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Preface to the Second Edition

Fifteen years have passed since completion of the first edition of this book
and much has happened. Any attempt to do justice to the new develop-
ments would necessitate at least one new volume rather than a second
edition of the current one. Fortunately other authors have taken up the
challenge of describing these discoveries and our bibliography includes
references to a variety of new books that have appeared or are about to

appear. We consequently decided to keep the format of this book äs a basic
reference for the operator algebraic approach to quantum statistical me-

chanics and concentrated on correcting, improving, and updating the
material of the first edition. This in itself has not been easy and changes
occur throughout the text. The major changes are a corrected presentation
of Bose-Einstein condensation in Theorem 5.2.30, insertion of a general
result on the absence of symmetry breaking in Theorem 5. 3. 3 3A, and an

extended description of the dynamics of the A^-Fmodel in Example 6.2.14.
The discussion of phase transitions in specific models, in Sects. 6.2.6 and
6.2.7, has been expanded with the focus shifted from the classical Ising
model to genuine quantum situations such äs the Heisenberg and X-Y
models. In addition the Notes and Remarks to various subsections have
been considerably augmented.

Since our interest in the subject of equilibrium states and models of
statistical mechanics has waned considerably in the last fifteen years it



VIII Preface to the Second Edition

would have been impossible to prepare this second edition without the

Support and encouragement of many of our friends and colleagues. We are

particularly indebted to Charles Batty, Michiel van den Berg, Tom ter Eist,
Dai Evans, Mark Fannes, Jürg Fröhlich, Taku Matsui, Andre Verbeure,
and Marinus Winnink for information and helpful advice, and we apol-
ogize for often ignoring the latter. We are especially grateful to Aernout

van Enter and Reinhard Werner for counselling us on recent developments
and giving detailed suggestions for revisions.

Oslo and Canberra 1996 Ola Bratteh

Derek W. Robinson
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States in Quantum Statistical Mechanics





5.1. Introduction

In this chapter, and the following one, we examine various applications of C*-

algebras and their states to statistical mechanics. Principally we analyze the
structural properties of the equilibrium states of quantum Systems consisting of

a large number of particles. In Chapter l we argued that this leads to the study
of states of infinite-particle Systems äs an initial approximation. There are two

approaches to this study which are to a large extent complementary.
The first approach begins with the specific description of finite Systems and

their equilibrium states provided by quantum statistical mechanics. One then

rephrases this description in an algebraic language which identifies the equili
brium states äs states over a quasi-local C*-algebra generated by subalgebras
corresponding to the observables of spatial Subsystems. Finally, one attempts
to calculate an approximation of these states by taking their limit äs the volume
of the System tends to infinity, the so-called thermodynamic limit. The infinite-
volume equilibrium states obtained in this manner provide the data for the
calculation of bulk properties of the matter under consideration äs functions of
the thermodynamic variables. By this we mean properties such äs the particle
density, or specific heat, äs functions of the temperature and chemical poten-
tial, etc. In fact, the infinite-volume data provides a much more detailed, even

microscopic, description of the equilibrium phenomena although one is only
generally interested in the bulk properties and their fluctuations. Examination
of the thermodynamic limit also provides a test of the scope of the usual
statistical mechanical formalism. If this formalism is rieh enough to describe

phase transitions, then at certain critical values of the thermodynamic para-
meters there should be a multiplicity of infinite-volume limit states arising from
slight variations of the external interactions or boundary conditions. These
states would correspond to various phases and mixtures of these phases. In
such a Situation it should be possible to arrange the limits such that phase
Separation takes place and then the equilibrium states would also provide
information concerning interface phenomena such äs surface tension.

The second approach to algebraic statistical mechanics avoids discussion of
the thermodynamic limit and attempts to characterize and classify the equili
brium states of the infinite System äs states over an appropriate C*-algebra. The
elements of the C*-algebra represent kinematic observables, i.e., observables at

a given time, and the states describe the instantaneous states of the System. For

a complete physical description it is necessary to specify the dynamical law
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governing the change with time of the observables, or the states, and the
equilibrium states are determined by their properties with respect to this dy-
namics. The general nature of the dynamical law can be inferred from the usual

quantum-mechanical formalism and it appears that there are various possibi-
Uties. Recall that for finite quantum Systems the dynamics is given by a one-

parameter group of *-automorphisms of the algebra of observables,

A^Tt(Ä)^e^^^Ae-^^^ ,

where H is the selfadjoint Hamiltonian operator of the System. Thus it appears
natural that the dynamics of the infinite System should be determined by a

continuous one-parameter group of *-automorphisms T of the C*-algebra of
observables. This type of dynamics is certainly the simplest possible and it
occurs in various specific models, e.g., the noninteracting Fermi gas, some of
which we examine in the sequel. Nevertheless, it is not the general Situation.
The difRculty is that a group of this kind automatically defines a continuous
development of every state of the System. But this is not to be expected for
general infinite Systems in which compHcated phenomena involving the local
accumulation of an infinite number of particles and energy can occur for
certain initial states. Thus it is necessary to examine weaker forms of evolution.
For example, one could assume the dynamics to be specified äs a group of
automorphisms of the von Neumann algebras corresponding to a subclass of
states over the C*-algebra. Alternatively one could adopt an infinitesimal de-

scription and assume that the evolution is determined by a derivation which
generates an automorphism group only in certain representations. Fach of
these possible structures could in principle be verified in a particular model by a

thermodynamic limiting process and each such structure provides a framework
for characterizing equilibrium phenomena. To understand the type of char-
acterization which is possible it is useful to refer to the finite-volume descrip-
tion of equilibrium.

There are various possible descriptions of equilibrium states, which all stem
from the early work of Boltzmann and Gibbs on classical statistical mechanics,
and which differ only in their initial specification. The three most common

possibilities are the microcanonical ensemble, the canonical ensemble, and the
grand canonical ensemble. In the first, the energy and particle number are held
fixed; in the second, states of various energy are allowed for fixed particle
number; and in the third, both the energy and the particle number vary. Fach
of these descriptions can be rephrased algebraically but the grand canonical
description is in several ways more convenient. Let be the Hubert space of
states for all possible energies and particle numbers of the finite System, and H
and N, the selfadjoint Hamiltonian and number operators, respectively. The
Gibbs grand canonical equihbrium state is defined äs a state over ^(), or

^^(), by

Tr^(.-/^^^)
^^-^(^)^Tr,M^) '
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where K H iiN, // G [R, and it is assumed that e~^^ is a trace-class op-
erator. Typically H is lower semi-bounded and the trace-class property is valid

for all ß > Q. The parameters ß and /i correspond to the inverse temperature of

the System, in suitable units, and the chemical potential, respectively, and

therefore this description is well-suited to a given type of material at a fixed

temperature. Now if the generalized evolution T is defined by

A G ^() ^ T,(^) - e^^^Ae-^^^ G ^() ,

then the trace-class property of e~^^ allows one to deduce that the functions

f ^ cDß^^(Ait(B]]
are analytic in the open strip 0 < Im ^ < jS and continuous on the boundaries

of the Strip. Moreover, the cyclicity of the trace gives

^ß.M'^t(B]]\t^iß = o}ß^^(BA) .

This is the KMS condition which we brieüy described in Chapter l and which

will play an important role throughout this chapter. One significance of this

condition is that it uniquely determines the Gibbs state over ^^(), i.e., the

only State over ^^() which satisfies the KMS condition with respect to T at

the value ß is the Gibbs grand canonical equilibrium state. This can be proved
by explicit calculation but it will in fact follow from the characterization of

extremal KMS states occurring in Section 5.3. It also follows under quite
general conditions that the KMS condition is stable under limits. Thus for a

System whose kinematic observables form a C*-algebra ^ and whose dynamics
is supposed to be given by a continuous group of *-automorphisms T of ^, it is

natural to take the KMS condition äs an empirical definition of an equilibrium
state.

Prior to the analysis of KMS states we introduce the specific quasi-local C*-

algebras which provide the quantum-mechanical description of Systems of

point particles and examine various properties of their states and representa-
tions. In particular we discuss the equilibrium states of Systems of non-inter-

acting particles. This analysis illustrates the thermodynamic limiting process,
utilizes the KMS condition äs a calculational device, and also provides a

testing ground for the general formalism which we subsequently develop.
In the latter half of the chapter we discuss attempts to derive the KMS

condition from first principles.



5.2. Continuous Quantum Systems. I

5.2.1. The CAR and CCR Relations

There are two approaches to the algebraic structure associated with Systems of
point particles in quantum mechanics. The first is quite concrete and physical.
One begins with the Hubert space of vector states of the particles and subse-
quently introduces algebras of operators corresponding to certain particle
observables. The second approach is more abstract and consists of postulating
certain structural features of a C*-algebra of observables and then proving
uniqueness of the algebra. One recovers the first point of view by passing to a

particular representation. We discuss the first concrete approach in this sub-
section and then in Section 5.2.2 we examine the abstract formulation.

The quantum-mechanical states of n identical point particles in the config-
uration space U^' are given by vectors of the Hubert space L~(R"^''). If the
number of particles is not fixed, the states are described by vectors of the direct
sum space

^=@L\K"-) ,

77 >0

i.e., sequences \l/ = {jA^''^}>o, where \l/^^^ G C, !/^^''^ G L'([R'^') for /? > l, and the
norm of i/^ is given by

ll'Af = l'/'^'P + E fdxr--dx\il^^"\x,,...,x)\^
.

n>\'^

There is, however, a further restriction imposed by quantum statistics.
If i/^ G 5 is normalized, then

dp(xi,...,Xn) = \il/^''\xi,...,Xn)\^dxi - dx^

is the quantum-mechanical probability density for \l/ to describe n particles at
the infinitesimal neighborhood of the points ;ci , . . . , x^ .

The normalization of \l/
corresponds to the normalization of the total probability to unity. But in
microscopic physics identical particles are indistinguishable and this is refiected
by the symmetry of the probability density under interchange of the particle
coordinates. This interchange defines a unitary representation of the permu-
tation group and the symmetry is assured if the ij/ transform under a suitable
subrepresentation. There are two cases of paramount importance.
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The first arises when the components \l/^"^ of each ij/ are Symmetrie under

interchange of coordinates. Particles whose states transform in this manner are

called bosons and are said to satisfy Böse (-Einstein) statistics. The second ease

corresponds to anti-symmetry of the i/^^"^ under interchange of each pair of

coordinates. The associated particles are called /ermzö/?^ and are said to satisfy
Fermi (-Dirac} statistics. Thus to discuss these two types of particle one must

examine the Hubert subspaces 5.^, of 5, formed by the ij/ = {^ }n>Q whose

components are Symmetrie (the + sign) or anti-symmetric (the - sign). These

subspaces are usually called Fock spaces but we will also use the term for more

general direct sum spaces.
To describe particles which have internal structure, e.g., an intrinsic angular

momentum, or spin, it is necessary to generalize the above construction of

Fock space.
Assume that the states of each particle form a complex Hubert space l) and

let l)'' = t) 0 I) (g) 0 f) denote the /7-fold tensor product of i^ with itself. Fur

ther introduce the Fock space g(l)) by

5(1)) = © t)" ,

n>0

where if C. Thus a vector \\j G 5(f)) is a sequence {iA''"''}/2>o ^^ vectors

i/^^"^ G t)'^ and l)" can be identified äs the closed subspace of g(l)) formed by the

vectors with all components except the th equal to zero.

In Order to introduce the subspaces relevant to the description of bosons

and fermions we first define operators P on (5(^) by

^+(/i /2 ^ ^ /.) = (n !)"^ V /., 0 /., 0 0 /. ,Z-^^

P-(fl^f2^"'^ fn] = (n !) ^ ^ Bnfn, ^ fn.

for all /l, ...,/ G f). The sum is over all permutations TI; (1. 2, ...,) F-^

(TII, 712, , 7r) of the indices and n is one if TT is even and minus one if TC is odd.

Extension by linearity yields two densely defined operators with ||P|| = l and

the P extend by continuity to bounded operators of norm one. The P+ and P_

restricted to i^", are the projections onto the subspaces of 1^" corresponding to

the one-dimensional unitary representations n \-^ l and TC H- 8;^ of the per-
mutation group ofn elements, respectively. The Bose-Fock space g^(t)) and the

Fermi-Fock space (5_({)) are then defined by

S(^)=/'5(l))
and the corresponding -particle subspaces I)'^ by I)^ == P {)" .

We also define a

number operator N on g(^) by

D(N) = (lA; ^ = {^^"^}.>o, E^'ll^^'^^ll' < +^|
l '^>o J

and

7v,A = {.AW}>o
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for each \l/ G D(N). It is evident that A^ is selfadjoint since it is already given in
its spectral representation. Note that e^^^ leaves the subspaces 5.t(i^) invariant.
We will also use TVto denote the selfadjoint restrictions of the number operator
to these subspaces.

The peculiar structure of Fock space allows the amplification of operators
on I) to the whole spaces 5.^(1)) by a method commonly referred to äs second

qiiantization. This is of particular interest for selfadjoint operators and uni-
taries.

If H is selfadjoint operator on f), one can define Hn on I)'^ by setting HQ = Q
and

ffn(P(f\ ^'"^ fn]] =P\y^fl^f2^-'-^Hfi^-"^fn

for all // G D(H), and then extending by continuity. The direct sum of the // is
essentially selfadjoint because (1) it is Symmetrie and hence closable, (2) it has a

dense set of analytic vectors formed by finite sums of (anti-) symmetrized
products of analytic vectors of H, The selfadjoint closure of this sum is called
the second quantization of H and is denoted by dY(H]. Thus

dY(H) = @Hn .

;i>0

The simplest example of this second quantization is given by choosing // = H
,

one then has

jr(i)=7v .

If u is unitary, [/ is defined by L/o = H and by setting

Un(P(fl 0 /2 0 ^ fn)] = P(Ufl 0 ^/2 0 0 Ufn)
and extending by continuity. The second quantization of U is denoted by r(f/),
where

r(u) = @u .

n>0

Note that r(U) is unitary. The notation dY and P is chosen because if Ut = e'^^
is a strongly continuous one-parameter unitary group, then

r(t/,) - e'"^''(^)
.

Next we wish to describe two C*-algebras of observables associated with
bosons and fermions, respectively. Both algebras are defined with the aid of
particle "annihilaüon" and "creation" operators which are introduced äs fol-
lows. For each / e 1) we define operators a(f), and *(/), on 5(1)) by initially
setting a(/).A(0) = 0,a*(/)^() = /, / e ^, and

a(/)(/i f2---fn) = n^'^(f, /i)/2 /3 / ,

*(/)(/! /2---/) = (+l)'^V /l-
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Extension by linearity again yields two densely defined operators and if

i/^^"^ G l)\ one easily calculates that

||a(/)^Wi| <'/2||/||||^(")||, ||a*(/),AW|| < (+1)'/2|/||||^W|| .

Thus a(f] and *(/) have well-defined extensions to the domain D(N^f^] of
N^f^ and

\\a*(fm<\\f\ ||(A^+l)^/Vll
for all \l/ G D(N^^^), where a^(f} denotes either a(f) or a*(/). Moreover, one

has the adjoint relation

(a*(/)(p,iA) = ((p,ß(/)iA)

for all (p,iA G D(N^^^). Finally, we define annihilation and creation operators
a(f] and <2^(/) on the Fock spaces 5^(1)) by

(/) = /'i a(f)P^ ,
a ; (/) = P fl* (/)P .

The relations

(/)?, A) = (<?>,* (/W, iii(/)'/'ii < 11/11 ii(A^ + i)'^Vii
follow from the corresponding relations for a(f} and *(/). Moreover,

(/)-(/)^, a;(/)=Pfl*(/)
because a(f) leaves the subspaces g.j_([)) invariant. Note that the maps

f^-^a(f] are anti-linear but the maps /i-^a(/) are linear.

The physical interpretation of these operators is the following. Let

Q == (l, 0, 0, . . .), then Q corresponds to the zero-particle state, the vacuum. The

vectors

A (/) = ;(/)"

identify with elements of the one-particle space 1^ and hence a^ (/) "creates" a

particle in the state /. The vectors

iA(/i,...,/.)-^('^0~'/'<(/i)--<(/.)^
= P(f\'--fn)

are -particle states which arise from successive "creation" of particles in the

States /,/_!, . . . , /l . Similarly the a (/) reduce the number of particles, i.e.,
they annihilate particles. Note that if fi=fj for some pair /, j with

l <i<j<n, then

iA_(/b...,/)-^-(/i^---^/) = o

by anti-symmetry. Thus it is impossible to create two fermions in the same

state. This is the celebrated Pauli principle which is reflected by the operator
equation

a*_(/K_(/)=0 .
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This last relation is the simplest case of the commutation relations which link
the annihilation and creation operators.

One computes straightforwardly that

[ + (/), a + (9)]=0 = [<(/),<(ö)] ,

[fl+(/),a;((7)]=(/,ör)1 ,

and

K(/),a-(^)} = 0 = K(/),al(ö)} ,

{.(/), al(./)} = (/,^)1 ,

where we have again used the notation {A, B} AB + BA. The first relations
are called the canonical commutation relations (CCRs) and the second the ca-

nonical anti-commutation relations (CARs).
Although there is a superficial similarity between these two sets of algebraic

rules, the properties of the respective operators are radically different. In ap-
plications to physics these differences are thought to be at the root of the

fundamentally disparate behaviors of Böse and Fermi Systems at low tem-

peratures. In order to emphasize these differences we separate the subsequent
discussion of the CARs and CCRs but before the general analysis we give an

example of the creation and annihilation operators for point particles.

EXAMPLE 5.2.1. If l) = L~(U'), then 5^(1)) consists of sequences {iA^"^}>o of
functions of n variables x/ G [R^' which are totally Symmetrie ( + sign) or totally an-

tisymmetric ( - sign). The action of the annihilation and creation operators is given by

(a(/)A)'"'(^i, . . . .x) = (n + l)'/' fdxj{x)'^^"^'\x,x^,.
. .,x) ,

(al(f]il,f\x,,. . . ,x] = -'/2 ;^( l)'-'/(^,),A('-')(.x,, . . . ,.x,, . . . ,x) ,

i=\

where i/ denotes that the i th variable is to be omitted. Note that äs the maps

/->(/), /^i(/)
are anti-linear and linear, respectively, one may introduce operator-valued dis-
tributions, i.e., fields fl (x), and a*_^ (x), such that

a(f) = j dxW)^(^) , <(f) = Jdxf(x)al(x) ,

and then the action of these fields is given by

(a W,A)W(^i, . . . ,x) = (n+ l)'/2 ,/.("+ ')(x,^,, . . . ,x) ,

(a;(;c)iA)("'(xi, . . . ,x) = -'/2 ^( l)'-'5(.v -.x,OiA'"-"(-X|, . . . ,x,, . . . ,x) .

/=!

In terms of these fields the number operator A^ is formally given by

A^- [dxa-'^(x}a^(x) .
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5.2.1.1 The CAR Relations. We next analyze the properties of the creation and

annihilation operators obeying the CAR relations on the Fock space 5_(^).
We simplify Dotation by dropping the suffix minus on the operators.

Proposition 5.2.2. Let l) be a complex Hubert space, 5- (W ^^^ Fermi Fock

space, and a(f) and a''(g] the corresponding annihilation and creation op-

erators on (5_(I)). It follows that

0) IK/)II = 11/11 = ll*(/)ll

for all / G ]^, and hence a(f] and a* (g) have bounded extensions.

(2) T/'Q = (1,0,0, .. .) and {/} is an orthonormal basis ofl), then

Aa,, -/.)-*(/,) ---^a.,)^

is an orthonormal basis of J5_(I)) \vhen {/, , . - - ,/} ^'uns over the

finite subsets ö/{/a}.
(3) The set of bounded operators {(/), ö*(ö^); 9 G l)} is irreducible on

5-(f)).

PROOF. (1) One has

(a\f)a(f)f = a^(f){a(f), a'(f)]a(f) = \\f\^a^(f)a(f)

and hence

ll(/)ll' = IIK(/)(/))'ll = il/ll'lk'(/M/)|| = ll/ll'i|a(/)f .

As a(/) ^ 0 for / ^ 0 one condudes that

ii(/)ii = 11/11 = ii*(/)ii .

(2) This follows easily from the observation that

'A(/c<,,---,A.) = (!)'^'^-(/a, -

(3) Let r be a bounded operator in the commutant of {a(f).a'(g): f,g f)},
then

W/,, ,/.,), m9ß---,gßj)
= (rn, a(A) . . . a(/, )a*(i,^, ) . . . a*(3/jjn)
= (ra,n)(,A(/,,-..,/.J,^(9#p..., /?))

To establish the last equality one considers the three cases n > m, n < m, and n =

m, separately. In the ßrst case both expressions are zero because the a(f) annihilate

more particles than the a* (g) create. In the second case both expressions are again
zero by complex conjugation. In the third case (/) a*(gß^)Q. is a multiple of Q

and the desired equality follows once more. Thus T = (Q, rQ)1l and irreducibility is a

consequence of Proposition 2.3.8.
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5.2.1.2. The CCR Relations. The main qualitative difference between fermions
and bosons is the absence of a Pauli principle for the latter particles. There is
no bound on the number of particles which can occupy a given state. This is
quantitatively reflected by the unboundedness of the Böse annihilation and
creation operators. If, for example, il/^^^ is the /7-fold tensor product of / G I)
with itself, then the annihilation operator satisfies

||a(/)^W||='/2|hAW||||/||
(we omit the suffix plus on the operators). This unboundedness leads to a large
number of technical difficulties which are absent for fermions. These problems
can be partially avoided by consideration of bounded functions of the opera
tors a(f) and a*(ö^).

It is convenient to introduce a family of operators {<!)(/),/ G l)} by

<D(/)-2-'/2(a(/) + a*(/)) ,

Note that if n(/) = $(//'), then

n(/) = -/2-'/2(a(/)_a*(/)) ,

Thus

a(/) = 2-'/2(<l.(/) + /n(/)), a*(/) = 2-'/2(<i,(/) _ /n(/)) ,

and the a(f} and ß*(/) can be recuperated from the <!>(/). Thus for functional
purposes it suffices to examine the latter operators. Their basic properties are
most easily examined on the subspace F(t)) c S+(t)) formed by the finite-
particle vectors, i.e., the ij/ = {^A }>o which have only a finite number of
nonvanishing components.

Proposition 5.2.3. Let l) be a complex Hubert space, 5_^(I)) the Böse Fock
space, and a(f) and a'' (g) annihilation and creation operators satisfying the
canonical commutation relations. Define ^ by

0(/) = 2-i/2((/)+^*(/))
for all / G t). Itfollows that

(1) For each /Gl^,O(/) z^ essentially selfadjoint on F(bi) and if
\\f, - f\\ -> 0, then ||<D(/J./' - <D(/)i/'|| -^ Q for all ^ e )(7V'/2).

(2) If Q = (1,0,0, ...) then the linear span of the set

{$(/,) . - -$(/)Q;/, e [), = 0, l, . . .} is dense in S+()).
(3) For each ^|/ e -D (A'') and, f,gel) one has

(<D(/)(l)(ö-) - <D(ör)0(/)),A = ^Im(/,6')iA

PROOF. (1) The operator O(/) is densely defined, and Symmetrie, hence closable.
To establish essential selfadjointness it suffiees to prove that ^(f] has a dense set of
analytie vectors. But if iA^''^GV|, then i/^^"^ G D(<D(/)'") for all m and^(/)V^"^ G f)';+^ 0^1"^ The estimates
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l|ß(/)^<"'ll < ( + i)'^'ll/''"'llll/ll, lk'(/)^'"'ll < ( + 1)'^'||^("
then imply that

||(D(/)"V^"^II < ^'"/-(^ + m)^'^(n + m - l)^/^ (n + l)^/^||iA^"^
Therefore

^iw/r*'-HZ^(^ 1/2

^ m^lia,(/rv(")|| < y-iX^iiL.(^^L^] ||/ini^()|| < +00
4r^ m !
m>0

for all ^ e C. It immediately follows that each i// in the dense set F(l)) is an analytic
vector for <!>(/).

The continuity follows because

llW/a) - ^(/))^|| < 2-^/2||a(/, - fm + 2-^/2||a*(/, - /)iA||

<2^/2||A-/l|||(7V+l)^/Vll
(2) The linear spans of {$(/i ) ^(fn]^\ // e I), n > 0} and {a* (/i )

a*(/)Q; // G I), W > 0} are identical. But the latter is dense by the same arguments
used in Proposition 5.2.2.

(3) This is immediate from the canonical commutation relations.

Next we consider the unitary groups generated by the operators O(/), but

henceforth we use this Symbol to denote the selfadjoint closure of the previous
>(/).

Proposition 5.2.4. For each / G t) /e/ O(/) denote the selfadjoint operator

<!)(/) =2-'/2(a(/)+fl*(/)).
Moreover let W(f) denote the unitary operator exp{/<I)(/)}. It follows that

(1) For each pair f.g^l), W(f)D(^(g)) = D(^(g)} and

W(fmg}W(fr - ^(g) - Im(/, g)^ .

(2) For each pair /, ö' E l)

W(f)W(g) = e-'^^(f'a^l^W(f + g] ,

(3) The set {W(f)- / I)} is irreducible on 5^(1)) .

(4) If\\f,-f\\^0.then

\\(W(f.]-W(f}m^^

/o;-a//.AeS+(I))
(5) For each f e I)\{0}

\\w(f)-n = 2
.

PROOF. (1) Each \l/^ e F(I)) is analytic for O(/) and one can define ^(g]W(fY
on \l/y^ by power-series expansion. This expansion yields the identity
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^(^)^(/)^Aa = W(fr(^(g) - Im(/, ^)l)iA,
and consequently

II^(^)^(/)*OA. - 'A/^)ll < mg)(^. - ^^ß)\\ + |im(/,
But F(I)) is a core for O(6f). Thus if i// G )(>(öf)), one may choose the il/,^ such that
'Aa ^ ^ 2.nd ^(ö')'Aa -^ ^(^)iA- It immediately follows that ^(g]W(fY\l/^ converges
and therefore r(/)V e /)(O(^)) and ^(^)r(/)*iAcc -^ <3[>(^)^^(/)*'A- Thus D(O(^))
is invariant under each W(f) and

'^(g)w(fr = H^(/)*(<i>(3) - im(/; 9)1)
on _D(<1)(6()).

(2) For \l/ F(I)) one can exploit the invariance of D((^(g)] under W(f + g]' ,

etc., and the closedness of each <!>(/) to derive the identity

jW(tf)W(tg]W(t(f + g)Y^
= W(tf)[i^(f}, W(tg)]W(t(f + g)Y,li
= -/?Im(/, g)W(tf)W(tg)W(t(f + g))^l^ .

Integration then gives the following identity between bounded operators

W(f]W(g]W(f + gY = ^-il dt tlm(f,g)W(tf)W(tg}W(t(f + g)Y
Jo

Iteration of this identity immediately yields

W(f)W(g)W(f^gY = e-^^^^^'^^^/'~

which is equivalent to the stated result.

(3) If r is a bounded operator which commutes with each lV(f), then
n)(<D(/)) C D(^(f)) and ^(f)Til/ = T^(f]ilJ for each \jj D(^(f]] because <!>(/) is
the infinitesimal generator of t G ^^W(tf]. But a(f) = 2-^/-(O(/) + i^(if)) and
so r commutes with a(f) in the same manner and irreducibility follows by the same

calculation used for the CARs in Proposition 5.2.2.

(4) F(I)) is a core of (D(/) and ||($(/a) - ^(f}W\ -> 0 for all i// G F(!)) by
Proposition 5.2.3. Therefore, it follows from Theorem 3.1.28 that W(f^] converges
strongly to W(f].

(5) It follows from part (1) that

w(itf]^(f]w(itfr = ^(/) - ^ii/f 1

for all t G [R. Thus the spectrum of ^(f) must be the whole real line. Now consider
the unitary group W(tf} and its spectral representation

W(tf) = f dE(l)e'^^- .

J

For each i// G (?+(f)) one has

IhAf - II ^(/)^ - n~ = 2 /^OA, ^W^A)(i - cos/) .

Thus if '([7r + , 7i-])i// = i/^withO < e < 71/2

4-||^(/)-l)'AllVlhAf <2|l-cos|

andhence ||^(/)-1]|| =2.
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The operators W(f) introduced in the above proposition are usually called

Weyl operators and the commutation relations

W(f}W(g) = e-^^^^f^^^'^W(f -^ g] - e-^^^^^^^^W(g]W(f]
are called the Weylform of the canonical commutation relations.

5.2.2. The CAR and CCR Algebras

In the last subsection we derived the canonical commutation and anti-com-

mutation relations and constructed the Weyl operators associated with the

former. To complete this discussion we next examine the abstract C*-algebras
generated by elements satisfying the CARs or the Weyl form of the CCRs. It

will result that these algebras are uniquely determined by the appropriate form

of commutation relation.

Again we divide the discussion into two separate parts.

5.2.2.1. The CAR Algebra. The foregoing Fock space construction established

the existence of bounded operators satisfying the CARs. The next result char-

acterizes the abstract properties of the C*-algebra generated by these operators.

Theorem 5.2.5. Let I) be apre-Hilbert space with closure 5 and let ^/, i = 1,2,
be two C*-algebras generated by the identity D and elements ai(f], / G I),
satisfying

(1) /->fl/(/) is antilinear,
(2) {/(/), /(^)}-0 ,

(3) {,(/), a,(gr} = (/, g]^

for all f,ge^.i= L 2.

It follows that there exists a unique ^-isomorphistn a : ^i F-^ ^2 such that

a(a,(f])=a^(f]

for all / G ^. Thus there exists a unique, up to *-isomorphism, C*-algebra
^ 2X(]^) = ^(5) generated by elements a(f], satisfying the canonical anti-

commutation relations over l).
Furthermore

(1) Mf)\\ = \\f\\ for all f&\^.
(2) Ifl) is n dimensional, where n <-\-OQ, then ^(1^) is isomorphic with

the C*-algebra of2" x 2" complex matrices.

(3) ^(f)) is separable if, and only if, f) is separable.
(4) ^(^) is simple.
(5) If U is a bounded linear operator on I) and V a bounded antilinear

operator satisfying
F*(/ + t/*K - 0 = [/F* -f Ft/*

,

?7*t/ + F*F = D - t/t/* + FK*
,
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then there exists a uniqiie *-automorphism y of ^(I)) such that

y(a(f)]=a(Uf)+a\Vf]
and in this case

y-\a(f))^a(U*f)+a^(rf) .

PROOF. (1) The proof that ||fl/(/)|| = \\f\\ is identical to the proof given in Pro
position 5.2.2. It is a direct consequence of the CARs.

(2) Assume that I) is finite dimensional, and let {f\ ,...,//;} be an orthonormal
basis for E). If f\^a(f) are operators satisfying the CARs, define

ef,* = a(/,K(/,), e<';' = F,_,fl(/,) ,

4f = F,_,a*(/,), 4? =*(/*)(/.)

for k = l
, . . . ,

/-z where

k

Vk = ll(^-2a^(fMff)}
/=!

and we use the Standard notation *(/) == <^(fT- I^ follows from the CARs that

{ejy }.y^i 2 ^^^ ^^ families of mutually commuting 2x2 matrix units,

4'^s:! = ^.'^<t' ,

^^,=.4)4f) = 4f)4'-
Moreover, they generate the same algebra äs the a(f) since

-u)-rn(^s?-4^)Vn -

\i^\ )
Hence this algebra is the algebra of 2" x 2" matrices, and this establishes property
(2), and the proposition when I) is finite dimensional.

When l) is infinite dimensional, construct an orthonormal basis {/} for l). For
each finite dimensional subset of {/} we may construct matrix units äs above, and
äs ||fl(/)|| = 11/11 it follows by continuity that the C*-algebra generated by the a(/) is
unique and is, in fact, generated by an increasing net of füll matrix algebras.
Moreover, ^l(l)) -^(5).

The separability Statement (3) is immediate from the construction of ^il(I)) above,
and the simplicity follows from Corollary 2.6.19 or can be proved äs follows: since
{(/), ß*(/)} = ll/f D, it follows that 7r(fl(/)) ^ 0 for all representations of TT of
^21(1)) ,

and hence TT is faithful by the uniqueness of ^l(l)). Hence *:ll(l)) has no non

trivial closed two-sided ideals. Statement (5) follows by applying the first Statement
of the Proposition on a\(f} = (/), a^d] = a(Uf] + fl*(F/) .

Note that from Statement (2) of the theorem and the construction of ^(I)) it
follows that this algebra is a UHF algebra (see Example 2.6.12).

The transformations described in part (5) of the theorem are often called
Bogoliiibov transformations.
We next investigate local structure of the CAR algebra ^21(1)) over a Hubert

space I).
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Proposition 5.2.6. Let ^(t)) be the CAR algebra over a Hubert space I), and
let Ibe a net ofclosed nonempty subspaces ofl), orderedby inclusion such that:

(1) IfM^I, there exists an N e I such that M I.N.

(2) If M ^N and M ^ K, there exists an L e I such that M _L L and

N.KCL.
(3) l)-UMe/^-

Let a^(M) C 91(1)) be the sub-C'' -algebra generated by {(/); / G M} for each

MG/. Then (^(f)), {^(M)}^^^) is a quasi-local algebra in the sense of
Definition 2.6.3, mth o(a(f]] = -a(f] for all fei).

PROOF. First, if MI C Mj, we evidently have 5l(Mi) C 2I(M2), and, second, äs any
A G ^(f)) can be approximated by finite polynomials in a(f) and a*(^), it follows

from the relation ||fl(/)|| = \\f\\ and assumption (3) that 5I(^) = UMe/^(^)- Third,
the ^(M) have a common identity by definition. Finally, let er be the unique
*-automorphism of ^ such that a(a(f]] = (/) for all / G . This automorphism
exists by applying Theorem 5.2,5 part (5) io U = l and F = 0. Then (7~ = i and

(j(5I(M)) = ^(M) for all MG/. Each element A G ^(M) can be uniformly ap
proximated by a sequence of polynomials P in the a(f) and 0^(0) with /, ö^ G M. But

if^ is even, it follows that the (P + ö-(P))/2 also converge to ^1 = (.4 + G(A)]/2. But

(P + (j(P,i})/2 is an even polynomial in the a(f) and a*(g). By a similar reasoning
odd elements can be approximated by odd polynomials. Hence it suffices to prove the

commutation relations for polynomials. But noting that A~ and B commute if ^ and

B anti-commute, these follow directly from the CARs.

EXAMPLE 5.2.7. Let E) = L^(U'') and, for each bounded open set A C [R^ define

^IA äs the C*-subalgebra generated by {a(f) : / G L^(A)}. It follows that the CAR

algebra ^(l)) is a quasi-local algebra with respect to this generating net. In particular

^(W-U^A .

A

We conclude by mentioning an equivalent way of describing the CAR al

gebra which is analogous to the description of the CCRs in terms of the

operators {O(/);/ G 1^}.
One defines a family of elements B(f)] / G f) by

5(/) = 2-'/2(a(/)+a*(/))
then

a(f)=2-^f^(B(f)+iB(if}} ,

i.e., the a(f) can be recovered from the B(f). But it follows from the CARs that

{B(f), B(g}} - Re(/, g]
and conversely the CARs follow from these latter relations. Thus one is

prompted to study the seemingly more general problem of an algebra 51 gen
erated by elements B(f],f G //, satisfying

{B(f],B(g]}=s(f,g]
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for all f.g^H, where /f is a real vector space and ^ is a real positive symraetric
bilinear form over H. If in this context / is any operator such that

s(Jf, g) = -s(f, Jg), ß = -l
,

one can introduce annihilation, and creation operators aj(f) and aj(g) by

aj(f) = 2-'/2(5(/) + iB(Jf)), a}(g) = 2-^/^(B(g) - iB(Jg)]
and one has

{aj(f),a:,(g)}=s(f,g]-ris(f,Jcj] ,

etc. Thus in comparison with the previous discussion s(f, g] corresponds to the
real part of (f,g) and s(f,Jg) corresponds to the imaginary part.

Although this latter description seems more general we remark that if // is a

real Hubert space and if s is the nondegenerate inner product on H, then a /
with the above properties exists if, and only if H has even (or infinite) di-
mension. In this case ff is a complex Hubert space and s is the real part of the
inner product. One has the identification

(ll+Ü2)(^-;.LC^ + A2/^

for all A/ G [R and (^ G //, and

(f.g]=s(f,g)-ris(f,Jg] .

The / can be constructed by first choosing an orthonormal basis
{^b n\i ^2-> ^27 } of ^ ^^d then defining J by

^^z == ^/, Jni = -^i '

Finally we remark that if T is any real invertible operator such that

s(Tf,Tg)^s(f,g] ,

it follows that there exists a unique *-automorphism y of '5.1 such that

y(B(f}) ^ B(Tf) .

A simple calculation shows that this corresponds to the Bogoliubov transfor-
mation of the aj(f] and aj(g), with

U = 2~\T-JTJ), V = 2-\T^JTJ) .

5.2.2.2. The CCR Algebra. Next we characterize the abstract properties of the

C*-algebra generated by the Weyl operators. Although this CCR algebra has

many properties analogous to the CAR algebra the lack of norm continuity of
the map /t-^ W(f) alters properties of density, separability, and quasi-locality.
We will sHghtly generalize the Situation described in Section 5.2.1.2 and

examine a family of Weyl operators W(f] defined for elements/of a real linear

space H equipped with a nondegenerate symplectic bilinear form fj, i.e., er is a

map from H x H into [R such that

^(/, g) = -ö-(6^, /)
for all f, g e H, and if
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ff(/, g] = 0

for all / e //, then g (^. For example, one could take T/ to be a complex pre-
Hilbert space and a to be given by

a(f, g) = Im(/, g]

and then one recuperates the CCR relations described previously.
In fact, the generalization is very slight because if er is a nondegenerate

symplectic bilinear form on H and there exists an operator J on H with the

properties

a(Jf,g) = ~a(f,Jg), ^' = -l
,

then H is a pre-Hilbert space with scalar multiplication and inner product
defined by

(^1 + Ü2)/ - AI/ -f ^2Jf , l/ G ff^, / G //
,

(f.g} = ^(L JQ] + i^(f. 9). /, ^ G //
,

and clearly (T(f, g) = Im(/, g).
Note that if H is sequentially complete with respect to the topology defined

by (T, a / with the above properties exists if, and only if, H does not have finite

odd dimension. To construct / one first uses a procedure similar to the Gram-

Schmidt orthogonalization procedure to find elements {^/, rjj} in H spanning a

dense subspace and such that

(j(^t.^j) ^(^(^n^j}=^ ,

(T(^i, r]j) = öij ,

Then one defines / by J^i = r]^ and Jrj^ = c/ and extension by continuity.
In the following, when talking about the CCR algebra over a complex pre-

Hilbert space H, it is always understood that er is the imaginary part of the

inner product.

Theorem 5.2.8. Let H be a real linear space equipped with a nondegenerate
symplectic bilinear form a and let 2l/, z = l, 2, be two C*-algebras generated
by nonzero elements Wi(f),f G H, satisfying

(1) Wi(-f) = w,(fr,
(2) Wi(f)Wi(g) = e--(/'9)/2f^.(/ + g) ßr all f,geH.

It follows that there exists a unique *-isomorphism a; ^11-^^2 such that

a(fF,(/)) = ff2(/)

for all / G //. Thus there exists a unique, up to *-isomorphism, C*-algebra
^ = ^(H) generated by Weyl operators W(f).
Furthermore

(1) ^(0) = D, W(f), is unitaryfor all / G //, and \\W(f) -^=2for
all nonzero / G //.
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(2) If H is nonzero, then 5I(//) is nonseparable,
(3) ^(H) is simple.
(4) If T is a real linear invertible operator on H such that

a(Tf, Tg] = a(/, cj]
for all f, g e H, then there exists a uniqiie '"" -aiitomorphism y of'^(H) such
that

y(W(f)] = W(Tf] .

PROOF. It follows from property (2) of the W(f] that

W(f]W((^] = W(f] = W(0)W(f)
and

W(-f]W(f) = W(0) = W(f]W(-f] .

