a spin system is a global quantity. Nevertheless, one can argue that
S(w1|w,) takes finite values only for pairs of states which are globally similar.
This qualitative notion will be illustrated in Example 6.2.31. It motivates the
following examination of the entropy of a state w relative to a perturbed state
o®.
Let w be a faithful state on the von Neumann algebra 9t with corresponding
cyclic and separating vector Q. For each selfadjoint P € 9t we can define the
perturbed vector QF, and the corresponding perturbed positive form

OP(4) = (QF,4QF) , 4eU .

as in Theorem 5.4.4. Note that &” is not normalized and & = ||Q”||*w?, where
o® is the perturbed state given in Theorem 5.4.4. Now let us recall some of the
basic facts derived in Section 5.4.1.

First one has

Q" =T1",,Q,

where T i/2 1s the analytic continuation to the point —i/2 of the unitary co-
cycle which intertwines the modular group ¢ associated with (M, Q) and the
perturbed modular group ¢ which corresponds to (M, Q7). If Ag denotes the
modular operator corresponding to (M, Q) and H = log Aq is the infinitesimal
generator of ¢, then

P = o HP)2=H/2

Now assuming for simplicity that P is analytic with respect to ¢ one has
e, /2 € M. Therefore,

SaT?, ) AQ = A'T?, ) Q = 4°Q = S 44Q .

But IMQ is a core for both So and Sor . Moreover, I'?; /> Is invertible and hence
r’, 12" MQ is a core for Sq. It follows immediately that

SaT”, )" =Sergq -
Consequently
AQP,Q = 1H[:i/z Aq Iﬂ:'/z*
_ (e(H+P)/Ze—H/2)eH(e—H/Ze(H+P)/2) — plH+P)
and
logAgr g =logAq +P .

These relations then extend to general P = P* € M by approximation in the
strong topology with sequences of analytic elements P,. One uses, for example
Q" — QF|| — 0. Thus we have deduced that
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S(w|d”) = (Q,log Agr Q)
= (Q,log AgQ) + (Q, PQ) = w(P)
where the last step follows because AqQ = Q. By rescaling one also obtains the
identity
S(wlo’) = o(P) —log [Q°|* .
But it follows from Corollary 5.4.5 that (w”)™ = w and (Q")™" = Q. Thus
interchanging @ and w’ one finds
S(of|w) = —a”(P) +log |Q7)* .

Combination of these two relations then provides a lower bound for the re-
lative entropy. One has

0> S(wlw”) > S(w|o”) + S(of|w) = o(P) — o (P) > =2||P|| .

Thus both S(w|w”) and S(w|w) take values in the interval [0, —2||P]|].
It is of interest to remark that the nonpositivity of S(w|w”) combined with the
above expression yields the bound

||QP||2 > e(u(P) )
This is a generalization of the inequality
Tr(ef*F) Tr(eP)
- 7 2 ex -~ 7
Tr(ef) Tr(ef)
which is valid for matrices H = H* and P = P* and is known as the Peierls—
Bogoliubov inequality. (One can also derive the upper bound w(e”) > ||QF||°

corresponding to the Golden—Thompson inequality Tr(ee’) > Tr(e*F)).
These relations and bounds will be of importance in the sequel.

EXAMPLE 6.2.30. Let w; be a faithful state over the algebra 9, of n x n matrices
and p; the density matrix determining w,. Furthermore, let w; be a positive faithful
form determined by the positive matrix p,. Faithfulness implies that p, and p, are
invertible and hence one can define H; and H, by

H;=logp; .
One then has w, = cbf where P = H, — H,. Thus the relation

S(w|d”) = o(P)
gives

S(wi]wr) = wi(Hy — Hy) = =Tr(p, logp; — p; logp,) .

Thus the general definition of the relative entropy coincides with the previous defi-
nition for matrix algebras.

EXAMPLE 6.2.31. Let o, and w, be product states over the quantum spin algebra,
as in Example 6.2.23, and assume they are both faithful. The representations
(D> T, Qo) can be realized as tensor products of the representations
(Dones Tnys Qo) associated with oy, = wiig[(x). The relative modular operator is
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expressible as a tensor product of the corresponding one-point relative operators and
consequently

S(ilz) =) S(wixwax) =D —Trg, (o) (log pl!) — log p®)) .
x€L

x€L
In this last expression p ) denotes the density matrix which determines w;  and the

identification follows from Example 6.2.30. Thus for finite relative entropy the
function x € L— S(w) y|w;,») < 0 must be summable. Now if L = Z" this means that

X€Z — —Trg, (pM(logp{!) —logp)) <0

must vanish sufficiently fast as |x| — oo. But this function is a continuous function
of p{l) and p@?, because §,, has dimension N + 1, and it vanishes only if p{l) = p{.
Thus for finite relative entropy one must have ||p{!) — p@|| — 0 as |x| — oc. But this
implies ||w) x — @z || — 0 as |x| — oo, i.c., the restrictions w; , and w, , must be
asymptotically equal.

If @, is Z'-invariant it is possible to estimate the rate of decrease of [|p{!) — p@||
sufficient to ensure that S(w;|w,) is finite. Again we use the representation

1 1
A-logB= [ d2 _
log4 —logB /0 d (B T A¥ M])

for positive matrices 4 and B to deduce that
Teg, () [ aa(a 4207 60 - 50500 + 1))
0

< [Tl G+ a0 I 62+ 20 1A 2 |

[S(w1,x]w2,x)| =

=/0 (Il PP 17 )T = (D T )}
oY = p |
1)-1 _ 2)-1
N T
Il P~ _ IR
—W(ﬂ U = 1@ 7)™ D = p@ |
<J o271 = o2
But || pg)—p@ -0 as x| — oo and || p=" [|=] p{"" || by Z'-invariance.
Therefore, || p@1 || — || pi’~" | as x| — oo, and we conclude that

-1
S(alw)] < o7 1S N o0~ p@

xeZ'

Next we derive an extension of the rule before Example 6.2.30 for the
entropy of a state w relative to the perturbed state w?.

Proposition 6.2.32. Let w; and w, be faithful states over the von Neumann
algebra M and for each selfadjoint P € M introduce the perturbed form

05 (4) = (QF,495)

where QF is the perturbation of the cyclic and separating vector associated
with w,.
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It follows that

S(w1|@8) = S(wi|wr) + w1 (P) .

Proor. The proof combines the argument used to derive the relation
S(wr]@}) = o (P)

and the 2 x 2 matrix arguments used in Section 2.5.4.
Adopt the notation of Lemma 2.5.33, and perturb the vector Qy = Qy(&,,&,) =
& @1, + & ®ny by an operator of the form

PR Ey = U21PU51 + UZZPU’Z .
By Lemma 2.5.34 one has that

2
log Ag, = Z Uijlog(A, &)U
Lj=1
and hence

Qo(éhéz)P@En — e(IOgAQO+P®E2:>/2€_IOgAQ"/ZQ()(&,éz)
=& @M +E®@m=N(&,8) . )

But if A =expH and J are the modular operator and conjugation associated with
(M, Q) then

Ap =exp{H +P —JPJ}

is the modular operator associated with (*JJE,QgI). (A proof of this appears prior to
Corollary 5.4.5.) Also by Lemma 2.5.34 one has

2
J=> Ujls U
ij=1
and hence
J(P® En)J = UnaJe, ¢ PJ:, 2, U, + UpJe, PIL Uy,
It follows, using P/ = P ® Ex,, that
log Az, &) =108 Mgy (g0 P ® Ex2
=logAqy (¢, c) + Uy PU3, + Uy PUS,
— Uy, o PJ:, Uy — UsyJ. PJ. U,

6,67 Y86 )

where the first equality is a consequence of (*). Taking the (2, 1) component of this
equation we obtain

log Agf,;, =logAs e +P
and applying this to &, = Q; and &, = Q, one deduces
S(w1|d%) = S(wi|w2) + i (P) .

Next we examine the connection between the relative entropy and the
conditional entropy.



Quantum Spin Systems 281

Let w; and w; be states over the quantum spin algebra and {pf\)} Acy and
{p A)} Ac . the corresponding families of density matrices. If A’ C A°, then

1 1
Saon (@1) = Sy (@1) == Tr(p},, log p‘ALAo +Tr(pyy log o)

- Tr(pAUA (IOg 'DAUA lOg(ﬂ ® :0 )))
+ Tr(pA, (logpA, - logpA, )
= S(wily, T8 ® 02|y, ) — S(o1ly,, lw2ly,,)

where we have used the identification of the relative entropy established in
Example 6.2.30 and 7, denotes the (unnormalized) trace on Ay, i.e.,

‘L'A(A):Trg)A(A) , Ae Uy .