As the W(f) are nonzero one concludes that I^F(O) is the identity l and property (1)
implies that W(f] is unitary.

Next let US regard the linear space // äs a discrete additive abelian group. The
W(f] give a unitary representation of H up to a phase, or multipHer b(f, g] =
exp{-/ö-(/, g] /l}. It is subsequently of importance that f^^Xg(f) = b(f, g] is a

character of //, e.g.,

b(fi+f2.ö]=b(f,,g]b(f2^g] .

OUT aim is to prove that the C*-algebras %,/ =1,2, are *-isomorphic.
Consider the two representations R^, and R of H defined on l^(H) by

(Rh(g}F}(f)=b(f,g)F(f + g)
and

(R(g}F)(f)=F(f + g) .

One calculates that ^/, is a unitary representation up to the multiplier b and Ä is a

unitary representation in the usual sense. (Note that W(g) = Rij(g) defines a re

presentation of the CCRs and hence a CCR algebra exists.)
We may assume that ^li and % are faithfully represented on Hubert spaces ,

and 2 and define new multiplier representations Wf x R on /"(//; /) = / 0 /^(//).
An element ij/ G /"(//; /) is a function over H with values in g,-, and we set

mxR}(g)^)(f) = W,(g)i^(f^g) .

Then Wj x R is n multiplier representation of H with multiplier b, and we next show
that Wi X R is quasi-equivalent to R^. Define a unitary operator Uf on /"(//, /) by

(^.'A)(/) - w,-(f)iKf)
and then calculate that

(C/,-(F; X R)(gW(f) = Wi(f)((Wi X R](g]ilf](f)
= W,(f)Wi(g],lj(f + g)
= b(f, g]W,(f + g)il^(f + g)
= b(J\ ö)(C/,iA){/ + fif) = ((!,- Rb(g))ü,^)(f) ,

that is,
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Ui(WiXR)(g)U^ = ^i^Rb(g) ,

where H/ is the identity on y. Let ^/ be the C*-algebra generated by
{(Wi X R) (g)] g G //}. Then, by the above identity, there exists a *-isomorphism T

from 93l onto ^2 such that

i((W, xR}(g)} = (W2xR}(g) .

Hence if we can find *-isomorphisms T/ : % \-^ S/ such that

Ti(Wi(g)) = (W, X R)(g) ,

the first Statement of the theorem follows. But, setting W = Wj, this amounts to

showing that

^;,('xÄ)(/,.) E^'^(/'-)

for all /l/ e C, // e //, and 72 > 1. The representation W x Ris, via Fourier transform

on /^(//), unitary equivalent to the representation W x R on l~(H;9)] defined by

((WxR](g]^|^](^] = W(g]l(g]^|^(y:), i^H

and hence

Y,)4WxK)(fi) = sup
7,^H

y:^-x(//)^(//)

NOW, the set {7^} of ^ E ^ of the form

x,,(/) = %,/r
is dense in H, since it is a subgroup of Ä with annihilator zero. Moreover,
lg(fW(f] = W(g]W(f]W(gY. Therefore

MW'XÄ)(/-) = sup
^e//

y]^-;(,(/-)^(y;-)z^
i=\

)V(^)*
/

= E^'-^w-)
/=i

= sup
ge//

It follows that there exists a *-isomorphism a : ^Ij H^ ^2 such that

<^l(/))-^2(/)

for all / G //, and a is unique since the ^(/) generate % äs a C*-algebra.
Let US next prove the four properties of 5I(/f) stated in the latter half of the

theorem.

(1) At the beginning of the proof we established that each W(f) is unitary and

^(0) = t
.
The CCRs now give

W(g)W(f)W(gY=e-^-^^^^^W(f)
and hence the spectrum of W(f) is invariant under rotations. Hence the spectrum is

equal to the circle and ||^(/) - 11|| = 2 by the spectral radius formula.

(2) Assume that ^(//) is separable and let {^/J>o be a countable dense se-

quence of elements of ^(//). Thus for each t e ^ and each / G // there must be an rit

such that
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\\W(tf) - A,\\ < \
.

But if / ^ 0 and t{ 7^/2, then ^^ ^ ^^^ because

\\W{t,f)-AJ<\, \\W(t2f)-AJ<l
would imply

\\W((t,-t2)f)-i\\<2
in contradiction to the first Statement proved above. But äs R is not coimtable A^
cannot be dense and this contradiction proves that ^l(H") is nonseparable.

(3) Let 71 be a representation of 5I(//), then by the first Statement of the the-
orem there exists a *-isomorphism a from '^l(H} onto n(^l(H)) such that a(PF(/)) =
n(W(f}) for all / G //. But then (x = n because ^l(//) is generated by the W(f).
Hence the kernel of TI is zero. But n was arbitrary and therefore ^(H) must be simple.

(4) This follows by applying the uniqueness Statement to W\ (/) = W(f) and
^2(/) - W(Tf].

As in the CAR case, the transformations described in part (4) of the theorem
are often called Bogoliubov transformations,

There is an important difference between this theorem and the corre-

sponding result. Theorem 5.2.5, for the CARs. There is no Statement analo-
gous to ^l(I)) = '21(5) ^nd, and in fact, one has the following Situation.

Proposition 5.2.9. Let ^(//) be the CCR algebra over the real vector space
H and let ^(M) be the C'-suba!gebra generated by {W(f}', / G M} where M
is a siibspace of H.

It follows that

^(M) = ^(H)
if, and only if, M = H.

PROOF. If M 7^ //, consider the representation of ^l(H) on l^(H) defined by

(W(g}F)(f)=b(f,cj)F(f^g),
i.e., the representation used in the proofof Theorem 5.2.8. Assume g e H\M and let
^- e C,^/ eM, then

W(g) - 5^ X,r(^,) )F)(f)= b(f^ g) F(/ + ^) - J] ;,/.(/, g, - g]F(f + cj,]
/-l / / V /=!

Hence, if F is supported by M,

r(^)-^;,.fF(<7,-)y > ll^li

because the vector /^ F(f+ g) is orthogonal to each of the vectors /(-^ /?(/, gi - g)
xF(/ + ^/). This orthogonality follows because if / + ^/ e supp F C M, then
f e M ~ gi = M, and hence f + g ^M. Therefore

^.nf^^^||^(,)-.i|>l



Continuous Quantum Systems. I 23

andhence lV(g)i ^(M) .

We now consider quasi-local structure on the CCR algebra.

Proposition 5.2.10. Let H be a linear space mth a nondegenerate symplectic
bilinear form a, If N and M are subspaces of H, define N ^- M if and only if
(j(f^ g ) = Q for all f ^ N and g ^ M. Let I be a net ofnonempty subspaces of
H, ordered by inclusion, such that:

(1) IfMel, there exists an N ^ I such that M I.N.

(2) If M A^N and M \.K, there exists an L e I such that M L and

N.KCL.
(3) // = UMe/^-
Let ^(H} be the CCR algebra over H, and let t((M) be the sub-C^-algebras

generated by {W(f]\ f G M} for each MG/.

777^/7 (^(H], {^(M]}^^f) is a quasi-local algebra in the sense of Defini
tion 2.6.3, mth a l.

PROOF. This is immediate from the relation

W(f]W(g) = e-'^^^^'^^W(g)W(f)
for /, g G //.

Although this Statement on quasi-local structure is similar to Proposition
5.2.6, there is a distinction which arises from the phenomena described in

Proposition 5.2.9 and which is illustrated by the following example.

EXAMPLE 5.2.1 1. Let H be the subspace of L-([R') formed by the functions with

compact Support. Moreover, let

a(J] g) = Im(/, g) .

If A is a bounded open set of U^' and ^IA is the C*-subalgebra of 5l(//) generated by
{^(/);/ e^"(A)} then (^(//), {^Aj^^^^v) is a quasi-local algebra in the sense of

Definition 2.6.3. However, ^(//) is not equal to the CCR algebra over L-([R'') be-

cause of Proposition 5.2.9.

5.2.3. States and Representations

We continue the analysis of the GAR and CCR algebras with a discussion of

various properties of states and representations of these algebras. Most of these

properties are related to the existence of creation and annihilation operators
and this causes a distinction between the CARs and CCRs. The CAR algebra
contains creation and annihilation operators but these operators can only be

affiliated with special representations of the CCR algebra. We begin with a

discussion of these representations and associated states. We concentrate on

the CCR algebra over a pre-Hilbert space l) and eschew the case of a real vector
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space with symplectic form. As we have explained in Section 5.2.2.2 this latter
case is barely more general.

There is a certain arbitrariness in the definition of the CCR algebra from the

generators ^(/) in Proposition 5.2.4, i.e., one could define this algebra by
taking other functions of >(/) than /l -^ e^^^\ In fact the C*-subalgebra of the
CCR algebra generated by {W(tf)\t e IR} where / e f) is a fixed nonzero

element is isomorphic with the set of almost periodic functions on

[R = cr(>(/)), and there is no inherent reason not to operate with the set of
continuoLis functions on [R vanishing at infinity, or any other subalgebra of

Ciy(U) which separates points of IR. A consequence of this analysis is that one is
not too interested in general representations of the CCR algebra, but only
representations where the generators of ^^ ^(^/) exist. These are the so-called

regulär representations.
A representation (, TI) of the CCR algebra 51(1)), over the pre-Hilbert space

1), is said to be regulär if the unitary groups t G U\-^n(W(tf)) are strongly
continuous for all / e f). If TT is regulär, then one can introduce, on , the

selfadjoint infinitesimal generators ^T^(f),f G f) of the groups t^^n(W(tf]),
/ G I), and then use these to define annihilation and creation operators.

Similarly a state co over ^(l)) is said to be regulär if the associated cyclic
representation (^^, n.o-, ^co) is regulär. Note that

\\(n,,(W(tf)]-^]7L,,(W(cj))^,,\\^
= 2 - e-^^^'^^^^^^^(D(W(tf]] - e^^^^^^^^^^a}(W(-tf))

and hence it easily follows that co is regulär if, and only if,
^ G [R ^ G)(W(tf)] G C is continuous for all / G i). We use the notation ^,o(f]
to denote the infinitesimal generator of the unitary group Ti^,:,(W(tf]) associated
with a regulär state.

The simplest example of a regulär state is the Fock state cDp defined by the

vacuum, or no-particle state, Q= (1,0,0,...) G e?_^(f)). One easily calculates
that

cof,(W(f)) = (Q, W(f)ü) = ^-ll/ll'/4
.

Even if co is a regulär state, there are certain technical domain problems
which complicate the introduction of annihilation and creation operators.
These are handled, however, by the following quite straightforward result.

Lemma 5.2.12. Let UI(f)) be the CCR algebra over the pre-Hilbert space
l) and CD a regulär state over 5l(^). For each / G l) denote the infinitesimal
generator of the unitary group t\-^7i(,j(W(tf}} by )f,j(/).

It follows that the operators {)c^(/), 0f^(//),/ G M} have a common

dense set of analytic vectors for every finite-dimensional subspace MCI).
Moreover the annihilation and creation operators definedfor eachf G f) by

/)(a,,(/)) =Z)((D,X/))n/)(a),,(//)) -D(/))
and



Continuous Quantum Systems. I 25

a^(f) = 2-'/^($4/) + /(!)(//)), <(/) = 2-1/2 ($4/) _ .^_^(.y-))
are densely defined, closed, flco(/)* = ^w(/)' ^'^^

ll<I>(/)<Pll' + ll<l>('/)'?'ll' = 2|K(/)'?'lP + ll/ll'll'Pll'
for all (p e r>(a(/)).

PROOF. We may assume that M is a complex subspace. Let {fj-J = l, 2.
.. ,m} b&

an orthonormal basis of M and define an operator R on g^ by

Rn = O'"/'^" ^'1 ^^'"'^^''^""''^'' ^""''"^'"''^(^(E(^^- + '''>)/>

It follows from rotational invariance that Rn is independent of the choice of basis.

Moreover, if for i// e f^ one defines ij/^^ by i//,, /?j/^ then ||i/^,j - i/^|| -^ 0 by a si-
milar argument to that used to prove Proposition 2.5.22. But using

W(tfj)W((sj + itj]fj] = e-'"'I^W((sj + s + itj)fj)
and a change of variable in the multiple integral defining Rn one calculates that i// is

analytic for each O^^ (/)). Hence i/^ is analytic for each operator Ofj(/), with / 6 M.

It immediately follows that ciio(f] ^nd ß*j(/) are densely defined on

D(0,,(/))nD(0,,(z/)). Moreover, ..(/)* D <(/) Thus a,,(f] has a densely de
fined adjoint which means that it is closable. Similarly a^(/) is closable. Now if

q) G D(a,,(f]], then

||cD4/)cp||2 + ||04^y>ll' = (IIK(/) + <(/))^ll' + IIK(/) - <(/))cp|p)/2
^IM/)(p|p + IK(/)(p||^ .

Moreover, by differentiation of the Weyl relations

(<D(/)<P,<I'('/)fp) = (<D(,-/)^, <!.,(/)<?) + 'll/lPikll'
which gives

IKo(/)'pll' = lk(/)d' + ll/fll<piP

Combination of these two identities yields

ll^..(/)^ll' + ll^a.(//)^||' - 2||a,(/)(^||^ + ll/ll'lklP .

But now assume that i/^, e /)K(/)), ||iA. - ^All -^ 0, and ||a,,(/)(iA - iA,J|| -> 0.
One may use the identity just derived with cp = ij/^^ \l/^ to deduce that

l|1?X/)('A-i/'JII-0 and ||(D4,/)(^-^J||^0. But <!.(/) and (D^//) are

selfadjoint, and in particular closed, and hence i/^ e jD(Oa;(/))n)(<I)f,j(//))
= D(aco(f))- Another application of the identity gives \\aco(f)(^n ~ ^}\\ ~^ ^ ^^^
therefore flfo(/) is closed. A similar argument is valid for a*j(/).

It remains to prove that flfo(/)* = ^lj(f)- This will be deduced äs a corollary of

Corollary 5.2.15.

Our next aim is to establish criteria for a state to be normal with respect to

the Fock representation, i.e., the defining representation of 9t (i^) on the Fock
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spaces 5-|_(f)). In Section 2.6.2 we defined a state co over an irreducible sub-
algebra ^ of =^() to be normal if it is determined by a density matrix p in the
form

CD(Ä}=i:r^(pA) .

It follows from Theorem 2.4.25 that this is equivalent to the representation
(cü5 ^oj5 ^cü) being a direct sum of copies of the representation of ^ on . The
condition of normality is of interest in applications because the normal states
of the Fock representation correspond to convex combinations of finite-par-
ticle vector states. Thus the normal states are interpretable äs the states with a

finite number of particles. If the algebra is quasi-local, then the locally normal

states, i.e., the states which are normal in restriction to the local generating
algebras, correspond to states for which the local Subsystems have a finite
number of particles. Thus locally normal states can be used to describe infinite
Systems of particles for which the overall density is finite.

Basically the criterion for normality is the existence of a selfadjoint number
operator but äs this operator is almost always unbounded some care has to be
taken in its definition. On Fock space the number operator A^ can be decom-
posed in terms of operators Nf of the form

Nf = a^(f)a(f) .

It follows from the CARs and CCRs that these operators satisfy the relations

[Nf,a(g)] = -(g,f)a(f) ,

[Nf,a*(g)] = (f,g)a*(f)
and it is consistent with the interpretation of (/) and a* (g) äs annihilation and
creation operators that Nf measures the number of particles in the state / G l).
Moreover, one easily calculates that

(^,7V.A) = ^(./.,]V/,
a

for ij/ G D(N} where the sum is over an orthonormal basis of f). We will extend
these relationships to other representations.

Notice that 7V/ is bounded for the CAR algebra but unbounded for the CCR
algebra; thus we must first give a suitable definition of 7V/ for the CCR algebra
and then find an appropriate definition of the sum of the TV/. We will use

quadratic form techniques to handle both these problems. We need the fol-
lowing facts.
A sesquüinear form t over a Hubert space is a function

(p, 0^ G D(t) X D(t)\-^t(cp, i/^) G C where D(t) is a subspace of and t is anti
linear in (p and Unear in i//. The form is said to be densely defined if its domain

D(t) is dense, Symmetrie if

^((p, lA) - TÖÄT^
for all (/), l// G , and positive if

?(iA,^)>0
for all \l/ e D(t). Positive forms are automatically Symmetrie.
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Associated with each sesquilinear form t there is a quadratic form
t(il/) = t(\l/, \l/]. This quadratic form determines t by the polarization formula

;(,p,^) = ^f^(^ + //4

A positive quadratic form t is said to be closed whenever the conditions

(1) iA e D(t), (2) ||iA - lAII -> 0, and (3) ^(lA, - lA.) - 0 imply that lA e Z)(0
and ^(lA/z - lA) -^ 0. Alternatively, t is said to be closable if it has a closed

extension and this is the case if, and only if, the conditions lA ^ -^(0^ 11^ II ~~^ ^

and t(\lf^ - iA,J ^ 0 imply that ^(lAJ -> 0.

Forms are important because if Ms a densely defined, positive, closed,
quadratic form, then there exists a unique positive selfadjoint operator T such

that D(t] = D(ri/2) and

^((p,iA) = (r^/V,^^/V)
for all (p, lA ^ ^(0- I^ particular

r((p,iA)-((p,riA)
for all (p e /)(0 and lA ^ ^(^)- This Statement has an obvious converse and

hence there is a one-to-one correspondence between forms t of this type and

positive selfadjoint operators.
In appHcations the most sensitive point in the construction of positive op

erators from forms is the verification of closedness of the forms. But if iS is a

closed operator with dense domain D(S], and one defines t by D(t] = D(S} and

t((p,i^} = (S(p,Sil^),
it is evident that t is positive, densely defined, and closed. If T is the associated

positive selfadjoint operator, then T^/^ is nothing but the positive part of the

polar decomposition of S, and T = S*S.

If co is a regulär state over the CCR algebra ^(l)) on a pre-Hilbert space I),
one can introduce closed annihilation and creation operators fla;(/) and a*^(f}
on ^ by Lemma 5.2.12. Let co, / and A^co, / be the positive form and the

positive selfadjoint operator defined by aa}(f}, i.e.,

c.,/W-l|ßc.(/)^AIl', iAe^K(/)) ,

A^co,/ = öco(/)*öö;(/) .

We take TV^^, / äs number operator for the one particle state / G I). It is easy to

check from the Weyl form of the CCRs and from Lemma 5.2.12 that one has

./W = (\\<^c.(fm' + \\^c.(ifm' - ii/iPii^ii')/2
It is natural to attempt to define a total number operator for the state co by

summing the co, / over a complete orthonormal basis, but again the difficulty is

whether the resulting quadratic form is closed. To handle this we first define an

Order relation between positive forms by ti > ti if ^(^i) C D(t2) and
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tl(^)>t2(<l^)
for all ij/ G D(ti). This ordering defines an ordering of positive selfadjoint op-
erators. If T{ and Tj are the selfadjoint operators determined by the positive,
closed, densely defined forms t\ and 6, we write

TI > T2

whenever

t\ >t2 .

This Order relation is a generalization of the order for positive elements of a C*-

algebra discussed in Section 2.2.2 and has many properties in common with
this latter order. In particular the same argument that established Proposition
2.2.13 shows that if T\ and TI are two positive, invertible, operators and

^1 > ^2 > 0
,

then

(T.+^^r^ > (Ti^i^r^
for all /l > 0. In particular this means that )(77^'^") C D(T~^^~] by the defi-
nition of the form ordering. Moreover, the discussion after Proposition 2.2.13
implies that

(r2 + ^i)''/'>(ri+;j)'^/'
for all 1 > 0. These points will be used in proving the following resiilt.

Lemma 5.2.13. Let t^ be a monotonically increasing net of positive, closed
quadratic forms on a Hilbert space and define t by

D(t) = l lA; lA G p|/)(4), sup 4(iA) < -{-00 l
,

t(\lj] = sup 4(iA) .

a

Itfollows that t is a positive, closed, quadratic form.
If, moreover, t^^ and t are densely defined, then the corresponding positive

selfadjoint operators T and T satisfy

lim \\(e^^^^ - e^^^)ilj\\ -0
a

for a// lA G , iiniformly for t infinite intervals of [R.

PROOF. As the net is monotonic

t(\lj] = \\mt^(\lj] .

a

Thus t is the limit of quadratic forms and it follows easily that it is itself a quadratic
form. Moreover, it is positive.

Next assume 1^,^ G D(t], ||iA,^ - i/^|| ^ 0, and for e > 0 there is an A^^ such that
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t(^n - ^m] < ^

for all n,m> N^. Therefore ty,(\J/,^ i//,) < s for all a and äs t^ is closed, \l/ e ^(^a) and

ta(^n -^] <^ for all n > N,. But

tM^ - ^n] + ^n] + t,((^ - 'AJ - ^n] ^ ^^(^J + ^^.(^ - l^J

and hence

^aW<2ra(lAJ+2 .

Moreover

sup 4(i/^) < 2^(i/^J + 2e < +00
a

and therefore i/^ e D(r). But then

^(A - ^A) -^ sup ra(iA, - lA) <
a

for all n > N^ and thus t(il/^ i/^) -^ 0, i.e., t is closed.
Now consider the second Statement. The forms ^a, and hence the operators T^ + 1,

are monotonically increasing. Therefore, the two families (T + 11)" and (Ta + H)" ^~

are monotonically decreasing. Thus, by Lemma 2.4.19, (T^ + 1)" converges strongly
to a positive operator R and (7^ + 11)"^'^^ converges strongly to a positive operator
which, by continuity, is ^^/^. It also follows from monotonicity that R > (r + 1])~^
This bound has two useful consequences. First, it shows that R is invertible, and
its inverse R~^ is automatically selfadjoint. Second, it implies that

/)((7 + 1)1/2) cZ)(/?-i/2).
Next introduce densely defined operators B^ = ^^/^(T^ + H)^/". If i/^ G D(t^), then

||5a^||'-((ra + 1)^/V,^(7^a + l)^/V) < ll'All'
by monotonicity. Hence 5 has a bounded extension with \\B^\\ < l and B^ is
bounded with ||5*|| < 1. It follows that D(R-^I^], i.e., the ränge of ^^/^ lies in

D((ra + H)^/^) for each a. One also has

lim||/?'/2(1 -Bim = lim||5,((ra + 1)-^/2-^^/2)^|| =0
a a

and hence H 5 converges weakly to zero on the ränge of R^^^. As this ränge is

dense, By_ and 5* converge weakly to 1. But the bound ||5*|| < l gives

11(5: - 1)^f < 2\\^f - (^,Bl^|<] - (Bl^, ^) ^ 0

and in particular \\B*^\j/\\ -^ \\\l/\\. Therefore, if ij/ D(R-^'^], then

lim?,(iA) + ||iA||' = lim||(r, + 1)'/Vll'
a a

= hm||5:Ä-'/2,/,||^ = ||Ä-'/2,A|p
a

which simultaneously establishes that i/^ e /)(/) ::^ D((T + H)^/^) and

^W + ll'All'-ll(^ + ^)'/Vf-P"^/Vll' .

ButonehasZ)(7?-i/2) C Z)((r + H)^/^) C D(7?-V2) and hence r + H -/^-^.Thuswe
conclude that (r + D) converges strongly to (r + H) .

Finally, note that if i/^ = (H + T)"V ^ -ö(^) and i/^^ = (H + T^)~^<p, then \l/.,-^^
and Tai/^Qj :== (H - (1 4- ra)~^)(p -^ Ti//. Therefore, the unitary groups generated by the

Ta converge strongly to the group generated by T by Theorem 3.1.28.
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Now let US return to the discussion of the number operator associated with a

regulär state CD over the CCR algebra on a pre-Hilbert space I). The finite-
dimensional complex subspaces F C I) form a directed set when ordered by
inchision. If {fi} is an orthonormal basis for F, define

D(n,,p)= n D(a,(f))
f^F

and

/VFW = E 'V/,W = Ell^-(/'>^ll'

As any two orthonormal bases for F are related by a unitary matrix, it follows

immediately that this definition of 77^0^ p only depends on co and F
,

The /7co^/7 form a monotonically increasing net of positive, closed, quadratic
forms and their limit will be a positive, closed, quadratic form by Lemma
5.2.13. If this latter form is densely defined, then it uniquely determines a

selfadjoint number operator N^o on ^. The following result shows that the
existence of such an operator characterizes normality of co, The main bürden in
the proof is the demonstration of algebraic properties of N^o analogous to

properties of the number operator on Fock space.

Theorem 5.2.14. Let CD be a state over the CAR algebra, or a regulär state

over the CCR algebra, and let {ßco(/); / ^ W denote the corresponding closed
annihilation operators (aco(f} = nco(a(f)) is bounded in the CAR case}. De

fine a positive, closed quadratic forni. on ^,j by

n,,(\jj) =SUp /2oj,F(lA) ,

F

DM = (lA;^ e p D(a^(f}), 72,,W < +00} ,

^ fei) J

where the supremum is over all finite-dimensional subspaces ofl).
The following conditions are equivalent:
(1) CD is normal with respect to the Fock representation.
(2) D(nco} is dense in ^.
(3) D(naj) contains a vector which is cydie for 7i,^(^(h)) in ^^.

Moreover if these conditions are satisfied, then

lim||(e^'^^---/^"OiA||-0

uniformly for t in finite intervals of U where N^o is the selfadjoint operator
corresponding to the form n^o and N

f^^ p
is the selfadjoint operator determined

by the form Uf^^p,

PROOF. (1) rr^ (3): If co is normal then by Theorem 2.4.26 (,,^, TT^J) is a countable
direct sum of copies of the Fock representation since the Fock representation is
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irreducible. Let N^j = N N be a direct sum of copies of the Fock mimber

operator and choose ij/ = {'A}>o ^ Sw such that i/^ E D(N), the i/^ are mutually
orthogonal, and ij/ G D(Nia). Thus

(.A,7V,,iA)-E(^'^^)
n>0

= \^ sup ^ ||a(/,)iAJ|'^sup ^ ||.(//)^fZ^ ^^ .

">0 ^ {/,}CF ^ {//}CF

by direct calculation on Fock space. But the irreducibility of the Fock representation
and the orthogonality of the components ij/^ ensure that ij/ is cyclic for 7rf,,(5I(^)).
Thus condition (3) is valid.

We next prove the implications (3) =^ (2) =^ (1) for the Weyl algebra. Subse-

quently, we comment on the easier case of the CAR algebra. The proof relies upon
three observations which establish invariance of /)(/!(,;) under the Weyl operators and

the commutation properties of the number operator NOJ determined by /loj-

OBSERVATION l

1 /'

-<j \\nf^(i ^yy^iji) - u;;v/""
{fi}<^F^

+ ||7r,Xr^(^(/V/)-1))iAf -'"''"''

/z,,W^sup Y. \{\\^<^(t~'(W(tfi]-^]m~
^' ^ if-lC F ^

'}
and D(naj] is exactly the set of \l/ for which the supremum is finite.

The proof relies on the fact that if U (t) e^^^ is a continuous unitary group on a

Hubert space, then ijj e D(H] if, and only if,

sup||r'(t/W-iMII<+)
t

by Proposition 3.1.23. Using the spectral representation of U one then finds that

||//^f = sup \\t-\U(t) - 1)^i|- = lim \\t-\U (t) - l),Ai|- .

/ /O

Now assume the supremum in the Statement of the observation is finite. In par-
ticular

sup{||r'(7t((r(^/) -1)),AII' + r'K(fF(/r/) -1))^||- - lliAII-} < +(^

for each / e l). Thus i/. e D(4>(/)) r^D(^^(if}] = D(a,,(f)) = >(/)) and

sup{||r'K(^('/) -^)m' + ||r'K(fF(rt/) - l))^ir- - m-}/2
= \im[\\t-\n^(W(tf) - l))^f + \\r\n,,(W(itf) - 1)),Af - ||^^|i'}/2
= m^m' + \\^o.(ifm- - iiiAihA = iia>(/)./'f

whenever ||/|| = l where the last step uses Lemma 5.2.12. This identification shows

that the form defined by the supremum is at least an extension of Uf^. But if, con-

versely, \l/ is in the domain of oj, then ^ e D(^(jj(f)) nD(^a}(if)) for all / E ^ and

the same argument identifies the two forms.
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OBSERVATION 2

n,,(W(cj))D(n,:,)=DM,

n,(K,(W(g))i^) = (lA) + (.A,1',o('ö)iA) + llöll'll'/'llV2 .

This follows by first using the Weyl form of the commutation relations to es-

tablish that

lim\\r^(n,(W(tf)-^))n(W(cj))>^\\-
= \im\\r\n,(W(tf) - 1))!^ + r'(e-''""(^'') - ^)n,,(W(tf)W\-

= \\<S>,(f)<^-lm(f,gm'- .

Thiis by Observation l

n^,(n,(W(g)}i^) = ,7,,(iA) + (^A, cD,X/^)'A) + ll^ll'lhAllV^
+ lim(i//,(D,X/(^F-^))jA),

wliere

9F= Y. /'(/" ^)
{/:} C F

Biit \\^co(i(gF - g}W\~ < (2/7aX'A) + W\~)\\9F - g\\~ -^ o and the desired result fol
lows immediately.

The implication (3) => (2) is a consequence of Observation 2 and the linearity of

D(/7,,j). Thus if il/ e D(n(,j} is cyclic, then )(wco) contains the dense set formed by finite
linear combinations of T^ü)(W(f]]\l/,f G I).

OBSERVATION 3

a^(f]D(Nll'~]CD(N,,,]
and for ijj e D(Nl^~)

N,a,,(f]ilj = a,,(f](N,-^)ilj .

Observation 2 implies that

(Moc/), W(tf]il^] = (W(tfYcp,N,ilj]^t(W(tfYcp,^(if]ilj]
+?^(r(//)>,iA)ll/llV2

for q) G D(N(o) and ij/ G D(Nj~]. Differentiation of this expression and a similar one

with / replaced by /'/ and the subsequent addition of the two results gives

(M.c/),..(/)i//) = (/)c/), (yv,o - t)iA)
because D(N,] C D(n,) C ^^.D(^,,(f)}. But then (7V,, - 1])i// G D(Na/') = D(n,,]
C ^rD(afo(f]]. Thus one has

(7V,c/),a,,(/).A) - ((p,ß.o(/)(A^a. - 1)^A)
for all cp G D(N(o} where we have used a*^(fY ^ oX/)- The result follows by con-

tinuity of the right-hand side in (p.

Now we are prepared to prove (2) ^ (1) of the theorem.
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Let EO) denote the spectral family of NCO and for simplicity set P;. 'ü;((cxo,/]).
For each / e f) the operator P^a,a(f]Px is a bounded operator from PX^OJ ^o ^/^w
because ||aü;(/)iA|| < llA^w^^^AII- ßut P^A^co and P^A^r/; are bounded operators on P;.fy
and P^/tü and hence Observation 3 and functional analysis of bounded operators
gives

F(N^)P,a^(f]Px = P,a,,(f)P;F(N^ - 1)

for any bounded function F. In particular

P;^-ia^(f)P;i=P,a^(f)P,.
for all ^> L Therefore,

P,-ia^(f)Pi = a,,(f}P;, .

But NOJ is positive and hence if /lo denotes the greatest lower bound of its spectrum,
one must have

co(/)/^;.o+i/2-0 .

Thus if i/^o is a unit vector in the ränge of P;^4.i/2 ,

c.(/)'Ao = 0

for all / G I).
Next let P^Q be the projection onto the cyclic subspace generated by application of

the operators a'^(f) to IJ/Q. It follows from aüj(/)'Ao ^ ^^^^ ^^e subrepresentation
PII/Q'^CÜ of Tifa is unitarily equivalent to the Fock representation. (The implementing
unitary operator is given by

[/<(/!) <(/)"< =*(/!) '(/)

where Q = (1,0,0,...) e 5^(^).) Now we repeat the same construction for the

subrepresentation TT^ -- (H - P^,)na, and ^ - (1 -P,/,Ja; to find a i/^j G ^ such
that PI//,^ is unitarily equivalent to the Fock representation. The proof is achieved

by complete induction.
In the CAR case Observation l is irrelevant. Observations 2 and 3 are replaced

by

c.K(/)'A) +/^a.(/)^) = C.W - 2||a.(/)^|P + 11/11' ,

n,^((p,a,a(f)il/) = na,(al^(f](p,\l/] - ((/),a^(/)iA)

which are computed before taking the limit in the definition of o;- The rest of the

argument is identical to the CCR case.

The final Statement of the theorem follows directly from Lemma 5.2.13.

One classic consequence of Theorem 5.2.14 is the following:

Corollary 5.2.15 (Stone-von Neumann uniqueness theorem). Let ^(I)) be
the CCR algebra over a finite-dimensional Hubert space f).

It follows that each regulär state CD over ^(I)) is normal with respect to the
Fock representation and hence any regulär representation 0/^(1^) is a multiple
of the Fock representation.
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PROOF. From Theorem 5.2.14 it suffices to show that the operators {a,o(f]', / ^ W
have a common dense domain in ^^. But äs I) is finite dimensional this follovvs from
Lemma 5.2.12.

We can also use this result to complete the proof of Lemma 5.2.12, i.e., to show
that afü(/)* = ^l^(f] for sach regulär CD and / G I). The restriction of TT^^ to the CCR

algebra over C/ is a multiple of the Fock representation of this algebra by Corollary
5.2.15. Hence it is enough to prove that a(/)* = ö!*(/) in the Fock representation.
Writing the Fock space ^^ äs a direct sum of 7i-particle spaces

5+-©f)+ ,

we know that iy| C D(a*(f)) for all n and the Hnear Span of the iy| is a core for

fl*(/), since it is a joint core for >(/) and <!>(//). We know already that

fl*(/) C a(fY. To show the converse, assume that i// = 0^^^^ i/^^"^ e D(a(ff]. This
means that the functional

(peß(a(/))^(^,a(/),p)
is bounded. But if cp = @,j>o^/^^"^ is a finite-particle vector it follows from

(/)!)'; C I,;-' that

(iA,a(/)rp) = ^(^(''-",a(/)<pW) = ;^ (a* (/),A<"-'), (?<"') .

n>\ n > l

Hence the boundedness in cp implies that

^||'(/),^(")||-<+CX3 .

/z>0

But äs a*(f) is closed, this implies that i// = 0>o^^"'' ^ ^('^*(/)) and

(a*(/)iA)(")^a*(/)^A("-^) .

Thus

*(/)=(/)* , (/)-*(/)* .

The proof we have given of the von Neumann uniqueness theorem is only
one of several existing proofs. One can for example give another proof by
employing the argument used to show the uniqueness of the CCRs in Theo
rem 5.2.8, but regarding f) äs the locally compact abelian group U~" in its
usual topology rather than the discrete one, where n is the complex dimension
of {).

Corollary 5.2.15 identifies the regulär states on the CCR algebra ^(1^) over

a general pre-Hilbert space l) with the states which are locally normal with

respect to the quasi-local structure defined by the finite-dimensional complex
subspaces of l). Thus, äs far äs regulär states are concerned, one could define
the CCR algebra äs a closure of a union of algebras of the form ^(5+(^^)),
where g_^ (M) is the Symmetrie Fock space over the finite-dimensional subspace
M and ^(g_^(M)) is the weak closure of ^(M) in the Fock representation.
This latter definition of the CCR algebra gives a larger algebra without the
deficiencies mentioned in the introduction to this subsection, i.e., it contains all
bounded Borel functions of the fields O(/).
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Although the Fock representation is the unique irreducible regulär re-

presentation of ^(C'), up to equivalence, it often appears in a seemingly dif-

ferent form, e.g., it occurs äs the Schrödinger representation in quantum
mechanics. The physical interpretation of this latter reformulation is rather

different and it is of some interest to cast the representation in this form

because it also immediately allows the construction of a nonregular irreducible

representation.

EXAMPLE 5.2.16 (The Schrödinger representation). Let {ffj = 1,2, ...,} be

an orthonormal basis of the finite-dimensional Hubert space I) and introduce 2n

one-parameter groups Uj and Vj by

Uj(sj) = W(sjfj) , FXO) = W(itjfj] ,

where the W are Weyl operators. These groups can be represented on L- (U") by

((/X.,)W(^i,-.-,^.)-^''^-^^>(^h...,^.) ,

(^j(tj}^)(x\^"-^Xn} = ll/(X],...,Xj-tj,...,Xn) .

Now if / e l) has the decomposition

/^^(., + /0-)/y ,

7=1

one obtains a representation of the Weyl algebra with

lV(f}=l[e'^''^''-Uj(sj)Vj(tj) .

y=i

In particular

('^(.fj)i'}(x\,.--,x) =Xj\l/(x\,...,x) ,

((D(;/;)iA)(^l , . . . ,xn) = -i^^(xi,. . . ,x)
dXj

and

.(/,) = 2-"=(,, + |-), .,/,)^2-(.,-A).
Now the Fock vacuum, i.e., the vector H := (1,0,0, . . .), is determined by the

equation

(/)Q - 0
,

and hence its representative Q(xi, . . . ,jc) in the Schrödinger representation is the

unique (up to a phase factor) solution of

xj + ^)fi(x^,...,x)=0 .

ö^jj

Thus

Q(.Ti,X2, . . . ,X,0 - 7l-"/2g^p^_^.^2 _^ .^2 _^ . . . +;c,^)/2) ,

and the representatives of the multiparticle states are given by
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* (/;, )' (f,.. )ß = 2-"'/^ n (-^A - 4;) "^'" ' ' '"" ^

This Identification determines the equivalence of the Fock and Schrödinger re-

presentation.
Physically one can interpret L- (R") äs the space of states of one-particle moving

in n dimensions. The ^(/y) correspond to the position operators, or observables, and
the ^(ifj] correspond to the coordinates of momentum. The Fock number operator
is given by the differential operator

^-EMV^+^-i)/2
./-l

and in the Schrödinger picture this is interpreted äs the Hamiltonian of a harmonic
oscillator. Thus from this point of vievv Q is the ground state, the state of lowest
energy, of the oscillator and the creation and annihilation operators create and
annihilate quanta of energy.

EXAMPLE 5.2. 17. Let A(^'] be the almost periodic functions over R" and let M
denote the unique invariant mean over y4([R") (see Section 4.3.4). The mean M defines
a scalar product on ^(R") by

(f,cj]=M(fg]
and the completion of^(IR") with respect to the associated norm is a Hubert space .
If I) is n dimensional, one can define a representation of the associated Weyl algebra
on ^(R") by exactly the same construction given in Example 5.2.16. Extension by
continuity then gives a representation on . This representation is not, however,
regulär. For example, if / ^ 0 and O(.TI , . . . .x,,] l, then

if ?:-0
(.^('/)) =

.o, if./o

Note that the Hubert space is nonseparable, {exp{/ ^"^ | V"^;}; ^i ^ ^} forms an

orthonornial basis of the space. A similar nonregular representation of the CCRs is
given by Rf, in the proof of Theorem 5.2.8.

We complete this discussion of normal states with a few comments on a

special subclass, the finite-density states. Theorem 5.2.14 establishes that co is
normal if, and only if, D(naj) contains a cyclic vector. Biit there is a preferred
cyclic vector Q.o associated with oj and we call co a finite-density state if
ü(o G D(n,o}- Thus co has finite density if, and only if, co is normal with respect
to the Fock representation and O^^ ^ D(NcJ~}- If P is the density matrix on

Fock space which determines co, then the latter property is eqiiivalent to the
positive selfadjoint operator N^^~pN^^~ having a finite trace. Note also that one

can define a positive functional, the number functional, co G E^y^ K^
A^(co) G [0, oo] by

N(co} = sup Y. o,(a\f,]a(f,))
^ {/.}CF

if ^l is the CAR algebra and
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Ä^(co)=sup ^ {t-^-o4(W(tfi)-^r(W(tf,}-^))
''^ (fi}CF

+r^-co((W(itfi} - 1)*(ff(/^/,-) - 1)) - l}/2
for the Weyl algebra, and then co has finite density if, and only if, N(o}) < +oc.