This relation can be translated to a relation between the conditional and re-
lative entropies by taking the limit A" — A°. But this requires knowledge of
continuity properties of the relative entropy.

Proposition 6.2.33. Let M be a von Neumann algebra with an increasing net
of finite-dimensional subalgebras M, such that |J, M, is dense in M. Let
w1,y be two faithful, normal, positive, linear functionals over M and
W14, W24, their restrictions to IM,.

It follows that o.— S(wi 4|w24) is monotonically decreasing and

lign S(w14|w2q) = S(wr|wy) .

Although this is a key result, the proof is rather long and so we choose to
omit it (see Notes and Remarks). Combination of this result and the discussion
preceding it gives a relation between the conditional entropy and the relative
entropy which is fundamental for the derivation of the maximum entropy
principle from the Gibbs condition.

Corollary 6.2.34. Let w; and w, be states over the quantum spin algebra N
and let tp denote the (unnormalized) trace over A,.
It follows that

Sa(@1) = S(w1]ta @ algr,.) — S lgr,, |2ler,.) -

This follows from the relation preceding Proposition 6.2.33 by taking the
limit A’ +— A°.

Proposition 6.2.35. Let @ be an interaction of a quantum spin system such
that the surface energy Wo(A) is a well-defined element of W for all A C L.
Furthermore, let o be a state which satisfies the Gibbs condition with respect
to ®.
It follows that
Sa(w) = Bo(Ho(A)) = sup {Sx(') — fo'(Ho(A))}

w'eCy
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for each A C L, where S is the conditional entropy, Hy(A) = Ho(A) + Wo(A)
the conditional energy, and

N ={0)0 € Eq,dly, = oly, }

Proor. The Gibbs condition states that
o) = 0y @ oy, |

where w, is the finite-volume Gibbs state. This is equivalent to
D 2 gl |

where r(/’\ is the (normalized) trace state on 2,, i.c.,
Trg, (4)
0 Sa
Th(4) === AeUy .
A Tl‘gl\ (1])
It follows from Proposition 6.2.32 and rescaling that

S(w1 | W) = S(w;|0) + foi (Hp(A)) + log(QFFe®) | ffle®)y

w

But then the Gibbs condition, Definition 6.2.16, and Corollary 6.2.34 give

(o[ D) = S(0 | © oly,.)
= S(wi|ta ® wly,.) —logTrg, (1)

oly,.) + Sa(w) — log Trg, (1) .

= S(aily,.
Combining these relations one finds
Sa(r) = S(o1]w) = S(oily,. [oly,.) + for (Ho(A))

+ log{ (@™, Q™) Trg, (1)} .

Now setting w; = w this gives
Sa() = Boo(Fo(A)) + log{(Q ™, Qe M)Trg (1)}
and hence, by subtraction,
Sa(w) = Bw(Ho(A)) = Sa(1) — Bor(Ho(A)) — S(w|m) + S(oiy,,
Therefore, if w; € CY
Sa(@) = po(Ha(A)) = Sa(w1) = por (Ha(A)) = S(wi|)
> Sa(@1) — fon (Ho(A))

Oly,.) -

where the inequality follows from the negativity of the relative entropy. As equality
is achieved if @ = w, the proof is complete.

Note that S(w;|w) = 0 if, and only if, w; = @ and hence the state  is the
unique state in C{ for which the supremum is attained.

Next we establish a converse of Proposition 6.2.35 under stronger as-
sumptions on the interaction. In fact, we use the assumptions that sufficed to
establish the equivalence of the Gibbs condition and the t-KMS condition,
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Theorem 6.2.18. This is slightly unsatisfactory because the Gibbs condition
and the maximum entropy principle can both be defined when the surface
energies We(A) make sense and it is not essential that the dynamics are de-
termined by a strongly continuous one-parameter group of *-automorphisms ©
of . Thus, this hypothesis in the following theorem appears redundant. (See
also the Remark after Theorem 6.2.18.)

Theorem 6.2.36. Let ® be an interaction of a quantum spin system and T the
corresponding local automorphism group. Assume that

(1) 12 converges strongly to an automorphism group t, i.e.,
lim (77 (4) — 7(4)] =0
A— 0

forall A €Ut e R.
(2) The surface energies Wo(A) are well-defined elements of W for all
ACL.

©) D= ] u,

AcCL
is a core for the generator 6 of 1

The following conditions are equivalent, for § € R and for a state w € Eq.
M Sa(@) = polfia(A) = sup {Sa(f) = o (Fla(A))}
o' €Cy

for all A C L, where S is the conditional entropy, He(A) = Ho(A)
+ Wo(A) the conditional energy, and

h = {00 € Eﬂlawlbw = lg, } -

2) wisa (z,B)-KMS state.

Proor. (1) = (2): If B=0and S denotes the (normalized) trace state on Uy, it
follows by choosing @’ = 4 ® g, in the maximum principle and also invoking the
bound given in Proposition 6.2.28 that

SA(7%) < Sa(@') < Sa(w) .

Thus S (w) achieves its maximum value S (7} ). Hence |y, = 4 and  is a trace.
If B # 0, the proof is indirect. We argue that condition (1) implies that w satisfies
the autocorrelation lower bound and then appeal to Theorem 5.3.15.
First note that if 6 denotes the generator of 7, then

5(4) = il (A), 4]

for all 4 € A, by the argument given in the proof of Theorem 6.2.18. But if w, is
defined by

CO;(B) — w(eilABe—itA)



284 Models of Quantum Statistical Mechanics

for all B € ¥, then condition (1) implies that
Blon(Ho(A)) — o(Ho(A))} > Sa(er) — Sa(w)

whenever 4 = 4* € U, But it follows from the definition of Sa and properties of the
trace that

SA((D,) = SA(CU)
and consequently
Blox(Ho(A)) — w(Ho(A))} > 0 .

Thus, ¢ — B, (He(A)) has a minimum at # = 0 and hence its first derivative vanishes
at this point. Therefore

Parx(6(4)) =0

for all 4 € A, and A C L and since ff # 0 this shows that w is invariant under 5.
Next consider the operator yg; A +— A, introduced prior to Theorem 5.3.15, i.e.,

75(4) = B°AB — {B*B,A}/2 .

If we choose B € U,, it follows that yz(4) = 0 for all A € A . Therefore, WAy is
pointwise invariant under the semigroup ¢ > 0+ 7, = exp{fy;}, and hence

Tt*w|QIAc = CU|Q[,\L- :

We already argued in Section 5.3 that T/Ey C Ey, t > 0. Thus it follows from
condition (1) that

BT, ) (Ho(A)) — w(Ho(A))} > Sa(T; @) — Sa(w)
Next by the invariance of w under § one has
~ifo(B°5(B)) = —ip{w(B"5(B)) — w(5(B")B) + w(5(B"B))}/2
= —if{w(B"5(B)) — w(6(B")B)}/2 = fo(y5(Ha(A))) -
Thus, the previous estimate gives
~ifo(B'5(8)) = lim B{(T; 0)(Ho(A)) ~ o(fa(A)} /1
> lim {Sa(T;0) ~ Sa(@)}/1 .
Next note that as T} |y, = g, one has
S (T @) = Sy ()
for all A’ ¢ A°. Therefore,
SMT @) = 8x(0) = lim (Spu (T70) — Spun () -

But if A" = AUA’, then

t
* d 5 5
Spr(T; @) — Spr(w) = —/0 ds—dSTrgA,, (P log pin)

where p, denotes the density matrix which determines the restriction of T} (w) to
A ,». But each P\~ 1s a positive invertible matrix, and hence the expansion
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° 1
log pln = dA
Og Py /0 ( A+1 ) +pA”)

is valid. It follows that

%Tr(pslogps) 0 di T< (;1]— 15>>
[l (o)

+p°

1
i+p dsHp}

o1 1 1
= dATr +p° ,
/0 < (’1” P (/1+p:)2>> /

where we have used the cyclicity of the trace and dropped the subscript A”.

Using the expansion

o 1
11:/ dip—1
o ey

one then derives

Tr (%% (log p* + 1]))

4 (ro)logs + 1),

73(T; w)(log p* + 1)

(T; w)(yp(log p” + 1)) = (Tyw)(ylogp®) .