In both formulae the suprema are over finite orthonormal subsets {//} of l)
and the assertion for the CCR algebra uses Observation l of the proof of

Theorem 5.2.14.

Note also that in the CCR case it follows from the proof of Theorem 5.2.14

that N(a)} < +00 implies that Q,o ^ ^(^oX/)) for all / and

7V(a;)-sup ^^ \\a,,(fi)Ü^\\~
^ {/J^F

in analogy with the CAR case. Moreover, if A^(co) < +00, then its value can be

interpreted äs the extension of co to the number operator and one has the

identifications

7V(a;) = |Ky2^|P=Trg(7V'/VAfi/2) .

It is of some interest to remark that A^ is affine, because the suprema are net

limits, and lower semi-continuous in the weak* topology, because A^ is the

upper envelope of a family of weak*-continuous functionals. In particular A^

respects barycentric decompositions, by Corollary 4.1.18 applied to A^, and

the subsets of states with density below a fixed bound, i.e., the sets

{(JO',N(CD) < A}, are weak*-closed by lower semicontinuity.
Next we examine more detailed properties of states with respect to the

annihilation and creation operators and, in particular, the determination of a

State by its values on these operators. Discussion of states over the CAR

algebra is simpler because the algebra contains the annihilation and creation

operators (/), ß*(ör); f,g^^ and it follows easily that each co is determined by
the set of values a)(a^(fi}-"a^(fn)a(fn+i)"'a(fn+ni}}^n,m>0,fiel). A

similar result is also true for a subset of regulär states over the Weyl algebra.
If co is a regulär state over the Weyl algebra ^(f)), then the infinitesimal

generators ^co(f} of the Weyl groups ^ G IR i-^ T^o^(^(tf]] are defined for all

/El) and one can introduce the annihilation and creation operators a^^(f] and

fl*^(/). But, äs we have mentioned above, the cyclic vector Q^Ü is not necessarily
in the domain of these operators. Thus it is generally impossible to define

analogues of the co(fl*(/i)a(/2)), etc. For this reason it is natural to introduce

more stringent notions of regularity of states and their associated cychc vectors.

A State oj over ^(t)) is defined to be in the class C" if t^o}(W(tf)) is m

times differentiable for all / G l). Similarly, \l/ G C" if no)(W(tf))il/ is m times

strongly diiferentiable for all / G l). This latter condition is equivalent to

lA G D(^fo(fr} for all /, and it is not difficult to see that co G C''" if, and only
if, QOJ> ^ C"^- In particular the value of C^ states can be defined on all poly-
nomials of the Oco(/), and we use the natural notation

CO(^co(fl} ' ^co(fn}) = (a., ^o.(/l) ^.o(/.)^o.) ,
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co(^a),,(/i)-.-a)^(/)) = (Qco,7r,(v4)a),,(/i)...(D^(/,Oao) ,

etc. Finally a C state co is called analytic (entire analytic) whenever the
functions ^ G [R ^ co(W(tf}} are analytic in an open neighborhood of the origin
(are entire analytic), for all /El). There are two interesting properties of
analytic states.

First, a state co is analytic if, and only if, Q^o is an analytic vector for all
^(jo(f)- For example, if Q^o is analytic for ^co(f}, then t\-^naj(W(tf))Q.fo is
strongly analytic and hence t\-^cü(W(tf}) is analytic. Conversely, if co is ana

lytic, then Q.aj is a C vector and

(^(f/))-y^(ß,'(/)'Uo) .

l > 0

Therefore

,eR^^(_i)^||$4/)"Qf
>o (2)

is analytic and äs (2)! > 2^^"~^'>(n - 1)!^ one has

Ef7;;^ll*(/)""lO'< + ~
>ov(-l)'

for all 1^1 < ^ and for some /o > 0. Equivalently

En-ll^(/)"^ll<+~
> 0

^

for ^ < ^, i.e., QCÜ is analytic for <I)c^(/).
Second, if co is analytic, then each of the functions t G U^^(ß(W(tf)) is

actually analytic in an open strip around the real axis. This is because the W are

unitary and hence one has estimates of the form

l(Q,7ü,,(i^(^/))0^(/)2^^ao)i < i(Q.<i>(/)'^'o.o)i ,

\(Ü^,n,,(W(tf)]^,,(ff'-^^^)\ < |(Q,,a),,(/)2'^Q,)p/'|(Q,,(D,,(/)^"-2Q,,)p/^ .

This second remark has an important consequence.
Each state oj over the Weyl algebra is determined by its values on the set of

Weyl operators {^(/);/Gl)}. But if co is analytic, then o}(W(f}) is de
termined by the derivatives of the function t\-^o}(W(tf)) at the origin. Thus
each analytic state is determined by the set of matrix elements, or expectation
values, {cD(^a}(fT)]f^^,n> l}, Alternatively co is determined by the set

{co(ß^(/)''floj(/)'")}. Hence properties of the analytic states can, in principle,
be completely reconstructed from knowledge of either of these sets.

The conclusion of these observations is that analytic states co over the Weyl
algebra are determined by the set of multilinear functionals
{co(a^(/i) <(/,Oßa;(/;7+i) ' ' ' a^(fn+n:}); n, m > O,// G I)}. In this sense

analytic states are analogous to states over the CAR algebra. Both are de-
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termined by a family of functionals which are expressed in terms of operators
with a clear physical Interpretation.

It is often useful to consider other classes of multilinear functionals, the

truncated functionals, whose values are directly related to correlations between

physical events. These functionals are determined by recursion relations which

are different for the CARs and CCRs and are combinatorically somewhat easier

for the latter. Thus we first describe the definitions corresponding to the CCRs.

Let 3 denote an arbitrary index set and F a function from the nonempty
finite subsets of 3 to the complex numbers. We associate with F the truncated

function FT by the recursion relations

^(^) = E n ^T(J] ,

^/ J&^I

where the sum is over all partitions ^/ of the finite set / into ordered subsets.

Explicitly ^/ {Ji , J2, ..,/} where //n J/ = 0 if / ^ 7, the union of the J/ is /,
and the elements of each // retain the order of /. For example, one has

F(a) - Fr(a) , F(a, ß] = Fr(a, ß] + FHa)Fr(jS) , etc.,

and these equations have the Solutions

Fr(a) = F(a) , Fr(a, ß) = F(a, ß) - F(a}F(ß) , etc.,

It is often useful to remark that

F(I) = ^ FT(J}F(I\J)
aeJC/

for any / 3 a, where we take F(0) = l
.
This follows directly from the recursion

relations by noting that the coefficient of an arbitrary term FT(J) in these

relations is given by

^ n f^T(K}=F(i\j) .

^/V ^^^i\J

These algorithms can now be used to associate truncated functionals with an

analytic state co over the Weyl algebra on 1^. Let 3 consist of elements of 1) and
then the values co(Oa)(/i) ^ü)(fn}) of 0; on monomials of the ^w(/) define a

complex function over the ordered finite subsets of 5. The above procedure
defines a truncation COT which satisfies

COT(^M}) - co((D,(/)) ,

a;r(0,(/i),Oa;(/2)) = a;(0,X/i)^a.(/2))-co(0,(/i))^(Oe.(/2)) ,
etc.

By linear combination, or reapplication of the same procedure, one also ob-

tains truncations of the functions a;(a^(/i) a'^(fn)<^co(g\) ' -(ö^w))- ^^ i^

evident that the truncated functionals inherit all the linearity and antilinearity
properties of the nontruncated functionals and, moreover, that the state co is

determined by the truncated functionals.

The truncated functional 007(0^ (/),flaj(ö^)) represents the correlation be

tween the operations of annihilation of a particle with wavefunction g and the
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creation of a particle with wave function /. The higher truncations represent
multiple correlations. In Section 5.2.5 we demonstrate that the equilibrium
States of a System of noninteracting bosons have the simple property that the
higher-order correlations vanish identically and this property can be used to
characterize a special class of states, the quasi-free states. Explicitly an analytie
State co is called quasi-free if

o;r(^.o(/i),...,a),,(/,))=0
for all n > 2 and all /i , . . . , fn G f). Thus a quasi-free state is determined by
two functionals cor(^to(/)) and coT(^(o(fi},^ü}(f2))- Of course these func-
tionals must satisfy certain positivity properties. In particular the conditions

\\{^co(fi) + i^co(f2} - a;($,,(/i) + /o,,(/2))naof > 0

can be reexpressed äs

cor(a),,(/i),(D,,(/i)) + cor(0co(/2),a>.o(/2))-Im(/i,/2)>0 .

Therefore, these conditions are necessary for the truncated functionals to
determine a state. What is less obvious is that this set of conditions, for all
/i,/2 G t), is also sufficient for the COT to determine a quasi-free state co,

The sufficiency can be proved by explicit construction of the representation
(co)^fo,^co) (see Notes and Remarks). In particular every analytie state
0) determines a quasi-free state which is obtained by setting COT(^OJ (fi)^
..,<^c.(/.))=0forall>2.

EXAMPLE 5.2.18. Let co be a state on the CCR algebra over the pre-Hilbert
space l) and assume that co is invariant under the group of gauge transformations
9 G [0, 27r) -^ ^Q(W(f)) = W(e^^^f). If co is analytie, then this invariance can be ex-

pressed by

<^(/l) <(///)ßc.(ö'l) aco(g,n)) = 0

if n ^ m. Hence a gauge-invariant quasi-free state is determined by a single sesqui-
linear form coT(a*(f],a(g)) and the positivity conditions reduce to the simple con

ditions

^r(*(/),ö(/))>0 .

Conversely assume that one has a positive sesquilinear form t over t) and for
simplicity assume that it is given by a positive selfadjoint operator T on the com-

pletion 5, of l), i.e.,

t(gJ] = (T^''-g. r^/V)
for all f,g ^l). Let ,^ = 5^_(^) 0 5+1) and Q,^ -QoQ, where Q= (1,0,0,...) is
the Fock vacuum. If J is an anti-linear involution satisfying (Jf^Jg) = (^,/), then
the operators

a,,(/) - fl(vTTr/) ^ H + l 0 a%J^/Tf) ,

a*^(g) = ß*(Vl + Tg) (g) D + t O a(jVfg)
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satisfy the CCRs on ,^. (The a and a* denote the Fock annihilation and creation

operators.) It follows easily that the state (j^(A) = (Qo^,^^) is a gauge-invariant
quasi-free state and one has

(:(/)<(<?)) = (J^f, J^iTg) = (VTg, vT/) = t(g,f) .

On the CCR algebra itself this state is given by

co(^(/))^exp{-a;((^J/)^)/2}
-exp{-||/||V4}exp{-/(/,/)/2} .

The truncated functionals can be used to reexpress mixing properties of a

state, with respect to groups of Bogoliubov transformations, in a particularly
simple manner. This reformulation explicitly connects mixing properties and

the lack of correlation between physical events. It is illustrated by the following
example.

EXAMPLE 5.2.19. Let ^ denote the CCR algebra over L-([R'), or the quasi-local
C*-subalgebra of 51 defined in Example 5.2.11. The group U^' of space translations

acts äs *-automorphisms T of ^ via Bogoliubov transformations, e.g.,

T,(^(/)) = W(U,f) , (U,f)(y) = f(y - X) .

Note that the CCRs give

IIKv('(/)), W(g)]\\ = |2sin(Im(C/,/,0)/2)|
<m.f,9)\

and hence

lim \\[r.(W(f)),W(g)]\\=0 .

|.X'|OO

It follows that ^ is asymptotically abelian for space translations in the norm sense,

i.e.,

lim ||[T,(^),5]||=0
|.v|-^oo

for all A, B G ^. Thus if co is any state over ^, the strong mixing property

lim |co(^T,(5)) - a}(A)co('c^(B))\ = 0
|xHoo

for all yi,5 E ^, is equivalent to the three-body düster property

lim |co(^T,(5)C) - o}(AC)o}(i^(B))\ = 0
l.vHoo

for all ^,5, C G ^. If, however, co is R^' -invariant and analytic the following are

equivalent:
(1) co is strongly mixing for space translations,

(2) lim|,|_,o ^r(^co(/i ), . . . , ^co(fn). Tv(a),,(gi )),..., T.(^c.(6'.0)) - 0

for all , m > l and all /i ,.../, gf, ,..., ^, e L^(!R^'), where T,(O,,(/)) - O(^x- /).

PROOF. (1) ^ (2). For g eL^(U'') and all x G U'' the vector-valued functions
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te'a^n(w(tu,f))Q.^
have an analytic extension to a strip aroimd the real axis whose width is independent
of X. This follows from the IR^'-invariance and analyticity of co. It then follows by
power-series expansion and the density of the Weyl operators that condition (1) is
eqiiivalent to

(!') lim|,|_^ (<D4/)"T,(<l),(ff))"') = w((D(/)'>(<l.(c,)"')
for all /,ö( e L-Cff] and all ,m > 1. But (T) is äquivalent to

(2') lim|,|_^ ft;r^(<&,,(/), (D(/)^, T,((D(g)),. T,('DXg))j = 0

/z-factors /-factors

for all /, ^ G Z-(ff^^') and all 72, m > 1. This is obvious ^oi n = m = l but the general
case follows by inductive reasoning from the formula

F(/)= ^ FT(J]F(I\J]
ae J c /

connecting a function and its truncations. Finally (2) and (2^ are eqiiivalent by
linearity and anti-linearity.

Note that the above properties all stem from the fact that (L^x-/, 0^) -^ 0 äs \x -^ oo

and hence they generalize easily to other Bogoliubov transformations. Moreover the
various results are valid if the pointwise limits are replaced by mean values.

The notion of truncated function can be extended to the CAR algebra ^
over I) but with two differences. First, there is a simplification because the a(f)
and a* (g) are elements of the algebra and thus there is no inherent restriction
on the States. The second difference is a slight complication of the combina-
torics of the truncation process which is necessary for consistency with the anti-
commutation relations. This modiücation is only possible for even states, i.e.,
States which are invariant under the unique *-automorphism a of ^ for which
(j(a(f)] = ß(/),/ G I). The appropriate definitions are äs follows.

Lei 3 once again denote an index set and F a function from the nonempty
ordered even subsets of 5 to the complex numbers. The truncation FT of F is
now defined recursively by

F(/)=^8(^;)J]Fr(J) ,

.^/ JG.^/

where the sum is over all partitions ^i of / into ordered even subsets,
^i = {J\," ,Jn} and &(^i) is +1 or -l according to whether the permutation
/ K^ (Ji , 72, -,/) is even or odd. Note that äs the // are even their interchange
does not affect the even or odd character of the permutation. The simplest
examples are

F(a,ß)=FT(,ß) ,

F(a, ß, y, S) = Fr(a, ß, 7, .5) + Fr(a, ß)FT(j, S)
- Fr(a, y'JFriß, <5) + Fr(a, d]Fr(ß, y)
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and by Inversion one obtains FT in terms of F, Again one has a simple in-

ductive relation connecting the F and Fj,

F(I)^ ^ (J,/V)Fr(J)F(/V)
ae/C/

for any /3a where F(0) = l and 8(J,/\J) = 1 according to whether

I\-^ (JJ\J) is an even or odd permutation of /.

If co is an even state over the CAR algebra, then the above process can be

used to define a truncation COT äs a function over the monomials in the a*(f}
and a(g). For example, one has

CDT(a^(f),a^(g})^CD(a'-(f)a^(g)} ,

coT(a^f}.a(g)} = co(a^(f}a(g}) ,

a;r(a*(/i),*(/2),(^i),^(^2)) - co(*(/iK(/2)a(^i)a(^2))
-co(a*(/i)a*(/2))co(a(^i)a(^2))
+ co(a*(/i)fl(öri))co(a*(/2)fl(ö^2))
-CD(a^(fi)a(g2])cD(a%f2)a(g,)) ,

etc.

An even state co over ^ is called qiiasi-free if, and only if,

a;r(^(/i),a^(/2),...,a^(/.))-^0
for /7 > 2 and all /i , . . . , /,j E I) where a^ is used to represent either a" or a.

Thus a quasi-free state is determined by two functionals coT(ci''(f).a(g)) and

cor(ß*(/),fl*(öf)) and conditions can be given on any two functionals with the

correct linearity and anti-linearity conditions to ensure that they determine a

quasi-free state co. Necessary and sufficient conditions are

cor(a(f),a*(f}} + cor(a*(g),a(g)) + (Or(a(f),a(g}} + ojr (a* (ö), *{/)) > 0

which correspond to the conditions

||7r,,(a*(/)+a(^))Q,,||->0 .

EXAMPLE 5.2.20. A state co over the CAR algebra on the Hubert space l) is

gauge-invariant if it is invariant under the group of Bogoliubov transformations

Tö(fl(/)) = fl(e'^/),ö e [0,271} ,
the so-called gauge transformations. A gauge-in

variant quasi-free state is determined by one truncated function and the positivity
conditions reduce to the conditions

11/11' >a;r(fl*(/),a(/))>0 .

The functional COT automatically determines a selfadjoint operator T such that

l > r > 0 and

coT(a^(f).a(g)) = (g^Tf) .

If cü is the state determined by co^, then the corresponding representation is given by
0. = ?y_(WoS-(W,^w --Ü0Ü, where Q = (1,0,0,...) is the Fock vacuum, and
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a,X/) - a((^ - r)^/-/) 1 + ö a^(JT^'"^f] ,

dl(cj] = a*{(l - ry^'g} 01+0 a(JT^^~g} .

In these last equations a and a* denote the Fock space representatives of the CARs, J
is an anti-linear involution satisfying (Jf.Jg) = (g,f\ and Q is an operator which
anti-commutes with the a and a* and satisfies 0Q = Q.

The tmncated functionals are directly related to correlations in much the
same way äs for the CCRs. The following example is the analogue of Example
5.2.19.

EXAMPLE 5.2.21. Let ^21 be the CAR algebra over L-(R'). The group R^' of space
translations acts äs a strongly continuous group of ^-automorphism r of ^l whose
action is such that

T,(a(/)) = a(UJ] , (UJ](y] = f(y - x] .

The CARs preclude that Ul is an asymptotically abelian with respect to space
translations but if co is IR"-invariant, then the pair (^, w) is [R''-abelian and co is
automatically even. The proof of these Statements is essentially contained in the
proof of Theorem 2.6.5. It proceeds äs follows. Let E^,) denote the projection on the
subspace of t/o;([R^) -invariant vectors in ^,j and let ^l_ and Ul+ denote the odd and
even elements of ^(. It follows from the CARs and a monomial approximation that

lim ||[T,(/(),5]||=0
Lr >co

if either ^ or 5 is even. Thus

[E,,7i,,(A]E,ß,,n,,(B]E,] = M,(E,,n,,([i:,(A),B])E,,)
= 0

by the mean ergodic theorem where M denotes an invariant niean over R''. If,
however, A is odd, then a similar argument gives

lim ||{T,(^),^*}||^O
|.r|>cxC'

and hence

{En,(A)EE,n,_(A")E}=G .

Since both terms in the anti-commutator are positive, one concludes that
E,,Ti,,(A)E, = 0. Thus co is even and (Ul,co) is [R'-abelian.

In fact the [R^'-abelianness coupled with the CARs impHes that

M(co(Ai[T:(Bi),B2]A2)) =0
for all [R^'-invariant states co and all Ai.Bj e *il. This follows by first considering even

B l and then

M(üj(Aii:(Bi)B2A2)) = (Q,,, 7r,,(^i) 'o.7c,X^ 1^2/^2)a.)
= M(co(AiB2i(Bi)A2)}

by the above asymptotic commutation for even elements and [R''-abelianness. But if
BI is odd and A~,A^ denote the odd and even parts of /!/, then
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M(co(^ 1 1(^1)52^2)) - (^o,,n^(Bi)E,,n,,((A+ -^7)52^42)0))
-0

by the asymptotic commutation and anti-commutation, and E(^7i(o(Bi}Ej 0. Si-

milarly for the second term of the commutator.

Finally, one concludes that the following conditions are equivalent.
(1) \imi^,\^^o)(Ai^(B)} = o}(A)co(B) for all A,B e^.

(2) lim|,.|^oo cD(Ai,(B)C) = a}(AC}a}(B) for all A, B, C G ^.

(3) lim,,,^^ cor(5(/i), . . . ,5(/.), Tv(5(^i)), - - , T,(5(^,))) = 0

for all /,,... /,^,,...,^,,where5(/) -((/)+ a* (/))/2 .

Clearly (2) =^ (1), but the converse follows by noting that if B = B~ -i- B^ and

C = C~ + C^ are the decompositions of B and C into odd and even parts, then

lim {a)(AT,.(B)C) - co(ACi,,(B'^)} - (D(AC"^i^(B~)] + co(^C~Tv(^~))} - 0
|.Y|cxD

by the asymptotic commutation relations cited above. But then condition (1) gives

lim (D(At^(B]C) = co(AC)o}(B'^) + co(^C+)co(5~) - a}(AC~)co(B~)
|.v|>oo

= o}(AC)cD(B+) = oj(AC}cD(B) ,

where the last steps follow because co is even. The equivalence of (1) and (3) is proved
äs in Example 5.2.19.

Again it should be remarked that the above properties basically follow from the
fact that (Uxf.g) -^ 0 äs x\ -^ oo and hence easily generalize to other groups of

Bogoliubov transformations.

5.2.4. The Ideal Fermi Gas

The foregoing discussion of the CAR algebra, the CCR algebra, their states,
and their representations was motivated by the theory of Systems of point
particles. This algebraic apparatus provides a kinematical description of such

Systems and it remains to specify the dynamics. The simplest thermo-

dynamically interesting models describe noninteracting particles confined to

some bounded open set A of [R\ the so-called ideal gases. Our immediate aim is
to describe the equilibrium formalism for such Systems in the Gibbs grand
canonical ensemble and in this subsection we consider fermions. We begin with
a general discussion of noninteracting Systems and subsequently specialize to

point particles in the configuration space.
Let 5_(l)) be the anti-symmetric Fock space built over the one-particle

Hubert space I). The dynamics of a System with an arbitrary number of fer
mions moving independently is dictated by the Schrödinger equation

in'^-^ = dY(H)^,

on 5_(f)). In this equation // is a selfadjoint Hamiltonian operator on

t), dT(H] denotes the second quantization of // discussed in Section 5.2.1, and
fi is Planck's constant. The lack of interaction between the particles is reflected
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by the direct siim and tensor product stmcture of dY(H], e.g., the w-particle
energy is the sum of the energies of the n individual particles. We will choose
imits such that li l.

The solution of the Schrödinger equation gives the evolution

lA G 5_(W^'Ar = exp{-f/Jr(//)}iA = Y(e-^^^]^^J
and the evolution of any bounded observable, i.e., any bounded operator on

g_(I}), is given by transposition äs

,itH\ AT^{ ^-itH\A e ^(5_(t))) ^ i,(A] = T(e"")Ar(e )

The action on the annihilation, and creation, operators is particularly simple.
One finds

T,(a(/)) - a(e^^^f), T,(a*(/)) = a*(e'^^/) .

Thus, the evolution can be expressed äs a one-parameter group of Bogoliubov
transformations of the CAR algebra ^l(^). This group is strongly continuous
because

||T,(fl(/)) -a(/)i| = \\a(e""f ~ f)\\ = \\e""f - f\\ .

Next let US consider the Gibbs grand canonical equilibrium state of the

particle System at inverse temperature jß e (R and chemical potential /i G [R. If

K^^ denotes the modified Hamiltonian

K^, - dT(H - MÜ) = dY(H] - i^iN ,

then the Gibbs state is defined by

,^, Tr(^-^^^M)
"(^)=ix^^^ '

where^ G '*ll(f)), the trace is over 5_(f)), and it is imphcitly assumed that ^~/^^/'
is of trace-class. Typically the individual particle energy is lower semibounded
and this last restriction requires at least that ß > O.li can be reformulated äs a

condition on the one-particle Hamiltonian.

Proposition 5.2.22. Let H be a selfadjoint operator on the Hubert space I)
and let ^ G [R. The follo\ving conditions are equivalent,

(1) exp{jS//} is trace-class on l).
(2) exp{-/? dY(H - /(D)} is trace-class on 5_(I)) for all ^i G [R.

PROOF. (1) ^ (2). Let {&n}n>(^ denote the eigenvalues of H in increasing (de-
creasing) order if /? > 0 (if jß <Ö) repeated according to multiplicity. If z = e^^^', one
has

Tr. (-'"''")= z"' ^ exp|-/j|^,
0</M<"2<---<"m ^ jO=l
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because of anti-symmetrization and the definition of the second quantization pro-
cess. Thus

0<Tr(^-^^")= ET^^-^^'^""")
/W >0

= J](l+ze-^^-)
W >0

;n
m>Q

< H exp{ze-^^'"} - exp{z Tr(e-^^)}

(2) ^ (1). The operator Qxp{~ßK^} leaves the one-particle subspace f) of 5_(I))
invariant and, moreover,

exp{-)5;^,}|t,-zexp{-^//} .

The variable z which occurs in the foregoing calculation is usually referred
to äs the activity. It often occurs in the sequel.

The Gibbs equilibrium state is particularly easy to calculate with the algo-
rithm

e-ß^^^a^(f]^za^(e-^^f)e-ß^^ .

This algorithm combined with the CARs gives

,,,,.,,,,. liMi:!!^pM
= zca(a(g)a\e-l^"f))
= -zo,(a\e-l^"f)a(g])+z(g,e-l^"f) .

But then one has

<^(a^((\+ze-l<")f]a(g))=z(g,e-f"f)
and hence

o,(a\f)a(g)) = (g.ze-ft"(l +ze-^^)-'/) -

A similar calculation gives

^(n*(//)n(^yO| -^^(n*(//)n
v- 1 7-1 / V' = 2 j=\ )

:=x:(-o^-^-(^.,--^%)cofn^*(/.on(^^^^^
p=\ \i = 2 j=l )

J+P

- zo; L*(e-^%) n *(/.o n a(^,-)y
v i = 1 7=1 /

Therefore, by linearity and the replacement of /i by (H +ze~^^)~Vi one finds



48 States in Quantum Statistical Mechanics

^ n^*(/')n^(^vo =E(-ir''^(^*(/iM^p))^^ n *(/') n^(^v).
V/=l 7=1 / P=\ \i = 2 7=1 /

J^P

Iteration of this identity expresses the value of co on the product of the *(//)
and a(gi) äs the sum of products of two-point fimctions co(a*(fi)a(gj)). Note
that if the number of ß*(//) and a(gj) differ, then the corresponding value is

zero because Qxp{-ßK^^} leaves each of the subspaces {)'" invariant, i.e., co is

gauge-invariant (see Example 5.2.20). Thus, the Gibbs state is a quasi-free state

over ^(f)).
Note that the above calculation is a direct application of the KMS condi-

tion, discussed in Chapter l and the introduction to this chapter, to the evo-

lution determined by the generalized Hamiltonian K^^, i.e., the group of

Bogoliubov transformations such that

f,(fl(/)) = e'"^"a(/)e-''^" = e'"^^a(e""f) .

In particular we used the algorithm

o;(a*(/M) = co(^f,(a*(/)))U,^ .

The result of these calculations is summarized in the following.

Proposition 5.2.23. Let H be a selfadjoint operator on the Hubert space l)
and assume that exp{/?//} is trace-class. Let

Tr(g-/^^M)
o,(A)^

Tr(e-/^^/')
denote the Gibbs grand canonical eqiiilibrium state over the CAR algebra ^(I))
and

A G 51(1)) h->f,(^) = e^'^^M^-''^^^' G ^(l))
the evohition corresponding to the generalized Hamiltonian Ki^^ dY(H] i^iN ,

where I.L ^ U.

It folloivs that cü is the iiniqiie i-KMS state, at the value ß, and that this
state is the gauge-invariant quasi-free state with t\vo-point function

co(a^(f}a(g)) = (g,ze-l^"(i + ze"/''' )
' ' /) ,

where z = e^^^^
.

This proposition identifies the Gibbs equilibrium states and the f-KMS

States with one small discrepancy. The Gibbs states are only defined if

exp{-jS//} is of trace-class or, equivalently, if expj-jßÄ^^J is of trace-class.
These properties are unimportant, however, for the definition of the evolution
f which exists whenever H is selfadjoint. Moreover, the notion of the KMS
state can be directly defined in terms of f (this will be extensively discussed in
Section 5.3) and the same combinatoric calculation given before the proposi-
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tion establishes that the quasi-free state given in Proposition 5.2.23 is the

unique f-KMS state. Thus, the KMS states can exist when the Gibbs states are

not defined. Nevertheless, one can establish that all the f-KMS states can be
obtained äs weak*-limits of Gibbs states for dynamics f^'^^ which approximate f
in the sense that ||ff'\yl) - f^(^)|| -^ 0 äs 77 -^ oo for all A e ^(^). This result is
established by constructing // on ^ such that (1) Qxp{-ßHfj} is of trace-class,
and (2) exp{/^//} converges strongly to exp{/W}. The groups T^"^ are then
defined by replacing H by H^ and the convergence of the corresponding Gibbs
states follows from Lemma 5.2.25.
Now we examine the thermodynamic limit of Gibbs or, more generally,

KMS states, of noninteracting Fermi Systems. For the discussion we specialize
to point particles in the configuration space U\ Thus we choose / eL~(A)
where A is a bounded open subset of U^' and specify the one-particle Ha-
miltonian äs a selfadjoint extension of the Laplacian V". This latter operator
will always be understood äs defined on the infinitely often differentiable
functions C^(A) with support in A. The conventional quantum-mechanical
Hamiltonian for free particles of mass m is fi^V-/2m but we now choose units
such ihai'h^/2m ^ 1.

There are many selfadjoint extensions of -V" on L^(A.), each corresponding
to a choice of boundary conditions, i.e., a specification of the dynamical be-
havior of the particle on arrival at the boundary of the finite System. The
number and nature of the possible extensions is partially governed by the
smoothness properties of the boundary of A. We examine some specific cases

below (see Example 5.2.26). If, however, A is replaced by IR^ then there is no

ambiguity introduced by the boundary and -V^ has a unique selfadjoint ex

tension H whose action is given by

(Hf)(x) = (2nr^^ J d^pf(p)i-e"'-^ ,

where /denotes the Fourier transform of /. The domain of H is the set of

/GL^([R') such that

|j>/|/(;.)P<+oo .

There are two basic quantities of interest in the thermodynamic limit, the

dynamics and the equilibrium states. For these latter one can take either the
Gibbs states or the KMS states. The following theorem describes the former
but can easily be reformulated for the KMS states.

Theorem 5.2.24. For each bounded open set A c U^' let H\ denote a self
adjoint extension, on L^(^], of the Laplacian -V" and let H denote the unique
selfadjoint extension on L-([R^') o/-V^. Let ^A denote the CAR algebra over

I^(A), M the CAR algebra over L^([R''), and r^ and T the groups of'-auto-
morphisms of ^A and ^ such that i:^(a(f)] ^ a(e^^^''^f) and it(a(f)) =
a(e^^^f). n follows that
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(1) lim^'^^\\i^'(A) - if(Ä)\\ = 0, for all A G ^U and all A C [R^ imi-

formlyfor t infinite intervals ö/[R, where A' ^ oo m the sense that A'

eventiially contains any given A C [R^'.

(2) If (DA is the qiiasi-free state given by

(ü^(a'-(f)a(g)) = (g, ze-^-(\ + zß-/'^-^ )
' ' /) ,

then

lim coA'(^) = <j^(Ä)
A'->oo

/or fl// y4 G ^A and all A C IR^', \vhere the limit is in the sense of (l)
and co is the gaiige-invariant qiiasi-free state over ^ \vith two-point
function

co(a*(f)a(g)) = (g, ze'f^ (\ +zg-''^)-'/)
^

- [d^'p^)f(p)ze-l>''\l+ze-'>P'-r'
(27l)"

where f denotes the Foiirier transform off.

PROOF. (1) In Example 3.1.29 we showed that

lim ||(/^'^-e'''^)i/.|| -0 .

A->oo

The desired result then follows from the continuity condition

\\^'^(a(f))-^,(a(f])\\ = \\(e""'^-e""]f\\
and the fact that 2lA is uniformly generated by the a(/).

(2) It follows from Proposition 5.2.23 that co^(a*(f)a(g)) is the matrix element

of a bounded function of //A. Thus the convergence of co^(a*(f)a(g)) to

co(a*(f)a(g)) and hence the weak*-convergence of the quasi-free states COA to the

quasi-free state o} is a consequence of the following lemma.

Lemma 5.2.25. Let U^ and U be strongly continuous iinitary groiips, on the
Hubert space , \vith generators iH^ and iH. Assiime that the net U.^ converges

strongly, i.e.,

lim II ([/,,, -[/,)iA||=0
a )-cxD

for all \jj ^ $), uniformly for t infinite intervals o/ [R.

It follows that

lim II (/(//)- /(//Ml -0
a>oo

for all \jj ^ 9), and for all bounded continuous functions f on [R
.

PROOF. If the Fourier transform / of/ is absolutely integrable, then the estimate
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ii(/(//,) - f(H)m < j dt\m \\(e""' - e""m ,

which follows from spectral analysis, allows one to conclude that

f(H,)^ ^ /(//)iA .

But these / are dense in Co([R) in supremum norm, and hence the convergence
follows for all/e Co([R).

Next let g,n(t) = Qy^p{t-/tn}. One has g,n(H]\l/ > i/^ and, by the foregoing,
g.n(H,)^|J^g,n(H]^.^^M

a = oo

\\gn,(H^)^ - n < \\(gn,(H,] - g,(H)m + \\(!n,(H]^ - n

and hence for > 0 one can choose an 777 and a ß such that

\\g,(H.)^l> - n < /3, \\g,n(H}ilf - n < /3

for all a > /?. But fg, e Co(IR) and hence there is a 7 such that

||/(//.)0,(^a)V - f(H}g,(Hm < ||/|U/3
for all a > y. Therefore,

||/(//a)i/' - f(Hm < \\f(H,]g,(H,)^l>~f(H)g,n(Hm
+||/(//,)|| ||g,(/^a).A - lAII + \\f(H]\\ \\g,(H)^ - n < ||/|U

for all a > ^ V y. Since ij/ and e were arbitrary, /(//a) converges strongly to /(//).

Theorem 5.2.24 demonstrates several points of interest. First, the dynamics
of the infinite idealized Fermi gas are determined by a strongly continuous one-

parameter group of *-automorpliisms of the CAR algebra ^ over L~(W].
Second, the thermodynamic limit of the finite-volume equihbrium states is

uniquely defined and independent of the choice of boundary conditions, i.e.,
there is a unique thermodynamic phase. This latter point is valid for either of
the possible definitions of the finite-volume states, the conventional Gibbs

definition, or the definition äs a KMS state.^ Finally the theorem gives an

explicit identification of the thermodynamic equihbrium state of the Fermi gas
äs a quasi-free state co and this allows a detailed analysis of equilibrium phe-
nomena. Let us examine some of the most relevant features.

First consider the dynamics. The group T with generator -V-, or the related

group with generator -V^ - ^D, is usually referred to äs ih^free evolution, The

Riemann-Lebesgue lemma implies the property

' -V- may have selfadjoint extensions //A on L- (A) which are not lower semibounded when

v > 2. For all classical boundary conditions however, //A is lower semibounded, and the operator
exp {-ßH^} has a finite trace for ^ > 0. (See Example 5.2.26.) Hence the Gibbs definition is

restricted to classical boundary conditions and positive values of the temperature ß~^ .
The KMS

definition is, however, valid for positive or negative temperatures and any boundary condition, and

negative temperature states can be interpreted äs limits of Gibbs states for neighboring dynamics.
This difference between the Gibbs description and the more general KMS condition could be of

significance in more realistic models because certain phenomena of magnetism indicate the possi-
bility of attaining negative temperature states (see Notes and Remarks).
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lim (f,e""g} = lim / d'pf(p)g(p)e"P- = 0
.

\t\rOG |/|^00 J

Hence the properties of IR-abelianness, asymptotic abelianness in mean, etc.,
derived for an DR-invariant state in Example 5.2.20 are applicable. In particular,

M(cD(Ai[i(Bi),B2]A2))^Q
for any [R-invariant state co, any invariant mean M, and all ^/,5/ G ^l. We will
derive more detailed properties of the free evolution in Example 5.4.9.

Second, consider the equilibrium state oj. This state is invariant imder the

group T of time translations and under the group [R'' of space translations, i.e.,
the group of Bogoliubov transformations induced by the unitary transforma-
tions U; (U^f}(y} = f(y - x) of I-([R'). In fact the state is strongly mixing for
both groiips. This can easily be verified by application of the Riemann-Le-
besgue lemma to the two-point function. The state CD also has finite particle
density per unit volume p(ß,z) for 0 < ß < oo.

Recall that in Section 5.2.3 we associated with each state co over the CAR
algebra a number functional N((jo) which measures the number of partides in
the state. Thus, by restricting co to the local algebras ^A one can define local
number functionals A^A(CO). Then N^(oj)/\/\\, where |A| is the volume, i.e.,
Lebesgue measure, of A, is exactly the number of partides per unit volume in
A. Since the equilibrium state is invariant under space translations, this number
should be independent of A and indeed one easily computes the density äs

p(ß,z] = \^\-^N^(o,]
= |A|-^^co(a*(AM/,))

/;>0

= (27i)'' f d^p ze'I^P\l +ze-I^P-)-^ < +00
,

J

where {fn}n>Q is an orthonormal basis of Z.^(A). Thus it follows from Theorem
5.2.14 that co is locally normal, i.e., normal with respect to the Fock re-

presentation in restriction to each of the local CAR algebras. It is also possible
to evaluate the local energy per unit volume, and hence the energy per unit
particle, but for this it is first convenient to introduce an algorithm for the local
Hamiltonians on Fock space.

Let {/;/},;>o be an orthonormal basis of 1-(A) formed of once-continuously
differentiable functions and define a quadratic form ^A on the Fock space
5_(A) overL2(A) by

t^(l|^] = Y.(^|^^a\Vfn]'a(Vfn)l|J]
n>0

with the domain of ^A consisting of those }// for which the sum is finite. It
follows from Lemma 5.2.13 that ^A is a positive, closed quadratic form and an

explicit calculation shows that P_gi (^02^^ ---^ g^ ^ ^(^A) for all once-con-

tinuosly differentiable gi and all m> l. Thus /A is densely defined. Hence, there
exists a positive selfadjoint operator TA on g_(A) such that
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?AW = (rl/V,7'l^V)
for all il/ G D(t^}. Choosing i/^ to be an infinitely-often differentiable one-par-
ticle vector with support in A, one calculates that

rAW--(^,vV)
and hence TA, in restriction to the one-particle space, is a selfadjoint extension

of -V^ on CQ(A). More generally one deduces by calculation with multi-

particle vectors that TA is a selfadjoint extension of the second quantization
r(-V^) of V". In fact, it follows from the classical theory of quadratic forms

and differential operators that TA corresponds to the second quantization of

the selfadjoint extension of V" which satisfies Neumann boundary condition

(see Example 5.2.26). This extension is very convenient for the calculation of

the local energy per unit volume (j5,z) of the equilibrium state co. One has

(/?,z) = |Ar'^co(a*(y/)-a(y/))
>0

- (271)-' / J> p^ze-f^P\\ +ze-f^P'^''

^(^ß)^^^^~^' ["^^'^ log(l+z^-/^^^) .

\^r / J

(The last equahty follows through integration by parts and expresses the

classical equation of state

P(;ß, Z)=^(^, z)

with the pressure P(ß, z) identified by

P(ß, z} = ß-\2nr J d^'p \og(l^ze-f^P"} .

The temperature dependence of p, e, and P is particularly simple. For example,

p(ß, Z)-A-V(Z), s(ß, z} = ß-^r''j(z) ,

where

/

^-x"\-l/(z)-7C-^'/- [ d'xze-^'^l + ze

J(z) = 7i-^'/' f d'x zx^e-''\l -t- ze

are independent of ß and A = (4nßY^^ corresponds to the thermal wavelength
of the individual particles, i.e., >! is a measure of the "effective" size of the

fermions.

Quantum mechanically the Fourier variable p conjugate to x is interpreted
äs particle momentum and the formulas for p and e indicate that

(27i:)-'ze-^^'(l -f ze-f^P'r^d''p
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should be interpreted äs the momentum distribution per imit volume. In the

high-temperature-low-density region, A^'/^p<^ l, one must have z<^ l and

p(ß, z) ~ (Inr^jd^P e-^"", B(ß, z) = (InY'z j d^'p i-e-^"'' .

Thus the momentum distribution takes the Maxwellian form (2n}~^'ze~f^P~d^'p
and by use of the equation of state one can derive Boyle's law

P(ß, ß] 2s(ß,^)
p(ß, lO vp(ß,ti)

= ß-

In fact, this is the ultimate justification of ß äs the inverse temperature, in
suitable units. The low-temperature-high-density region, }J^^p^l is best illu-
strated by examining the idealization of zero temperature, i.e., by taking the
limit ß ^ 00. One then has

lim ze-f^P\l + ze-^P'r^ = lim ^-^(^'-^'^(1 + ^-^(/''-/O)-!
/j->00

^ ^
ß~^00

^ri, ifp^<^i
l 0, if p'^>^i .

Thus only particles with energy ( momentum^) less than or equal to /.i occur.
This Situation is often described äs the Fermi sea. All states with particle energy
less than /i are occupied and all states with energy greater than /i are empty.
The critical values of /?, the surface /?" = /i, are called the Fermi siirface.

One can also conclude that the weak*- limit of the equilibrium states äs

ß ^ oo exists and is the gauge-invariant quasi-free state COQ with two-point
function given by

(ao(a*(f)a(g)) = (27i)-'' /
^

d^'p g(p)f(p] .

'^ P~ ^ f^i

The zero-temperature states are usually called ground states and can be in-

dependently defined by the requirement of minimal energy per unit volume at

fixed density. The general definition of ground states will be examined in
Section 5.3. Note that the energy g and density p are easily calculated in the
ground state of the Fermi gas and one has ^ p^ ^ ^/^', in contrast to the linear
behavior at low densities and high temperatures.

To complete the thermodynamic description one should also prove that the
local density, energy, pressure, etc., are equal to the thermodynamic limit of
their finite-volume counterparts. These limits are seemingly more sensitive,
however, to the manner in which A -^ oo and the boundary conditions vary. In
the simplest situations one can, of course, calculate explicitly the limit and for
the classical boundary conditions various techniques of convexity, mono-

tonicity, subadditivity, etc., have been developed which apply even to inter-
acting Systems. These methods are mostly based upon the characterization of
selfadjoint extensions of V" by quadratic forms.
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EXAMPLE 5.2.26 (The classical boundary conditions). Let D denote the Laplacian
operator V^ defined on all twice-continuously differentiable functions in L~(A.)
where A is assumed to have a piecewise differentiable boundary ÖA. Green's formula

(D^, <p)-(^,D^) = jdS^-j^^v-^^
demonstrates that a restriction // of Z) to a domain D(H] is Symmetrie if

-dq) dif/
^W^=W^'^

on the boundary öA of A for all (p, i/^ 6 D(H). Here we have used d/dn to denote the

inward normal derivative. The simplest and most basie examples of the boundary
conditions are (1) Dirichlet conditions, \l/ = 0 on d\. and (2) Neumann conditions,
d\jj/dn = 0 on dij/ where a e C^ (dA.} is a real differentiable function over dA (Di
richlet conditions formally correspond to er = +cx)). These conditions determine a

family of selfadjoint extensions H^ of V" which are best described through
quadratic forms.

Let h^ denote the quadratic form defined by D(h^) = C^(A) and

hW = IIY-Ail' .

This form is densely defined, positive, and closable (V is closable on C^(A)). The

closure of /z^, which we also denote by 7?^, determines a selfadjoint extension H^ of

-V2 by

h\i^) = llx/^iAll'

and this operator corresponds to Neumann boundary conditions. The closure h^ of

the restriction of /z^ to CQ (A) determines the Dirichlet extension H^ in the same

manner. Moreover, the quadratic forms h"^ defined by D(h^) = D(h^] and

h^(^^)=h\^) + j dSa\^f

determine the d\jj = a^ extensions. These latter forms are closed because for Z? < l

there is an a > 0 such that

dS a\\lf^^ <ö||^|P + bh\\lj) .

Note that if 0 < 0-1 < 0-2, then

h^ < /z^' < /z^2 < h"^

in the sense of quadratic forms. It follows from the mini-max principle that if {ej;}>i
denotes the eigenvalues of H" arranged in increasing order, repeated according to

multiplicity, then

pO < p^\ < 0^1 < C.OC
<^n ^n ^n ^n

for all 77 > 1.

If A is a parallelepiped, -V" also has a selfadjoint extension //P^'" corresponding
to periodic boundary conditions. This extension is determined by the restriction 7?^^^

of h^ to the periodic functions in D(h^] and hence one also has
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h^ < h^^^ < h^

and the corresponding order for the eigenvalues.
Finally let /z^, {e,7(^)}>i ' ^^^' <ienote the forms and eigenvalues and consider a

Variation in A. If AI C A2 one has h'^_ > kf, and hence

C(Ai) >C(A2)
for all n. This property is often useful. For example, one can compute that

exp{-//^} is trace-class for all parallelepipeds and hence, by monotonicity, it is
trace-class for all A.

We will not consider the limit of the thermodynamic functions in any detail
but Content ourselves by noting that if A/, is a parallelepiped, with edges of

length Li,Z/2, . . . ,1/v, the density with Dirichlet boundary conditions is given by

PA, (A z) = \\,\-^i:,(ze-l^"^^(\ + ze-t^"^..)-'}
= (L,L2---L,r' Y^ ze-^%('^)(l + ze-/^%(^))-' ,

ni ,.--,'^'>l

where the eigenvalues are given by

i\\ V^ f^^'^\ ^

%(^)-2^(-^)
i=\ V^^/

An identical expression is valid for Neumann boundary conditions but the
value HI = 0 is also allowed. But the sum is just a Riemann approximation to
the local density and hence p^^(ß,z) tends to p(ß,z) for Dirichlet or Neumann
conditions. Thus the same conclusion is valid for the d\lj ai// conditions with

any er > 0 by monotonicity. Note that äs

/'
Jn-

dxze-^''\\ + ze~^^'Y^ >ze-^''\\ + ze"^'^')

//2+1 dxze-^^^(\ + ze'^^T^

one can conclude that p^^ < p for the Dirichlet boundary condition and obtain
an upper bound on the difference p p^^. An explicit calculation gives

p(ß,z) - p^^(ß,z) <
^^' ^ ^^

^1/2 :,

l + Z iHi; '

where }^ = (471^) '^ is the thermal wavelength. One also easily obtains the es-

timate

4 < P(ß^^^
l -l- zA-

Combination of these inequalities gives a bound on the error occurring when
one replaces p^^ by its thermodynamic limit,
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0<1 -%^<12^ .

p(ß,z) L

Explicitly one has /i ~ 2 x 10~^ cm for helium at room temperature and hence
ifL = l cm the error is about 2 parts in 10^. At lower temperatures for example
3K, the error would be about 2 in 10^ because l is proportional to the inverse
root of the temperature, but for heavier atoms the accuracy improves. Hence,
the infinite-volume Hmit provides an excellent approximation even for Systems
whose diameter is äs small äs l cm.

5.2.5. The Ideal Böse Gas

We begin the description of the ideal Böse gas with a general discussion which

parallels that of the previous section. Subsequently we specialize to particles
in r.

Let 5+(f)) be the Symmetrie Fock space over the one-particle Hubert space
I). The dynamics of the noninteracting System is again defined in terms of the
second quantization dY(H] of the one-particle Hamiltonian H on 1^.
One has the evolution

'/'65+(W^'A. = r(e-'"^M
for the wave functions and

A 6 ^(g^(!))) ^T,(^) = T(e"")AT(e-""]
for the observables. In particular, the dynamics yield a one-parameter group of

*-automorphisms T of the CCR algebra ^(f)) and

T,(^(/)) = W(e""f)
for the Weyl operators W(f]. In contrast to the Fermi gas this group of

Bogoliubov transformations is not strongly continuous because of Theorem
5.2.8.

The Gibbs grand canonical equilibrium state is defined in terms of the

generalized Hamiltonian K^ = dY(H /iH) = dY(H) ]jN whenever

exp{-^^,}
is trace-class. This latter property places a constraint on the possible values
of jn.

Proposition 5.2.27. Let H be a selfadjoint operator on the Hubert space ^
and let j3,/x G R. The follomng conditions are equivalent.

(1) exp{-jS//} is trace-class on \) and ß(H - yu1l)> 0,
(2) Qy.p{-ßdY(H - A^H)} is trace-class on g+(f)).

PROOF. (1) ^ (2). Let {e} > Q denote the eigenvalues of // in increasing (decreasing)
Order if ^ > 0 (if ^ < 0) repeated according to multiplidty. If z =: e^^ one has
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Tr(e-'''^")<^' E exp|-/?^,
I,rt2,...,,>o '^ p=\

and hence

0<T:r(e-f^^^^) = Y,i:^^^(e~ß^>^)
m>0

<n(i --^^-"-r'
m>0

= [](!+ ze-l''^"(\ - ze-"'^)'')
w>0

<exp|^ze-^^"'(l - ze~ß'-r']
^ ni>Q J

<exp{z(l - ze-^'")"^Tr{e-^^)} ,

where the second relation uses the assumption ^(E^^ /^i) > 0
.

(2) ^ (1). The restriction of ÄT^^ to the one-particle space is // - /il and hence

Qxp{ß(H /.it)} must be of trace-class. But then it follows from the above
Identification of the trace of Qxp{-ßK^i} that jö(, - /.i) > 0 for all m, i.e.,
ß(H - /iH) >0.

Let US now assume that exp{jß^^J is of trace-class and then calculate the
Gibbs equilibrium state

,^, Tr(e-^^>'A)
"(^) = ^;:M^-

This is most easily accomplished by extending co to the annihilation and
creation operators. For this we first note that if i/^ G f)'^, one has

\\a(fi)a(f2)---a(fm<m"/^-m\\f,\\---\\f\\ .

Moreover Qxp{-ßK/_i}l)''_^ C 1^'^ and hence

Tr,f.(e-l^^"/^-a*(f) a*(/i)a(/i) a(f)e-ß^"f^-)

<m"Trt,-(e-/'^")ll/iil'---||/f

= (^^^"T^,l(e-^^'-}\\hf---\\f,.\\'' .

A simple extension of the estimates iised in the proof of Proposition 5.2.27
establishes that the operators

^^-a(/i)...a(/,)e-^^''/-
have a bounded closure Äj- and both Ä'j-Äf and ÄfÄ'^ are of trace-class. Thus
one can extend co to monomials or polynomials in the a(f) and a* (g}. More

over, this extension is continuous in the sense that
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n m

|co(a*(/0 . . . a^(fn)a(gi) - a(g,)}\ < CjJ ll/dl H H^^'H
/=! 7=1

for a suitable constant C. Now one can use the algorithm

e-ß^>-/2a*(f) = a*(e-<^^"->^^^l^f)e-l^^'''^
to calculate oj in a manner similar to that used to evaluate the Fermi equili-
brium state prior to Proposition 5.2.23. In particular,

(ü(a*(f]a(g))^^r(a*(e-l^^"->^^^l^f)e-l^^^a(e-f("-^^^l'-g))/1r(e-l^^"]
= a;(a(e-^('^-''^V2^)*(g-/((//-/'i)/2^))
= (o(a (e-/J(//-^1)/2 f. l -ß(H-f)^^^-ß(H-,mg))
+ (g,e-ß("-^^'>f} ,

where the last step uses the CCRs. Iteration of this identity gives

co(a*(f}a(g)) = <o(a\e-"l^("->^^^l^-f]a(e-"^("-^^^l^g)]

+ ^(0,e-'^-"^)/V) .

m=l

But ß(H - ;u1l) > 0 and hence

lim ||e-"/'(^-/'i)/2/|| = 0
.

/2->00

Moreover, f^g\-^a}(a*(f)a(g)) is continuous by the previous observations.

Therefore, in the limit that n -^ oo the above identity gives

(o(a*(f)a(g)) = (g, ze-l>"(^ -ze-^")-'/}
Repetition of this method establishes that the value of CD on monomials of the a

and fl* are determined by sums of products of the above two-point function.
Thus co is a gauge-invariant quasi-free state over the CCR algebra ^(I)). The
value of co on the Weyl operators W(f) is then easily calculated. The quasi-free
structure gives

and one has

cü(ff(/)) = exp{-ü;((l)(/)2)/2}

cD(^^(ff) = w(fl(/)*(/) +a*(/)a(/))/2
= (f,(^+ze-^")(^-ze-^"r'f}ß

The foregoing calculation of co was based once again on the combinatoric
relation provided by the KMS condition but expressed on the unbounded

operators a(f) and fl*(ö^). It can be verified from the value of co(PF(/)) that the
state CD also satisfies the KMS condition on the CCR algebra but care has to be
taken in phrasing the necessary continuity and analyticity properties because
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the evolution is not strongly continuous. We postpone the detailed discussion
of this point to Section 5.3.

The following proposition summarizes the above resiilts.

Proposition 5.2.28. Lei H be a selfadjoint operator on the Hubert space
f) and let ß, ^ G R. Assiime that Qxp{-ßH} is of trace-dass, ß(H - j.ä) > 0,
and let

Tr(e-^"(-^) -
Tr(e-/^^,.)

denote the Gibbs grand canoniccd equilibriiim state over the CCR algebra
^^(I)), \vhere K^, - dY(H - /iH).

It follows that CD is the gauge-invariant qiiasi-free state with two-point
fiinction

(^(a'(f)a(g)) = (g, ze'^^ (\ -ze'/^^)-'/)
077^ therefore

co(W(f)) = exp{-(/, (l +ze-ß^(^ - ze-^^]'^ f]/^} .

Once again we remark that the quasi-free state occurring in the proposition
exists whenever // > /d , jö > 0, and /:( is not a discrete eigenvalue for H, Ex-

ample 5.2.18 shows that if ze"^^(1l - ze~f^^)~^ is a positive selfadjoint operator,
then the associated sesquilinear form determines a quasi-free state. It is not

necessary that the operator is bounded or that it has discrete spectrum. One
can demonstrate that this wider class of states can be constructed äs weak*
-limits of Gibbs states co corresponding to dynamics T^"^ which approximate
the dynamics T defined by H in the sense that co,^(AI^f"\B)C) -^ o}(Äi:t(B}C) for

all^,5,CG^(!)) and /G R.

The infinitely extended ideal Böse gas is more interesting than the Fermi gas
from the point of view of phase structure because it describes a phase transition
at low temperatures. We first describe the properties of the thermodynamic
limit of the equilibrium states and the dynamics in the single-phase region.
Subsequently, we examine the details of the two-phase region. We adopt the
notation used for point particles in Section 5.2.4.

Proposition 5.2.29. Let H^ denote a selfadjoint extension of the Lapladan
V^ on L~(A} corresponding to a dassical boiindary condition, and let H

denote the uniqiie selfadjoint extension of-V^, on L^(U^'). Further let ^A
denote the CCR algebra over I"(A) and ^ the CCR algebra over the siibspace
l) ofL~(U'') formed by the iinion of the L- (A}. Finally let T^ be the groiip of
-'-aiitomorphisms O/^A and ^, such that i^(W(f)) = W(e^^^^f). Let ß > 0.

Iffollows that :
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(1) If (o/^ is the Gibbs grand canonical state corresponding to (H\,ß,f.i)
and if there is a C > 0 such that //A - yul > CH for all A, then

lim o:>f^(A] CD(A]
A.' > oo

for all .4 G 9lA and all A C U\ The limit is in the sense that ^!
eventually contains any given A C [R^' and CD is the gaiige-invariant
quasi-free state over ^ vvith the t\vo-point function

co(/)a(6r)) = (g,2e-ft"(l -ze'/''^)-'/)
_

l

~W)̂j d^'pg(p]f(p)ze-I^P\\ -ze-^n"'

and hence

co(fF(/)) =exp{-(/,(1 +ze-f^")(^ _ze-/'^)-i/)/4)} .

(2) If(>cü^ ^w, ^oj} is the cyclic representation corresponding to cü, then

n(a(^]"contains a representation ofthe CCR algebra over Z."(1R^') by a

family of unitary Weyl operators {W^^(f]\ f G L"(IR^')} such that

(a) \\(W^o(f] - W,,(g]]W^(h]^,,,\\ < C,\\f-g\\(\\f\\ + ||^||), for
all f, g, h GZ2(r).

(b) W^(f} = ^vlim,_oo n^(W(fn)), iffn G l) and ||/, - /|| -. 0.

(3) There exists a strongly continuous one-parameter group of unitary
operators Uco on ^^^ such that

U^(t]^^ = Q , U^(t)W,,(f}U^(tr' = W,,(e'"'f) .

The Uca implement a a-weakly continuous group of*-automorphisms i

0/71(0(21)" such that x,(A] = t/(/)^f/(r)~' and one has

lim co^,(^Tf'{5)C) =(Q,7r(^)T,(7r(5))7r(C)Q)
A >00

- lim CD(Ai:^(B]C]
A'^ oo

for all A, B, Ce"^.

PROOF. (1) All the operators //A are automatically lower semi-bounded and the
Gibbs state is defined only for ^ > 0 by Example 5.2.26 and Proposition 5.2.28. The
condition //A - /xH > CH then ensures that

11 + ze~^"^0<:^^^^^<1coth(^C/2).
Now it follows from Example 3.1.29, Lemma 5.2.25, and Proposition 5.2.28 that

<^M(W(f]) converges to co(W(f]] for all / G ^ and hence coy converges to co in the
weak* topology.

(2) Using the CCRs one can successively estimate that
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\\n,.(W(f) - W(cj))n^(W(h))QM < |e-""(/-.") - 1| + \\n,(W(f) - W(g))Q4
and

\\^co(W(f) - W(g])^,\\ < |e-M/,.)/2 _ l + \\n^(W(f -g)- i)Ü,,,\\ .

But one has

|^-,-In,(/-,,;,) _ i| < ||^_^|| ||;,||_ |,-,M/.,)/2 _ i| < ||^_^|| 11^11/2 .

Moreover,

lk4i^(/-9)-i)a.iP = (i-(r(/-3))) + (i-co(r(0-/)))

<2co($4/-^)-/2)

<coth(/?C/2)||/-gf/2 .

The last step uses the obvious bound on the two-point function following from the

assumption ß(H /.fH ) > ßC"^ . Collecting these estimates gives the desired con-

tinuity.
Finally, äs QC,J is cyclic and H^cülö')!! ^ l for all g e l) one can define ^(7) for

/ e I-([R^') by continuity, i.e., if / e l) and /,, -^ /, then W,^(f) is defined äs the

strong limit of na,(W(fn}). This establishes the existence of the Waj(f] and property
(b) is automatically satisfied.

(3) Define U on {W(f)ü^; f 6 L^(n^')} by

U^(t]W(f)a, = W,,(e""f]^, .

It follows from the CCRs and the explicit form of co(Pf((gf)) that the U,a are iso-
metric and extend to unitary operators. The strong continuity follows from (2a), e.g.,

\\U^(t)W^(f]Sl,-W,(f]fl^\\<2C,\\e""f-f\\\\f\\ .

The invariance of Q^o and the automorphism property follow by the definition of t/^o-
Finally, it suffices to establish the last properties with A, B, and C chosen to be Weyl
operators. But then (D^(Ai:^ (B)C] can be explicitly calculated and its limit de-
termined by use of Lemma 5.2.25. A straightforward calculation gives the first
identification. The second follows from the continuity of / e L^(U^')^^W(a(f] and
the definition of T^ and T.

Remark. (1) Statement (3) can be extended. By the same calculational

procedure one deduces that

limco^K^o<(^i)---<(A))
A ^ oo

=(Qa 7r(^o)T,| (71(0(^1)) T((7tc(4,))^(o)

lim 03(A(,i'^^(A,)---x^:(An]]
A'i,...,A' ^cx)

for all AI G ^ and tt G R.

(2) It can also be shown that co satisfies a KMS condition with respect to T.

We will return to this point in Section 5.3.

Under the restrictions imposed the above proposition gives a satisfactory
description of the thermodynamic limit. This limit can be taken in a very
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general form and the equilibrium state co is explicitly identified. Moreover, the

dynamics is constructed in a natural manner äs a group of automorphisms of

T^(D(^Y which appears äs a limit of the finite-volume dynamics. It is readily
verifiable that co is invariant not only under time translations but also under

the group [R^ of space translations. Moreover, it is strongly mixing for both

these groups. Furthermore, co has finite density per unit volume and hence is a

locally normal state over the quasi-local algebra generated by the ^A. The

momentum distribution of the particles is now given by

(2nr"ze-f^^\l-ze-f^^'r^d^p
and in the high-temperature-low-density region, which again coincides with

z<^ l, this distribution is approximately Maxwelhan and agrees with the Fermi-

Dirac distribution.

Let US next examine the shortcomings due to the conditions // /il > CH
.

Since all the selfadjoint extensions //A of V- corresponding to classical

boundary conditions are lower semi-bounded, the conditions // /iH > CH

state that ^ < //o f^r some /IQ which depends on the boundary conditions used

for the //A- In the simplest case of dij/ a\l/ boundary conditions with a > 0 or

periodic boundary conditions, one has ^^0 = 0 and hence ^ < 0 or z < L But an

explicit calculation of the density p(ß, z) gives

p(ß, z] = (27c)"' j d^p ze-^P\\ -ze-^P~]

<r^'7r-^'/2 l d\ e-^\\ - e-^]\A ;C ' IWAt^ 1^1 fcT^

where A = (^Tiß)^^'^ is once again the thermal wavelength. If v > 3 the last

integral is finite and one concludes that the density at fixed temperature is a

bounded function of the activity. (The same conclusion is valid for all v if

^0 < 0.) But this boundedness does not faithfully reüect the properties of large
but finite Systems. The density of a finite System A is given from Proposition
5.2.28 by

PA(^, z] ^ |Ar^Tr(z^-^^A(l -z^-^^^)'^)
-|Ar^^ze-^^"(^)(l-z^-^^^(^))-^ ,

>o

where e,j(A) are the eigenvalues of //A. Thus for ß and A fixed, the density may
be made arbitrarily large by choosing z dose to exp{^eo(A)}. In this case the

first term in the above sum contributes a significant proportion to p/^(ß, z). The
drawback of Proposition 5.2.29 is that it does not take account of this latter

phenomenon which is known äs Bose-Einstein condensation.
In Order to understand the basic effect of Bose-Einstein condensation on the

high-density regime of the Böse gas we examine the thermodynamic limit of the
Gibbs States at fixed density, but variable activity. This discussion demands

more detailed analysis than was previously necessary. A complete description
of all possibihties, e.g., all possible boundary conditions, etc., would lead us
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too far astray and hence we examine the simplest case, Dirichlet boundary
conditions, and mostly consider parallelepipeds A/, with edges of length
LI, LI, . . . jl'v Thus the local density p/<^^ is given by

z y

n\ ,...,/Zv > l

2
nni^

p^^(ß,z) = (L,L,.--L..r' E ^e-ß^^^^\l-^e-ß'^^^^r

where

X . X ^^r-^i nni^%(^)=L(T",
i=i V^^ ^

A Riemann approximation argument establishes that p/^^(ß, z) < p(ß, z), a

bound that we frequently use, and

lim p^X/J, z) = (2nr fd^'pze-'>P\\-ze-ß^T' = P(ß, ^)
AI^OO ^ J

for all ß > 0 and all 0 < z < l
.

In particular the limiting value z = l is allowed
but then p(ß,l) is infinite if v = l or v = 2. Note that z^-^p^^(ß,z) and

zi->p(^, z) are both strictly increasing. Now we begin the examination of the

thermodynamic limit at fixed density by considering the Variation of the ac-

tivity. The following result is crucial for the understanding of Bose-Einstein
condensation of thermodynamic Systems.

Theorem 5.2.30. Assume v > 3. Let p\^^(ß^ z) be the parfiele density of the
Gibbs State with Dirichlet boundary conditions for a parallelepiped A^ and

p(ß^ z) the thermodynamic limit of pj^^(ß^ z). Define Pc(ß] = p(ß-, 1) and for
each p > 0 choose zi äs the unique root of

P\,(ß^^L) =P -

Itfollows that:

(1) If~p < Pc(ß] and z is that unique root of p(ß, z) =~p then

lim z^ = z

A > OO

where \i ^ oo indicates that Zi , . . . , Ly -^ oo.

(2) If^> pc(ß] then lim^^^^zi = l and if (supi<^.<,Ly)/(infi<y<vIy)
remains bounded äs \L ^ oo then

lim |Air'zie~'''^^^'(l-ZLe-^'='^'^)''=p-pc(^) ,AI ^00

where O(AL) = ei(A), with l = (l, . . . , 1), /^ the smallest eigenvalue
of the Dirichlet Hamiltonian H\^ .
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PROOF. The proof is based upon convexity and growth properties of the density.
For example, if Z] > Z2, then convexity of z\-^ p^(ß, z) implies that

^P^fß
. ^ / P^(ß^ ^i) - ^A(^' ^2)

^
^PA

,^(ß. z,] < ""^"- ^'^ ""^"- ^-^ < ^(^, zi) .

az Z] Z2 öz

But

^(^,z) = |A|-' ^e-^^.(^)(l - e-^^.(^);

where (A) are the eigenvalues of //A- Therefore,

PA(Az)<9pA(M<. ^A(^'^)

_2

Z
~ öz ~z(l -zg-^^(^))

'

Combining these inequalities gives

P^(ß. ^2)
^

PA(jg,^i)-pA(^,^2)
^

PA(^, ^i)
Z2

~

^1-^2 ~Zi(l -Zie-^^o(A))
These bounds will be used throughout the remainder of the proof.

(1) As pAi(^5 ^) ^ P()^5 -^) ä^d t)oth functions are increasing in z one must have

ZL > ^- Thus choosing z\ = ZL and Z2 =z in the above inequality one finds

o<.-.<!(^-^|iMlPA,(/^, ^)

and hence

lim ziz.
Ai-^oo

(2) Assume p,(i?) < p. If z^ < l then p,(^) < PA,(^, Zi) < p(/?, ^i) < p,(/?) and

one has a contradiction. Hence z/, > 1. But Z < e^so(Ai) g^ HmA^^oc-Zi = 1.
Next define p^ and p)^ by

^
- ^,.j-'.,.-''^(^^)n -.,.-/'^(Mr'

A/, ^co

and

p^-limsup|Ai|~'zie-^'o^^^)(l -zie-^'^^^y
A/, ^co

p<f(^, z) = |A,|-' X:-e-''^='^''(l -ze-''^=('^'))-'
/7>7M

where n> m indicates / > m/ for at least one / l
, . . . ,

v. Thus p^ is obtained from

PAL ^y omitting a finite number of terms and the pj^^ retain the monotonicity and

convexity properties of the p^^ .

Since ZL > l one has p^^^(ß, ZL) > p^^^(ß, 1). Hence

p^^l(ß, ZL] > p^^l(ß. 1) > PA,(^, 1) - (^|A,|i(A,))-^
äs the i (A/,) term is the only one omitted in the suni for m = ]_. But, by assumption
there is a A > l such that (supj<y<^,Z,y) < /(infj <y<vZ/y) äs A^ -^ cxo. Therefore

|Az,||(Az,) > 7c^/l~^|A/^|/(infi<^-<vLy)^ -^ cx) äs A^ -^ oo. Consequently
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pM <\\mmfp^^^(ß,ZL}
A > 00

''

= liminf(p-|Ai|-'zie-''-^i('^'-)(l - ZLe-^^^'^^--^)-^] =p-p^
A/, -^ 00 \ /

because _i (Az,) = O(AL)- Hence pj^ < p - p,.(ß) .

Next define PQ by

Po -- liminf |AL|"^Ze-^'^o(^^)(l -z^e^^^o^^^^))"' .

AZ. ^ OC'

It suffices to prove po > p - Pc(ß) because this implies that 'p^ = p^ =^ - p^(ß). But
zL < e^^''^^^^^^ and consequently

|A,-W-^^=^(^^^)(I-Z,^-^M^^))-'
< |A^r'e~^(''^^^^^~'i^^'^^^Vi -e~^^^'-^^^^-^~'i(^''''^)h"'

<(^|A,|MA,)-i(A,)))-^ .

Moreover |Az^|((A) - 8j_(AL)) > oo äs A^, -^ oo for n^ L Thus one concludes
that

lim |Azr'z,e-/MA.)(i _z,^-/^^^(^^))-' =0
A/, ^00

for 7^ l, i.e., only the state of lowest energy provides a non-zero contribution to the

density. Therefore

Po = limjnf f p - p)^^^ (/?, zi) j = p - lim sup p)^^ (j5, z^
A/, ^00

for all m > i. The p^ have, however, convexity properties similar to the p^^ and
hence

^(-)/. _
^
_

>)/. |^ <
(--I-l)p!vf(^.^l)

PA, IP' ^L) PA, IP, l j <
^^^^ _ ^^g-/je,(AO)

where ,(A/,) denotes the smallest eigenvalue occurring in the series for p;^\ Now we

use the homogeneity assumption, (sup| <y<^, Ly) < }.(mfi<j<^,Lj) äs A^ ^ oo, to

estimate that

/ \-2 / x-2

fii^(Az.) < Tü^v inf Lj] <7i-v;r sup L.- < (v/lV/?r),(Ai) .

V<J<^' / Vi<7<v /

Hence 2j_(A)/,(yV) < l for all m > (2v)'/~/. Then for this ränge of m one has
72g-Av.(A/j ^ g-/j(c,(Ai)-2i;^(Ai)) ^ | ^^^ ^^.^^ ^^^ rearrange the convexity inequality to
obtain

pif (^, z,) < p^^(ß, \)z,(l - z,e-l^^-^^'-))(\ -z^e-/'="('^'))-' .

But i < Zi < e'''-i''^'' and one concludes that
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^-1
_

^-ßm(^L}\
ij.j.1 owp ^ .: 7- r

A. ^00
-

A,^oo (^Z'-e-''^"''"')limsuppif (/?, zi) < p,(/J)limsup p,
_

%
< p,(^)limsup (l - 2s,(Ai)/(Ai)) '

AjT -^00

<p,(^)(l-2v;.Vm^)-' .

Hence for all large m

limsuppif (/J, z,) < pM(^ - 2v)?/m^)-^
\l >00

and consequently

Po>p-Pc(/5)(l-2vAV''r'
As the left band side is independent of w one concludes that PQ > p Pc(ß] by taking
the limit m ^ co.

Although Theorem 5.2.30 is formulated for Dirichlet boundary conditions a

similar result is true for Neumann conditions or the intermediate conditions

dij/ (j\l/ with (7 > 0 (see Example 5.2.26). The spectrum %(A)
Y^]=,i(nni/Lf)^, / = 0, l, . . . ,

of the Neumann Hamiltonian contains the Di

richlet Spectrum together with additional modes for which some, or all, / = 0.

Hence the Neumann density p^ has a decomposition

Pf,(ß, z) = |Ar'z(l - z)-' + p^(ß, z) + r^(ß, z)
where |A|~^z(l - z)~^ is the contribution from the zero-energy ground state,

p^(ß,z) is the Dirichlet density and the remainder r\(ß,z] is the contribution

from the eigenvalues with some, but not all, HI = 0. Consequently, TA satisfies

an estimate
v-l .

0 < r^(ß, z) < ^c,(L}(2nr^' / d^^p ze-ßP\l -ze-^^'r'
^ = \ J

where c^(L] is the coefficient of ;c^ in the product n)=i(l +^/^-)- Now fix ZL

such that p = pi^^(ß,zi). Then zi(\ -zi)~^ <p\\i\ and hence zi

< l (p l AI |)~\ These bounds in combination with the foregoing bounds on

TA suffice to deduce that limA^^oo ^/^L(ß^ ^L) = 0. (Gare has to be taken with the

;U = l
,
2 terms äs the integrals in the bounds diverge äs z > l

.
But the bound on

zi suffices to control the divergence.) Therefore

p < \\mM\^L-\(\-ZL]-' ^p,(ß) .

A/, -^00

Hence if p > Pc(ß] then zi(\ zi)~^ > (p p^(ß]]\/^i\ for all sufficiently large
L/. Thus 0 < l -z/^ < ((p p^(ß]]\!^i\)~^ and limA^->oo^L = l- Moreover,

lim |Air%(l-zi)-^ =p- lim P^,(ß,ZL)^p-p^(ß] .

Ai-^oo AL^OC

If, however, p < Pc(ß) p(ß, z] then z < 1. But a Riemann approximation
argument establishes that p/^^(ß, z) > p(ß, z) and limA^-^oc PA^!^? ^)
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= p(ß, z) = p. Therefore ZL <z < l and the convexity argument iised in the
proof of Thoerem 5.2.30 implies that

Q<z-~ZL<z(p^^(ß,z)/p-l) .

Hence limAi->oo^L = ^- Finally, the spectrum of the Hamiltonian correspond-
ing to boundary conditions d4f = a\jj with 0- > 0 is sandwiched between the
Dirichlet and Neumann spectra (see Example 5.2.26). Thus the density at fixed
activity lies between the Dirichlet and Neumann densities. Therefore the ac-

tivity z^ corresponding to a fixed density p is intermediate to the activities zi
and zi for Dirichlet and Neumann conditions. Consequently z^ converges to
the common limit of z/, and z/^ äs A^ -^ oo. The thermodynamic limit is to this
extent insensitive to the boundary conditions.

The discussion of the thermodynamic limit of the Gibbs states at fixed
density follows a very similar pattern. It is convenient, however, to first ex-

amine the limit at the critical value of z, namely, z = l with variable density.
This is particularly easy for Dirichlet boundary conditions and the result is
shape independent.

Proposition 5.2.31. Let CD\ denote the Gibbs grand canonical stäte, over "iKA,
corresponding to //A, ß^ ^nd z \vhere //A is the Dirichlet extension 6>/V~, on

L^(A), and "sHA is the CCR algebra over L^(A).
It follows that the \veak*-limits

co(A) = lim co^'(A)
A'>oo

^g-ii/r/4,

existfor z l and each ^ > 0, ^ G UA ^A "^^hen A^ ^ oo in the sense that A^
eventually contains any A C [R^ The limit state CD is the gaiige-invariant qiiasi-
free state such that

(ff (/)) = exp { - (/, (1 + e-l^")/(^ - e-l^")f)/4]
*exp|-(27r)-^' l d^p\f(p)\^e-I^P-(\-e-ßP^)-^\

\. J )

for all f G \^^L^(^), \vhere H is the unique selfadjoint extension of V~ on

L~(W). In particular, a}(W(f)) = Q if v=l,2 and j'd^xf(x)^Q, and
(D(W(f]] > 0 in all other cases.

PROOF. The proof relies upon a simple but rather surprising property of the op-
erators exp{JÖ^/A}? which we derive in Chapter 6; see Corollary 6.3.13. This
property states that for each ß > 0 and / G ^"(A) the function

A'^(/,exp{-^//y}/)
is increasing and

lim (f,e-f^"^'f] = sup(/,e-^^A'/) = (f.e-^'^f]
A' -> 00 A'

These results rely heavily on the choice of Dirichlet boundary conditions. If we
accept them, then the proof of the proposition is simple.
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One has from Proposition 5.2.28 that

o^^(W(n} = e-\\f^-l^ exp { - (/, e-'^'V)}
*< =1 ^

and therefore

lim cov()^(/)) - ß-ll-^ll'/^exp ( - supsupV2^'(/,e~"^^^'/)l
A' -^00 l A' z<i ,fr; J

= e-ll/ll'/^exp{-(/,^-^^(l - e-^^r'f}}

^g-ll/llV4exp|-(27r)-^ ld^p\f(p]\^e-^P\\-e-^P-r'\
-

But for / e L^(A),/(p) / 0, the integral in the exponent diverges for v = l or 2. It

is, however, finite if /(O) = 0 since /is analytic, and it is finite for general / when

v<3.

Now we can determine the thermodynamic behavior for the Gibbs equili-
brium states at fixed density.

Theorem 5.2.32. Let COA^ t>e the Gibbs grand canonical state corresponding to

//A, ß and zi for the parallelepiped A^ = {jc G !R^'; Li/2 < xi < Z///2}, where

//Ai ^s the Dirfehlet extension o/V^ 077 Lr(^i) andzi is chosen such that o}\^
has particle density p.

It follo\vs that the weak^-limits

CD(A] lim a)Ai(^)
AL-^OO

exist for each ß > 0, p > 0, and A G UA ^A' "^here A/^ > cxo in the sense that

Zj , . . . , LV -^ oo and (supi < / < yL/)/(infi < / < ^Li) remains bounded \vhen

P ^ Pc(ß)- ^^^ ^ ^^^ gauge-invariant quasi-free states.

Let p(ß^ z) denote the thermodynamic density and set

a;(fF(/)) = exp{-p(/,/)/4} .

The two-point function Paj(f^f) ^^ then determined äs follows:

(A) Ifp<p,(ß)=p(ß,l)then

P^(fJ) = (/,0 +ze-/*^)(1 -ze-f^")-'f) ,

where H is the selfadjoint extension of V^ on L^([R^') and z is the

unique root of p = p(jS, z).
(B) If p > p,(ß) then

Pa,(/,/)-2^+Vo(^) ld^xf(x + (/,(l+e-^^)(1-e-^V/) ,

vhere pQ(ß)=p-p,(ß}.
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PROOF. (A) Let p < Pc(ß]- As pp^^ (ß, z) < p(ß, z) one must have z < z^. Moreover,
there must exist Lf and z < l such that z^ < z for all L/ > Z//. Therefore,

0 < (/,(1] -^ze-I^^^L)(^ -ze-^^^LY^f)
- (/,(t ^z,e-ß"^^](^ -z,e-ß"-'r'f] < 2||/|P(1 -z)-^(z, -z) .

The convergence of COA^ to the correct state then follows from Proposition 5.2.28 and
Theorem 5.2.30. The case p = Pc(ß) will be covered by the proof of (B).
(B) Let /;(A) and '(A^) denote the eigenvalues and eigenprojectors of //A/,- The
State coAi is quasi-free and cD\^(W(f]] = expj-p^^^^^ (/, /)/4} where

PoM,(/-/) = EO +^Le-^'"-^^^^)(\ -Zie-'''=(^'))-'(/,(Ai)/) .

n_

Now the first term in this sum is a product of two factors each of which has a limit äs

AI ^ 00. First,

lim |AJ-^(1 +zie-^'^^^^))(l -Ze-^^^o^^^))-> - 2(p-pM}
A/. -^00

by Theorem 5.2.30; and second,

lim |A,|(/,^o(Ai)/)- lim 2^' l / JVW TT cos f^AI^OO A, -.00 ./ y \Li

= r J ^V(^)

where we have used the fact that the normalized eigenfunction corresponding to the
lowest eigenvalue is

2"/2 A
. /T: / IAMX) =

lAi

But for the higher terms

TTäH^i^fG^l-,--y
Jv/2
|Ai

n/nxi\
. ._,^<I-)

|Ai|(/,(Ai)/)<2" /rf".v|/W|

and

lim l AI -^(1 +zie-^^%(^^'))(l - ZLC-^'"'^^^^^]-^ = 0
A/^ *co

The first Statement follows by explicit calculation and the second by the estimates
used to prove the second half of Theorem 5.2.30. (This again reflects the fact that
only the lowest energy state gives a nonzero contribution to the density.) Thus for
each m > l one has

lim (p.,, (/,/)-P!S (/,/)) = 2"+'(p-p,(/?)) / rfVW
.L-^CG L L /

where

PJSl(/'/) = Y.(^+ZLe-^''-^'''-^)(l-z,e-f^--^^'-^r\f,E(\L)f)
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Finally, one may prove that

lim lim p (/,/) - (/, (l +e-l>")(^ - e-"'')-'/)} = 0
/72 -> 00 \i^00 ^L

by repetition of the argument used to prove the second part of Theorem 5.2.30. First,
one uses monotonicity of p)^ in z to obtain an estimate

P^^l(f^f} > {/,(1 +e-'"'^0(l -e-^^^O"'/) - ll/f ^(^|AL|6,,(Ai))-'

and, second, one uses convexity in z to find

p^;;,(f,f} < (/,(i +e-^^v)(i -e-/'^^o-'/)i; "T-feJtÜ
([ zie - )

The argument is then completed äs in Theorem 5.2.30.