%Tr(p" log p*)

Therefore,

Sw(1;0) = Sw(@) = - [ as(T0)ra(lo8sy))

The next step is to bound the integrand. Let

n
pr = AE;
i=

285

denote the spectral decomposition of p,». A straightforward calculation shows that

—w(yg(logpyr)) = Z S(4; 5 4)Cx

jk=1
where
cjx = Trg,, ((ExBE;)(ExBE,)")

and the function S(u; v) = ulog(u/v) is defined as in Theorem 5.3.15. Now S is
jointly convex in its two arguments and also homogeneous of first order. Therefore,

Z S(A s e > S Z il Z c,kzk> = S(w(B*B) ; w(BBY)) .

Jk=1 Jok=1
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Finally combination of all these estimates together with lower semi-continuity of
S gives
1
~ifo(B'3(B)) > lim | ds S((T;0)(B'B) ; (T; ) (BB)) 1
=0+ Jo

= S(w(B"B) ; w(BB"))

for all B € A,. But the union of the A, is a core for § and hence this inequality
extends by lower semi-continuity to all B € D(§), i.e., the auto-correlation lower
bound is valid. Condition (2) then follows from Theorem 5.3.15.

(2) = (1) : If =0, then w is the unique trace-state on 2. Thus w is a product
state and Sy (w) = Sy (w) achieves its maximum value. If  # 0, then the implication
follows by combination of Propositions 6.2.17 and 6.2.35.

Corollary 6.2.37. Let ® be an interaction of a quantum spin system
satisfying

ol =" " (fg}i > IICD(X)Il) < +oo

n>0 X3x
1X|=n+1

for some J.> 0 and let <® be the associated automorphism group (see Theorem
6.2.4).
The following conditions are equivalent for each € R:

(1) o satisfies the Gibbs condition with respect to f®,
(2) o isa (z® B)-KMS state,
(3)  w satisfies the maximum entropy principle,

Sa(@) = po(Ho(A)) = sup {Sx(w) — po! (Ho(A))}

o' €CyY

for all A C L, given in Theorem 6.2.36.

This is an elaboration of Corollary 6.2.19. The restriction ||®||, < +oo en-
sures that the hypotheses of Theorems 6.2.18 and 6.2.36 are fulfilled (see
Theorem 6.2.4).

Note that if L is a homogeneous lattice, as defined at the beginning of
Section 6.2.1, then one has a concept of finite range interactions. For such
interactions Corollary 6.2.37 establishes the equivalence of the Gibbs condi-
tion, the KMS condition and the maximum entropy principle whenever
supx  £]|D(X)] < oo.

6.2.4. Translationally Invariant States

Homogeneity of the quantum spin system was unimportant in the foregoing
discussion of equilibrium states. Nevertheless many physical systems exhibit
spatial homogeneity and symmetry and it is worthwhile analyzing such features
in more detail. Throughout this section we assume that L = Z* and examine Z°*-
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invariant states and interactions. The particular choice L = Z" is not of para-
mount importance and most of the subsequent arguments could be modified to
cover systems associated with other periodic sublattices of R'. Some of the
results are also valid for appropriate non-invariant interactions or even for
aperiodic lattices. We return to a discussion of these points at the end of the
section. We derive results of two types. First, we establish a global variant of
the maximum entropy principle for Z*-invariant states and, second, we deduce
some general statements concerning uniqueness and lack of uniqueness of
equilibrium states.

Let EL denote the states invariant under the action t of the group Z" of
space translations of the quantum spin system on the lattice Z*. If w € EZ, it
follows that the local entropy Sa(w) has the invariance properties

Sa+a(®) = Sp(w)

foralla € 7", and A C Z'. But Sx(w) is also extensive, i.e., proportional to |A[,
and we aim to examine its mean value as A — oco. In order to establish the exis-
tence of the mean it appears necessary to restrict the manner in which A — oo.

If a=(ai,...,a,) € Z" and a; > 0, we define A, as the parallelepiped with
edges of length a; — 1:

Ag={x; x€Z',0 <x;<a;,i=1,...,v} .

The translates of A, by vectors na = (njay,...,na,) with n € Z* form a par-
tition 2, of Z'. Let n}(a) denote the number of sets of this partition which
have nonvoid intersection with A and let I'} (a) be the union of these sets.
Similarly let ny (a) denote the number of sets of 2, which are contained in A,
and I'; (a) the union of these latter sets. The finite subsets A C Z* are defined to
tend to infinity in the sense of van Hove if

k@
nx(a)
for every partition £, and in this case we write A ~»co.

Note that if A(a) denotes the set of points which are contained in A and are
a distance greater than |a|,, = sup; <, <, a; from the boundary of A, then

|Al = |A(a)| = (nx(a) = (n3(a) — nx(a))2")|A] -

Therefore

MA@ o . [y _ma@) s
122l (1 nx(a)>(2 1) .

Thus as A~» oo one has |A(a)|/|A| — 1. A slight elaboration of this argument
shows that the notion of van Hove convergence is equivalent to |A] — oo and

|A(a)l/IA] = 1.

Proposition 6.2.38. Let A C Z'+— Sp(w) € [0, |Allog(N + 1)] denote the
entropy of the Z’-invariant state w.
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It follows that the limit

B Sa(w)
S(@) = lim =IA]
exists and
. SAH(Q))
S(@) = JInf <A

The functional € E§ — S(w) € [0,log(N + 1)] is affine and upper semi-
continuous when Eg; is equipped with the weak* topology.

Proor. The proof relies heavily on the subadditivity and strong subadditivity of
A— S\ (w) established in Proposition 6.2.24.
First, define S by

Next let A, = A\I'; (a), then
AL < |TX(a) = TR (a)| = (nx(a) — nx(a)|Adl -
Consequently,
Sa; (@) < (n3(a) — nz(a))| Al log(N +1)
But as A+ Sp(w) is subadditive and Z'-invariant one also has
Sa(@) < St (a) (@) + Sp; (@)
< nx (@)Sn, (@) + (nf (a) — nx (@) Aqllog(N + 1) .

Therefore,

Sa(@) _ Sa, (@) <nf{(a)
Al = A4 ny(a)

Similarly, if A} = I'} (a)\A, subadditivity gives
Sa(@) Z Srig (@) = Sps () -

- 1>log(N+ 1) .

Hence

Sa(w) _ Sri@(@) _ny(a)
AL 2 T @) (1 nX(a))“’g(N“"

Thus for each ¢ > 0 one may choose a such that

Sa. ()
[Adl

< S(w)+e¢

and it follows that

Sa(w) St (a) (@)
Sle)+ez = 2 <|r;(a)| ‘8>

for sufficiently large A. Next we bound the right-hand side.
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Let us construct I'f (a) by successively adding translates of A, in the lexicographic
ordering* of the vectors n = (ny,...,n,) which define these translates. Let I', denote
the union of the first n translates. Similarly, if b = (mjay,...,m,a,) with m; > 0, then
A, can be constructed by successive addition, in lexicographic order, of translates of
A,. Let A, denote the union of the first n of these translates.

Now assume that

8,1 (@) = 81, (@) < (S(@) — &)|Ad|
for some n. The strong subadditivity of Sy immediately implies that
St (@) = Sa,, (@) < (S(@) — &)|Ad|

for all m such that there exists a translation of I',;; into A,,;; with the property that
the last translate of A, in I',,;; is mapped onto the last translate of A, in A,4;. This is
the case if the last translate in A,; is not “too near” the surface of A;. For the
remaining m subadditivity gives

Sa (@) — Sa, (@) < |Ag|log(N +1) .

m+1
Therefore, if b is large enough, we obtain
5r (@) = Y (Sapi (@) = S, (@) < (S(w) — &/2)|As|
which contradicts the definition of S(w). Thus,
S, (@) = St (0) 2 S(w)|Aq|
for all n. Hence

Sre@(@) = 355, () — Sr, (@) 2 S@)IT5 ()] -

n

Combining this with the previous estimates we have

S (w)
>

S(w)+¢> Al
for sufficiently large A. This establishes the first two statements of the proposition.

The affinity of w— S(w) follows directly from the concavity and convexity re-
lations given in Proposition 6.2.25.

The upper semi-continuity follows because S is the infimum of the functions
Sa,(@)/ |Aq| which are continuous by Proposition 6.2.25.