Theorem 5.2.32 establishes that there are two distinct regimes for the Böse

gas. First, there is a high-temperature-low-density regime described by Pro

position 5.2.29 and corresponding to z < l for Dirichlet boundary conditions.

Second, there is a low-temperature-high-density regime in which z == l and

Bose-Einstein condensation takes place, i.e., a finite proportion of the particles
occupy the lowest energy state. In this second regime the System has a multi-

tude of possible equilibrium states each of which has the same temperature and

activity. The states differ by their particle densities and all densities

P ^ [Pc(ß}^ ^ ^^^ possible. The two-point functions of the equilibrium states co

in the condensation region are given by

<y(/)a(0)) = 2Vo(^) y d^x^)J d^'xf(x}

+ (2nr ld''p^)f(p)e-l^''\l-e-I^PT'
and the local density by

p(ß) = rp,(ß} + p,(ß) ,

where p{^(ß] p Pc(ß] and p G [pc(ß},oo). The term po(Ä nieasures the

density of the condensate, i.e., the particles in the lowest, zero, energy state,
and the coefficient 2^ indicates the relative proportion of the condensate at the

origin. This coefficient can be identified from our estimates äs the thermo-

dynamic limit of [A^l |i/^o(^)l^ where I/^Q is the lowest-energy eigenfunction of

the Dirichlet Hamiltonian H\^ .
If one replaces Dirichlet boundary conditions

by the elastic conditions d^/dn = aij/, then a slight modification of the fore-

going arguments establishes the existence of the corresponding equilibrium
state. The only noticeable difference is that the coefficient 2^' is replaced by a

positive constant c^,

c, = lim \M\K''(^}\' .

A/, -^00

where I/^Q' is now the lowest-energy eigenfunction with the new boundary con

ditions. One can check that c^ is a decreasing function of er and c^ ^ l äs er ^ 0,
i.e., Cff = l for Neumann conditions. In the Neumann case the condensate is
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distributed evenly throughout the System and tlie local density takes the valiie p
used in the limit. Thus the thermodynamic equilibrium state is sensitive to the
choice ofboundary conditions and each choice gives, in prindple, a different state
in the condensation region although accidental degeneracy is possible.

The phenomenon of condensation corresponds to a phase transition of the
System and the equihbrium states have less ergodic properties than the states in
the single phase (z < 1) region. Although the states occurring in Theorem
5.2.32(B) are invariant under the action T of the group [R^' of space translations,
they are no longer [R^'-ergodic. This is most easily seen by calculating that

lim CD(W(f)r,(W(g}}) = o,(W(f])cD(W(g]]
\X\ > (X)

X exp{ - c,p,(ß]2 Re j d''xf(x) j d^^xg(x]^ ,

Thus co is strongly mixing and [R''-ergodic, if, and only if, pQ(ß) = 0. The
decomposition of co into [R^'-ergodic states can be explicitly computed and one

finds the following result-

/oo
/'27r

dpK(p,p,] / Jaco^,(^) ,

Jo

where K(P,PQ) = po(^) ^
exp {-p/pQ(ß}} and the states cop^r, are determined

0),, a(r(/)) - exp{/cyV^/' (^" f ^V(^) + e-^^ j d''xf(x)) }
X exp{ - (/, (l + e-ß^)(^ - e-P^r'f)/^}-

In particular the i^''-ergodic states cop, are no longer gauge-invariant. The two-

point functions of the states cop^ are given by

Wp,a(/)fl(0)) =C,p l d^xf(x} fd^'x'^
J J

+ (2nr J d^P^f(p)e-I^P\l - ^-^^V
and the local densities by

Po,,.,(ß} = ^-^P + Pc(ß)

-This decomposition is readily verified with the aid of the two formulas

(271)-^ /"ja^''(^^^+^^^")3.Jo((^' + ^')'/') ,Jo
roo

/ dx e--Vo((2cx)-'/-) = e-
Jo

)-l/2) = ,-c/2

where JQ is the usiial Bessel function, a,b ^ R and c > 0.
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Thus the variable p occurring in the integral decomposition measures the

density of the condensate and the probability measure dp K(p^ p] determines

the distribution of the various possible condensate densities.

It remains to describe the thermodynamic limit of the dynamics in the

condensation region. This can be discussed from the same point of view

adopted in Proposition 5.2.29 but various changes occur. Most noticeably the

equilibrium states do not extend to states over the CCR algebra on Z.-([R^). If

(cü5 ^cü5 ^(o) is the cyclic representation corresponding to the equilibrium state

co obtained by the fixed-density thermodynamic limit with p > Pc(ß), then

TtcoC^)'' contains a representation of the CCR algebra over the subspace
6^(ff} CL^(U^). This follows because any element in .^(IR") can be approxi-
mated by elements in U^L^(A) in the norm

11/11^ = lfm' + j d'p \f(p]\\\ - e-^'T'

and the unitary Weyl operators satisfy estimates of the form

\\(W^(f] ~ W^(g]]W^(h]^^\\ < c,||/- ^11^(11/11 + ll^ll)

for /,öf G U^L^(A). (Recall that v > 3 when p^(ß] < +cx).) Note that the

unitary group Ut = exp {üH} generated by the Laplacian on L^(W} maps

^(W) on ^(R"), because ^(R"} is equal to its Fourier transform. Hence U

implements a one-parameter group of Bogoliubov transfontiations on the

CCR algebra over ^(ff). Since any element in U^L^(A) can be approximated
by elements ^(ff) in the norm || ||^, it follows that this group extends by
strong continuity to a one-parameter group T of *-automorphisms ofna^C^)" äs

in Proposition 5.2.29. If T^ is the one-parameter group of Bogoliubov trans-

formations of the CCR algebra over L^(A) implemented by the Dirichlet La

placian //A, one can then estabhsh that

lim coA,(^TfH5)C) - (Q,,, n^(A)r,(7i^(B))n,,(C}^^}
AL->OO

for Weyl operators A, B, and C over ^([R^), where A^ tends to infinity in the

sense of Theorem 5.2.32. To explain the nature of this argument it is preferable
to first examine the analogous problem in the setting of Proposition 5.2.31 for

v > 3. Choosing A, B, and C äs Weyl operators and using the CCRs one

readily reduces the problem to the proof that

lim (/, X^e""^g) = (X^/^f, X^l^e^'"g) ,
A^ oo

where

^^ = (l+g-^^A)(1l-e-^^A)-^
and

X = (i+e-^^)(i-^-^^)-^ .

But if XA and x are the positive quadratic forms canonically associated with the

bounded positive operators XA and the positive selfadjoint operator X, re-

spectively, then the proof of Proposition 5.2.31 is based upon the fact that the
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net XA is monotonically increasing and its limit, in the sense of Lemma 5.2.13, is
exactly x. But in the proof of Lemma 5.2.13 we established that

lim ||(;rA + i)^/'(x + i)-^/V-^ll = o
A* oo

for all \lt &L^(n''). Hence, if \l/ e D(X^I-] one has

lim ||(;rA + i)'/V-(^ + i)'^Vll = o
.

A> oo

Therefore, the desired result follows from the estimate

\(f,X^e^'"^g)-(X^I^-f,X^l^e''"g)\
< |((;rA + i)'/V,e''"''^((^A + 1)'^' - (^ + i)'/')3)l
+ \((X^ + 1)'/V, (e''"^ - e"")(X + 1)'/-g)|
+ |(((^A + l)'/2_(x + 1)'/2)/,e''^(^ + 1)'/2^)|
+ \(f^(e""-e""^)g]\ .

This result can now be used to establish the analogous fixed-density result by
retracing the estimates used to prove Theorems 5.2.30 and 5.2.32. In particular
one uses the last two estimates given in the proof of Theorem 5.2.32. We omit
the details.

Finally, we emphasize that the quantitative properties of Bose-Einstein
condensation are quite sensitive to changes of boundary conditions although
the qualitative features remain unchanged. If one uses dil//dn aij/ boundary
conditions with er < 0, then condensation occurs in all dimensions at a value of
the activity z^ < l and the condensate is principally located near the surface of
the System. Thus, in the thermodynamic limit at fixed density the equilibrium
State, which characterizes the properties of the System near the origin, shows no

trace of the condensate.

EXAMPLE 5.2.33. Let = L~(-L/2, L/2) and let HL be the selfadjoint extension
of d^/dx^ which satisfies

rf^_,^(,)i =o = [^+.^wll dx ^]x^L/2 l dx ^\x=-L/2
for all l// G D(HL), where er > 0. The lowest eigenvalue ^Q(L) of HL is negative and is
given by 2.Q(L) = )^, where A is the unique solution of

;. tanh(/IX/2) = o
.

This eigenvalue has the property that it increases with L to the asymptotic value a^.
The corresponding normalized eigenfunction IJ/Q can be chosen äs

lAoW = (2//^)'^"{l + (^r^ sinh(AL)r^^' cosh(;jc) .

(In fact, if L is large enough there is a second negative eigenvalue AI (L) which
decreases to -0-- and whose eigenfunction can be chosen to be anti-symmetric.) Thus,
the Gibbs states are only defined for /.i < /lo(I) < -0-^, and condensation takes place
for
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z -- z^ = Qxp{-ß(j-} < l
.

The critical density p(ß, z^) is now given by

p(ß, z,) = (2ii)-^ j dpz,e-ßP-(\ -z,e-ß^"r'

and äs L|I/^Q(O)|^ -^ 0 in the limit L -^ oo the thermodynamic limit state co at fixed

density p satisfies

a,(W(f)) = exp{ - (/, (1 +ze-^"}/(^ - ze-^")f)/4]
for p < p(ß, z} and

o^(W(f)) = exp{ - (/, (1 +ze-l>")/(^ - ,^e-l'")f)/4}
for p > p(ß, Za). Similar conclusions are valid for v > 1.



5.3. KMS-States

5.3.1. TheKMS Condition

In the previous section we analyzed two C*-algebras which describe the kine-
matics of particle Systems and also analyzed the simplest examples of equili-
brium states. Now we discontinue this specific analysis and describe instead
various general characterizations of equilibrium phenomena. Principally, we

investigate the Kubo-Martin-Schwinger, or KMS, condition briefly outlined
in the Introduction and used in the calculation of the Gibbs states of the ideal
Fermi and Böse gases. Our description of this condition was, hitherto, rather

sketchy and this will be corrected in the sequel. Recall that if ^ = =^^(), H is
a selfadjoint operator on , jS G D^, and exp {ßH} is of trace-class, then the
Gibbs equilibrium state

, , i:T^(e-ß^A)
"(^)^IV^^

formally satisfies the condition

co(^T,(5))|,^^.^, = (ß(BA]

with respect to the automorphism group

T,(^) - e^^"Ae-^^^
.

This is a particular example of the KMS condition and it basically involves two

elements:

(1) The analyticity of the functions t\-^o}(Ait(ß}) in a strip, the strip
0 < Im/ < ßif ß > 0, and,

(2) The approximate commutation of each pair A, and B, within the
State 0).

We will choose a precise definition of the KMS condition which emphasizes
the latter, algebraic, property and partially deemphasizes the analyticity prop-
erty. Subsequently it will be necessary to extend the properties of analyticity.

Throughout most of the rest of this chapter we consider a C*-dynamical
System (^, R, T) based on the group U and for brevity we denote such Systems
by 021, T). Moreover, we let ^^ denote the set of entire analytic elements for T,
Definition 2.5.20. Recall that ^(^ is a norm dense *-subalgebra of ^, Propo
sition 2.5.22, and it is clearly r-invariant, i.e., if y4 G ^T, then it(^) ^ "^T for all
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t G [R. We also consider a l^*-dynamical System (9}1, r), where 9J1 is a von

Neumann algebra and T a cr-weakly continuous one-parameter group of

*-automorphisms of 9JI. The set 931^ of entire analytic elements for T is no longer
norm dense in 9Ji but nevertheless it is dense in the ö--weak topology and T-

invariant.

We now adopt a definition of KMS states phrased in terms of dense sets of

analytic elements which has the advantage that it is often easy to corroborate.

Definition 5.3.1. Let (^, T) be a C*-dynamical System. The state co over ^ is
defined to be a r-KMS state at value ^ G [R, or a (T, jS)-KMS state, if

cD(Aiiß(B]] = (D(BA]
for all yl, 5 in a norm dense, r-invariant *-subalgebra of ^T.

If (9Jl, T) is a ]^*-dynamical System, a state co over 9}I is defined to be a (T. ß)-
KMS state, for j8 G [R, if co is normal and the above identity is valid for all A
and ^ in a cr-weakly dense T-invariant *-subalgebra of 50It.
A T-KMS state at value jS = -l is called a i-KMS state.

This definition has several immediate consequences.
The value j5 = 0 is distinct from the other values. In this case Definition

5.3.1 States that co is a trace-state,

o}(AB] = w(BA)

for all ^, 5 G 91. Conversely, a trace-state is a (T, 0)-KMS state. Ifß^Q and oj

is a (T, jS)-KMS state the definition indicates that T measures the deviation of oj

from being a trace. This idea will be clarified later.
Another immediate consequence is that if t \-^ i:^ = i is the trivial group of

automorphisms, then co is a (T, ^)-KMS state if, and only if, it is a trace-state.

Next note that co is a (T/, j5)-KMS state if, and only if, it is a (T_^/, 1)-
KMS state. If ^ 7^ 0, this Statement is evident but if ^ = 0 both sets of states are

the trace-states. Thus by rescaling the group one can eliminate ß. Hence, for

many general purposes it sufiices to consider i-KMS states. This also shows
that the choice ^ = l in the definition of these latter states has no particular
significance. (The value -l coincides with a convention adopted in the modular

theory of Tomita-Takesaki). We emphasize, however, that despite these re

scaling properties there is no simple prescription for connecting the (T, ^)-KMS
states for different ß (see Theorem 5.3.35).

EXAMPLE 5.3.2. Let ^(l)) be the CAR algebra over the Hubert space I) and i a

one-parameter group of Bogoliubov transformations such that T? ((/)) = a(e''^f),
etc. Let/be an analytic element for //, then the i-KMS condition states that

w(a^(f)a{g)) = w(a(g)a'(e'l>"f))
^(g,e-l^"f)-co(a'(e-l>"f)a(g)] .

Therefore
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ay(a'(f)a(g]] = (g,e-l'"(^+e-l^"r'f) .

Iteration of this calculation in the manner preceding Proposition 5.2.23 shows that
the gauge-invariant quasi-free state with the preceding two-point function is the

unique (T,jS)-KMS state. Note that the polynomials in a(f] and fl*(öf), with/and g
analytic for H, are norm dense in ^. In particular the limit Gibbs state constructed in
Theorem 5.2.24 is the unique (T,^)-KMS state for the limit dynamics.

Ahernatively, let ^ be the CCR algebra over a pre-Hilbert space t), // a positive
selfadjoint operator defined on I) not having zero äs its eigenvalue, and such that

e'^^!) C I) for all / e R, and l) C D(e-ß"(^ - e'^^)"^) for ^ > 0. Let co be the gauge
invariant quasi-free state with the two-point function

co(/)a,(ö)) = (g, e-^"(\-e-'^")-^f]
and T the cr-weakly-continuous group of *-automorphisms of Tia^(^)" obtained by
strong continuity from the Bogoliubov transformations determined by e'^^. It fol-
lows from the calculation preceding Proposition 5.2.28 that co is a (T,j5)-KMS state

over the von Neumann algebra 7lfo(^)'^ But if ^ is any positive sesquilinear form on

I) X t) with the invariance property

s(gj]=s(g,e""f)
for all gjfl) and all t e R, then the gauge-invariant quasi-free state with two-

point function

co(/K(<?)) = (g,e-P"(i-e-l>"r'f)+s(g,f)
is also a (T, j5)-KMS state over n^^C^)'^ . Thus, one has a possibility of a nonunique
(T,JÖ)-KMS state in this case. An example is the Rose-Einstein condensation ex-

tensively studied in Section 5.2.5. Here I) = 6^(U'') with v > 3, H = -V~ is the

Laplacian and

s(gj] = p j d\xg(x) J d''xf(x) ,

where p > 0.

It follows immediately from the commutation relations

W(f)W(g}=e-^^^^f^^^^W(g}W(f)
that the CCR algebra over f) has a unique trace-state co, given by

l, if/-0-(^(/)) =

10, if/^0

This state is invariant under all Bogoliubov transformations, and thus the group of

automorphisms determined by e''^ extends to a one-parameter group T of *-auto-

morphisms of TicoC^l)" . However, this group is not cr-weakly-continuous and hence co

is not a (T,0)-KMS state on n^oC^l)" in the sense of Definition 5.3.1.
When ß <0, there exists no (T,^)-KMS states over the CCRs in the von Neu

mann sense.

We begin the analysis of KMS states by proving that they satisfy the crudest
characteristic of equilibrium, i-invariance.
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Propositions 5.3.3. Let co be a (T, ß)-KMS stäte over the C*-algebra ^ (or
the W-algebra 9Ji) mth ß G R\{0}.

It follovvs that CD is T- invariant, i.e.,

(D(l,(A]] = (D(A)

for allAe^ (for all ^ e äR) and all t 6 IR.

Moreover the following conditions are equivalent for an arbitrary state co

over ^ (which is assumed normal in the W*-case}:
(1) co is a (T, ß]-KMS state mth ß e R.

(2) cD(i:_ißi2(A)iißi2(B]] = 0}(BA), for all A, B in a norm-dense i-in-

variant *-subalgebra of^-^.

PROOF. The proof of the two cases C*, and ^*, is identical. We consider the former.
First note that by rescaling we may assume ß = -l. Next let B be an element out

of the norm-dense i-invariant *-subalgebra S^ C ^^ for which the KMS condition
holds and define the analytic function F by

F(z) = CD(,,(B)) .

Then F is an entire analytic function which is bounded on the strip

X)- {z;ze C,-l < Imz < 0}

by

M^sup{||T,,(^)||;ye[-l,0]}.
This follows because

|F(Z)| < ||T,(ß)|| = ||TRe.(Tn.(5))|| = ||Tnn,.(B)|| .

But if ^ has an identity H it follows directly from the r-KMS condition that

F(z - i) = a;(lT_,.(t.(5))) = ü;(T,(5)l) = F(z) .

Hence F is periodic with period z. If ^ does not have an identity, the same con-

clusion is easily reached by use of an approximate identity. But the periodicity now
implies that

|F(z)| < M

for all z G C. Hence F is constant by Liouville's theorem. As S^ is dense in ^ it
follows than co is T-invariant.

If condition (2) of Proposition 5.3.3 is valid, a similar argument shows that co is T-

invariant if ß e [R\{0}. But then

0}(ATiß(B)) = 0}(i:iß/2('C-iß/2(A)Tiß/2(B)}) = Co(T_,-^/2(^)T//^/2(5)) .

If ß = Q, this relation is trivially fulfilled. Hence l <^ 2.

It should be emphasized that the value ^ = 0, which is excluded in Proposition
5.3.3, is exceptional. If, for example, 91 is abelian, then all states are (T, 0)-KMS
States but if T is not trivial there are certainly states which are not i-invariant.

One immediate corollary of i-invariance is that each KMS state of a C*-

dynamical System extends in a canonical fashion to a KMS state of an asso-

ciated PF*-system.
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Corollary 5.3.4. Let co be a (i,ß)-KMS state of the C'-dytiamical System
(^(, T) ivith ß G IR\{0} and let co be the normal extension of co to the vveak
closure SJI^o = '^(o(^)" of^ in the cyclic representation (^^, TT^^, Q^^).

It foUoivs that there exists a iiniqiie a-\veakly-contmuoiis groiip ?i-^f/ of
^''-automorphisms of^R^^ such that

it(Tlco(A]] = Tlco('^t(^])

for all A Ul and t G R. Moreover, co is (f, ß)-KMS on 93l,,.

PROOF. Proposition 5.3.3 implies that co is i-invariant and hence there exists a

unitary representation U,, of IR on ,,j, such that

7l,(l,(A)) = U,,(t]TL,,(A]U,,(t]-'
for all /l G ^l and ? G [R by Corollary 2.3.17. Therefore,

it(B] = UMBUM''
exists for each t G U and B G 9Hoj- As Uo, is defined by

U,,(t)n,,(A)ü,, = 7i,,(i,(A))Q,,

and t^^^t is strongly continuous, it follows that t \-^U(o(t) is strongly continuous on

7r,,j('5l()Q,^, and hence on ,,j. Therefore, t\-^it is (J-weakly-continuous on 5[R,o- Biit

any norm-dense i-invariant *-subalgebra of 7if,j(^l) is a cr-weakly-dense f-invariant

*-subalgebra of 9[)lj. Thus, the f-KMS condition follows directly from the i-KMS
condition.

Although for purposes of verification it is very practical to define i-KMS
States with dense subsets of analytic elements, it is mathematically somewhat
iinnatural. Thus our next purpose is to extend the KMS condition to a larger
more natural class of elements. For this one needs a version of the maximum
modulus principle which is often referred to äs the three-line theorem.

Proposition 5.3.5 (Phragmen-Lindelöf). Let T) be the open strip in C defined
by

X) = {z ; z G C, fl < Im z < ^}
and T) the closure o/ D. Let f be a complex function which is analytic on T),
and bounded and continuous on T).

It follows that the function

y G [a, b] ^ g(y} = log( sup \f(x + iy)
\xeU

is convex. In particular,

sup \f(z)\ - max<^ sup |/(.Y -f ia)\, sup_,^ ^^[/(x -j- ib]\
-6l) L^elR

It should be emphasized that this result is not a straightforward extension of
the maximum modulus principle because there exist entire analytic functions
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which are bounded on the boundary {z; Im z G {a^b}} of the strip 'S but,
nevertheless, are unbounded on T) itself. (For a reference to the three-line
theorem, see Notes and Remarks).
We also need a version of the so-called edge of the wedge theorem. This

theorem was originally motivated by problems of quantum field theory and it
has many important applications in this latter domain (see Notes and Re

marks). The general theorem concerns functions of several complex variables,
but the following proposition is only stated for one variable, and in this form it
is an immediate consequence of the Schwarz reflection principle.

Proposition 5.3.6. Let {P C C be an open connected set such that
-/^ = ^n[R ^ 0 and define

X) = {z; z = ;c + /;; 6 C, j > 0} n ^
.

Let F be a complex function which is holomorphic on T) and continuous on

T)U''/^. Suppose furthermore that F(x) = 0 for x G i^.

Itfollo\vs that F(z) = O/or all z G T).

After these function theoretic preliminaries we are now ready to derive the
first set of alternative characterizations of KMS states.

Proposition 5.3.7. Let (^, T) be a C"" -dynamical System, or a W-dynamical
System, co a stäte over ^ \vhich is assumed to be normal in the W*-case, and

ß eU. Define

DO = {z; z G C, 0 < Im z < j6}
ifß>0and

'

D^ = {z; z G C, ^ < Im z < 0}

ifß<0, and let T)^ be the closure of^ßif ß^(^ and f)ß=^Uifß = Q.

The following conditions are equivalent:

(1) 60 is a i-KMS state at value ß.
(2) For any pair A^ B ^, there exists a complex function FA. B u'/?zc/z is

analytic on T>ß, and bounded and continuous on X)^, such that

FA^B(t} = co(AT,(B)) ,

FA,ß(t^iß) = co(i,(B}A}

for all t G [R.

(3) For any pair A^ B ^, there exists a complex function FA. B u'/z/c/? is

analytic on T)ß, and continuous on 'f)ß, such that

FA^B(t)=co(Ai,(B)) ,

FA,B(t^iß}^oj(i,(B}A)

for all t G [R.
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Furthermore if these conditions are satisfied, then the fiinction FA^ B ^^^

conditions (2) and (3) satisfies the boiind

sup|F,,s(z)|< \\A\\\\B\\
ze%

andforA G ^l, 5 G ^T, the fiinction identifies mth the restriction to T) of the
entire analytic function z ^^ (jo(Aiz(B]].

PROOF. (1) ^ (2) Let S^ denote the *-subalgebra of ^^ occuring in Definition 5.3.1.
For A,B e ST, define FA^B by

FA^B(Z] = CO(AI.^(B]]

for all z G C. Then FA^ B is entire analytic,

FA^B(t] = o:>(Ait(B]]
for t G R, and

FA^ B(t + iß) = CD(A^iß(it(B]]] = CD(it(B]A) .

As z l> T-(5) is strongly analytic, Proposition 2.5.21, it follows that

y G [0, ^] i-^||T/y(5)|| is continuous, and hence bounded. Define M by

M = sup{||T,-,(5)||;ye[0, /;]}.
Thus

FA^B(t + iy)\< IM||||T/X^)|| <M|M||

for t + iy e X), and (2) holds for ^, 5 G 33^- For general A, B e'il choose sequences
{^L>i, {^.}.>i, in S, such that \\A,,\\ < |M||, \\B,,\\ < ||5||, and n,(A,)ü,, ^

7i,o(A)ü,,, 7r,,(^;;)Q,, ^ 7i,o(.4*)^co, and 71,0(5,0^0 -> ^co(B}^a^, and 7i,o(B;)Q,, -^

7i(a(B*)ü.^. (In the C*-case this approximation can be made in the norm topology. If
^l is a ^*-algebra, the approximation is possible because of Theorem 2.4.16.)
Now define F by

F(z)=F^,,,B,.(z)

for z G T). The three-line theorem, Proposition 5.3.3, implies that |F(z) F,(z)|
assumes its maximum value on the boundary of T) and for z on this boimdary one

has

\Fn(z) - F,n(z)\ < max| sup co(^,T,(5)) - cü(A,rt(B,n})\ ,

UeK

sup \co(T:t(Bn)A) - a}(if(B,n)A,n)\
?6(R

< ||5||{||7r,(^* -^;)Q|| + \\H,(A -^,)a||}
+ |M||{||7i(5;; -s:,)a,|| + ||;i(5 -5,)Q,i|} .

The last estimate is valid for the sum of the terms in the maximum and follows from
T-invariance of co established in Proposition 5.3.3 and the Cauchy-Schwarz in-

equality. Hence F is a Cauchy sequence uniformly on T). The limit function is
therefore continuous and bounded on X, and analytic in D. Also
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FA^B(t] = lim 0}(An'Ct(Bn)) = 0}(A'Ct(B)) ,
> oo

FA^B(t + iß)= lim FA^B(t + iß]
>oo

- lim (D(i:t(Bn)An] = a}(it(B}A) .

n^ oo

(2) =^ (3): This is trivial

(3) ^ (1): IfA.Be^r. define

G^,^(z) - co(^T,(5))

for all z e C. Then G^, B is an entire analytic function and

GA^B(t)=^FA^B(t)
for r e (R. It follows from the edge of the wedge theorem, Proposition 5.3.6, that

GA^B(Z) = FA, B(Z) for all z G X), i.e.,

FA,B(Z} = O}(AI.^(B)]

for all z e f). But then, by condition (3)

(D(Ai:iß(B))=FA,B(iß} = co(BA}

for all A,B e ^t, i.e., co is (T, ^)-KMS.
The last Statement of the proposition was established during the proof of

(1) ^ (2) and (3) ^ (1).

The same line of reasoning allows the explicit extension of a (T, ß)-KMS
State (D over a C*-dynamical System to a (f, /?)-KMS state over the assodated

von Neumann algebra 931^0 = '^ü}(^T äs described in Corollary 5.3.4. We next

prove that the KMS condition implies that QCO is separating for ^Jloj, but for
later purposes we isolate the following lemma.

Lemma 5.3.8. Let 9JI be a C*-algebra on a Hubert space , Q 0 cyclic unit

vector, and co the corresponding state, Ifo}(A*A} 0 implies that (D(AÄ''} = 0

for all A G ^, then it follows that Q is separating for 9J1.

PROOF. Assume that AQ. = 0. Then BAQ. = 0 for all B G 9JI, and hence by hypoth-
esis ^*^*Q := (BA^Ü. = (), AsQ. is cyclic it follows that A"" = Q and hence A = 0.

Corollary 5.3.9. Let (^, T) be a C*-dynamical System, co a i-KMS state on

^ at value ß ^ U, and (^, TT^J, ^co) the corresponding cyclic representation.
It follows that QOJ is separating for UcoC^}'^.

PROOF. If j5 7^ 0, it follows by Corollary 5.3.4 that the state cb on ^)l,^ = Ua^C^}"
defined by

cb(A) = (Q,,, A^,,)
satisfies the (f, j5)-KMS condition for a group t^-^i{ of *-automorphisms of SJIoj- Let
A G ^loj be an element such that a)(A*A) = 0, i.e., such that A^^o = 0. Let FA\A(Z} be
the function corresponding to ^*, A, äs in Proposition 5.3.7. Then

FA^^A(t} = a;(^*T,(^)) - (^Q,, U^(t)A^^} = 0
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for t e U. U follows from the edge of the wedge theorem, Proposition 5.3.6, that

FA^^A(Z) = 0 for all z with Im z between 0 and ß. But then

d)(ÄA^)=FA^^A(iß) = ^.

Hence üco is separating for ^co by Lemma 5.3.8.
If ^ = 0, then co is a trace-state on na)(^)" and Lemma 5.3.8 is again applicable.

The separating property of Q^o for na)(^)'' provides the prindpal link be
tween the modular theory of Tomita-Takesaki and the theory of KMS states.

Assume that co is a T-KMS state over a von Neumann algebra 93^ for some a-

weakly-continuous group T of *-automorphisms. Thus by Corollary 5.3.9, co is
faithful on 7i(^(SR). But the kernel of TT^O is a (j-weakly-closed two-sided ideal
3 C 9JI and by Proposition 2.4.22 there exists a projection E E 9JJn9Jl' such
that 3 = äR(1] -E). It follows that co(l - E) = 0, and co is faithful on ^E
because 71^0 restricts to an isomorphism between "^E and UcoC^}, and

co(^^) = co(^) = (Q,7i,,(^)Q^).
The remarkable consequence of the Tomita-Takesaki modular theory is

that this condition is also sufficient for co to be a T-KMS state for some group T.

This unexpected result follows basically from the identity of the modular
condition, described after Definition 2.5.15, and the KMS condition expressed
for the modular group.

Theorem 5.3.10 (Takesaki). Let '^ be a von Neumann algebra, and co a

normal state on 9JZ.
The following conditions are equivalent:

(1) co is faithful äs a state on 71^^(9}^), i,e., there exists a projection
E G 9}lnaR^ such that co(1] - E) = 0 and co|sjr,j is faithful.

(2) There exists a cr-vveakly-continuous one-parameter group T of *-t/-

tomorphisms of^Jl such that co is a i-KMS state.

Furthermore, if these conditions are fulfilled, the automorphism group T

leaves Efixed,

'^t(E]=E

for all t G [R, and the restriction ofi to ^E is uniquely determined by co. This
restriction is the modular automorphism group of^^E associated with co

.

PROOF. We have already remarked before the theorem that (2) => (1) is a con

sequence of Corollary 5.3.9. As the definition of T on 501(11 - E) has no influence on

the KMS property, we may assume that E = ^, i.e., we may assume that w is faithful
on 90t, when proving (1) =^ (2). Thus passing to the cyclic representation associated
with co, we may assume that co is given by a separating and cyclic vector. Let A be the
modular operator associated with the pair (9JI, O), Definition 2.5.10, and let

(Tt(-^) = A'^^A"'^ be the corresponding modular automorphism group, Definition
2.5.15. Then, for A, B ^ m,,
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a}(AB) = (A^'Ü.'BQ.)
= (A^%*Q, A^/^y^Q)
- (Q, BM^-^Q) = (jo(Ba_i(A)) .

Hence co is a T-KMS state in the sense of Definition 5.3.1.

This ends the proof of (1) => (2), and the property T^(^) := is a consequence of

the fact that co is i-invariant, i.e., T lifts to the representation nco äs described in

Corollary 5.3.4. To show uniqueness of the restriction of i to SDZE", we may again
assume that co is faithful and given by a separating and cyclic vector Q. If U(t} = e''^
is the unitary group on corresponding to T, and ^, 5 G 931^, we have

0}(AB) = o}(ri(B}A}

and hence

(A^/-5*Q, A^/-y4Q) - (Q, ABQ)
= (Q, Be^A^) - (5*Q, e"A^) .

As 9}!^ is strong*-dense in 50^, it follows that ^Jl^Q is a core for A^/^, and the above

relation impHes that A'/^^Q e D(A'/^*) = >(A^/-) and

A/^Q = e"AQ.

for all ^ E 501^. Now let 901o be the *-subalgebra of '^r consisting of elements with

compact Spectrum relative to T. Then ^Q is dense in 931 by Lemma 3.2.39 and since

T_/(9Jlo) = 9Jlo it follows that e^9Jlo^ ^ 9}lo^. But äs any element in ^QÜ is con-

tained in a spectral projection of H corresponding to a compact spectral interval, it

follows that ^QÜ. consists of entire analytic elements for e^
.
Hence ^Jlo^ is a core for

e^
, by application of Corollary 3.1.20 with S = e^

.
Thus A is an extension of e^. As

A and e^ are selfadjoint it follows that A e^, and hence T is the modular auto-

morphism group.

Combining 5.3.3, 5.3.9, and 5.3.10 one sees that a given state co on a C*-

algebra ^ is a KMS state for a one-parameter group T of *-automorphisms of

^l^a(^]" if, and only if, the normal extension co of co to nüj(^]" is faithful, and in

this case the group T is unique. The converse problem of constructing KMS
States when T is given is much more complicated and only has a positive
solution for special classes of ^ and T. We will partially analyze this problem at

the end of this subsection and in the following one.

The principal aim in the rest of this subsection is the derivation of alter
native formulations and characterizations of the KMS condition. The analysis
is essentially identical for C*- or ]^*-systems, and, for simplicity, we present all
results in the C*-case and omit the analogous /^*-statements. The first re-

formulation expresses the analytic properties in a way which is often useful for

applications to the thermodynamic limit. For this we need some properties of

analytic functions.

Recall that if ^ = ^((R) denotes the set of infinitely differentiable functions
with compact support and if / G ^ the inverse Fourier transform
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/oo dp e^^-^f(p]
-OO

is an entire analytic function. Moreover, in restriction to [R one has
/ G 5^ = e^([R),i.e.,/isinfinitelyoftendifferentiable,and;cG[RH^;c^^^'VW/^'"^^
is imiformly bounded for all /?, m G f\l. More predsely one has the following:

Proposition 5.3.11 (Paley-Wiener). A function f is the inverse Fourier
transform of afunction /G ^ mth support in [R-> R] if, and only if,fis entire

analytic andfor each integer n there exists a constant C such that

|/(z)|<C(l+z|)-"exp(Ä|Imz|).
We only need the "only if " Statement of this proposition. This is easily

established (see Notes and Remarks).
Now we are prepared for the first reformulation of the KMS condition.

Proposition 5.3. 12. Let(^^ T) beaC^-dynamicalsystem,andcüastateover^,
The following conditions are equivalent:
(1) co satisfies the (T, ß)-KMS condition,

(2) The relation

/oo /"OO

dt f(t}m(Ai,(B]) = / dtf(t + iß)(j4it(B)A)
-OO Joo

is validfor all A, B e"^ and allf mth /G ^.

PROOF. (1) ^ (2): If j5 G Ul^, then z ^ co(^T.(5)) is entire analytic and

CD(Ai,(B]) = a4i,_,ß(B]A)
for all t G [R. The function

z^/(z)a;(T,(^M)
is entire analytic and decreases faster than |Re zp" äs Re z ^ oo, provided |Im z

< ß, by Proposition 5.3.11. Hence, by Cauchy's theorem

/'OO fOO
dt f(t)a)(Ar,(B)) = / dt f(t)a)(i,^,ß(B)A)

- OO J OC

= f dt f(t + iß)co(i,(ß)A) .

./-OC

The condition for general B G '^l follows by continuity and the decay properties of/.
(2) => (1): If (2) holds and B G ^I^ then inversion of the foregoing argument

establishes that

/oo dt f(t)o)(r,^iß(B)A) .

-00

Choose f,, e ^ such that 0 < /, < I,/,(.T) = l if |.T| <n and f^,(x) = 0 if

\x\ > + 1. Thus, for any bounded, continuous function g,



KMS-States 87

/oo dxfn(x)g(x) = g(^]
-00

and hence

0}(AB] = cD(i,iß(B]A] .

Replacement of ^ by iiß(B] then gives the i-KMS condition.

The Utility of Proposition 5.3.12 can be illustrated by consideration of a

sequence T" of strongly continuous one-parameter groups of *-automorphisms
of ^ converging strongly to a group T, i.e., ||T"(yl) Tr(^)|| ^ 0 äs 77 ^ oc for

all ^ G ^ and t G U. Assume that co is a sequence of (T", jÖ)-KMS states vvhich

converges in the weak*-topology to a state co. It then follows that co(^T"(5))
-^ o}(Ait(B)) and hence if /G ^ the Lebesgue-dominated convergence theorem

and Proposition 5.3.12 imply that

/oo
/oo

^?/(Ocü(^T,(5)) = lim / dtf(t)o}(Ai^(B))
-00

"-> 7-00

/oo J//(? + /)ß)a;(T;'(5)^)
-00

/oo dtf(t + iß)co(r,(B)A},
- OO

i.e., (D is a (T,jS)-KMS state. This same type of reasoning can be applied under
weaker assumptions to the convergence of Green functions.

EXAMPLE 5.3.13. Let i" be a sequence of strongly continuous one-parameter
groups of *-automorphisms of a C*-algebra ^ and co a sequence of T" -invariant

States. Assume that the limits

G(A,B-t)= lim o}n(Ai';(B))
n* oo

exist, for all A,B e'^ and t G [R, and in particular the weak*-limit co of co,, exists. It

follows automatically that the functions G\t^^G(A,B\ t) are measurable but they are

not necessarily continuous. If one assumes, however, that the G are continuous and
the (Dn are (T'', jß)-KMS states for some ^ G (R, then Proposition 5.3.12 implies that

Qfü is separating for ii(^(^]" ,
For this one first applies the Lebesgue-dominated

convergence theorem to conclude that

/oo
rOG

dtf(t)G(A,B]t)= / dtf(t-{-iß]G(B,A',-t]
00 J 00

for all/with /G ^. Second, one estimates that

\G(A,B-t)\^ < lim CDn(AA^)cDn(B^B}= \\n^(A^)Q,,f\\7i^(B)^^\\~
/;> oo

and hence

G(A,B',t) = (7r,,(^*)Q,, X,7L^(B)Q^) ,

where / 1-^^^; is a weakly continuous one-parameter family of bounded operators with

\\Xt\\ < 1. Next, for ^ G na}(^)" one chooses^,, G 51 such that no,(An}O.ca -^ ^^w and

7rco(^*)Qü; -^ ^*^w. Finally one has
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/oo roo

dtf(t)(A^Ü,,,X,A*ü,,)= lim / dtf(t}G(An,A:-t)
.00

>^^00 J_^

= lim / dtf(t^iß)G(AlAn;-t)
"^^ J-oo

/>00

- / dtf(t + iß)(AÜ,,,X-,AQ,,) .

J oo

Thus ifAQ,a = 0, then

r dtf(t)(A*Ü^,X,A'^) = 0
J ~ OO

and äs t\-^X{ is continuous one must have A*Q(^ = 0. But then Q^^ is separating for

71,^^1)'' by Lemma 5.3.8.

The next reformulation of the KMS condition emphasizes the measure-

theoretic structure which is an inherent consequence of the i-invariance of
KMS States.

If (^, T) is a C*-dynamical System, and co is a T-invariant state on "iH, consider
the functionals /.i^ and VA defined on ^ by

/oo dtf(t)(o(A*T,(A}) ,

-00

/OO dt f(t)o4T,(A)A*) .