> S(w) —¢

Remark. Proposition 6.2.28 establishes that —Sa(w) is strongly subadditive
and has concavity and convexity properties similar to Sj(w). Thus, by an
identical argument one deduces that

o Ba@) Sa(w)
S(w) = 1 = 3
@)= AT~ % A

defines an affine function over E4 with values in [-S(w), S(w)]. Moreover, if @
is a Gibbs state with respect to some interaction ® for which the surface

4 This ordering is defined by setting n < m if n; < m; where j = min{i; n; # m;}.
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energies Wo(A),A C L, are well defined and satisfy ||[Wo(A)||/|A] — 0 as

|A| = co then S(w) = S(w). This is a corollary of Proposition 6.2.35. One
has

Sa(@) = Bo(Ha(A)) > Sa(e') - B (Ho(A))
for o' = wly, ® wly,.. But Sp(@') = Sx(w) and hence
Sa(w) =2/ Wa(A)]| < Sa(w) < Sa(w) -

Therefore S(w) = S(w). Despite this identity on the Gibbs states the mean
entropy and the mean conditional entropy do not coincide on the invariant
states E5 (see Notes and Remarks).

The new and somewhat surprising feature of the mean entropy
w € Eg — S(w) is the affine property. This reflects an empirical physical phe-
nomenon. The entropy of a mixed phase is obtained by superposition of the
entropies of the pure phases in the appropriate proportions. In the sequel we
will give a more detailed account of this interpretation.

The affine property also has an interesting corollary for periodic states.

Let @ be a state which is invariant under the subgroup

ZZ = {ba = (bay, ... ybvay);a € Zv} )

where b € Z',. The states {t;®;a € A,} are periodic under the same subgroup
and one verifies that

SA(T,D) = Sp4a(®) .
Hence the mean entropies are equal,
S(t,o) =S(@) .
Thus if @ is the Z'-invariant state obtained by averaging @ over Ay, i.c.,
o(d) = M| Y d(1-a(4))
ach,

the affinity of S gives

S(w) =S(|/\b|‘1 > r;";cb> = A7 D S(i@) = S(@) .
ach, acl,
This equality will be of subsequent utility.

Next we examine the mean energy of an invariant interaction in an invariant
state. This is basically a closed system problem and can be handled under
weaker conditions on the interaction than those used to construct even the
infinitesimal dynamics (see Proposition 6.2.3.).

Proposition 6.2.39. Let ® be a Z'-invariant interaction of a quantum spin
system and suppose that
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H‘D
@] = Z
X30

Further let w be a Z'-invariant state over U.
It follows that the limit

exists and
Ho(w) = o(Eo) ,

where Eg € U is defined by

P

Thus o € EL—Hg(w) is an affine, weak*-continuous, function satisfyin
A ying

|Ho(w)| < [|@] .
Proor. One has

%\ﬁ— w(Eo) = |A|” a)(ZCD ZTXEQ,)

XCA x€A
—-ty Y A
g =

But given ¢ > 0 one may choose a such that

[Pl
2 <t

where D(X) is the diameter of X. Hence

‘ o(Ho(A))
|A]

— o(Eo)

<o+ () 1o

where A(a) now indicates the set of points in A which are at a distance less than a
from the boundary. But we have already remarked that if A ~» oo, then
|A(a)]|/|A] — 0. Hence Ho(w) exists and is equal to w(Eg). It is evident that Hy is
affine, weak*-continuous, and the bound follows because ||Eo| < ||D||.

Remark. If one replaces Hgp(A) by the energy of the open subsystem,

Hg(A) = Hyp(A) + We(A), in the above discussion then it appears necessary to

place stronger conditions on ®. If, for example,
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> o) < +oo
X30
then one easily deduces that
[P (A)]|
ABEn |A| 0

and hence
Alim o(Hp(A)) = Alim o(Ho(A)) = Hep(w)

for each w € EZ

Propositions 6.2.38 and 6.2.39 establish the existence of the mean ‘free-
energy’”’ functional

© € E§ —Fpo(0) = S() — fHo(0)

for a large class of invariant interactions ®. But in the previous paragraph of
this section the finite-volume equilibrium states were characterized as the states
which  maximize the corresponding finite-volume function Fjyg () =
Sa(@) — pw(Ho(A)). Moreover, the maximum value of the function was di-
rectly related to the equilibrium free energy, F(f®),
FA(B®) = —p~"log Trg, (M) = —p~" sup Fpo a()
wEE gy,
Thus formally one expects the states which maximize Fo(w) to correspond to
invariant thermodynamic equilibrium states and the maximum value F (@), of
Fo(w), to be proportional to the equilibrium free energy per unit volume. The
remainder of this paragraph is devoted to the examination of this tentative
interpretation.
First we examine properties of the “free energy”.

Theorem 6.2.40. Let B denote the Banach space of 7'-invariant interactions
® with norm

_ o)
||c1>||_XZB0 x| <o

The thermodynamic free energy

F(®) = lim_ |A| " log Trg, (e (M)

exists for all ® € B and has the following properties:
(1) F(®) = sup {S(w) — Ho(w)}

weEL
where S and Hy denote the mean entropy and mean energy
(2) @€ B F(D) is convex.
(3) @ e B F(D) is continuous and
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|F(®) - F(Y)| < [|© -
for all ®,¥ € B.

Proor. For simplicity we only establish that the limit exists for parallelepipeds A,
whose edge lengths a;,i = 1,2,...,v, all tend to infinity. The general convergence is
subsequently obtained by comparison arguments using the matrix inequality

|log Tr(e) — log Tr(¢?)| < |4 - B -
First, it follows from the last statement of Proposition 6.2.22 that
Al log Trs, (™) > |A|” (Sr () — @(Ha(A))) -
Thus, if

E(®) = lim inf |As| " log Trg, (e He())

then
E(®) > S(w) — Ho(w)

for all w € E4 . Consequently,
F(®) > sup {S(w) — Ho(w)} -

zv
weEy

Next consider a partition of Z* formed by translates A, = A, + na of the paral-
lelepiped A,. If

A=A, ,

-

i=1

we define a density matrix p, on $, by

N _
PA = (®i=1e HO(A"i))
(Trs,, (e~Ho(ha))¥

These density matrices determine a periodic state @, over 2, i.e., a state invariant
under Z}. The state w, defined by

@a(4) = [Ag| ™" D @alre(4))

x €A,
is then Z’-invariant. But
S(wa) = S(@a) = |Aal ™ (@a(Ho(As)) + log Trg, (e ey |

where the first equality follows from the discussion preceding Proposition 6.2.39 and
the second by explicit computation. Now it is readily established that

o (u(He(A)  BaHo(A))|
Am lim = T

and therefore given ¢ > 0 one may choose ap such that
S(w,) — Ho(wg) > |Aa| " log Trg, (e7Holh)y —¢

for all a > ay. Thus
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lim sup|A, -l log Trg, (e7Ho(M)y < ¢4 sup {S(w) — Hp(w)} .
oo DA :

W€ E«n‘

Combination of this estimate with the previously obtained lower bound gives the
existence of F(®) and the identification of statement (1).
(2) The convexity of F(®) follows from the affinity of ® — Hg(w). Thus

FAD + (1 - H)¥) = supr{S(a)) — AHp(w) — (1 — )Hy(w)}

wEE;fl
<1 supw{S(w) — Hp(w)}
+(1 _ 4) sup {S(w) — He(w)}

n)EEgT
=AF(®) + (1 — H)F(P) .
(3) The Bauer maximum principle, Lemma 4.1.12, establishes that each convex

upper semi-continuous function over a convex compact set X attains its maximum at
an extreme point of K. Thus, for each ® € B there must exist an wg such that

F(®) = S(we) — Ho(wo) -
Therefore
F(®) = S(wp) — Hy(we) + Hy_o(we)
SF(Y) + Hy—o(wo) < F(P) + [P - 0| .

Interchanging ® and ¥ gives
F(Y) < F(®) +[|¥ - @]

and this establishes the continuity relation.

Remark. The continuity relation can be used to bound F,e.g., if ¥ = 0, then
F(¥) = log(N + 1) and therefore

|F(®@) —log(N +1)| < @] .

Next we examine properties of the states which maximize S — Hy. In the
above proof of continuity of F we already remarked that for each ® € B the set
of maximizing states

Ap = {w; F(®) = S(w) — Hp(w)}

is nonempty. Moreover, the discussion of the maximum entropy principle for
open and closed systems given in the previous paragraph strongly indicates
that these states correspond to Z’-invariant thermodynamic equilibrium states.
Thus, it is natural to ask whether these states statisfy the various equilibrium
criteria which we previously examined, e.g., the Gibbs condition, or the KMS
condition. The first and most general result in this direction is the following.

Proposition 6.2.41. Let ® be a Z’-invariant interaction of a quantum spin
system satisfying

e
(1) o) = - < oo
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(2)  The surface energies {Wa(A); A C Z'} exist.

3) tim int 1 7o _

A~ 00 |A| 0.

It follows that each 7' -invariant state which satisfies the Gibbs condition
with respect to ® maximizes S — Hp.

Remarks

(1) Assumption (1) assures that € E% + Hgp(w) € R is defined and
similarly assumption (2) is necessary for the Gibbs condition to be
defined. Thus, the essential new condition is the third. All three
assumptions are easily verified if

> e < +oo

X30

and hence this condition could be taken as the sole hypothesis.

(2) The proposition does not establish the existence of invariant states
satisfying the Gibbs condition. The existence problem will be solved
subsequently under more stringent assumptions on @ (see Theorem
6.2.42 and the discussion preceding it).

Proor. Let w denote the Z'-invariant state which satisfies the Gibbs condition and
{pa}acz the associated density matrices. Moreover, let w, denote the local Gibbs
state, i.e.,

e—Ho(A)

wa(4) = Trg,(or 4), Op = W .

Thus, the conditional entropy of wl|y, with respect to w, is given by
S (ly,| wa) = —Trg, (palogpa — palogon)
= Sa(@) — o(Ha(A)) — log Trg 5 (e ™) .
But the Gibbs condition gives
wp = "W o,

and hence it follows from the monotonicity of the conditional entropy, Proposition
6.2.33, that

0> S(a)lmlw,\) > S(win“’(A)) .
Moreover
S(w|w"* @) > —2||We(A)

by the discussion preceding Example 6.2.30. Combination of these observations
leads to the bounds
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0> Sp(e) — w(Ho(A)) — log Trg, (M) > —2||y(A)]| -

Up to this point Z'-invariance was irrelevant but now if one divides by |A| and takes
the limit A ~» oo, then assumption (3) and the existence of the mean entropy S(w),
mean energy Ho(w), and free energy F(®), lead to the relation

S(w) - Ho(w) = F(®) =0 ,

i.e., ® maximizes S — Hy.

Next we examine the relationship between invariant KMS states and the
states that maximize S — Hep.

The KMS condition has an advantage over the Gibbs condition insofar as
one can deduce the existence of Z’-invariant KMS states. If the interaction @ is
such that 1® exists, i.e.,

Jim 7 (4) — el goH ™) o

forall 4 € A, 1 € R, then (%, B)-KMS states exist by Proposition 6.2.15. Now
let w be such a state and define @ by

a(4) = M(w(t(4))) ,

where M is an invariant mean over Z'. It follows immediately that @ is Z'-
invariant. But it also satisfies the (1®, 8)-KMS condition whenever @ is Z'-
invariant. This follows by observing that 1, and t commute and hence

O (ATip(B)) = M(w(t(4)T(x(B))))
= M((x(B)t(4))) = &(B4) .

Thus @ is a Z’-invariant (t®, )-KMS state.

Every 1®-KMS sate o satisfies the Gibbs condition by Proposition 6.2.17.
Hence, if @ satisfies the supplementary hypotheses of Proposition 6.2.41, then
o will maximize S — Hp. We now aim to derive a converse of this statement.
The proof of the converse depends upon a number of approximation, con-
tinuity, and density arguments. Instead of trying to isolate a minimum number
of implicit properties of ® which ensure the validity of these arguments we
specify an explicit space of interactions, the Banach space of Theorem 6.2.4.

Theorem 6.2.42. Let ® be a Z’-invariant interaction of a quantum spin
system such that

1ol = > o)l < + oo
X30

for some 1> 0, and let t° denote the associated dynamical group of *-auto-
morphisms of the spin algebra .

If  is a Z’-invariant state and B € R, then the following conditions are
equivalent
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(1) wisa (t® B)-KMS state.
(2) w satisfies the Gibbs condition with respect to .
(3) w maximizes S — fHyp.

Proor. First note that t® exists and |J, - » ¥a is a core for its generator by The-
orem 6.2.4. Moreover,

@l = > [®(X)]| < +o0 .
X>0

Hence, Wp(A) exists and

AT we(A)] < AT oX)|| —0 .
A" IWe (A < |A] ;X%‘QH Ol —
Therefore, the combined hypotheses of Corollary 6.2.19 and Proposition 6.2.41 are
satisfied. Consequently, (1) < (2) = (3).
It remains to prove (3) = (1). This will be achieved by use of various convexity
properties.
Let B; denote the Banach space of Z'-invariant interactions for which
|®]|, < +oo. It follows from Theorem 6.2.40 that the free energy

F(®) = lim_ |A|" log Trg, (e Ho ™))

exists for each @ € B, and defines a convex continuous function over B;. The key
observation is that each state we which maximizes S — Hg defines a tangent func-
tional to the graph of F at ®. Convex analysis can then be fruitfully used in the
examination of the maximizing states.

Recall that if Fis a convex, continuous, function over a Banach space X, then an
element f, € X* is said to be a tangent functional to the graph of F at x if

F(x+8&) > F(x) + fx(8)

for all £ € X. Moreover, there is a unique tangent functional to the graph of F at x if,
and only if F is differentiable at x and in this case the tangent functional is the
derivative OF, of F at x. For example, if F is differentiable at x and 0 < A < 1,
convexity gives

F(x+&)—F(x) > h™" (F(x+ht) — F(x)) =2 0Fx(8)

and OF, is a tangent functional at x. But if

[x(8) SF(x+8)-Flx),

then
fx(&) =7 fo(hE) < BT ((x + hE) — F(x));=0F:(8) -

Replacing £ by — £ in this bound one finds the opposite bound and hence f, = 9F,.
Thus, differentiability implies that OF, is the unique tangent functional. The converse
is easily deduced by arguing that nondifferentiability leads to nonuniqueness.

Let us now reexamine the relationship between the free energy F(®) and the
maximizing state we. One has
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F(®+Y) > S(we) — Horw(wo)
= S(we) — Ho(we) — Hy(we) = F(D) — 0o (Eyw)

where Ey is the interaction energy at the origin,

Ey = Z‘P(X)

= X

and we have used the maximum entropy principle together with Proposition 6.2.39.
Thus, we defines a tangent functional f¢ to the graph of F at @ through the
relation

So(¥) = —0e(Ey) .

Now we begin the derivation of the (2, 1)-KMS condition for we by examination of
those @ for which wg is unique, i.e., those @ for which the graph of F at @ is
differentiable. (The (®, §)-KMS condition for wpe and f € R\{0} follows by re-
scaling.)

The free energy F is defined by the thermodynamic limit A ~» co of the mean free
energies

FA(®) = |A| ' log Trg , (¢ ™)

and each of the functionals @ € B;+— Fx(®) is convex and continuous by the ar-
guments used to derive similar properties of F. The F, are, however, simply defined
in terms of finite-dimensional matrices and it follows that they are everywhere dif-
ferentiable. Therefore, there is a unique tangent functional Sao to Fp at @, the
derivative of Fp at @, and this is given by

1 Trg (e M Hy (A))

Sao(¥) =—IA| Trg , (e (M)

Next for Ag C A and 4 = 4* € U, one can define a Z'-invariant interaction ¥,
by setting W, (Ao + x) = 1,(4) for all x € Z", and W, (A’) = 0 if A’ is not a translate
of Ag. Adopting this definition one sees that the linear functional

A € Upo— oao(4) = —fa, o (P arasy2) — ifao(Ya—i)2)

— |A|—l Z TrsjA(e_HID(A)TI(A))
TrSA(e_HKD(A))

A,fffé/\
is both positive and normalized. Hence w, ¢ is a state over Ay, which we identify
with any extension to the complete spin algebra . It then follows from weak*
compactness of Ey that A C Z' +— wa, ¢ has weak*-limit points. Therefore, there exist
nets Ay fa, o(W4) which converge for all {¥;4 = 4* € Wy, Ay C Z'}. But the
linear span of the latter set is norm dense in B; and hence A,+— S0 1s weak*

convergent. Each limit point fg is, however, a tangent functional to the graph of Fat
® because

fo(¥) =1lim fa,0(¥)
< lim (Fa, (@ + W) — Fo,(®)) = F(® + ¥) — F(®) .
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Since we are assuming F to have a unique tangent at @, it follows that all the nets
Ay fa,0 have the same limit and hence A C Z'+— fa o converges in the weak”
topology. Moreover, combining the identifications of fp and fa, o, one concludes that
0o(4) = 0o (Ewasa)2) + 100 (Ew (4-a4)/21)
= —fo(Yurar)2) — ifo(¥amay/ai)
== Jim (fa,0(¥ira)2) + ifa, 0 (¥ —ay/2i)

_ Trg , (e~ M7, (1))
T 1 SA x
= Jim_IA] 2 Trg (e~ He(M)

xez®
Ag+xCA

for 4 € Ap, and all Ag C Z'. Thus, the unique state wg which maximizes S — Ho 1s
the thermodynamic limit of space averages of the local Gibbs states w?. It is this
identification which allows the deduction of the (1®, 1)-KMS condition.