- OO

If

/oo e-''"dE(p)
OO

is the spectral decomposition of the canonical unitary group implementing T in
the representation (^,.,,71(^,0^0), one has

/oo
/*oo roo 1

dt dp (Ti^(A)^,,,dE(q)n,.,(A]ü,)-e'P'f(p)e""'
- OO J 00 J oo ^'^

(7i,,(A}ü,,,dE(q)n^(Ä)Q,,)f(q} .

Hence JLL^ is actiially a positive Radon measiire on R, i.e., j^i^ extends by con-

tiniiity to a positive functional on Co(IR), which is given by

d^iA(p} = (7i,o(A)ü,,, dE(p)n,,(A)ü,,) .

Analogoiisly, VA is the measure given by

dVA(p) = (7l(^*)Q, ^(-/')7l(^*)a) .

We now characterize the KMS condition by means of these measiires.

Proposition 5.3.14. Let (^K, T) be a C^-dynamical System, co a i-invariant state

over ^21, and /f^ and VA th^ positive Baire measiires on [R associated with co.
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The follomng conditions are eqiiivalent:
(1) co is a I-KMS state at value ß.
(2) The measures ^^ and VA are equivalent, with Radon-Nikodym deri

vative

'-^(P} = e-^^
dVA

for all A ^ ^.

PROOF. (1) ^ (2): Using Proposition 5.3.12 (2) we deduce that

/oo

ßÄ(f]= / dtf(t}(D(A^^,(A}]
J00

r^
= / dtf(t-i-iß)(D(T,(A}A^) = VA(kf) ;

J00

where k(p) = e~^P, The proof of (2) ^ (1) follows by inversion of the argument.

Note that condition (2) of the last proposition can be stated äs a set of

inequalities

(2') di^^p] > e-I^Päti^-p)
because iteration of this latter condition gives

diiA(p] > e-ßPd^A^-p] > dliA(p}
and then the identity dvA(p) diJiA^(p) implies that (2) and (2') are equiva
lent. The following characterizations of the KMS condition are all expressed in

terms of inequalities which stem from a stability property of the KMS states. It

is remarkable that these inequalities can be expressed in terms of the in

finitesimal generator d of the group T and do not directly involve the global
behavior of the group.

The stability properties which are inherent in the following characterizations
of the KMS condition can be partially explained through the principle of
maximum entropy for the Gibbs equilibrium states. For simplicity let 51 = M,
the C*-algebra of all n x -matrices, acting on the w-dimensional Hubert space
^ and hence each state over ^ is of the form cOp where

a)p(yi)-Tr(p^)
and p is a density matrix. In particular, if H = H^ e M and jö G IR, the Gibbs
state copßf^ is defined by setting

e-ß^

^^^~TT^^(e-ß^} '

Now one can define an entropy function iS; co G -Egj i> S(co) G [0, log 77] by

S((Dp) --Tr,,(plogp) .
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(The function - x log x is defined by continuity to be zero ai x = 0}. It then
follows that the Gibbs state is the unique state which maximizes the function

F(cDp)^ß-^S(cOp)-(Df,(H) .

This follows basically from the convexity inequality

-Tr(.4 logA-A log B) < Tr(yi - B)

for Hermitian matrices A and B and the identification

F(cü,) = -r' Tr(p log p - p log pßff) + r' log Trg,.(e-^'')
(see Chapter 6, Section 2.3). Thus the Gibbs state is characterized by the

principle of maximum entropy at fixed energy.
The maximum entropy principle leads to various stability criteria. For ex-

ample, if cp is any map from E^n to E'sii, then

F(co,^J > F((p(co,^^)) .

The simplest illustration of this rule occurs if (cp((D))(A) o}(WAU) for some

unitary [/ G ^. For this transformation one has S((p((D)) = S(CD), and hence
the inequality for F gives

-Tr^^XP^//^) > -Tr^.(P/?//^*^^)
which can be rephrased äs

oj,^,^(U*[H,U]) > 0.

But the dynamical group T corresponding to H is given by

rt(A} = e^^^Ae-^^^

and the infinitesimal generator (5 of T by

ö(A) = [iH,A] .

Thus one concludes that the Gibbs state satisfies the stability requirements

r^co([/*^(t/)) > 0

for each unitary U e^.ln Section 5.4.4 we will demonstrate that this criterion

expresses the fact that Systems in equilibrium are unable to perform mechanical
work in cyclic processes. For this last reason states which satisfy the criterion
are said to be passive. In Theorem 5.3.22 we also demonstrate that passivity of
a state is to a large extent equivalent to the KMS condition. The two condi-
tions cannot be completely equivalent because the passivity criterion carries no
reference to the temperature, i.e., the value of ß~^

,
and convex combinations of

passive states are passive.
A second type of stability criterion follows from consideration of con-

tinuous semigroups t >Q ^^Tf such that TfE^^i C E<.ii. If y denotes the infinite
simal generator of T, then the maximum entropy principle gives
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r'(F(a),^J-F(r,a;,^J) >0
and hence

-F(ya)p,J > 0
.

For an example of this latter principle consider the operator y^; ^ i-^ ^ defined

by

ys(A)=B^AB-{B^B,A}/2
for some fixed B e^. Clearly, jß is bounded and 75(1!) = 0. But one readily
calculates that

yß(A^A) - yß(A^)A-A^yß(A) - [A, 5]*[^, B] > 0

and hence 7^ is dissipative, by Proposition 3.2.22, and

\\A-o^yß(A)\\>\\Al a > 0,^6^,

by Lemma 3.1.15. Therefore,

/ t \~"
r > 0 H^ r, = expj^y^} = lim h - -y^

n > oo \ 72 /

is a uniformly continuous semigroup of contractions. Moreover, r/H ^=11. It
then follows from Corollary 3.2.6 that the T/ are positive, i.e., r/iK+ C ^+ and

77^21 ^ E^ for all / > 0. Application of this type of semigroup and convexity
arguments leads to a set of inequalities for the Gibbs states which are some-

times referred to äs auto-correlation lo\ver bounds. These inequalities have been

proved to be equivalent to the KMS condition.

Theorem 5.3.15 (Roepstorff-Araki-Sewell). Let (^,T) be a C"" -dynamical
System, ö the infinitesimal generator of T, and co a state over 51.

The following conditions are equivalent:

(1) co is a (T, ß)-KMS state

(2) -ißo}(A''ö(A)) > co(^M)log(co(^*^)/co(^*))
for all A e D(ö), where

{u\og(u/v), W > 0,1; > 0,
0, W- 0,1; > 0,
+ 00, W > 0,i;= 0

.

PROOF. (1) =^ (2): A routine calculation shows that the function

u,veU+ X U+\-^S(u,v) =u\og(u/v)
is lower semicontinuous, jointly convex in (w, t;) and homogeneous of degree l in

(w, ü), i.e.,

S(^u, ^v) = 2.S(u, v)

for W, t;, A e R+. Hence it follows that
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si^ ^-w/,^ ^iVi l < ^ ^iS(ui,Vi)
\ i i J i

for all finite sequences {/l/}, {w/}, and {i;/} in 1R+. If f\ and /2 are continuous
bounded non-negative functions on [R, and j^i is a positive finite Baire measure on [R,
it follows from Proposition 4.1.1 that /i can be approximated by measures of finite

Support, and the lower semicontinuity of S implies.

5(K/l),K/2)) <^(5(/,,/2)).
If co is a (T,^)-KMS state, we may form the measures

d^A(p) = (n^(A)Q.,,,dE(p)7i^(A)üa^) ,

dvA(p) = (n^(A*)üa,,dE(-p)n,,(A*)^^)

äs in the introduction to Proposition 5.3.14, unless ß = 0, in which case co is a

trace-state, and both sides of the inequality in (2) are zero. Define k(p) = e~^P
.

Proposition 5.3.14 and the above inequality then imply

^(co(^*^),co(^^*)) = S(ii^(\), v^l))
= S(^lAl]. ßA(k-']]
< M^(^(l,^-'))
= M^(logyc)
- -iß(n^(A)ü^,iH^n,,(A]^^) = -iß(D(A'^d(A]) ,

where we have used the notation U(^(t) = e'^^"^
.

To prove (2) ^ (1) we need the following lemma.

Lemma 5.3.16. Lei (^, T) be a C*-dynamical System, let d be the infinitesimal
generator ofi, and assiime that CD(Ad(A]] G M for all A ==^* G D(ö).

It follows that 0) is i-invariant, i,e.,

CO(T,(^))-CO(^)
for allAe^ and t G R.

PROOF. As ö(AY = ^(A) for A = A* ^ D(ö) it follows that

a}(ö(A)A) = co(AÖ(A)) = -co(AÖ(A)) ,

where the last equality is a consequence of the hypothesis of the lemma. Hence

CD(Ö(A~)) = co(ö(A)A) + co(AÖ(A)) = 0
,

and it follows that

CO(T,(^-)) - oj(A^) = l ds(D(d('L,(A)^)) = 0
.

JQ

The T-invariance then follows by continuity from Proposition 2.2.10 and Theorem
2.2.11, i.e., each element of ^ is a linear combination of four positive elements.

END OF PROOF OF THEOREM 5.3.15. (2) ^ (1). If ^ 7^ 0 the auto-correlation lower
bounds and Lemma 5.3.16 imply that co is r-invariant and we may form the measures
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^^ and VA for all A e ^. If /G ^ it follows essentially from Propositions 5.3.11 and

2.5.22 that

if(A] = j dtf(t]T,(A]

is entire analytic for d and, in particular, if(A) G D(d]. Now we compute

t/<(/) = / dtf(t)U,,(t)

= y dtf(t} j dE(p)e-""

= j f(p}dE(p] = f(-H^) .

Defining h(p) = \f(p]\^ and k(p) = e~'''' we deduce further that

-ißwMAYöMA)))
= -iß(U(f)n^(A)fl,,, m^ U(f]Ti,,(A)^^}
= (n^(A)Q,J(-H)ßHj(-H^)n,,{A)Q)=ß^(\og(k)h).

By similar computations, one finds

w(Tf(Arzf(A)) = n^(h) ,

Co(Tf(A)Tf(AY) = VA(h) ,

-ißw(Tf(A)5MAr)) = -v,(log(^)A) .

Thus the auto-correlation lowerbounds, applied to T:/ (A) and T:f(AY, respectively, give

/i^(log(yt)//) > S(^A(h). VA(h)) ,

-VA(\Og(k)h) > S(VA(h]^ ^A(h]]

Now, define p(h) = sup(supp h) and p(h) = inf(supp h). Assuming for the moment
that j5 > 0, we deduce from log k(p) = -ßp that

-ßp(h)h < hlogk < -ßp(h)h .

The auto-correlation lower bound then implies that

-ßp(h}^A(h) > ^AW^Og(^AW/VAm ,

ßp(h)vA(h] > VA(h)\Og(vA(h)/fiA(h}).

or, equivalently

e-ßP^^\AW > ^A(h} > e-ßP(^^^VA(h] .

Also, since

e-f^P^^^h >hk> e-f^P^^^h
,

we have

e-^P-^^^^^A(h] > VA(hk) > e-ßP^^^VA(h] .

Let e>0 and let {/z}^>i be a sequence of positive elements in Q> such that

^^^ hn = l pointwise, and

\^-ßp(hn}_^-ßp(h}^ ^ ^
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Then the above inequalities imply that

\llA(hhn]-^^A(hhnk]\ < V^(/2/Z,)

and so, by Lebesgue's theorem,

|A(,(/2)-v^(M)| < ,VA(h].
Hence

^iA(h) = VA(hk)
for all h e ^. But this is just the measure-theoretic form of the KMS condition,
Theorem 5.3.14. When ß < 0 ihe reasoning is the same.

Finally if ^ = 0 the auto-correlation lower bound implies that o}(A*A} < (Jo(AA*)
for all A e^; thus by interchanging A and A*, co(A*A) = co(^^*), and o; is a trace-

state.

We next derive a characterization of the KMS condition by "auto-corre
lation upper bounds." This is formulated in terms of a quantity which occurs in
a perturbation expansion of the free energy, and is known alternatively äs the
Duhamel two-point function, Bogoliubov scalar product, Kubo-Mari scalar

product, or the canonical correlation. If (^, T) is a C*-dynamical System and CD

a T-invariant state on 51, this quantity is a priori defined äs a sesquilinear form
on the entire analytic elements ^^ by

(A,B)^ = - [ d^o3(A^Ta(B)) - (n^(A)Q,,,(ßH,,r' (^ - e-ß^-}n^(B)Ü^)
P JQ

for A,B e ^T. Here and later we define p\-^p~^(l e^P] by continuity to be

equal to one when ;? = 0.

Formally, this quantity appears in the second-order term of a perturbation
expansion of the partition function. Let us reconsider the example ^ = M and
the Gibbs state

,^, Tr(e-/'^^)-M^)-T|:M^-
The quantity

Z(^//)=Trs(e-'''^)
is usually referred to äs the partition function and one computes that

ß\A,B)^ = ß'~ l dt cDßH(A^^uß(B]]
Jo

= Tr(^^* / dte-ß^^ßBe-ß^^-^^^}/Z(ßH)
JQ l

- 4-Tr5( f dt e-W^-^^)/J^*e-/'(i-0(//-^5)) /z(^//)
dy JQ ' /

^'.Trs(e-^-^--^^))_^^/Z(^//)
dxdy

^^Z(ß(H-xA*-yB])^^^^Jz(ßH).
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The name canonical correlation comes from the following formula which is

derived in a similar manner

^O^ß(H-.B}(Ä}l = ,= ß{(A\B)^-COßH(A}cDßHm -

Subsequently, in Theorem 5.4.12, we show that if co is a (T,/?)-KMS state

which is strongly clustering, i.e.,

Um (jo(AT:t(B}} = CD(A]o}(B}
/>oo

for MA,B e ^, then

iß(A,B)^^ißcD(A)a}(B)-i-\im [ dtco([A,T,(B}]),
r->00 JQ

The last term represents the first-order change of a)(A} when co is allowed to

envolve under a perturbed dynamics, with perturbation B. Thus it is often

called the linear response. This is fully discussed in Section 5.4.

The inequahties occurring in the following theorem will be referred to äs the

auto-correlation upper bounds.

Theorem 5.3.17 (Roepstorff-Fannes-Verbeure). Let (^, T) be a C'^-dyna-
mical System, and CD a i-invariant state over 9l.

The following conditions are equivalent:
(1) o; is a (i,ß) - KMS state

, f^
(2) ß-^ / J/ICO(^*TU(^))< (a;(^*^)-co(^yl*))/log(co(yi*yi)/co(yi.4*))

Jo
for all A G ^Ir, where we define

(u - v]/\og(u/v], W > 0, z; > 0, W / u,

(u - v]/\og(u/v] = <( W, W = z; > 0,
0, uv = 0

.

PROOF. We consider only the case j5 7^ 0 and leave the marginal case ß = 0 äs an

exercise.

(1) =^ (2): If ^ e ^T define the measures /i^ and VA äs in the introduction to

Proposition 5.3.14, and again define k(p) = e~f^P. By Proposition 5.3.14 the KMS

condition implies

/.^(r') = vxi),
while the auto-correlation upper bound states that

/i^((l -Ä:-')/logÄ:) < (v^(l) -/z^(l))/log(v^(l)//i^(l)) .

Hence we must prove

/.,((! -r')/iogfc) < (/.^(r')-^,(i))/iog(/.,(r')//.,(i)) .

By a change of scale, it is enough to prove that
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[d^l(p)p-\e>'-\) < ( l d^i(p)e''- fdn(p)]/log(fd^i(p)eP/ j dn(p)\
J \ J 'J / l \J J /

for any positive finite Baire measure I.L on R such that Jdi.i(p)e^P < oo for all t e R.
Define a function/by

f(t) = log(fd^i(p)e"'} .

V'-' /

This function is convex in t because

f'(t] = j dn(p]pe"'/ j dn(p]e"' ,

/"(O = (^ l dn(p)e'^ j di.i(p]p^e"' - ( j d^i(p)pe"']'^ j (j rf^^/')^"')' > 0
,

where the last inequality is a consequence of the Cauchy-Schwarz inequality, In

particular,

/(/)< (l -0/(0) + //(!)
and hence

/ rf?exp{/(0}< / ö'/exp{/(0)}expW/(l)-/(0))}
JO JO

= (exp{/(l)} - exp{/(0)})/(/(l) - /(O)) .

But

xp{/W} = /rfM;')p"'K-i)
and so we obtain the desired inequality

ld^l(p]p-\ef-\]< ( l d^i(p)- l'd^i(p)ep}/\og( fd^t(p)/ fdn{p)eA
.

J \J J / / \J l J /

(2) = (1). We will prove that the auto-correlation upper bound implies the
auto-correlation lower bound and then appeal to Theorem 5.3.15. Again we may
assume j5 = l by changing scale. Consider the function

f(p] = p-\eP-\]= l dte^^
.

l

dt ex|:
0

It follows from the integral representation that / is strictly increasing and convex,
and hence the inverse function g,

g(p-\e''-\)) = p,

exists on IR"^ and is strictly increasing and concave.

Defining x = co(ÄÄ*)/co(A*A), the auto-correlation upper bound foT ß = l takes
the form

d^^(p)p-\eP-l)/CD(A^A) < (x-l)/\ogx
J

and hence
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But äs g is concave and continuous, and diJ,^(p) /w(A''A] is a probability measure, it

follows that

g(j d^,(p]p-\eP - l)/co(^*^)) > j d^i^(p]g(p-\eP - 1))M^M)

= J^ d}^^(p)p/co(A^A)

= (n,,(A)ü,, - H^n,,(A)Q,,)/co(A^A)
= ico(A''ö(A})/a}(A''A)

and hence

io}(A''ö(A)) < co(A'^A)\og(o}(AA'')/co(A*A)) .

Multiplying both sides by -l one obtains the auto-correlation lower bound ai ß = 1.

As ^IT is a core for the infinitesimal generator ö of T, by Corollary 3.1.7, the in-

equalities of Theorem 5.3.15 follow for general A G D(ö) by continuity.

In Order to proceed further in the analysis of KMS states, and in particular
to examine the condition of passivity äs a criterion for the KMS property, we

must broaden slightly the latter notion. In statistical mechanics the parameter
ß which occurs in the definition of a (T, j8)-KMS state is proportional to the
inverse temperature. Thus ß = 0 corresponds to infinite temperature and the

associated KMS states, the r-invariant traces, are therefore called chaotic
States. At the other extreme one has the zero-temperature case ß = + oc and
the definition of a KMS state extends in a natural fashion to these states. They
are states of minimal energy in the corresponding representation, or ground
states. One can also formally consider negative temperatures and the extreme

case ß -00 and for contrast the corresponding states are called ceiling states.

Definition 5.3.18. Let (^, T) be a C*-dynamical System, ö the generator oft,
and CD a state over ^.

Then co is called a T ground state if

-icD(A*S(A}) > 0

for all A G D(ö). In this case CD is also called a i-KMS state at value + oc, or a

(T, 4-oo)-KMS state. Similarly co is called a T ceiling state if

icD(A^Ö(A)} > 0

for all A G D(ö), and in this case co is also called a r-KMS state at value ex, or

a (T, - (X))-KMS state.

There are many other ways of characterizing ground states. We collect some
of them in the next proposition. A corresponding proposition exists, of course,
for ceiling states.
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Proposition 5.3.19. Let (W, T) be a C'-dynamical System, and let co be a

State on ^.

The following conditions are equivalent:
(1) (D is a I groiind stäte.

(2) If A, B ^'^^, then the entire analytic fiinction

zf-^ (D(AI^(B))

is iiniformly bounded in the region {z; z G C, Im z > 0}.
(3) For any A^ B ^, there exists a fiinction FA^B ^vhich is continiioiis in

Imz > 0, analytic and bounded in Imz > 0 such that

FA^B(t]=o^(Ait(B]]

for all t^R,

(4) If f is a fiinction mth Fourier transform /G ^, and supp/
C (-00,0), then

co(^f(Ar^f(A]] = 0

for all A G ^l.

(5) co is i-invariant, and if

e^^^-7i^(A)^,,^7i,,(i,(A)]^^
is the corresponding iinitary representation ofR on ^, then

H^> 0
.

Ifthese conditions are satisfied, then e'^^'" G TLa^(W)" for all t e R
.

PROOF. We will prove (1) 44> (5), (4) ^ (5), and subsequently (5) ^ (3) ^ (2) ^ (5).
(1) =^ (5). If co is a ground state then co is i-invariant by Lemma 5.3.16, and we

may form e'^^-. But 7io,(D(ö))Q^ C D(H,,) and

(n,o(A)Q^, H,,n,,(A)Ü,o) = -i(n,,(A)Ü,o, 7ia,(ö(A))ü,,)
= -ia}(A'^ö(A}) > 0

for alM eD(ö). But

e'^^-7i,,(D(ö))ü^ = 7r(T,(D((5)))Q,, = n,,(D(ö})Q,,
and hence n(o(D(ö))Üa} is a core for H,,, by Corollary 3.1.7. It follows that

(lA, //,,i//) > 0

for all ij/ G D(H,,} .

(5) => (1). This is immediate from the relation

-/co(^*^(^)) = (n,.,(A)Ü,, , H^n,,(A)ü,,)
foT A eD(ö),
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(5) ==^ (4). If 0} is T-invariant we have

K^(if(A))Q^ = U^(f)n,,(A)Qo. = f(-H^)n,,(A)Q^

by the calciüation used in the proof of (2) =^ (1) in Theorem 5.3.15. Hence if H^o >Q

and supp / C (-00, 0) then f(Ha)) 0 and thus

co(v(^)*v(^)) =^ ll^^vW)^-!!' - 0

for all Ae^.

(4) ==^ (5). If (4) is true it follows from the Cauchy-Schwarz inequality that

o}(A'Cf(B)} = 0

for all A, B E 51, and all /G ^ with supp /C (-00, 0). Replacing A by the elements

of an approximate identity for ^, Proposition 2.2.17, we obtain

co(v(5)) - 0

for all B e^^ and all /G ^ with supp /C (-00, 0). IfB = 5* it follows by taking the

complex conjugate of the last relation, that the relation still holds for all fe ^ such

that 0 ^ supp /. But then Lemma 3.2.45 implies that

CO(T,(5)) - (D(B)

for all ^ G [R, i.e., co is i-invariant. It follows therefore that

(n(A)Q^,f(-H^)n^(B)Q^) = (^*v(5)) = 0

whenever supp /C (oo,0). Hence //M > 0
.

(5) =4> (3). By spectral theory, we may define

FA.B(Z} = (^cu(^')ßa e'^"''n^(B)a^)

= / e-'^P(n^(A*)Sl^, dE(p)n^(B)Sl^)
J00

for Im z > 0, where

rO

e^^"- = / e-^^PdE(p)
Joo

is the spectral decomposition of e'^^'". Lebesgue's theorem now implies that FA. B has

the desired properties.
(3) =^ (2). This is proved by using the edge of the wedge theorem, Proposition

5.3.6, äs in the proof of (3) ^ (1) in Proposition 5.3.7.

(2) =^ (5). By an extension of the Phragmen-Lindelöf theorem, Proposition
5.3.5, we have that

a;(^T,(5))| < IMII ||5||

when Im z > 0. Hence, replacing A by the elements of an approximate identity,

h(T,(5))| < ||ß||

when Im z > 0. But if B = B* it follows from the Schwarz reflection principle that

CD(T:-,(B)) = co(TX5)), and hence |co(T^(5))| < \\B\\ for all z G C. By Liouville's theo

rem, co is T-invariant, and we can form Hfa.
If B e^r then i/^ = Tio,(B]^^ is analytic for H^ and



100 States in Quantum Statistical Mechanics

|(,A,e'--""iA)| = |a;(5*T,(5))| < co(5*5) = (i^, i/.)
for Im z > 0. Therefore, taking the derivative at 0 in the direction Im z > 0, Re z = 0,
we obtain

(lA, -//.o'A) < 0
.

But Tia)^^-,)^^ is e'^^'" -invariant and thus a core for HCO by Corollary 3.1.7. It follows
that

//o. > 0
.

The last Statement in the proposition is a conseqiience of Corollary 3.2.60.

EXAMPLE 5.3.20. Let UI(I)) be the CAR algebra over a Hubert space f) and T a

one-parameter group of Bogoliubov transformations such that T^(fl(/)) = a(e'^^f),
etc. In Example 5.3.2 we have shown that there is a imique (-i,ß)-KMS state for all
ß ^ U and we next argue that there is a unique T ground state (T ceiling state) if, and
only if, there are no nonzero / G l) invariant under the unitary group U^ e''^. First,
assume there are no invariant / and let co be a ground state. It follows from Lemma
5.3.16 that co is t-invariant and then it follows äs in Example 5.2.21 that co is even.

Now by linearity, anti-linearity, and positivity

co(a*(/)a(3)) = (ö,r/),

where 0 < 7 < 1
.
The i-invariance implies that T commutes with Ut and hence T

commutes strongly with H. But the ground-state condition -zco(^*(5(^)) > 0 with the
successive choices A = a(f] and ^ = *(/),/ e D(H], yield the conditions

TH = HT <Q
,

TH = HT <H
.

These conditions uniquely determine r by T = '//(-oo, 0) where EH denotes the
spectral family of H. In particular

7i,,(a((i - T)f}}ü^ = 0, 7ü,(*(r/))n, = 0
.

Therefore,

cD(a(g^}a(g2}) = co(a((^ - T}gi)a(Tg2))
= -co(a(Tg2)a((^-T)g,))=0.

Moreover,

co(a%fi)a*(f2)a(gi)a(g2)}
= co(a^(Tf,)a'(Tf2}a(Tg,)a(Tg2))
= -cD(a^(Tf,]a(Tg,]d\Tf2]a(Tg2)) + (g^Jf2](g2Tf,]
= -(32. r/2)(^i, r/l) + (^1, r/2)(^2, r/l)

by use of the CARs. A similar calculation for higher-order monomials proves that co

is the unique gauge-invariant quasi-free state with the above two-point function.
Conversely, assume that Utf = f with / 7^ 0. Let /^ denote the orthogonal

complement of / in l). It follows from the construction in the proofof Theorem 5.2.5
that ^(f)) ^ ^(C/) (g)^(/^). Thus, if co/ is any state over ^(C/) and coo is a

ground state for T restricted to ^(/^), then co/ 0 COQ is a ground state for T. Thus the
ground state is not unique.
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After this diversion on ground states and ceiling states, which correspond
intuitively to T-KMS states at values -h oo, and oo, we return to the discus-

sion of stability properties and the KMS condition. So far we have derived

various characterizations of the (T, jS)-KMS condition for some fixed

ß G [Ru{ oo}. We next consider a condition which implies the KMS property
for some ß G [0, oo] but does not determine the precise value of ß. This con

dition is the passivity condition introduced in the discussion of stability and the

maximum entropy principle which preceded Theorem 5.3.15. We first give a

precise definition of passivity for a general C*-System together with a refine-

ment of this notion, complete passivity.

Definition 5.3.21. Let (91, T) be a C*-dynamical System, where ^ has an

identity, let ö be the infinitesimal generator of T, and let co be a state on ^.

Then CD is said to be a passive state if

-io)(Wd(U)) > 0

for any U G ^o(^)'^^(<5), where ^o(^) denotes the connected component of

the identity of the group ^(^) of all unitary elements of ^ with the uniform

topology.
Moreover, CD is said to be a completely passive state if (X)"^ ^

co is a passive
state of the C*-dynamical System ((X)|'^i^, (X)J^^T) for each G f^.

The principal characterizations of passivity are contained in the following.

Theorem 5.3.22 (Pusz-Woronowicz). Let (^, T) be a C^'-dynamical System,
where ^ has an identity, ö the infinitesimalgenerator ofi and CD a state on ^. Let

ö^"^ be the generator of @^.^^T: on @"^i^. Consider thefollowing conditions:

(1) CD is a (T, ß)-KMS state for a j8 G [0, -f oo], and CD is i-invariant,

(2) CD is completely passive.
(3) CD is passive.
(4) -i(@]^^cD](Bd^''\B]] > 0/or all J5 - 5* G D(ö^''^} and all G N.

(5) -icD(Aä(A]] > Ofor all A = A* G D(ö).

The following implications are valid: (1) <^ (2) <^ (4) =^ (3) =^ (5).

Furthermore, if there exists a group G and an action ÖL of G äs *-auto-

morphisms of^ such that CD is (^.-invariant, a commutes with T, and CD is weakly
a-clustering, i.e.,

a)oc(,g = cD
, g eG ,

ocgit^rto^g , g eG,t ^R ,

and

inf \CD(AB') ~ CD(A)CD(B)\ - 0
, A,B ^^ ,5'6Co(aG(5))'

then it follows that (5) =^ (1) and all the conditions are equivalent.
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Remarks

(1) Since conditions (3) and (5) are preserved under convex combina-
tions of States, and convex combinations of (T, jß)-KMS states for
different ß are not KMS states, it is clear that a condition of purity
of CD is needed for the implications (3) =>-(!) and (5) =^ 1.

(2) If co is a (T, ^)-KMS state for a ß (0, oc], then CD is automatically
T-invariant by Propositions 5.3.3 and 5.3.19, but this is no longer
the case for ß = 0. Condition (5) implies invariance, however, and
thus the condition of T-invariance cannot be dropped from (1) (see
Lemma 5.3.16).

PROOF

(1) =^ (2). If co is an invariant KMS state at value ß for (^, T) then it follows that
(X)"^ ,co is a ^-KMS state for ((X)"^ j^, (X)"^ ,T) and hence (1) =^ (2) will follow from
(1) ^ (3).

(2) ^ (3). Trivial.

(1) =^ (3). When ß G (0, +00) this is an immediate consequence of the auto-
correlation lower bounds, Theorem 5.3.15, and when ß = +(X) it follows from the
definition of a ground state, Definition 5.3.18. The remaining case is ^ = 0, i.e., co is a
T-invariant trace-state. Assume first that U e D(ö) is a unitary such that ||t/ - H || <2.
Then it follows from spectral theory and an extension of Theorem 3.2.32 that there
existsan^ = A' e D(ö)v^ith\\Ä\\ < TI such that [/ = e'^^. But Lemma 3. 2. 3 1 implies that

r\

ö(U)=i / dre^'''^ö(A)e^^^-''^^
Jo

and hence

rl

co(U^Ö(U})=i / dro}(e^^''~^^^ö(A)e-^^''-^^^) = ia}(ö(A)) = 0
,

Jo

where the second step relies upon the trace property of co and the third step follows
from the t-invariance.

Next, if -/co(t/*(5(^)) > 0 for some U G ^f/(^l) r^D(ö) and F e ^?/(^) r^D(ö) is an
element such that ||F- U\\ < 2, then

V= UiU ,

where Ui = VU'^ G ^?/(^)nD((5) and \\Ui-^\ = \\V - U\\ < 2. Thus

co(t/i*^(^i))-0
and

-zco(r(5(F)) = -i(jo(U*U^ö(UiU))
= -ico(U"'U;ö(Ui)U) - w4U''UlUid(U]]
= -icD(U;ö(Ui)) - ioj(U''^ö(U)) > 0

.

Hence, the set of U e ^/(3I) r^D(ö) such that -io}(U"'ö(U)) > 0 is open and closed,
and thus %(5I)n/)((5) is contained in this set. (Note that ^/o(^)nZ)(^) =
('?/(5I)nD(^))o by the first part of the proof)
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(3) =^ (5). If y4 - ^* G D(ö), then

e^'^ %(9I)nD(^)

for all e [R by Lemma 3.2.31, and

r\

d(e'^) = i / dre^^''^ö(Ay^^^-''^'^ .

7o

It follows that

r\

-/co(e-'^^(e'^^)) - / dro}(e'^^''-^^'^ö(A)e-^''^''-^^A)
JQ

r\ co / 1 yz /

-^/ ^^E ,,
^ U^- [^...[^,^(^)]...]

Vo ,fr^ ! Vi 2

00 ('_;y'p/J+l / \-L^KhK-M>(^)i-i)
-8co(^(^))+^/co([(5(^),^]) + 0(-^) .

But the passivity of CD implies that this expression is nonnegative for all e R.

Therefore, one must have co(d(A]] = 0 and i(o}[d(A], A]] > 0 for all A = A^ e D(ö).
But then the relation

[Ö(A}, A] = Ö(A)A - AÖ(A) - Ö(A') - 2AÖ(A)

implies that

-io}(AÖ(A)) > 0

for all ^ =A* eD(ö).
(2) ^ (4). This is a special case of (3) ^ (5).
We now turn to the remaining proofs, namely, (4) =4> (1) and (5) =^ (1) under the

weak-clustering assumption on co. We first explore some consequences of (5).
IfB e D(ö), then (B + B*)/2 and (B - 5*)/2/ are selfadjoint elements in D(ö), and

condition (5) implies

~io}(2-\B + 5*)(5(2-' (B + 5*))) - zco((20"^ (B - ^)^((2z)~^ (B - r))) > 0

and hence

-ico(B''ö(B)) - io}(BÖ(B'')} > 0
.

Lemma 5.3.16 implies that co is i-invariant. Let t ^-^ t/to(0 exp{zY//(o} be the canon-

ical unitary group implementing T on ^ The last condition then reads

(no,(B)Qo.,H,,7i,,(B)Ü^) + (7r,X5*)Q,o,//o;7ra.(^*)aj > 0

for all B G D(ö). Next we use the relation

7r(T/(5))Q - [/,,(/)7c^(5)Q^ - f(-H^)7i,,(B}^^

which is valid for / G 5^(U). Moreover, T/(5) G /)((5) for all / G e^ and hence

(n^(B)ü^, H,,x(H^)n^(B)Q^) + ^(5)*^., //c.z(-//.)7r(5)*Üo.) > 0
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for all 5 G ^ and all positive x ^ ^(tR). By Corollary 2.4.15, 7c,,(^) is strong*-dense
in Tif/X^) = 9}ifo, and thus we have established

OBSERVATION l

(^ao,//c.X(^roMna.) + (^*a., //coZ(-/^..M*^.o) > 0

for all A e a^.o and all positive / e ^((R).
Next, define E [7rf^(3J)'Qf^]. Then Q^^ is cyclic and separating for E^'^l^E. Let A^,

JE be the associated modular operator and antiunitary involution on 'fy. Extend
A to ,^ by defining

A = A^' .

Then A is a nonnegative selfadjoint operator on ^y, and "^l^^^^o is a core for A'/^,
since E'aJi^jQtu E^^E^^,^ is a core for A^". By Standard results of the Tomita-
Takesaki theory we obtain

(A^/-^Q,A^/'5ao) = (A^-^^^Q^, Ay-^-^^-ao)
= (EB*EQ,,,EA*EQa,) = ('F^O, ^*Q,,)

Since t/,,(OO = ^r^ and f/,,(07^<:o(^)'^.o(0* = ^o.(^)' for all t, we then find
U,^(t)E = EU^(t] for all t, and hence

t/(0^9JI,,^t/,,(0*-^aRco^ .

Since A^ is canonically related to (E^,aE,^,o). it follows that Uco(t)EAE
= AEU(o(t)E, and hence A and H^^ commute strongly. Thus one has a joint spectral
representation,

HO,= je dE(s, A) ,
A = / e^'dE(8, 1) ,

JA JA

where A == IR x [R and [R = IRu{-oo}. Let ä(//to, log A) C A be the support of "(-, ),
i.e., the joint spectrum of //^j and log A.

OBSERVATION 2

a^(//a log A) c {(,;.) 6A;/<0} .

To prove this, we apply Observation l with ^(0 = ^~^~ on A = BE where B G ^ca-
Therefore,

(BÜ,,, H^e-^'^B^,,] + ('5*^,,, H^^e'^'^B^'Ü,,) > 0
,

where we have used the fact that /4j and E commute strongly. The function
f-^/() = ee"^" is real and anti-symmetric and hence has purely imaginary Fourier

transform /. Let C E SO^oj be the element defined by

C* = j dtU^(t]B^U^(tYf(t] .

Then

C = - j dtU,,(t]BU,,(tYf(t] ,

and hence
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C*Q,, - //^ß-^-m^ , Cüa, = -H^e-"'^B^^
.

Using the modular relation for A we obtain

(^ra^;, //co^~^''^*a^) - (^5*^0^, c*n^)
= (A^/^Cl^,, A^%Q,)
- -(A^/2//,e-^^5Q, A^/^^Q,) ,

and hence

(BQ^, H^e-^'^BQ^) - (l^^'^H^e-^^^B^^, A^%Q^) > 0
.

As 9}ia;^co is a core for A^/^, and //o; commutes strongly with A''^^, it follows by
closure that

//,,e-^^(1]-A)>0.
Observation 2 follows immediately from this inequality.

Define a(H^, logA) = d(Ha,, logA)nlR x [R
.

OBSERVATION 3

ö-(//,logA)--ö-(//,, logA).

Note that o(H(^, log A) = (T(Ha)E, logA^). Hence Observation 3 follows from the

identities.

JE A: JE = ^E , JE H^ EJE = /4; E .

The first of these follows from Proposition 2.5.1 1, the second from the commutation

of e^^"^^ with SE = JR^T" which is established äs in the proof of (3) -> (2) of The

orem 3.2.61.

OBSERVATION 4. Assume that there exists a set Z C {R x !R, such that

(1) I + E C I, where Z = i:n(IR x R) ,

(2) ZC {(,/l) E [Rx R; e;i<0}
(3) ä(//,, logA)ci:.
Then co is a (T, j5)-KMS state for some ß G [0, CXD] .

In the proof of Observation 4 we consider two cases separately.
Case L a(H^,\ogl^] = cr(/4j5logA). Thus, if p,q e a, then -p, q, E ä by Ob

servation 3, and hence /? + TTI^ E Z for all integers , m by assumption (1). But then

assumption (2) implies that p and q must belong to the same straight line passing
through (0,0) (otherwise {np -\- mq\ n, m E Z} would form a lattice in [R^ which could

not be contained in {(e,A) E U^\X < O}). It follows that (7(//a;,log A) itself is con-

tained in a straight line passing through (0, 0). If this line is vertical, then /f̂ := 0 and

co is trivially a ground state. If the line is not vertical, there exists ^ > 0 such that

;i = -ßs for all (e,/l) E (j(Haj, log A). But then

^ = e-ß"-
,

and hence co is a i-KMS state at value ß by Theorem 5.3.10.

Case II. ö-(/4j, logA) ^ ö-(//a;, logA). Then there exists EQ E [R such that

(EO, -oo) E ö-(/4j, log A). Assume that (E, }.) E ö-(//cü, log A) for some < 0. Then (3)
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and (2) imply that /l > 0, and (e, /l) e ö-(//oj, logA). But (1) then implies that

n(, 1) + (fio, -oo) = (n + fio, -oo) G Z for all 77 G N, and when n is so large that
ns-\- Q < 0 this contradicts (2). Therefore, 8 > 0 for any (g, 1) G ff(H(, log A). This
means that H^o > 0 and co is a ground state.

We are now able to prove (4) ^ (1) of Theorem 5.3.22. The proof is based on the
following formula:

/ / \\ "

älHn
, log A -yö-(//, logA)V 00. V (8)a.// f:rf^

7=1 J=l
^ ^'^

which follows from the obvious facts that

/;

H n = Vl 0 . - - 0 l 0//,o (8) H (S) . . . O D
,

A'\, - ^ A'^
.

0 W TT^ J ^ co y=i
7=1 7'= l

Hence, if co satisfies condition (4), i.e., ^"^ico satisfies condition (5) for all n, it
follows from Observation 2 that the set

/ n \

^= U E^(^-'i^g^)
>iV/'=i /

satisfies condition (2) of Observation 4. Conditions (1) and (3) of this observation are

clearly satisfied, and hence Observation 4 implies that o; is a r-KMS state at value
ß G [0,00]. In particular, co is t-invariant by Proposition 5.3.3 or Lemma 5.3.16.