Let A, denote a cubic array

A={x;x€Z',—a<x;<a,i=1,...,v} .

It follows from Theorem 6.2.4 that for each ¢ > 0,b € Z,, one may choose ay such
that

o5 () o) — el (4)] <
for all x € Ay and all a > aq. Next remark that for 4, B € 2y, the analytic function
t F3 2 (t) defined by

Fi3 =AY Trale

xeA
Ag+xCA

—Hao(A) 7 (A)elem(l\) Ty (B)e—itHd.(A) )
Trg A (¢ H0(N)

satisfies the KMS identity
B ; B.A
Fﬁ,m(H‘ i) =Fpyo(-=1) .
But from the previous estimate and the convergence of wj ¢ to we one concludes that
. A,B @
HILF‘ZOFAG,m(f) = we (AT, (B)) .

Therefore, wg satisfies the (t®,1)-KMS condition as a corollary of Proposition
5.3.12 (see the discussion following the proof of this proposition).

It remains to handle the ® € B; for which the tangent functional to F at ® is not
unique. This is achieved by an approximation technique based upon the fact that
convex continuous functions are automatically differentiable at a “large” set of
points, and at the exceptional points a general tangent functional can be constructed
by convex combinations of limits of unique functionals. For example, if Fis a convex
function of one real variable it is automatically continuous, differentiable at all but a
countable set of points, and at these points each tangent functional is a convex
combination of the left derivative and the right derivative. The generalization that we
need is contained in the following lemma.

Lemma 6.2.43. Let F be a convex, continuous function over a separable
Banach space X and let | € X* be a tangent functional to the graph of F at
zero.
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It follows that f is contained in the weak*-closed convex hull of the set of
tangent functionals I defined by

I ={g €X*;there exist x, — 0 (in norm) such that
FE'is differentiable at each x, and lim, OF (x,)(x) = g(x), x € X}.

We omit the proof of this result (see Notes and Remarks).

END OF PrOOF OF THEOREM 6.2.42. It follows from Lemma 6.2.43, and the weak*
compactness of KMS states, that it suffices to prove that wg satisfies the (t®, 1)-KMS
condition in the special case

we = lim wg,
o
where @, € B; and wq, € Egj have the properties

(1) @, — @, =0,
(2) S — Hp, is maximized by a unique state W,

But it follows from this second property and the foregoing analysis that g, must
satisfy the(t®, 1)-KMS condition. Moreover, it follows from the first property and
the discussion following Example 6.2.5 that

lim |28 (4) — & (4)]| = 0

uniformly for ¢ in any bounded interval. Therefore, wq satisfies the (z®, 1)-KMS
condition by Proposition 5.3.25.

Finally it remains to prove (3) = (1) when =0, i.e., we must prove that if
maximizes S, then w is a trace-state. We argue by negation. If w is not a trace, cu|(~,IA
cannot be a trace for sufficiently large A and hence w|qr, cannot maximize Sy, i.e.,

Sa(w) < |Allog(N + 1)

for A sufficiently large. But this implies
S(w) < log(N + 1)

and hence @ does not maximize S.

Remark. We have chosen to prove the equivalences of Theorem 6.2.42 under
the assumption ® € B;.This can, however, be replaced by the hypotheses of
Theorem 6.2.6 and this is of interest for one- and two-dimensional systems.

The identifications provided by Theorem 6.2.42 give a new criterion for
invariant equilibrium states, maximum mean entropy at fixed mean energy.
The theorem is slightly unsatisfactory insofar as the proof of equivalence of the
three criteria is only established under relatively strong assumptions on @, i.e.,
® € B, for some 4 > 0. The Gibbs condition, and the maximum entropy pro-
perty, can of course be defined under much weaker hypotheses, e.g., ® € By,
and it would be of interest to derive equivalence of these two conditions under
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weaker assumptions on ®. This would demand a converse to Proposition
6.2.41 and in particular a proof of existence of Z'-invariant states satisfying the
Gibbs condition which is independent of the existence of dynamical group °.
Despite these shortcomings the theorem motivates the study of the set of states
which maximize S — Hp as candidates for Z'-invariant equilibrium states
corresponding to the interaction @.

Theorem 6.2.44. Let B denote the Banach space of Z'-invariant spin inter-
actions ® with norm given by

e lowl

and define Ao C EL by

Ay = {w; o € EX ,S(w) — Hp(w) = sup {S(o') — Hq;((l)l)}} )

! VAl
o' €Ey

where S and Hy denote the mean entropy and mean energy.
It follows that:

(1) Ag is a nonempty, weak*-compact fac‘e of E%

(2) Ao is a simplex with &(Ae) C §(EL) and the unique barycentric
decomposition of each w € Ay coincides with the unique decomposi-
tion of w into extremal Z’-invariant states.

ProOF

(1) Tt follows once again from the Bauer maximum principle, Lemma 4.1.12,
and the upper semi-continuity of S — Hg that Ag is nonempty and in fact
Ag must contain an extremal Z'-invariant state, i.e., an o € &(E% ). Weak*
compactness follows by noting that if w, € Ap and w, — w, then

lim {S(w,) — Ho(0:)} < {S(®) — Ho(e))
by upper semi-continuity of § — Hg. Consequently, @ € Ag.
Similarly if we assume that wg € Agp and
we = vy + (1 — D,

with w;,w; € Egl" but w; ¢ Ag, then the affinity of S — Hyp implies the
contradiction

sup {S(w) — Ho(w)} > A{S(w1) — Ho(w1)} + (1 — 2){S(w2) — Ho(w2)}

weEf!’,"

= S(wo) — Ho(wo) = sup {S(w) — Ho(w)} .
wEEg’l"

Thus Ag is a face.



302 Models of Quantum Statistical Mechanics

(2)  The spin algebra is Z*-asymptotically abelian in the norm sense. Thus £ is
a simplex by Corollary 4.3.11. The remaining statements follow because Ag
is a stable face of EZ .

Note that if Ag is composed of one point w, then w is automatically an
extremal Z'-invariant state and it has the cluster properties in mean discussed
in Section 4.3.2. Interpreting the elements of Ag to be invariant equilibrium
states, this indicates that if there exists a unique Z'-invariant equilibrium state,
L.e., a unique Z’-invariant thermodynamic phase, this state, or phase, is au-
tomatically Z'-ergodic. Therefore if Ag consists of more than one state, the
unique decomposition of each element w € Ag into extremal elements corre-
sponds to the separation of the mixed thermodynamic phases into pure phases,
Le., Z'-ergodic states. But the mean entropy S is affine and upper semi-
continuous and therefore it respects the barycentric decomposition of w , by
Corollary 4.1.18, e.g. if p, € M,(EY),

w(Ad) = /d,uw(a)’) o'(4), 4

and
S(w) =/duw(a)') S(a') .

Thus, accepting the foregoing interpretation of mixed phases and pure phases,
one concludes that the mean entropy of a mixture is the mixture of the mean
entropies. A similar conclusion is valid for the mean energy.

We conclude with various observations concerning the set of states Ag
which follow by elaboration of the convexity arguments used to prove Theo-
rem 6.2.42. Throughout these observations we take B to be a Banach space of
invariant interactions which contains the space B, of invariant finite range
interactions as a norm dense subspace and moreover we assume that B, C B
where B is the space of Theorem 6.2.44.

Observation 1. There is a one-to-one correspondence between tangent
Junctionals fo to the graph of the free energy, ® € By F(®), at ® and states
we which maximize S — He. This correspondence is such that

fq)(“P) = _CU(D(E\{J), Y e %1 .

This was almost established in the proof of Theorem 6.2.42. In particular we
showed that each state we which maximizes S — Hy defines a tangent functional
Jo through the above relation. Moreover, as By C B each state is determined
by its values on {Ey;'¥ € B;}. Therefore, distinct maximizing states lead to
distinct tangent functionals and if there is a unique tangent functional fy, there
is a unique maximizing state we. But if f3 is not unique, then by Lemma 6.2.43
there exist @, € B; such that fy, is unique, | ®, — ®|| — 0, and

Sfo(¥) = 1imf¢,(T) = —lim wo,(Ey) .

@
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But this implies that wg, converges in the weak* topology to a state we which
has the required correspondence with fg.

Observation 2.  The set ® € B, for which Ap consists of a single point is
norm dense.

This follows immediately from Observation 1 and Lemma 6.2.43.

By an extension of the latter lemma one can even show that this set contains
a countable intersection of dense open subsets. The implication of this last
observation is that the @ for which Ag is a singleton forms a “large” set and in
the physical interpretation this implies that the spin system tends to have a pure
thermodynamic phase “almost always”. Nevertheless, it may happen for a
fixed @ that Apg consists of more than one point for all § in an interval of the
form (3., co) (see Section 6.2.6). It is, however, possible to prove the existence
of a dense subset D C By, such that for ® € D and Lebesgue-almost every
B € R the set Agg is a singleton.

Observation 3
De B,

where the bar denotes the uniform closure.

If Fis a convex continuous function over a Banach space X, then f € X* is
called F-bounded if there is a ¢ € R such that

F(x) > f(x) +¢

for all x € X. One can prove that the tangent functionals to F are norm dense in
the F-bounded functionals.
Now suppose w € EX, then

F(®) > S(w) — Hp(w) > —w(Eg)
because S > 0 and Hop(w) = w(Eg). Thus the function f € B] defined by
f(®) = —o(Eo)

is F-bounded (with bound zero). Therefore, by the general result just cited
there must exist ®, € B; and tangent functionals fy, to the graph of F at @,
such that

| fo,(¥) = /()]
ven, V] =

But by Observation 1 the tangent functionals f, determine states wg, € Ag, .
Moreover, if 4 =A4* € Wy and ¥, is defined by W4(X +x) = 1.(4), and
Y,4(Y)=0 if Y is not a translate of X, then the B-norm of ¥, satisfies
W4l = ll4]]. Thus,
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|w,(4) — o(4)] _ |fa,(Va) — f(¥4)|
14l [.all

and consequently the wg, converge uniformly to w.

The foregoing observation implies that each invariant state is close to an
equilibrium state of some ® € B. The norm approximation gives a strong
control which one can exploit to obtain a stronger statement of this form.

Observation 4. [f wy,...,w, € w”(E%), then there is a ® € B such that
Wy,...,0, €Ap .

First note that £4 is a simplex by Corollary 4.3.11. We next argue that the
isomorphism  between € E§ and maximal probability measures
Uy € My, (Egl) is isometric from the norm topology to the norm topology, i.e.,
lo —'|| = ||ty — ity |- To establish this let @ — o' = wy — w_ denote the
Jordan decomposition of w — «’ given by Proposition 3.2.7. By uniqueness the
wy must be Z'-invariant and hence there exist unique maximal probability
measures j, with barycenters w./||w.|. But  + w_ = o' + w, and hence by
uniqueness i, + ||o_||u_ = p,y + ||ws||p,. Therefore,

oo — &'l = o]l + [lo—]|

> fleo—fluz — [l [l ||
= [lto =ty = lo — || .
Now let @ =n"'(w; + @, + - + w,) and take ¢ < n~'. By Observation 3
one can find ®€®B and o€ Ay such that ||w— | <& and hence

lltty — 1ty || < . But this implies that u,,({w;}) > 0 foreach i = 1, 2...., n, and
hence w; € §(Ag) foreach i = 1, 2,..., n.

Thus although Observation 2 indicates that Ag “often’ consists of a single
point Observation 4 proves the existence of interactions @ for which Ag con-
tains many different Z'-ergodic states. Despite the interest of these general
observations they shed little light on the structure of {Agg; f € R} for ® fixed.
The convexity arguments are inherently too weak to obtain details of the phase
structure for a fixed interaction as the inverse temperature f varies. For this it
is necessary to develop more analytic methods.

The foregoing results give a reasonably satisfactory description of spatially
invariant equilibrium states. In particular Theorem 6.2.42 establishes under
quite general conditions that the Gibbs and KMS conditions are equivalent to
the principle of maximal mean entropy at fixed mean energy. Equilibrium is a
balance between the disorder characteristic of large entropy and the order
associated with low energy. The main disadvantage of the theory is, however,
the strong invariance assumption. Although many physical systems exhibit
pronounced features of spatial homogeneity the assumption of strict spatial
invariance appears to be a somewhat unrealistic idealization. It would be of
interest to understand the entropy principle in a broader setting of ‘homo-
geneous’ systems. There are several classes of physical models which lack in-
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variance but retain strong spatial uniformity. For example models of magnetic
impurities or models of spin glasses.

A typical impurity model has a translationally invariant interaction @ to-
gether with an additional one-body interaction ¥ which only contributes at a
subset of randomly chosen points x, € Z" and which represents the presence of
magnetic impurities. The points x, could be distributed in a homogenous
fashion and ¥ could be invariant, i.e., ¥({x,}) = 7., (¥({0})), but if the x, are
not the points of a regular sublattice there is no underlying symmetry. One can
introduce an evolution 7 and the corresponding KMS states and also define the
mean free energy by exploiting subadditivity, homogeneity and boundedness
properties. The problems arise with the states and in particular the mean en-
tropy and energy as functions over the states.

General spin glass models can also be defined in terms of two translationally
invariant interactions ® and '¥'. One assumes that the interaction energy arises
from @ for one class Ly of subsets X C Z" and from ¥ for the complementary
set Ly, 1.e., the energy is given by

H(A) =) o)+ Y WX) .

Xelg Xely
XcaA XCA

For example, ® and ¥ could be nearest-neighbor interactions and L a ran-
domly chosen subset of the nearest-neighbors. If @ is an ‘attractive’ interaction
which tends to align neighboring spins and ¥ a ‘repulsive’ interaction which
energetically favors anti-parallel spins then there are competing forces which
ensure non-translationally invariant equilibrium states. Nevertheless if the set
Lo has a regular pattern of distribution the states should be relatively homo-
geneous. Again one can introduce an evolution t and the corresponding KMS
states and define the mean free energy. Difficulties arise, however, in defining
the mean entropy and energy as functions over the states. The principal pro-
blem in characterizing the KMS states in terms of entropy and energy con-
siderations consists of finding a suitable replacement for the invariant states.
Any concept of homogeneous interaction requires a corresponding concept of
homogeneous state in order to be useful. But there appear to be no viable
alternatives to the invariant theory.

A different class of models which lack invariance arises from theories built
on lattices without periodicity. Although this appears initially to be a more
radical departure from homogeneous theories on Z" it is not necessarily the
case. Quasicrystals seem to have strong regularity properties which are, how-
ever, not consistent with a strictly periodic structure. Therefore it is appealing
to model these phenomena with aperiodic lattices, for example, lattices asso-
ciated with aperiodic tilings of the underlying configuration space. But the
most common lattices of this type do have repetitive symmetry patterns even if
they lack complete periodicity. Therefore one can build the theory to take these
symmetries into account and consider interactions with the corresponding in-
variances. Again the difficulty in fully developing the theory is the identification
of a suitable set of states whose structure adequately reflects the symmetries
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and invariances. This can to a certain extent be achieved (see Notes and Re-
marks) but there is no really adequate counterpart for the compact set of
translationally invariant states.

6.2.5. Uniqueness of KMS States

Spin systems were originally introduced as models of paramagnetism and
ferromagnetism. A material is paramagnetic if it assumes a magnetic moment
in the presence of an external magnetic field and ferromagnetic if it is capable
of possessing a magnetic moment in the absence of a field. Ferromagnetism is a
relatively rare quality and the majority of ferromagnets are alloys, or com-
pounds, of iron, nickel, or cobalt. If a ferromagnet is heated, it loses its
spontaneous magnetization at a certain critical temperature 7, but above T, it
remains paramagnetic. Thus, ferromagnets exhibit a type of phase transition;
above 7, there is a unique state of equilibrium whose magnetization is com-
pletely determined by the external field but below 7, and in the absence of a
field there are various possible states distinguished by the orientation of the
spontaneous magnetization.