Finally, we prove that (5) ^ (1) if co is weakly G-clustering for an action a of a

group G on ^ such that (y.g it = T/ a,y, for all ^ G G and t G R, and if co is a- invariant.
We show in this case that the requirements of Observation 4 are fulfilled with

t = a(H^,log^) .

Condition (3) is then trivial, while condition (2) follows from Observation 2. It
remains to show condition (1). Let co, T, and a be the normal extensions of co, T, and a

to 9JJco = TToX^)". Theorems 4.3.22 and 4.3.23 then imply that a, restricted to Ey)l,E,
has the three point düster property:

inf l cb(AB'C] - (:b(AC)cb(B) \ = 0
B'eCo(aG(B)}

V y V / l

for all Ä,B,C e E^Rf^E. Hence it follows from Theorem 4.3.33 and the subsequent
remark that

S - ö-(//, log A) - a(H,E, logA^)
has the semigroup property

z + zcs.

(Observation 3 even implies that Z is a group.) Thus to show condition (1) in
Observation 4, it is enough to show that (g, -oo) G S and (g',;.) G Z implies
(e + s', oo) G Z. But these conditions mean that

8 e (7(H,,(^ - E)) ,
B' e(T(H,,E) .

Now äs E is t-invariant, it follows from Proposition 3.2.40 that for any ^ > 0 there
exists A,B e ^co such that
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A = (i - E)AE , A^a, 7^ 0
,

B = EBE
, BQ.,o + 0

,

G^(A] C (g - (5, E + ^) , C7,(5) C (e' - (5, e' + 5) .

But äs a commutes with T the last condition implies that

o,(U,,(Q)BU,,(g)''} C ('-(5, ' + (5)

for all g e G. Hence it follows from Lemma 3.2.42 that

(Tu^,^(AU,,(g)BU,,(gYa>,, ) C (s-i- s' - 20, + s' + 20)

for all ^ e G. As (H - E)A = A, the latter vector lies in (D - E)^^ for all g e G. Hence

if we can show that the vector is nonzero for some ^ G G, it follows that

ö-(//,o(l - E))n( + 8' - 2^, 8 + e' + 2^) / 0 .

As ö was arbitrary, this implies

(8 + ',-oo) 62:
.

Assume, ad absurdum, that

AU,,(g)BU,,(gYü, = 0

for all ^ G. Then AU,o(g)BU,,(gYE = 0 by the definition of ". As

U,,(g)BU,,(gY(^-E) = U,,(g)B(^ - E)U,,(gY = 0

by the assumption BE = B, it follows that

AU,,(g)BU,,(gY = 0

for all g, or AU,(g)B = 0. Thus

(AQ,,,AUMBB''Ü,}=0.

But the weak G-clustering of oj with respect to a and Theorem 4.3.22 next imply that

|Mn,,||^||5*Q,,f = 0
.

But äs AQ.,^ 7^ 0 this implies 5*0,^ = 0. But Q,o is separating for EWl,E 3 B' and

hence 5* = 0. This contradicts the assumption B^a^ / 0. Thus

E + sci:

and the proof of Theorem 5.3.22 is complete.

We conclude this subsection with a discussion of various convergence
properties and several comments and examples concerning the existence of
KMS States. First we derive a justification for a terminology "KMS state at

it cxo" used in the definition of ground states and ceiling states.

Proposition 5.3.23. Let (^, T) be a C"" -dynamical System, and {o^y} a net of
states on ^l such that co^ converges to a state CD in the weak'^-topology, i.e.,

lim o}r^(A) = (D(A)
a

for all A e ^. Assume that co^ is a (T, ß^)-KMS state, where ßy G [Ru{oc}.
and that

\imß, = ß
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exists in Ru { dz cxo } .

Itfollows that (D is a (i:,ß]-KMS state.

PROOF. If \ ß < 00, we may assume that ^^ |< oo for all a by passing to a subnet.
Hence the corollary is an immediate consequence of the auto-correlation lower
bounds in Theorem 5.3.15, since u, v H^ u \og(u/v) is lower semi-continuous.

If ^ = + 00, we may either assume that ß^ = ^oo for all a, or 0 < jß.^ < + cx) for
all a. In the first case

-ia}(Ä''-ö(A)) = lim-i(Do,(A-''ö(A)} > 0
a

for all A e D(ö). In the second case note that by the auto-correlation lower bound

-ico(A'^3(A)) = \im-ico.,(A^Ö(A))
y.

> ins ^ a;,(^*^)log(co(^*.^)/co,(^^*))
^ Pa

> iim ((Dr^(A^A] - O^MÄ"]] = 0
^ ßa

for all A G D(d). The last inequahty follows because

u \Q^(u/v) = v((u/v] log(i//i;)) > v(ulv - 1) := u - v

by convexity of .x i^ ;c log x.

The case ß = oo is similar.

EXAMPLE 5.3.24. Adopt the assumptions of Examples 5.3.2 and 5.3.20. The
unique (T,jß)-KMS state over the CAR algebra ^(I)), for ß e [R, is the gauge-in-
variant quasi free-state co/j with two-point function

o,ß(a'\f}a(g)] = (g, e-/"'(1 + e"/'^)-'/) .

If there are no nonzero / 6 (^ invariant under U, = e''^
,
tlien

lim a)/,(a*(/)a(ö)) = (g, ^(-<^,0)/) ,/j^ 00

where EH is the spectral family of //. Thus the KMS states converge in the weak*-
topology to the unique ground state constructed in Example 5.3.20. Note that if
/, ^ G I) are invariant under Ut then

cop(a\f]a(g)] = (gJ]/2.
Thus the co/j are trace-states on the CAR subalgebra over the subspace of ^-in
variant vectors.

The next proposition, which is similar to the previous one, is sometimes
useful for proving existence of ground states and KMS states in C*-dynamical
Systems which are thermodynamic limits. It also implies that if ^11 has an

identity, the set of ^ such that (T, /5)-KMS states exist, for a given group T, is a

closed subset of [Ru{oo}.

Proposition 5.3.25. Let "^ be a C"" -algebra with identity D, and {T''},;>I a

seqiience of strongly continuoiis one-parameter groiips of'^-automorphisms of
Ul converging strongly to a one-parameter group T, i.e.,
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lim ||T;'(^)-t,(^)|| = 0
> oo

for each ^ G IR and A e ^. Assume that there exists a (i^, ß^]-KMS state co

077 ^for each n, where {ßn}>i C [Ruit oo converges to a ß e ^^ {00}, i.e.,

lim ß, = ß.
n -^00

It follows that each weak'^-limit point CD of the sequence {(DU} is a (1,^8)-
KMS State on ^. In particular there exists a (T, ß]-KMS state on ^.

PROOF. Let ^ be the generator of T" and d the generator of T. By Theorems 3.1.26
and 3.1.28 there exists for each A G D(d] a sequence {An}f^>i in ^ such that

lim An = A
,

lim ^(An} = ö(A) .

// 00 n^00

Let cüfj be a (T",^,J-KMS state of ^. Since ^ has an identity, E^i is compact in the

weak*-topology, Theorem, 2.3.15. Thus there exists a subset {ca^}^ of {co,,};, such
that a > cxD and co,,.^ converges to some state co in the weak*-topology. We will show
that co is a (T,^)-KMS state.

If ß \< oo, we may assume that \ ß^j |< oo for all n, and by the auto-correlation
lower bounds, Theorem 5.3.15,

(CD (A* A ]
'/:"":(

^nA^n:,^nJ

Hence, by limiting

-/^co(^(5(^)) > iim{co,J^;^J log (co,J^;^,J/co,J^XJ)}
> co(^M)log(w(^*^)/co(^^*))

where the last step uses the lower semi-continuity of u^v i-^ wlog(w/i').
If ß = H-CXO, we may either assume ß^^ = -{-oo for all a, or 0 < j5^ < H-CXD for all a.

In the first case

-ico^(Alö(A,J)>Q
for all a, and co is a ground state by limiting. In the second case c/j is a ground state

essentially by the reasoning used in the proof of Proposition 5.3.23.

EXAMPLE 5.3.26. Let ^ be a C*-algebra with identity, co a trace-state over 51 such
that (f,,, 7L(a) is a faithful representation, and consider a sequence // //* G ^ such
that

ö(A)= lim /[//, A]
n -^00

exists for all .4 in a dense *-subalgebra D(Ö)Q of Ul. Now wo ö = Q and ö is closable

by Proposition 3.2.26 and if the subspaces (z Ö}(D(Ö)Q) are dense in ^, the closure
5 of ^ is the generator of a group T of *-automorphisms of 5t by Corollary 3.2.57. If

i';(A) = e''""Ae~'^"", then T'/(^) -^ T;(y4) uniformly for t in compacts, Theorem 3.1.28.
Now

(Dß^n(A}^co(e-^^"A)/w(e-ß^")
is a (t",^)-KMS state on 51, since
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(OiUAB) = o4e-l>"''AB)/w(e^^"")
= a,(e-i>"'e"-Be-i^"'A)/co(e-^"-) = Wn(^"_,^(B]A)

for all ^,5 e 51, and it is in fact not hard to see that this establishes a one-to-one

correspondence between (T'^,^)-KMS states and trace-states on ^. By Proposition
5.3.25, 51 has (T, jS)-KMS states for all j5 e (Ru {00}.

Our fascination with KMS states throughout this section might mislead one

into thinking that such states always exist. We conclude with an example which
shows that this is not necessarily the case.

EXAMPLE 5.3.27. Our aim is to exhibit some C*-dynamical Systems (51, T), where
the 51 are simple C*-algebras with identity, and there exists a t-KMS state at one

and only one value ß 6 [Ru{cx)}. This state will be unique. Furthermore, this is

possible both for finite and infinite ß, and hence by rescaling of T for any
ß e Ru{oo}.

For /7 == 2, 3, . . . , +00, let 0 be the C*-algebra generated by a sequence {Si}"^ j
of

isometries

(1) S^S,= i^ z- l, 2,...

and if /7 < + oo, assume that

(2.n) Y. ^*^' = ^

/=!

If /2 = +00, assume that

n

(2.(X)) ^SiS* < 1; k= 1,2,....
/=!

It can be proved (see Notes and Remarks) that if (9^^ is another C*-algebra generated
by elements S^, i = l ,n satisfying (1) and (2. n), then there exists a *-isomorphism
a; &n H-> (9^^ such that a(5'/) = S'-. Hence & is uniquely determined up to *-iso-

morphism by relations (1) and (2. n), and by the arguments used in the uniqueness
proofs of CARs and CCRs, Theorems 5.2.5 and 5.2.8, it follows that each (9n is a

simple C*-algebra. Now for each t

Sl = i^(S^)=e^^Si

satisfies (1) and (2. n), and hence T^ extends uniquely to a *-automorphism of (9
n-

(This is the only point in the argument at which we use the uniqueness of the (9'.
Alternatively one could regard each T; äs a representation of relations (1) and (2. n),
and then form the direct sum representation ©^^^^T^- Trivially (@s^^T^s)(Si)
f^e'' X (@^,^^^T,,)(5/) defines a*-automorphism of the C*-algebra 0^ generated by
this representation, and the remaining arguments do not change. Of course, the

simplicity of 0^ would need another proof.) Clearly ^ ^ T; is a strongly continuous

one-parameter group, which is periodic with period 27ü. Hence

'^(^)=^r^'^'(^)
defines a projection of norm one from ^ onto the fixed-point algebra 0^^^ for T.
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We next analyze this fixed-point algebra. It follows immediately from (1) and

(2.n) that

(3) S]Si = öij^', ij'=\,2,..,n

and hence each element in the * -algebra generated by {^S/}"^ j
is a linear combination

of elements of the form

S^^v '

where /x, v are multiindices, e.g., // = (/i, ...Jk)Ji 6 {1,2, ...,}, and

S^ Sj^ Sj, . . . Sj^ .

Define the length of /z (J\, ...,7^) äs L(i^) = k. Then

T,(^A*)-e''(^(^')-^(^))V:
and hence

^(S^S^,) = ^i(^),i(v)'S'^'5'* .

It follows that 0l is just the closure of the linear combinations of elements of the
form S^S;, where L(//) = L(v). But if L(i^) = L(v) = L(^] = L(V) it follows from (3)
that

*-*//JV'-^M v'
^^ ^')/'' ^I^^V' 5

i.e., the set of S^S* with L(//) = L(v) = k form a set of ^' x ^ matrix units. It follows
from (2.n) when n < -}-oo that these matrix units are linear combinations of n of the

corresponding matrix units for L(ij) = L(v) = k-{- 1, and hence 0^ is a UHF-algebra,
i.e., (9^ is generated by an increasing sequence {Syt}jr.>j of füll n^ x n^ matrix alge-
bras, all with the same unit. If = 4- oo, a Variation of the argument above shows
that 01^ can be represented äs follows: If is an infinite-dimensional separable
Hubert space, then (P^ is the C* -algebra on (8)0-" generated by 1,
^^(S>) 0 D 0 H <8)

, =^^( (g) ) (g) H 0
,
etc. It follows that (9^ admits a unique

tracial state which is faithful if n < oo and is a character if = + oo.

Now, let co be a state on (P which is a t-KMS state at a finite value j5 G IR. As

co(Tt(s,s:)) = e''^(^(^')-^(^'))co(v:) ,

it follows from the i-invariance of co, Proposition 5.3.3, that o}(Sf^S^,) 0 unless

L(}ji) = L(v). (Note that & does not admit any tracial state because of relations (1)
and (2.n) and hence the case ^ = 0 is immediately excluded.) Now, Proposition
5.3.28 implies that the restriction of co to (9l is a trace, which is faithful, since & is

simple. This shows that (0^, T) does not have any KMS states for finite values of ß,
and if < + cxD we have shown that

(4) co(S,S:) = ö,^,n-^^^^^
(where ö^^^ = 0 ifL(^) ^ L(v)). Hence co is unique, if it exists. But co is a KMS state at

value ß if, and only if,

co(s,>s:,iiß(s,s;)) = co(s,s:,s,>s:) ,

i.e.,

e-ß(^(^^^-^(^'^^co(S,^S:.S,s:) = CD(S,S;S,>S:,) .
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It follows from (3) and (4) by tedious arguments that tlie left-hand side (LHS) of this

equation is nonzero if, and only if, the right-hand side (RHS) is nonzero, and in this case

I(/0+^(ri-^(vO+^(v) .

Furthermore, when this condition is fulfilled, one has

LHS = e-''W")-^W) /"'"'' if^(/')>i(v')
[/?-'-("'), if !(/()< i(v') ,

RHs=("-7';' f^(''')>^v)
[/r^(^'), ifL(//) <L(v) .

But L(ß]+L(i.i'] = L(v)+L(V) and hence L(I.I) > L(v') if, and only if, L(/0 < ^(v),
etc. Hence it follows that the equation is satisfied if and only if

for all /.i, v, i.e., if and only if,

ß = log n
.

Now, assume /? < H- oo and let oj be a ground on (^'n. Then

t^oj(S,i,(Sj)}=e-^'cD(S,S^}
has a bounded analytic extension to the upper half-plane, and hence co(5/S*) = 0.
But then

n

com =Y,^o(SiS;} = Q
/=!

which is a contradiction. To show nonexistence of ceiling states for all /?, one notes

that

i:^co(S;i,(S,))=e-'^CDm=e^^
does not have a bounded analytic extension to the lower half-plane. If n = +00,
choose a representation for {5/}J^ , such that there exists a unit vector O G R(Sf)'^ for
all /. If co is the corresponding state, then

co(SS^]~!^^ for/(^v-0, (S,S; = ^)
^'XVv)-|o, otherwise.

It follows immediately that co is a ground state. Conversely, it follows from the

reasoning showing nonexistence of ground states for finite n that this is the only
ground state.

Condiision. The C*-dynamical System ((^^'/;,T), = 2. 3, ..., + 00 admits a (T,/i)-
KMS state if, and only if, ß = log /?, (ß = +00- if // = +oc). The corresponding KMS
state is unique.

5.3.2. The Set of KMS States

The KMS condition originated äs a characteristic of Gibbs equilibriiim states

in qiiantum Statistical mechanics and for finite Systems the condition com-
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pletely characterizes the Gibbs states (see Example 5.3.31). This coincidence
between KMS and Gibbs states appears to persist in many models after the

thermodynamic limit. The ideal Fermi gas provides a specific example. Thus if

a thermodynamic System is described by a C*-dynamical System (^, T) and one

accepts the Gibbs formalism it is natural to interpret the set Kß of (T, ^)-KMS
states äs the set of equilibrium states at inverse temperature ß. We will give
more fundamental reasons for this interpretation later in this chapter and in
the next chapter. If the model reflects the basic elements of physical reality one

expects for high temperatures that Kß contains a unique element but at lower

temperatures, i.e., larger ß, it should contain many elements corresponding to

the various thermodynamic phases and their possible mixtures. Our next in-
tention is to analyze the set Kß with this interpretation in mind. In particular it
is of interest to characterize the elements of Kß corresponding to pure phases
and to examine the decomposition of a general co E Kß in terms of these special
elements.

It is evident that the set Kß is a convex subset of the state space E^ but it
follows immediately from the auto-correlation lower bounds in Theorem 5.3.15
that this set is closed in the weak*-topology. Thus if ^ has an identity, Kß is a

convex subset of E^ and consequently it is the convex closure of its extreme

points. These extremal (T, jS)-KMS states appear äs natural candidates for the

description of pure thermodynamic phases and then the Separation of phases
coincides with the barycentric decomposition of KMS states.

In Order to analyze Kß it is necessary to study the set of KMS states over an

associated ^*-dynamical System (9^1, T). We begin our analysis with a propo-
sition which implies, among other things, that a nontrivial one-parameter
group on an abelian algebra does not admit faithful KMS states. This indicates
that the KMS condition is not an appropriate characterization of equilibrium
for classical Systems (see Notes and Remarks).

Proposition 5.3.28. Let ^ be a von Neumann algebra with a cyclic iinit

vector Q, co the corresponding state, and T a a-weakly continuoiis one-para
meter group of'-automorphisms of^, Let

9Jr = {y^ G 971; T,(^) = A for all t G (R)

be the fixed-point algebra of i: and let

^o, = {^ G 9Jl; 0}(AB) = w(BA}for all B G 931}
be the centralizer o/co.

If co is a i-KMS state then it follows that

(,, - m\

In particular

m^m' c a)r

and //9Jl is abelian, one has T/ i.for all t e U
.
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PROOF. If A e 9[R\ then A e"^^ and T/(^) = A. Hence by the i-KMS condition

CD(BA) = a}(AB)
for all B e'^r, and by the density of 911^ in 93l one concludes that A eO^co-

Conversely, if co(AB) = co(BA) for all 5 E 911, then

CD(Bit(A)) - (jo(i:t(A)B) = (D(i^t(B]A] - (D(Ai:_t(B)] = 0

because co is r-invariant, Proposition 5.3.3. Hence, if FB^A is the KMS function
associated with the couple B, A, we have

FBA^-I) = FB^A(t),t^U.

Now, if 5 e ayJt, we have that

FB^A(Z) = co(T_,(5M)

by the edge of the wedge argument used in the proof of (3) =^ (1) of Proposition
5.3.7. Hence FB^A has an entire analytic extension in this case. But äs an entire

analytic function it is determined by its restriction to U. It follows that

FB,A(Z -i) = FB^A(Z)
for all z G C, i.e., FB^ A is periodic with period /. As FB^ A is bounded in the strip l <
Im z < 0, it follows that FB^A is bounded, and hence FB^A is constant by Liouville's

theorem, i.e.,

(5*n, T,(A)Q) = FB,A(t) = FS,A(O) = (5*0, A fi) .

Therefore äs 911^^ is dense in ,

T:f(A)ü = Aü

for all t e U. But Q is separating for 9}! by Corollary 5.3.9, and therefore Tf(A} = A,
i.e., A G 9JJ^, and ^(^ = 91!^. The last Statement of the proposition follows from the
fact that

9}ln9JI' C e,^ .

The next result is a key lemma in the analysis of Kß.

Proposition 5.3.29. Let ^ be a von Neumann algebra with afaithful normal
State co, (Jt the corresponding modular groiip, and cp any other normal state

on m.

The foHovving Statements are eqiiivalent.

(1) cp is a a-KMS state,

(2) There exists a positive operator T afßliated with 9Jln9Jt' such that

(p(A) = co(r^/-.4r^/-)

for all Aem.

If these Statements are triie, then T is unique.
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In particular co is the unique a-KMS state on 5DI if, and only if, 931 is a

factor.

PROOF. We may assume the existence of a separating and cyclic vector Q such that

(ß(A] = (Q, AD.)
for all A e'^. Let J and A be the modular conjugation and modular operator
associated with (9Jl, ß), Definition 2.5.10.

(1) => (2). Assume first that there exists a /l > 0 such that

(p < IcD
.

By Theorem 2.3.19, there then exists a positive T' G W such that

(p(A) = (Q.AT^Q,) .

As (p is cr-KMS it is a-invariant by Proposition 5.3.3. It follows that

(^a,A''rA-^'^5Q) - (Q, (7_,(y^*5)rQ)
= (p(c^-^(A^B))
= (p(A*B) = (AÜ., T'BQ.) ,

for a\\A,Be^ and hence

^itj^f^-it ^ j^f

for all r G [R. Now, define

T = JT'J
.

Then

rO = JT'Ü.

= JT'A-^^~D

-jA-'/^ro - rn
,

where the third equality follows from the strong commutation of T' and A that we

have proved previously. The fourth stems from the fact that JA~^^^A'Q. ^'*Q for
A' G 501', Proposition 2.5.11. It follows that

(p(A) = (Q, ATÜ) = a}(AT} ,

and it remains to prove that T G W. To this end, assume A,B,C e '^a and use the
KMS condition to compute

0}(ATBC) = co((Ti(BC)AT}
= (p((yi(BC)A)
= (p(c7i(B}ai(C)A)
= cp(ai(C)AB}
= w((Ji(C]ABT] = 0}(ABTC) ,

It follows that B and T commute and hence T eW.
It (f> is not bounded by a positive multiple of co, we form the new state

p = (CD -}- (p)/2. As p is a T-KMS state and faithful on 5DZ, it follows from the first

part of the proof that there exist positive operators ^1,72 G 9J^n9[)Z' such that
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co(A]=p(AT,)=p(Tl''^ATl'~]
cp(A] = p(AT2]=p(T^J~AT^J^] .

Since co is faithful, the kernel of T\ must be zero, and hence Tf ' exists äs a positive,
possibly unbounded, operator affiliated with ^r\W

.

Thus T = 72 Tf^ is a positive
operator affiliated with äl^JnW. But then

co(r^/2^r^/2) = co(r;/^r^/^^r^/^r-
= p(Tl^'~ATlf~) = cp(A}

for all ^ e 93t.

(2) =^ (1). Approximating T strongly by an increasing sequence of positive,
bounded elements in9Jln9[R'we may assume that T is bounded. But then, if ^,5G9JJt

(p(AB) = co(ABT)
= CD(ATB]
= w((7i(B)AT) = (p((Ti(B}A) .

The uniqueness of T follows because T and A commute strongly by Proposition
5.3.28, and hence

T^/2^ = A^/^r^/^Qe.^,

where ^ is the natural cone associated with the pair {9Ji,Q} by Proposition 2.5.26.

But the representative vector for cp in this cone is unique, by Theorem 2.5.31, and

hence T G (9[Rn9}r)_^ is unique.
The last Statement of the proposition is now trivial.

We are now in a position to establish the principal affine properties of the set

of KMS States of a C*-dynamical System (^,T). We will assume that UI pos-
sesses an identity but this does not lead to any essential loss of generality. If "^t

does not have an identity, one can introduce "iH = CH + '^K and extend T to ^ by
the definition

T; (a,^) G ^^T,((o^,^)) = (a,T,(^))G^.
There is a one-to-one correspondence between states co over "ill and states cb

over ^ for which ||a) s)i|| == 1. This correspondence is given by extension and

restriction, i.e.,

a)((a,.4)) =- a + co(v4) .

Moreover, äs ^^ = CD + ^^ if follows by using an approximate identity äs in
the proof of Proposition 5.3.3 that this gives a one-to-one correspondence be

tween the (T,j5)-KMS states of (^,T) and the (iJ)-KMS states of the C*-

dynamical System (^, T) with ||a)|s^|| = 1. The principal advantage in assuming
the existence of an identity is that E>^i is compact in the weak*-topology.

Theorem 5.3.30. Let (^, T) be a G^-dynamical System and assume that ^

has an identity. For ß e U let Kß be the set ofi-KMS states at vahie ß,
It follows that:
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(1) Kß is convex and weak'^-compact,
(2) Kß is a Simplex
(3) co E Kß is an extremal point ofKß if, and only if, co is afactor state.

(4) Let (jL)\ and CD^ be extremal points of Kß, then coi and 0)2 ^f^ either

equal or disjoint.
(5) If 0} Kß^ the unique maximal measure on Kß corresponding to co is

identical to the central measure corresponding to co.

PROOF. If ^ ^ 0, we may assume ß = l by rescaling T. Moreover, we already
proved (1) in the introductory remarks of this subsection.

(2) R + K-i is just the set of positive functionals on ^ which satisfy the T-

KMS condition. If co, (^ e (R + Ä^_i ,
define p = (D + (p. Since co < p.cp < p,ii follows

from Theorem 2.3.19 that co and (p and Tip-nonnal, and Corollary 5.3.4 and

Proposition 5.3.29 imply that there exist positive operators Ti,T2 G 71^(51) n np(^)'
such that

co(A) = p(A(T,) , (p(A)=p(AT2)
for v4 e 51, where p is the normal extension of p to Tip (5l) .

As 3p = Tip (51) n 7rp(5I)'
is abelian, the greatest lowest bound TI A T2 of TI and T2 exists in 3p- Define

((jo/\(p)(A) = p(A(Ti/\T2))
for ^ G 5t. Then co A (/) is a KMS positive functional by Proposition 5.3.29. If T is a

KMS positive functional such that T < co, T < cp, then T < p and there exists a

T G (3p)+ such that

T(A) = p(AT] .

But äs r, TI , r2 G 3p it follows that

T <TI ,
T <T2 ,

and hence

r < Ji A TS .

Thus T < co A (/), and so co A (^ is a unique greatest lower bound of co and (p in
[R + ^_i. It follows that [R + Är_i is a lattice, and K-i is a simplex

(3) From Proposition 5.3.29 it follows that if co G K-\ is given, then the

(p G IR + A^-i which are dominated by co are of the form

(p(A) = cb(AT) ,

where T G 7Caj(5l)'n7ra;(5I) and 0 < T < 1], and the correspondence between cp and T
is one to one. Hence co is extremal in K-i if, and only if,

7rc.(5I)"n7i^(5l)'-C1] .

(4) As coi and C02 are factor states they are either quasi-equivalent or disjoint by
the proof of Proposition 2.4.27. (Compare also Lemma 4.2.8). But if they are quasi-
equivalent they are equal by Proposition 5.3.29.

(5) Let ju^ be the unique maximal measure on K_} with barycenter co, which
exists by Theorem 4.1.15. Let //c be the central measure of co, i.e., //^ is the or

thogonal measure mMc^(E^) corresponding to 71(^(51) n 7Coj(5I)'. If /z G Mco(K-\} is a

measure of finite support, then /i = X^/^'^w, where /l/ > 0 and J]/ A = l, and since
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/}(^) =: ^(/.i^) = cü it follows that co/ < co/1/. By Proposition 5.3.29, there exist po
sitive operators T/ G 7ioj(^ )n7rf,j(^)' such that

(ßi(A) = co(ATi) = (Q,7r,,(^)rA.) .

Applying Lemma 4.1.26 and approximating T/ by a linear combination of spectral
projections it is now simple to show that /( ^ /i^ i^ the ordering of measures in

Mf,j(E^i). As /i^, can be approximated by finite support measures in M(^(Ar_i), it

follows that

A% ^ /^c

On the other hand, Lemma 4.1.26 implies that i^i^ is a limit of finite support measures

in M(,)(Eyi) of the form

/f = ^ }.iö,o, ,

/

where

a)^(A) = co(ÄPi)

and P/ are projections in 71(^(^0 ^ Ti^^jC^I)'- But Proposition 5.3.29 then implies that

co/ G ^-1, and thus /f ^ /i^, since /.f^ is maximal in Mf,j(Är_i). Hence

A^c ^ A^A:

and we conclude from Lemma 4.1.4 that

MC = ^^K

The remaining case, ^ = 0, can be deduced from the above by remarking that KQ
is just the set of trace-states on ^ and these are just the KMS states on 5.1 for the

trivial dynamics it = i.

Theorem 5.3.30 does not have an obvioiis analogue for W*-dynamical
Systems (SJt, T) since T is then strongly continiious if, and only if, it is norm-

continuous (see Example 3.2.36). If one defines Kß äs the set of normal states of
50^ which satisfy the T-KMS condition at value ß then Kß is a weakly closed

convex subset of the normal states but it is not necessarily compact nor does it

always have extremal points. For example, if the centre of 9J1 has no minimal

projections then Kß has no extremal points. The simplex property (2) is re-

placed by the property that if co G Kß and p is a state such that p < }.co for some
1 > 0 then p G Kß if and only if there is positive operator T G 9Jln9}l^ such that

p(A) = CD(AT) for all A e'^. Properties (3) and (4) remain true whilst (5) no

longer makes sense.

Theorem 5.3.30 has many interesting implications especially for the tenta-

tive physical interpretation of Kß äs the set of equilibrium states, of the System
(^, T), at inverse temperature ß, If Kß consists of one, and only one, state co,
this state is automatically a factor state. Thus if there is a unique equilibrium
state, it is a factor state. This is of particular interest because we have already
established that factor states can often be characterized by düster properties
which reflect the absence of long-range correlations, or the absence of large
fluctuations for the values of space-averaged observables. In Section 2.6 we

elaborated these characterizations for quasi-local algebras and in Section 4.3



KMS-States 119

for invariant states (see in particular, Example 4.3.24 and the discussion in the
Notes and Remarks to Section 4.3). But the absence of correlations or large
fluctuations is typical of pure thermodynamic phases and these various points
all indicate that pure phases should correspond to factor states and more

precisely to extremal KMS states. But if one adopts this interpretation, the

Simplex property of Kß has a clear significance.
Under suitable separability conditions, e.g., ^ separable, the unique

maximal measure /^^ on Kß with barycenter CD ^ Kß is concentrated on the
extreme points S(Kß) of Kß. Thus co is represented in a unique manner äs a

convex superposition of extremal KMS states. This decomposition then cor-

responds to the physical Separation of an equilibrium state into pure ther

modynamic phases. The symmetry, or lack of symmetry, of these phases is then

automatically determined and phenomena of broken symmetry, äs discussed in
Section 4.3.4, occur if 3a; is not pointwise invariant under the corresponding
symmetry group.

Theorem 5.2.30 also has interest in the analysis of concrete models. In such
applications one essentially reverses the foregoing reasoning. For example, if
one can show that a particular model predicts a unique (r, ß)- KMS state, then
this state is a factor state and has good düster properties. In particular this
demonstrates that the equilibrium states of the ideal Fermi gas described in
Theorem 5.2.24 are factor states. This could also be deduced by direct con-

struction of the corresponding representations äs in Example 5.2.20 but in
more complex models, such äs the quantum spin Systems discussed in Chapter
6, the direct construction is not possible and the abstract proof of factoriality
and düster properties is particularly convenient. On the other hand, for finite
Systems, one can again reverse the line of reasoning and deduce uniqueness
from factoriality.

EXAMPLE 5.3.31. Let ^ == M be the algebra of n x n matrices acting on the /?-

dimensional space ^. Eor H H* ^ M define T by

T,(A]=e""Ae-'" ,

then the Gibbs state

o}ß(A] =
Tr,>,,(g~^^^)
Trö^X^"^"")

is a (T, ^)-KMS state but it is also the unique such state for the following reason. If oj

is a second (T,j5)-KMS state and co^cDß, then (co -^ ojß)/2 e Kß but

((0 + coß)/2f^"(Kß). Thus the mixed state (co4-co^)/2 is not a factor state. But all
states over M,i are type-I factor states and this gives a contradiction. If ^ = ^'tf()
and is infinite dimensional, a similar argument yields uniqueness. It is, however,
necessary to argue with the aid of the extension 51 == CD + 51 of 51 obtained by
adjoining an identity.

Theorem 5.3.30 estabhshes that the unique decomposition of a KMS state

0} into extremal KMS states coincides with the central decomposition and we

have argued that this should be interpreted äs the Separation of co into pure
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thermodynamic phases. But there are other possible natural definitions of a

pure phase and one might well suspect that purity corresponds to ergodicity
among the T-invariant states. Therefore, we next study conditions under which

the KMS decomposition coincides with the ergodic decomposition of co re

lative to T. Once again a condition of asymptotic abelianness is of crucial

importance.

Theorem 5.3.32 Let (^, T) be a C'^-dynamical System, assiime that ^ has an

identity D
,
and let Kß be the set ofi- KMS states at value ß if ß e ff^\{0}, and

KQ the set of i-invariant trace-states on ^. Take CD G Kß, and let ^(^ G Mco(Kß)
be the unique maximal measure mth barycenter CD.

The follomng conditions are equivalent:

(1) There exists a unique maximal measure /.i^ G MCO('^J), and

^E^^K ,

v\^here Ef^ denotes the i-invariant states on ^.

(2) {^, co} is \veakly asymptotic abelian in mean in the sense that

lim ^ / dt cü(^[T,(5), C]D) = 0
T -S^(X) l ö J^

forallA.B, C, > G ^.

(3) {^, co} is R-central,

In particular an extremal invariant (T, ß)-KMS state co is extremal in

variant if, and only if

lim ^ / dt o,(A\-L,(B), C]D) = 0
/ ->S>00 i O J^

for all A, 5, C, Z) G ^, where ß e R.

PROOF. Let 3[R = 71^0(3.1)", and let co and f denote the normal extensions of co and T

to ^.Ifß^ 0, then co satisfies the f-KMS condition at ß by Corollary 5.3.4 and

hence ü^o is separating for ^M by Corollary 5.3.9. If co is a trace-state, co is a trace-

state on 50t, and Q^^ is again separating for 931 by a simple application of Lemma

5.3.8. In any case [^Jl'Qw] = 1 by Proposition 2.5.3, and the Kovacs-Szücs theorem,
Proposition 4.3.8, implies the existence of a unique normal G-invariant projection M
from 9J1 to 9J!^ where 9JI^ -= {^ G 5)1; f,(^) = A for all t G U}.

Proposition 4.3.8 and Example 4.3.5 imply that

M(A}Ü, = lim i / dt U,,(t)AQ,,
T-s^oo y ib j^

/^
; / dt Tt(A)^co
^ JsT-S-^oc T - S
^

for all A G 9Jl and in particular the limit exists.

But then
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M(A)B'^a,=B'M(A}Üa^
l /"^

^r^i^ ^'^r~^ dtl,(A)^^
T-S-^ 00 l ^ J^

l r^
^r^i^ 7^-^/ dt^t(A]B'^^
TS^oo l 1^ Js

for all 5' e 501', and since ihQ nei T - S ^ (T - S) f^dt it(A} is uniformly boun-
ded, it follows that

M(^)= lim -^/ dti,(A)
Or>oo 7 ^ Js

exists in the strong operator topology. This ensures that the limit in condition (2) of
the theorem always exists, and äs SÜl^Qß, is dense in ^ it follows from Definition
4.3.6 and Theorem 2.3.19 that conditions (2) and (3) are equivalent, and in fact both
conditions are equivalent to

'm^ c mr^m'
. (*)

If J and A are the modular conjugation and the modular operator associated with
{5m, Q}, one has

t/^W/A^/^^Qo; - Uo,(t)A''Qcü = f,(^)*nco -^A^/^t/o^W^Q^
for ^ G 9[R, and from the uniqueness of the polar decomposition 5* = JA^'^^ it follows
that Uaj(t)J = JUco(t) for all / e IR. It follows that (*) is equivalent to

'^^ = 5Ul'nC/^([R)' - J(mr^Uo,(R)')J
C j(mr^m')j = m^m'

.

^

By Proposition 4.3.3 this is, however, equivalent to Mfo(E^) containing a unique
maximal measure /i^, which is subcentral, i.e.,

)" ^ MC 5

where /^^ is the central measure. Now, if j5 7^ 0, then ^^^ /^^ t>y Theorem 5.3.30 and
since trivially I^K ^ ^E: it follows that

^^K= ^^E

If ß = 0^ note that for any projection " G 50l ^
we have that

Ae^^ (Ü,,,AEÜa,)

is a T-invariant trace on 31, and it follows äs in the proof of Theorem 5.3.30 that
the extremal decomposition coincides with the decomposition into invariant traces,
i.e.,

^K = ^E '

Conversely Theorem 5.3.30 implies that i^f^ = fi^ f^r j5 7^ 0, while fif, -< fi^ foT ß = ()
since //^^ is dominated by the measure corresponding to the tracial decomposition,
and the latter measure is equal to /i^ by Theorem 5.3.30 applied in the case -c = i.

The last Statement of the theorem follows from the fact that co G ^(Kß) is ex

tremal invariant if, and only if,

f^E^ I^K^^co '
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Remark 1. In the course of the above proof it was established that condition

(2) and condition (3) are äquivalent for any i-invariant state co such that Q^o is

separating for 7i(jj(^)" .
This gives a version of Theorem 4.3.14 in the case that

QCÜ is separating and G = [R.

Remark 2. An immediate consequence of Theorem 5.3.32 is the following
global Statement concerning the set Kß of KMS states at value ß e U. (We
adopt the convention that ^o is the set of i-invariant traces.)

The following conditions are equivalent for each fixed ß ^R,

(1) Kß is aface in E^^,
(2) (Ul, co) is weakly asymptotically abelian in mean for all CD ^ Kß,
(3) (^, co) is U-centralfor all CD e Kß,

We only have to show that (1) is equivalent to

(10 For each CD G Kß there exists a iinique maximal measiire

^E^M,,(E^^],and

/^ = fe

where /ij^ is the iinique maximal measiire in Mco(Kß),

Since Kß is a simplex, this is again equivalent to

(l"} For each CD E Kß and each maximal measure /.( G Ma)(E^^ one has

^i(Kß} ^ l
.

((l'} clearly implies (l'O but (l"} and the simplex property ofKß imply that each

pair of maximal measures in MCO(^S?I) must coincide.) The equivalence between

(1) and (l'^) is a general characterization of closed faces in compact convex sets,
and is proved äs follows.

(1) => (1^^). If ^iis any measure in Mco(E^i), there exists a net /i^ G Mco(E^^) of

measures with finite support converging in the weak*-topology to /i, by Pro

position 4.1.1. But i-i^(Kß) = l by the facial property of Kß, and hence

^i(Kß} = l.

(f^ ^ (1). Assume that CD e Kß, and that

n

CD = y. ^i^i
i = l

is a convex decomposition of CD with co/ G E^, We have to show that co/ G Kß.
Let /i G Mf,;('Jj) be a maximal measure such that

n

^ liöcoi -< M .

z - l

By the Cartier - Fell - Meyer theorem, Proposition 4.2.1, there exist measures

A^/ eM,o.(^s2i) such that



KMS-States 123

^E^'-/^-
/= l

^ ^

But äs f^(Kß) = l by assumption (l") it follows that ^i(Kß) = l for / = l
, . . . ,

and hence

(Di = l dLi,(o}']o}' e KßOi = l d^i((D'](D'

It follows that Kß is a face in E^.

Remark 3. In the preceding remark we saw that Kß is a face in ^"^ under quite
general circumstances when jS G IR, but Kß is very seldom a face in E<^, i.e., the

follomng conditions are equivalent:

(1) Kß is a face in E^,
(2) na}(^) is abelian for all CD ^ Kß

(Here we use the convention that ^o is the set of all trace states.)
(1) ^ (2). LQi co eKß and let T be a positive element in nco(^)'. The po

sitive linear functional

O}T(A) = (T^co, na,(A)Q.o,} ,
^ G 21

,

is dominated by a positive multiple of co, by Theorem 2.3.19, and condition (1)
implies that cor/||<^r|| is in Kß. It follows from Proposition 5.3.29 that

T G 7Ccü(^)'n noj(^')", and we have proved that

nco(^)' Cn^(^)'r^n^(^Y .