In this and the next subsection we demonstrate that quantum spin systems
exhibit this type of phase structure. This subsection is devoted to the discussion
of high temperatures and in the next we examine the more interesting, and
more complex, low-temperature phenomena. We only consider interactions @
for which the dynamics is given by a strongly continuous one-parameter group
@ of *-automorphisms of the spin algebra 2 and we accept the (1%, §)-KMS
condition as a criterion for equilibrium at inverse temperature f. In Section
6.2.2 we established the existence of (®, §)-KMS states for all § € R and our
immediate aim is to prove uniqueness for small f8, i.e., for large temperatures.

If f =0, the KMS condition reduces to the trace condition,

w(AB) = w(BA)
for all 4,B € U, and w is the unique trace state on 2. The uniqueness of the
trace can be deduced by an explicit calculation which is a model for the sub-
sequent perturbation argument. Let e(iy,jy),i,jr =0,1,...,N be a set of
matrix units for Wy, and choose B € A, where x¢ A. The trace condition,
local commutativity, and the identity

NE

e(iij) =(N+ 1)_l e(i.wk‘r)e(kx:jx)

ke

I
o

give

w(e(ix, j:)B) = ke, jx)Be(ix, k)

=(N+1)" 0;,, j.0(e(ky, ke)B)

.|| MZ .|| MZ

= (N+ 1)_ 51',,_/'_\(0(3) .
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Iteration of this argument yields

CU(H e(ixnjn)> = (N_I— 1)_n H 5ix1’ jx{
=1 I=1

and o is uniquely determined.
If B+ 0, the trace property is replaced by the (%, §)-KMS condition and
one finds

w(e(ixajx)B) N + 1 Z {(D ks jix Be(zx,kt))
k=0

" a)(e(kx’jx)B(‘C;D —1)elix, k) } (=i
=(N+ 1)_15,-r j,w(B)

Z (kx, Jx B(T 2)e(ix, ky))

— (=ip

Now assume the strictly local elements of 2 are analytic for t®. The second
term on the right-hand side of the last equation can then be expressed as a
power series in f§, without constant term, and iteration of the resulting equation
allows one to deduce that w is uniquely determined for f§ sufficiently small and
for a large class of ®. The details are as follows.

Each B € Ay can be expressed as a linear combination of matrix units

I)(,J)() H e(lIHJU
I=1

where X = {x1,..., %}, Ix = {ix,5 .- -, 0x,},and Jx = {Jjy,, - - Jx, }. Thus it suffices
to consider the special choices B = e(Iy,Jx), Ly, Jx € {0, 1,--~,N}X,X cL.
Now adopting the assumptions of Theorem 6.2.4 one has

(T:'I/)}—Z)(e(i,\'akx)) Z n| Z {X} k)

n>1 XYoo Xn
X; nsj 1790

where
CY X} i ) = (@), [ - [@(X1), (i, &:)]]]
So = {x},and S;=X;0X; ;U---UXju{x} . Butif

A= Allx,Jx)e(lx, Jy)
Ix,Jx

is the decomposition of 4 € AUy, the complex coefficients 4 (Iy,Jx) satisfy

(L, Jx)| < |41l -
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Therefore

CrUXY; iok) = > CY{X}si ks I, Js,e(Is,, Js,)

Is,,Js,

where

|y (X} i ks I, Js,) | < 2" T llox,
i=1

Moreover,

e(ks, je)e(Lx, Jx) Y ({Xi}s i k) = > o (Ise, JseJelss, Js:)

isr,JSx

where Sy = {x} UX US,, and there are at most (N + 1)*%! nonzero coefficients
Wthh satisfy

<2 [ llox))

i=1

|O‘(D(IS;§7 Js:)

This perturbation expansion can now be combined with the previous identity
for w, evaluated with B = e(Ix,Jx), to obtain a linear equation for the family
{w(e(ly,Jy)); Y C L}. This equation will be interpreted as an integral equation
on a sultable Banach space.

Let X be the Banach space of bounded complex functions f on the pairs
{IX,JX} where Iy,Jx C {0,1,...,N}*,X C L, and f (Iz,Jz) € C. The space
X is equipped with the natural operations of addition and scalar multi-
plication together with the supremum norm. If w denotes the family
{w(e(Ix,Jx)); X C L}, where we take e(ly,Jz) = 1, it follows that @ € X and
el = 1. The foregoing identity and perturbation expansion yield the
equation

©=90+Kw+ Lgpw

for o where 9,K, and Lgg are defined as follows: § € X and

1 ifX =0
oL, Jx) = (N+1)7"6,,jc  if X = {x}
0 otherwise ,

K is a linear operator with action
(KNI, Jx) = (N +1)7'6,, . f (e, Jx)
X ={x,...,%,}, X ={x2,...,x%,},n>2, and
(Kf)(Lx,Jx) =0

if | X | <2,Lpy is a linear operator such that
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(Lpof)Ix,Jx) = Z >

=0n>1 ! Hiodn  Tox Jox
XjnSj_ | #@

a?([s:,Js:)f(]s:,Js:) )
where the coefficients «® arising from the perturbation expansion are asso-
ciated with a fixed splitting X = {x} U X’ with X’ = X\{x}.
The above integral equation has the form
(t—K—Lpp)o=20 .
Hence w is uniquely determined, and

W= Z(K + Lgo)"d

n>0

whenever ||K + Lgo|| < 1. But ||K | = (N +1)"" and so uniqueness is ensured if
ILgoll < (1 — |IK||) = N(N 4 1)"". The norm of Ly can, however, be bounded
by use of the estimates on C® and the procedure used in the proof of Theorem
6.24.

Proposition 6.2.45. Let @ be an interaction such that

@], = Ze’“’ (N+1)" (sup Z |®(X ) <+ o0
Y

n>0 X3x
|=n+1

for some A > 0.
It follows that there exists a unique (t®, B)-KMS state whenever

3\ -1
el < (5) (1 +%)

Proor. The estimation procedure used to prove Theorem 6.2.4 together with the
definition of Lge gives

IZgoll <Z2" lﬂI > <H(m+--~+n,»_1+1)||c1>||m(N+1)2"")(N+1)2

Al iy \i=1
where

@, = sup > o) -

X3x
mv n+l

But

Hn1+n7+ Ao+ 1) < (mmt e, + 1) < A0 let He’".
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gl < v+ 12 (22 ol 1 - ('ﬁ')ucbu)

whenever (2|f|/A)||®||; < 1. The stated result follows from the discussion preceding
the theorem after a simple rearrangement.

Therefore

Proposition 6.2.45 establishes uniqueness of the equilibrium state whenever
|B| ||@]|; is sufficiently small. We have made no attempt to optimize the esti-
mate on |f| and this can certainly be improved in numerous ways. First, if
®(X) = 0 for |X| > m more efficient norms can be introduced. Second, for any
given interaction the bounds on the important lowest-order terms in the per-
turbation series for Lgp can be individually calculated and this may sig-
nificantly improve the total bound. Third, it is possible to exploit other matrix
parametrizations, i.e., if N = 1, each 2 x 2 matrix is a linear combination of
Pauli matrices and this parametrization can lead to better bounds. Thus Pro-
position 6.2.45 should only be taken as a general qualitative statement.

For physical applications to magnetic systems this proposition is delinquent
in one important respect. It does not establish uniqueness for small § and all
external field strengths. To obtain this result it is necessary to use two addi-
tional techniques. First, one handles the one-body interaction corresponding to
the external field in a separate manner and, second, one must separate out the
lowest eigenstate of this field. To introduce the first of these techniques we must
reexamine the integral equation for w.

Let ®=oW + (I)' where @) is the one-body part of @, ie.,

oV ({x}) = {x} M(X)=0if |X| #1, and @ is the multiparticle inter-
actlon We again assume that ® determmes a one-parameter dynamical group

t® for which the strictly local elements of 2 are analytic. The one-particle
interaction (I) M automatically determines a second group t® ®" with the prop-
erty that ¢ (QI{Y}) AWy for all x € L, and we further assume<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>