Since 71^; (M)" is anti-isomorphic to na)(^)' by the Tomita-Takesaki theorem, it

follows that 7iö,(^) is abelian.

(2) =^ (1). If co G Ä^^ is such that 7roj(9I) is abehan, one has that

n^(S&Y = n^(^)' = 7Ce,(2I)''n7r^(2X)'
and hence all states dominated by a multiple of CD are (T, j?)-KMS states by
Theorem 2.3.19 and Proposition 5.3.29. It follows that Kß is a face in E<^.
We shall see later that KQQ always is a face of "31, Theorem 5.3.37.

Next we examine various relationships between automorphisms and KMS

states. In physical applications the automorphisms correspond to symmetry
transformations and thus the following result gives information conceming
symmetry properties of equilibrium states.

In Proposition 5.3.29 we proved that if er is a one-parameter group of
*-automorphisms of a von Neumann algebra 5[R, then the set of er-KMS states

is affinely isomorphic with the set of normal states on a hereditary subalgebra
of the Center of 50l. This implies various relations between automorphisms and

KMS states.
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PropositioE 5.3.33. Lei (9JI, er) be a W-dynamical system, and co a faithfiil
normal State on 9[R satisfying the (a, ß) -KMS condition,for some ß ^ R. Let a

be a '""-aiitomorphism 6)/9JL
Itfollows that:

(1) co o oc is a (a~^aa,ß)-KMS state on 9Jt.

(2) If cDo oc = co and ß ^ 0 then acr^ = cr^a for all t G R.

(3) IfoLOt = (Jtdfor all t eU then CD o a is (a, ß)-KMS.
(4) If ocfft = <^t^ for all t G D^, o^|sjr)jn9jr ^^ ^^^^ identity and ß ^ 0, then

0} o a = (D.

PROOF. (1) If ^,^G9JI, then by applying Proposition 5.3.7 to the pair
oc(A),a(B), WC obtain a function F in Ch(T)ß), analytic in D/j such that

F(t) = (D(oc(A)(Jt(c^(B))) = 0)0 a(Ä(GC-^(Jta)(B)) ,

F(t^iß) = (D((Jt((y-(B]]c^(A]) == co o a((a~'fj,a)(5)/4) .

Hence co o a is a (cT^aa, ß)-KMS state by the same proposition.
(2) follows from the uniqueness of the j5-KMS group associated with co, The

orem 5.3.10, and (1).
(3) is an immediate consequence of (1).
(4) It follows from (3) and Proposition 5.3.29 that

(cooa)(^) = co(r^/2^r^/')
for all A G SOI, where T is a positive operator affiliated with 3 ^ 50i n SOf'. In parti-
cular

co(^) - CD(T^'~AT^'-]
for ^ G 3- But if 3 = C(K] is the Gelfand representation of 3, there exists by the
Riesz representation theorem a unique probability Radon measure /z on the compact
Hausdorff space K such that

co(^) - / d^i(x]A(x) ,

JK

where ^ H^^ is the Gelfand transform. But then

l d^i(x]A(x]= [ d^i(x}f(x}A(x)
JK JKJK JK

for all ^ G 3, and hence f = l by the uniqueness of j^i. Thus

Cü o (X = CD
.

The Statements (l)-(3) of Proposition 5.3.33 are also true for C*-dynamical
Systems (^, T) by the same reasoning. If a is a symmetry of the System, i.e., a *-

automorphism of 51 which commutes with T, and if co is a (T, jß)-KMS state
then co o a is also a (T, ß)-KMS state. If co o a 7^ co the symmetry is said to be
broken by co. The following theorem states that under some apparently general
circumstances symmetries are not broken.
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Theorem 5.3.33A (Fannes-Vanheuverzwijn-Verbeure). Let (^.i]be a

C^-dynamical System, d the generator O/T, co ß (i:^ß)-KMS state of^ mth

ß ^ R and oc a *-automorphism of^ such that ar/ r^a/ör all ^ G R. Assiime

there exists a sequence of unitaries Un G D(d) such that

a(^) = lim UnAU;^
> 00

for all A e"^ and

sup||5(^,)ll<oo .

n

Itfollows that

CD o OC = CO
,

i.e., the symmetry a is not broken by CD.

PROOF. Replacing T^ by T_^ if necessary we may assume ß > Q. But the case ^ = 0 is

trivial so we may assume ^ > 0.

OBSERVATION 1. Let I = [a,b] be afinite interval in [R = [R and assume that the

-c-spectrum a^(A) C /. It follows that

0 < -ißo}(A''ö(A}) - a)(A''A) \og(co(A*A)/o}(AA*)) < ß(b - a)co(^*^) .

PROOF. The first inequality is the auto-correlation lower bound of Theorem 5.3.15.

For the second inequality note that the spectral restriction on A implies that the

measure

J/i^(l) - (n,,(A}Q,,,dE(l)n,,(A)Ü^)

introduced prior to Proposition 5.3.14 is supported on /. Therefore this proposition
implies that

-ißcD(A''ö(A)) - (^(A^'A) log(co(^*yl)/oj(^yi*))
= ß(7i,,(A)Üa,,H,,7i,,(A)ü,,) - o}(A''A)\og(co(A'^A)/(D(AA'^))

= -ß f'd^M^.- ['d^^Wlog( f'd^^W/ f'd^,(A}e^^-
Ja Ja \ Ja Ja

< -aß l dn,().] - j dn,(X)\og ( l d^L,().)/ l d^i,(Ä)/^
Ja Ja \ Ja Ja

= ß(b -a) l dß,,().) = ß(b - a)w(A'A) .

Ja

OBSERVATION 2. There exists a C >ö such that

o}(AA'') < C oj((x(AA''})

for all Ae^.



126 States in Quantum Statistical Mechanics

PROOF. Set K = sup ||(5([/;i) || .
If ^ G ^ has bounded i-spectrum we can find a finite

sequence h of positive C^-functions on [R = [R, each with compact support in an

interval of length at most one, such that Y^hl = l in a neighborhood of (T-^(A).
Define

An = j dthn(-t]lt(A] .

(AA-^) = / dv,(-A} = Y. ^^A(-^^}hnW' - ;^co(^O .

Then

For each n such that A ^ 0 we now apply the auto-correlation lower bound to UfnA^
to obtain the first of the following inequalities:

CD(A:An) log(oj(AnA:)/Oj(U,nAnA:U:^)) + ißoj(A:U:^ö(U^n)An)
= CD(A:An) log((ß(A:An)/0,(U,nAnA:U:^)) + ißo4A:U:^ö(U,An))
- ißco(A:ö(A)) - co(A:An)log(oj(A:An)/co(A,,A:))
< -ißw(Alö(An)) - CD(A^,An)\Og(co(A'^^An)/Co(AnA-;-^)}
<ß(D(AlAn) .

The second inequality follows from Observation 1. But

ißcD(A:u:^ö(U,n)An)\ < ß \\ö(Un,)\\co(A:An) < ß Kco(A:An)
so from the previous inequality

log(o4A:A)/o4U,AA:u:)) < ß(K+l)
or

(a(A:A) < C(Ü(U,AA:U:,)
where C = eiip(ß(K + 1)). Now taking the limit m ^ oo one obtains

W(A;,A) < cco(oi(AA;)) .

But äs [a, T;] = 0, a(v4,;) = ((^(A]]^^ so adding these inequalities over n one finds

(D(A'-A] < C(D(ci(AA']) .

Since the elements with bounded i-spectrum are dense in 91, by Lemma 3.2.39 (4),
this inequality extends to all A G 9t, and Observation 2 follows.

END OF PROOF OF THEOREM 5. 3. 33A: It is sufficient to prove co o a = co for extremal
(T, ^)-KMS States co. But then co o a is an extremal (T, jß)-KMS state. By Observation
2 and Theorem 2.3.19, co is a normal state in the representation defined by co o a. But
äs co o a is a factor state, by Theorem 5.3.30 (3), it follows from Proposition 5.3.29
(or the Simplex property of Kß) that co = co o oc. This completes the proof of the
theorem.

Any normal faithful state of a von Neumann algebra 5[R is a KMS state for a

unique automorphism group of 50t, by Theorem 5.3.10. The converse is not

true however; an automorphism group does not necessarily have KMS states.

Proposition 5.3.28 implies, for example, that if T is an automorphism group
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which allows a faithful KMS state, then T leaves the center of 9K pointwise
fixed. Even this condition on T is not sufficient however, by the following
theorem, which states that any two groups which allow faithful KMS states are

related by an inner cocycle. This theorem is a partial restatement of Theorem

2.7.16.

Theorem 5.3.34 (Connes). Lei CD and (p be faithful normal states on a von

Neumann algebra 50l, and let a^ and a^ be the corresponding modular groups.

Itfollows that there exists a strongly continuous one-parameterfamüy t^-^Tf
of unitaries in 5IR such that

af(A) = r,<(^)r; ,

r/+5 = Yta^(Ts) ,

for all A G 931, and all ^, ^ G IR.

PROOF. Define a faithful normal state p on SOI (g) MZ by

Kte t))4('"(^")+-(^-))-
Let (jf be the modular group associated with p. As

((\ OW^n AU\\ l
,, ^ ((An An\(\ 0

^U OJU. ^22Jj=2"(^")=''iU ^22JU 0

it follows from Proposition 5.3.28 that

p((\ 0\\ (\ 0

'^'iU ojj = U 0

for all ^ G R. The same is true for (^ J) and hence cr^ leaves the subalgebra

={(''ö' ^1)^ ^"^^}
invariant. But p satisfies the KMS condition with respect to the automorphism group
defined by

^H 0 \(O^(AU] 0

0 ^22; V 0 ^^(^22)

Therefore, it follows from the uniqueness Statement of Theorem 5.3.10 that

<((An 0 \\ (a^(An) 0

0 A22) l 0 ar(^22)

Now, from the relations

it follows that

0 oWo o\_ /l oWo 0

lojloij loojlio

0 0\WO 0\
.,
A 0\ p((Q 0

1 00 J== 0 0 h' l 0
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and hence there exists a cr-weakly continuous one-parameter family t^^Tf ^ SUt de-
termined by

0 0

r, 0

0 0

1 0

Applying rf to the relation

0 OWO OV /O OVVO 0
1 0 Jl l 0 j ^l l 0 j V l 0

it follows that

r,r; = i = r;T, ,

i.e., each F/ is unitary.
Similarly, from

0 0^/0 oW^ oWo r
0 A

~ [l OJlo OJlO O/'

it follows that

fff (^) = r,<(/i)r;' .

Finally,

0 0

r,+. 0
- ^p

0 0

1 0

0 0

1 0

0 0

r. 0

r, o\\
^

/ 0 0

0 Q)J~ Vr.<(r.) 0

We conclude the analysis of (T, ^)-KMS states for finite ß with an ex-

amination of disjointness properties.
In Theorem 2.7.17 we stated, and sketched a proof, that a von Neumann

algebra 9K with a faithful normal state co is purely infinite, or type-III, if, and
only if, cr^lgrjj^ is not an inner group of automorphisms of ^E for any nonzero

projection E in the center 9}ln 9K^ In fact it is this latter characterization of
type-III von Neumann algebras which is most useful in proving that a given
von Neumann algebra is type-III, and for our purposes it could be taken äs a

definition.

Theorem 5.3.34 shows that this definition is independent of the particular
choice of faithful, normal state co. The next theorem shows that the (T, ß)-KMS
States are highly sensitive to variations of the temperature, i.e., variations of ^.

Theorem 5.3.35. Let (^, T) be a C*-dynamical System, and siippose that CO]
and CO? are KMS-states corresponding to t\vo different valties ßj,ß2 ^ ^
Assiime that Uo^^ (^)" is a type-III von Neumann algebra.

It follows that the states coj and (02 are disjoint.

PROOF. Recall from the beginning of Section 4.2.2 that coi and co2 are disjoint if,
and only if, Ttoj, and TC^J, have no quasi-equivalent subrepresentations. Suppose
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ad absurdum that 71^^, and Tio,, have quasi-equivalent subrepresentations. Then it fol-

lowsfrom Theorem 2.4.26 thatthereexistprojections^:/ G 3üj, = T^a)i(^]" (^"^ T^CO^^^]'
and an isomorphism (y.\na^^(^]"E\^^Tia3.>(^]"E2 such that aL(na^^(A]E\) = 7if^,(A)E2.

NOW ß\ ^Q because if ßi =0 then d)\ would be a finite trace on Tio;, (^)", con-

tradicting the type-III assumption. If ^^2 = 0 then Tiü,, (^)"Ei would be properly
infinite and TC^JS (^)''^2 finite, a contradiction. Hence we may assume ^2 7^ 0- ^Y
Corollary 5.3.4 it follows that T extends to groups f' on 7ia^.(^)" with respect to which

the normal extensions co/ satisfy the (f', j5y)-KMS conditions. By Proposition 5.3.28 it

follows that fj(^i) = E\ for all t, and hence T^ defines an automorphism group a on

9JJ - TCo,, (5I)''^i such that

Ot(Ti^^(A)Ei) = 7rcü,(Tf(^))'i

for^ e^.teu.
Next, Proposition 5.3.33 implies that the faithful normal states (p^ defined on 9JI

by

fA\ ^l(^) fA\ ^2(a(^))
^^(^^"'TrTpM ' ^2(^)=-r-7TrY- ,

C0l(^lj C02(^2J

for i = 1,2, satisfy the (er, jS^-)-KMS condition. This follows because

a,(A) = (a-' f?a)(^)
for A G 9[R. Theorem 5.3.10 then implies

t ^ ff-ß.t = (j\

is the modular group for co/, i = 1,2. Hence, by Theorem 5.3.34 there exists a unitary
cocycle P in 5[Fl such that

o](A] = T,al(A)T:
for all ? G [R. As the state (p^ is both a^- and a^-invariant, it follows that

C!>,(AY,} = <p,(<T?<Ti,(^r,)) = <p,(r,^r,r;) = <P,(T,A)

for all ^ G 901, i.e.. P/ is contained in the centralizer for (p^. Hence Proposition 5.3.28

implies that 0-] (P^) = P^ for all s. It follows that

p,+,-pX(r,)-r,p, ,

i.e., ^H-^P/ is a unitary representation of R. But now

(T(^,_fc), = <T2ai,(^) = r, ^r;

is an inner group of *-automorphisms of 307. Hence, by rescaling, a] is an inner group
of *-automorphisms. It follows that 9[R is a semi-finite von Neumann algebra, which

is a contradiction.

Theorem 5.3.35 applies in particular to KMS states satisfying the weak

asymptotic abelianess condition of Theorem 5.3.32. Recall from the proof of
that theorem that if co is a (T, jS)-KMS state where j9 ^ 0, then

.^i^ ^ l dto4AT,(B)C)
S-T-^00 i3 l J5'

exists for all ^,5, CG 91.
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Corollary 5.3.36. Let (^I,T) be a C'-dynamical system, let ß e K\{0}, and
let 0} be a (T, ß]-KMS state on ^ such that

lim ^ / dto,(A[,,(B), C]D) = 0 (*)
o /-^cx) o l J^

for all A^B^ C,Z) G ^l. Let (^^, TT^J, l^co) b^ the cyclic representation associated
mth CO.

It follows that there exists a projection E G Ti(^(^)" n7ioj(Ul)^ such that

(1) na,('il]"E is type-IIL
(2) n,o(^]"(^ - E] is abelian.

In particular ,
assume that 5J does not have any characters and let coi and C02

be States on ^ satisfying the i-KMS condition at values ßi,ß2 ^ ^, where
ß^ ^ ß'j. Assume furthermore that co/ satisfies condition (*) if ß^^O for
i =1,2.

Itfollows that CDi and CO2 cire disjoint.

PROOF. Assume that co satisfies the hypotheses of the corollary and let ü and f be
the normal extensions of co and T to 5[R == Tr^X^)", which exist by Corollary 5.3.4. The
Center of 9Jl is contained in 90r by Proposition 5.3.28, and it follows from the proof
of Theorem 5.3.32 that condition (*) is equivalent to

m? = mr^ 9JI'

where 30^ is the fixed-point algebra of 501 under the action f. Now, let 11 - " be the
largest projection in 9JI n 9J1' such that T|SJJ{/|

_ E] i^ ^^ inner group of automorphisms.
Then Tifjj(^]"E is type-III by the remark before Theorem 5.3.35, since f is a multiple
of the modular group. We may henceforth assume E = ^. Then there exists a unitary
group t ^-^ Ut'in "^ such that

i,(A] = U,AU^^ .

But then

i,(U,] = U,U,U_, = U,

and so

U, e 9jr = 9J1 n 9Jl'
.

Hence

f,(v4) = U,AU'^ =A

for all A e m, But then

m = m^ - 9JI n m'
,

i.e., y^l is abelian.

In particular, if ^ has no characters then we must have " = 11 in the above
construction, and thus the last Statement of the corollary follows from Theorem
5.3.35.
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5.3.3. The Set of Ground States

In the previous subsection we analyzed various properties of the set Kß of

(T,j8)-KMS States over a C*-dynamical System (91, T). This analysis was re-

stricted to the case j8 G IR and our next aim is to make an analogous analysis for

ß 00. Since both these latter cases are similar we examine only the set K^Q
of (T, oo)-KMS States, i.e., the set of ground states of (^, T).

It follows directly from Definition 5.3.18 that K^Q is a weak*-closed convex

subset of the state space E^. But KQQ need not be a simplex in contrast to the

case of Kß with ß finite. An example is given by the choice T/ = i for all t, and

thus KQQ = E^. Recall that E^ is a simplex if, and only if, 9l is abelian, Example
4.2.6. However, K^Q has one simple geometric property not generally shared by
Kß, it is a face in E^ (see Remarks 2 and 3 after Theorem 5.3.32).

Theorem 5.3.37. Let (91, T) be a C*-dynamical System and assume that 9l has

an identity.
It follows that the set K^Q of i ground states is convex and compact in the

\veak^-topology and K^ is a face in Es^i-
Let CD e ^00, ^nd consider the follomng conditions:

(1) The pair (9l, co) is U-abelian.

(2) 7Cft,(9l)'w abelian.

(3) There exists a unique maximal measure ju^ in M(jc,(Kr^).
(4) There exists a unique maximal measure //^ in MCO('^).
(5) There exists a unique maximal measure ^x ^^ Mü(^3i).

It follows that (1) ^ (2) <^ (3) <^ (4) ^ (5).
If any of these conditions are fulfilled, then

fe = /^ = to = /^c ,

where ^^ is the central measure in M(j^(E^), and these measures are pseudo-
supportedby the intersection ofthe ground states, the R-ergodic states and the

pure states.

In particular, if co is an extremal ground state, then co is pure and

7C()" = J5f() .

PROOF. A^oo is convex and compact by the remarks before the theorem and Theorem

2.3.15. If O) G K^ and (p G E^ with (p < ^(D then, by condition (4) of Proposition
5.3.19,

0 < cp(,f(ArTf(A)) < ^co(^f(AY^f(A)} = 0

for all fe ^ with supp /C (00, 0), and all ^ G 9l. Hence cpisa ground state by the

same condition. It follows that KQQ is a face in E^.
Let 0} e KOQ be a fixed state, and let (Scy,7rcü,ßa), ^w) be the associated re-

presentation. Then

U^(t) G 71^(91)''
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for all ^ G [R, by Proposition 5.3.19. It follows that

n,,(^)' = n^(^)'r^U,,(U)'
and hence (1) r:^ (2) by Proposition 4.3.7. Furthermore (2) <^ (4) by the same

Proposition, and (2) <^ (5) by Theorem 4.2.4. Since K^ is a face in 'STI, we have the
identification

M,,(K^) = M^(E^i}
and (3) ^ (5) follows.

Now, if condition (2) is fulfilled, we have

7r,,(^2I)'n 7i,,(^l)" = K^(^l)' = n^(^)'n U,,(U}'
and hence

^c = /^x = ^^E

But J.LX = i^K by the facial property of KOC
Since this measure is maximal in M(jj(E^^), the pseudo-support property is a

consequence of Theorem 4.1.11.
If co G ^(^oo) then /ij^ = ö^o is unique maximal in Mco(K^). Thus condition (3) is

valid. This implies condition (5) and the identification ß^ = (5^0, i-e., w e ((E^i).

Note that the implication (2) =^ (1) in Theorem 5.3.37 is not true in general.
A simple counterexample is provided by taking T to be the trivial action on a

non-abehan C*-algebra ^. Then any pure state on ^ is a ground state sa-

tisfying condition (2), but (^, co) is not IR-abelian if dim(^) > 2. However,
the implication corresponding to (2) =^ (1) is true in a global version of the
theorem. This global version can be formulated for more general faces F in E^^
than the face of ground states and also for more general groups G than R. Note
in particular that if co G E^ and F is the closure of the set N^ of Tico-normal T-

invariant states on ^, then F satisfies the hypotheses of the following theorem,
and therefore this theorem is a partial generalization of Theorem 4.3.9. We
emphasize that F is only assumed to be a face in E^^, not necessarily in E^.

Theorem 5.3.38. Let (^, G, T) be a C*-dynamical System, \vhere G is a lo-
cally compact, (j-compact, topological groiip and ^ has an identity. Let F be a

closedface ofE^ mth the property that ifcoeF and \l/ is a unit vector in the
space 'cücü of U^o-invariant vectors in )^, then the vector state d definedby

CD'(A) = (ilj,7i^(A)ilj] ,
^G^

,

is induded in F.

The following Statements are eqiiivalent.
(1) The pair (^, co) is G-abelian for all CD e F.

(2) {7i,,(^) u Ua,(G)y is abelian for all co G F.

(3) F is a Simplex.
(4) Fach extremal state (D in F is vveakly cliistering in the sense that

inf \o)(A'B)-(D(A)o}(B)\ =0
A'eCo(TG(Ä]]

for all A, B e^.
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(5) Any state CD in F such that {71^0 (^) u [/f^ (G)}' is a factor is ergodic.
(6) If o^\ cind 02 ^^'^ ergodic states in F and (D\ ^0^1, then the covariant

representations (,^, , 71^;, , ^^0,) cind (0^.' ^^^2^ ^w.) ^''^ ^'^ot unitarily
equivalent (äs covariant representations).

(7) If o:)\ and coi cire distinct ergodic states in F, then the face generated

by CD\ and co2 in E^^ is equal to the convex set {/coi + (l /)^02;
^^ ^ [0^ 1]} generated by coi and 0)2,

Remark. The special assumption on the closed face F used in this theorem is

necessary but the theorem is true without the assumption that G is ci-compact
(see Notes and Remarks).

PROOF. We will prove the following implications

/ ii\
6

We have l => 2 <^ 3 by Proposition 4.3.7 and Theorem 4.1.15. To prove 3 =^ l we

exploit a technique closely related to the one used in the proof of Theorem 4.3.9. By
the latter it suffices to show that

A?,? = {co';'e7^,'(Fj=l}
is a Simplex, where A^^^ denotes the i-invariant TT^.; -normal states over ^,

FCO = [ncoWE,,] G n^(^)"r^U,(G)' ,

E(a is the projection onto the (7,o-invariant vectors in g^^, and we identify Tifo-normal
states with their a-weakly continuous extensions to UcoC^)" .

It follows from Theorem

2.4.21 that all co' e N^^ have the form

co'(A) = ^(^,^n^(A)^,) ,

^'> l

where ^/, G ,^ and ^f,^^ \\^i,\\- = 1. But a)'(F,o) = l implies oj^^(F,^) = l for all k and

hence F^^c^^. ^^ for allÄ:. But this means that co' can be approximated in norm by
states co" of the form

n

w"(A) = ^(n,in,(A)n,u}
k= l

where Eco^k ^h ^^^ ^k ^ '^(ü(^)' -
But then co,,^. G F by the special assumption on F,

and we have

o;' < ^ lir.lpco,,,
k= l

by Theorem 2.3.19. Since F is a closed face, it follows that CD' G F. Hence

N^o^F .
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But since A^^^ is a face of the simplex F, it follows that A^^^ is a simplex, and (*i(, oj) is
G-abelian by the argument used in the proof of Theorem 4.3.9.

(2) ^ (5): If{7c,^(*sll)ut/,,(G)}'isanabelianfactor, then{7ü,,(^)ut/o.(<^)y = C1]
and W is ergodic by Theorem 4.3.17.

(5) => (6): Suppose that (6) does not hold, i.e., suppose that F contains two
distinct extremal covariantly equivalent states coi and co?. Let co == (coi + co2)/2.
Further let T be the unique positive element in TifoC"^]' such that

(D,(A]/2 = (^,,,K,,(A]m,,]
for all ^ e 51 (Theorem 2.3.19). It follows from the G-invariance of (ß\ that
TG Ua,(G]' and hence

T ^ {K,,(^]^U,,(G]}' .

Furthermore

co2(^)/2=:.(Q,7r,,(^)(l-r)0,,)
and hence

A^(^,,,Ti,,(A](^-T]TÜ,,]
is a positive, G-invariant, linear functional dominated by both (D\ and co2 and it is,
therefore, a multiple of both coi and co2 by extremality. Since (D\ ^ 032 it follows that
(H - T)T 0, i.e., r is a projection. Hence (^^, T^^, t/fo,^^^) is unitarily equivalent
to (,^, eS,02'^a), e7r,,t/o;,et/r^,,aa;, eQco2/\/2) and, therefore, to (,,, eS,^,,
T^oji ^ojn ^fo, t^oji 5^wi ^/V2) where ^ is a unit vector (distinct from
exp{/ö}Q,^, for all 0 G [R) in E^^,^. As {7r,(^)u^,o,(G)}' = Cl, it follows that
{ 71^^(91) u L/c^ (^)}' ^2, where M2 is the algebra of 2 x 2 matrices. But M^ is a

factor, and co = (coi x co2)/2 is not ergodic. Hence condition (5) is not fulfilled.
(7) ^ (6): If (6) does not hold, it follows from the preceding argument that there

exist distinct ergodic states coi and 0^2 in P such that

{7r,(^)u[/,,(G)y~M2 ,

where co = (coi + co2)/2. Hence the face generated by (ß\ and co2 is affinely iso-
morphic to the positive 2x2 matrices of trace one, and hence isomorphic to the
three-dimensional unit ball by Example 4.2.7. Thus condition (6) is not fulfilled.

(6) =^ (7): If coi and 0^2 are distinct ergodic states in F and property (6) holds,
then it follows from the argument used in proving (5) => (6) that

[{7i,,^e7i,,,(^); ^G^}u{C/, e^,(^);ö^GG}]'-{air + a2(1]-r); (Xi,a2eC} ,

where T is the projection from ^, © g^, onto ^^j .
As the face generated by co] and

C02 in E^ is affinely isomorphic to the subset of positive operators of trace one,
assertion (7) holds.

(6) ^ (4): Assume that the state co of condition (4) is ergodic, but not weakly
clustering, i.e., E^,^ has dimension larger than one. If ?/ G "^00; is a unit vector

orthogonal to Q^j, then the state coi corresponding to ^ is contained in F by the
special assumption on F and coi ^ co. By ergodicity

{7:(9I)u(y(G)}" = ^(J
and hence

7to,(ai)" = ä'iE,.,?,,) .
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But this implies that ^ is cyclic for 7ia)(^), and hence the representation
(0), 5 ^coi 5 ^cü, , ^wi ) is canonically unitarily äquivalent with (S^, TÜCO, ^w, ^w). Hence

condition (6) is not fulfilled.

In Order to show (4) =^ (1) and finish the proof of the theorem we need an

unpleasant measure-theoretic lemma. The point of this lemma is to circumvent

difficulties which could arise from the possible nonseparability of ^.

Lemma 5.3.39. Let co be a state over a C*-algebra 91 with identity,
li eMa}(E<$i) a probability measure with barycenter co.rj a vector in ^, and

{An}^i a sequence in 9l such that

^\\n^(An)^o, - YI II < -4- 00 .

n>\

(1) It follows that n(p(An}Q.(p converges to some vector rj^^ G ^ for
li-almost all (p G E^.

(2) IfBe^ let

(Dl(B) = (ri^,n^(B)ri^) .

Then (p\-^o}^^(B) is fi-integrable and

a>l(B) = J dt,((p)col(B) .

(3) If {A'^}^^^ is another sequence in 91 such that

5^||7r,,)Q,,-/7|| <+oo ,

n>\

then 7Lfp(A'^j)Q.(p converges to ^^pfor iJi-almost all cp G "31 .

PROOF. (1) Let / be the non-negative continuous function on E<ia. defined by

fn((p) = \MAn -^4-1)^^1 - (p((An -^+l)*(^ -^+l))^/' .

Then

j dß(cp]fn(9? = j dlJi(cp](p((An-An+lY(An -^+,))

- 03((An -An+lY(An -^+l)) = \\n^(An -^4.i)Qa,|P .

Hence ^ / is a convergent series in L?-(^] and therefore in L^ (/.i), and consequently

^fnW <+00
n>\

for /i-almost all cp ^ E<^, For any such (p,7r^(^)Q<p is a Cauchy sequence which

converges to some limit ?/^.
(2) Let

gn(cp] = \\n^(BAn)^^\\ .
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By the triangle inequality

\gn(9)-gn+l(<p}\<\mfn(9)
and so {gn}n>\ is a Cauchy sequence in L^(i^i) converging pointwise to co;j,(5*5)^'^".
Thus this function of (p is square integrable, and

/* fjd^i((p)cDl(B-'^B) = lim^Jd^L((p)gn((pf
= lim (D(AlB"'BAn) = col(B*B} .

;z i- oo

Since ^ is spanned linearly by its positive part, it follows that

<(S) = jdn(^]wl(B)
for all B e 51.

(3) The same argument äs in the proof of (1) shows that

||7I,,K-4)"'p)II^O
for /i-almost all q) G E^n^ and hence

||7t^)a-^?J|^0
for /^i-almost all cp G ^^21.

END OF PROOF OF THEOREM 5.3.38 It remains to prove that (4) ^ (1).
Let co G -F, let ^,y4^ G ^ and let ß G M(a(F] be a maximal measure representing co.

Since F is a face in 's?j,/^ is pseudo-supported by the ergodic states in F, Theorem
4.1.11.

Let ^ be a unit vector in ^üjw ^^^ {^n} a sequence in 31 such that

l|7i,,(5)a,o-^ll<2-''-^
By Proposition 4.3.4 there exist elements

S>,(U,.,) = Y,XlU,(g",]
i= l

in Co(Ua,(G)) such that

\\S,n(U,,]Ti,,(ABn)^,,-E,,n^(A]n\\ < 2"''

and

||5;;-(t/,o)7l,,(.l'5)Q,,-E,7l,X^O^|| <2-"
-

Novv, define

A = 5;.. (T(^5)) , 4 = 5;. (T:(A'B)) .

The relations above may be written äs

\\n^(Si'(x(AB)))Ü-En(A),1\\ < 2'"

and

\\K,.,(S^;.(T(A'B}))n,,-E,,njA')ri\\<2-" .
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By Lemma 5.3.39 (1) there is a Baire subset E of F with n(E} = l such that for

(p eE,n(p(Bfj)ü^, 7i(p(An)O.(p and 7r<p(y4jj)Q^ converge to some limits ri^.^^p, and c'^
respectively, in ^.

For fixed g E G one has
--l\\7l^(lg(Bn))^o^-rj\\ = \\U^(g)(7l^(Bn)^o^-^)\\<2

and it follows from Lemma 5.3.39 (3) that 7:^(1^ (5))Q(p converges //-almost ev-

erywhere to r]^. Since

n^(T:g(Bn))^g, = U^(g}n^(Bn)Ü^ -^ U^(g]r]^
for (^ G ^, it follows that

u<p(d}n^ = n^p
for //-almost all f/) e F.

Now, define

^ = {(Q. (p)eGxE', u^(g)n^ = ^^}
= {(g^cp) e G X ; (p((T,(5) -5,)*(T,(5,0 -5)) -> 0} .

Then D is a Baire subset of G x F, and we have proved that {cp G F; (g, cp) G >}
Supports /z for each ^ G G. The Haar measure /XQ on G is cr-finite by assumption and it

follows from Fubini's theorem that ^Q <S) /^ is supported by D. Hence for ^-almost all

(p e F one has that

^^(ö')^^ = n<p

for jUQ-almost all ^ G G, and hence this relation holds for all ^ G G by the strong
continuity of U^p. We conclude that

n<p e E^9)^
for /z-almost all cp e F.

Applying similar arguments to (^^ and ^'^ we find a Baire subset EI C F such that

E\ Q E^{j. is supported by E\ and

^<p5 ^(p1 ^(p ^ ^(P'0(p

for all (p ^ EI. In particular, if (/) G "1 is such that F<p is one-dimensional, one has

ri^ = (n^,^^)Q^ ,

^^ = (Q^, ^^) Q^ - ^lim^ (p(^) n^ ,

and

E^n^(A]Yi^ = (Q^,7r^(^)f/^)Q^ = ^liTn^(p(^5)Q<p .

But (p(An] = (p (ABn) and thus

^^=E^n^(A)ri^ = (p(A)(Q.^,r]^)Q.^ .

Similarly

r^ = <p(^')(ß<p,';^)ß^
and hence

(>l^,n^(A')^^) = <p(^')'P(^)l(ii^,';^)P = (ri,n^(A}Q
for all (p e EI such that F^^ is one-dimensional.
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Condition (4) is äquivalent to the condition that E^p is one-dimensional for each

ergodic state in F, by Theorem 4.3.22. Therefore, if we assume (4), it follows that the
set

{cp G E,-(n,p,Ti,,(A']^,p] / (^,^,71,^(4]^}
contains no ergodic states. But this is a Baire subset of F, and it follows from the
maximality of /.i that the set has measure zero (see Theorem 4.1.1 1). By Lemma 5.3.9
(2) and the polarization identity, it now follows that

(r],7ico(A')E,^7ia,(A}r]) = lim (naj(Bn)üa,, n,o(A'}nco(An)O.,)
n ^00

= lim f di.t((p)(n,,(Bn}Ü,p,n,p(A^}n,p(A)ü,,)
n-^oojf,

= l d^i(cp](ri,^,n,(A']^,]
JF

= /^A(((^)(^,^,7l,X^)C;)-('?,^co(^)^ro7ro.(^0^) -

J F

Since this is true for all rj e E^o^^^, it follows that

Ea,n,o(A')Eajn,^(A)Eo, = Ea,iL^(A]Ea,Tico(A']E,,,
for all A, A' e ^. The pair (^,co) is then G-abelian by Proposition 4.3.7.

Theorem 5.3.38 has several interesting corollaries. First we consider the set
of groimd states of a C*-dynamical System.

Corollary 5.3.40. Let (^, [R, T) be a C^-dynamical System where M has an

identity, and let KQQ be the set of ground states for the system.
The follomng 15 Statements are equivalent:

(1) 77?^ pair (^, co) is U-abelianfor all co G K^Q,
(2) 7icü(^)' is abelian for all co G K^Q.
(3) KQO is a Simplex.
(4) Each pure ground state is weakly clustering in the sense that

inf \CD(A'B]-(ß(A](D(B]\ -0
A'^Co(rn(A]]

for all A, B e^.

(5) Any state co in KQQ such that n^jC^)' is a factor is pure.
(6) Ifo^i and C02 are pure states in KQQ then coi and C02 are either disjoint

or equal, i.e.,

CD\ i C02 or (D\ = C02

(7) Ifcoi and C02 are distinct pure states in K^Q then theface generated by
(D\ and co? in E^^ is equal to the convex set

{Icoi + (1-1)092; AG [0,1]}

generated by co\ and coi-
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(4'), (5'), (6'), (7'): The Statements obtainedby replacmg "pure" by "ergodic"
in (4), (5), (6), (7), respectively,

(4''), (5''), (6''), (7''): 77?^ Statements obtainedby replacing "pure" by "ex-

tremal in KQQ" in (4), (5), (6), (7), respectively,

PROOF. The set K^ is a face in E^i by Theorem 5.3.37, and hence AToo is a face in E^.
It follows that if co is a ground state, the Statements "co is pure," "co is ergodic," and

"co is extremal in Ä^oo" are all equivalent, and hence the unprimed Statements in the

theorem are equivalent to the primed ones.

We next show that the face F = K.^ has the special property required in Theorem

5.3.38. If co is a ground state and ij/ G ^ojöw is a unit vector defining a state through

CD\A) = (ll^,7l,,(A)ll^} ,

then the cyclic representation (S^y^^w, ^w',^') corresponding to co' is unitary
equivalent to the representation

(P^,P7ü,,P,P^,,P,l//) ,

where P G {7i,^(^)^U,o(^)y is the projection defined by

p-KWAl .

It follows from Proposition 5.3.19 (5) that co' is a ground state. Thus Theorem 5.3.38

applies to F ^oo, and it remains to show that the Statements (l)-(7) of that the

orem are equivalent to Statements of (1)~(7) of this theorem in the special case of

ground states. This is clear for Statements (1), (3), (4), and (7), and since Proposition
5.3.19 implies that

U,oW C 7l,,(^)"
for all co G ÄToo, the equivalence for Statements (2) and (5) follows immediately.
Statement (6) of Theorem 5.3.38 takes the form

(6'"). If (jo\ and C02 are pure ground states and coi 7^ co2, then the representations
(ÖWP^TCÜ, ) ^nd ((0^5^10,2) ^'*^ ^^ot unitarily equivalent.

But since two irreducible representations are either unitary equivalent or disjoint,
this is equivalent to Statement (6) of the corollary.

The implication (1) ^ (6) in Corollary 5.3.40 is related to a result which

was of fundamental importance in the development of quantum field theory,
Haag's theorem. This theorem demonstrated that the examination of the

ground states of a given dynamics necessitated the examination of a variety of

unitary inequivalent representations. A more local Version of this implication is

äs follows.

Corollary 5.3.41. Let (^, !R, T) be a C*-dynamical System, and let oji and co?

be extremal ground states on ^ such that (^, co/) is U-abelianfor i 1.2.

It follows that CDl and co? are either disjoint or equal, i.e.,

COi i C02 or COi = C02 .

PROOF. Assume that coj and co2 are not disjoint. Then n^o^ and TI^), have equivalent
subrepresentations, and since Tif^.(^]" = J^(^^.) by Theorem 5.3.37, it follows that
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coi and co2 are quasi-equivalent (and even unitary äquivalent) .
Hence (coi + co2)/2 is

a factor state by Proposition 2.4.27. Since the set of ground states is convex and the
set of invariant states (p such that (^, (p) is [R-abelian is convex äs a consequence of
Corollary 4.3.10, it follows that (coi + co2)/2 is a ground state and (^, (CL>I + co2)/2)
is G-abelian. Theorem 5.3.37 implies that 7i(cfj,+tü2)/2(^)' is abelian, but since this is a

factor, one deduces that (a)\ + co2)/2 is a pure state. Hence

COi = (J02 = (<^l + <^2)/2 .

The last corollary concerns the set of all G-invariant states. It is a partial
generalization of Corollary 4.3.11.

Corollary 5.3.42. Let (^, G, T) be a C*-dynamicaI System, \vhere G is a

locally compact, a-compact, topological group and ^ has an identity, and
define F E^ äs the set of all G-invariant states on ^.

It follows that all the Statements (l)-(7) in Theorem 5.3.38 are equivalent
for F.

PROOF. F = E^^ clearly satisfies the requirements of Theorem 5.3.38.

We know that all extremal ground states are pure, by Theorem 5.3.37. It is
remarkable that if co is a general ergodic state on a C*-dynamical System
(51, [R, T) with energy spectrum unequal to the whole real line, then co is either
pure or can be decomposed into pure states with lower symmetry in a manner

analogous to that given in Theorem 4.3.37.

Theorem 5.3.43. Let CD be an ^-ergodic state on a C*-dynamical System
(^, R, T), and assume that the spectrum of the associated unitary re-

presentation Uaj of U is not the whole real line.
It follows that co is either pure, or there exists a pure state co and a positive

real number T such that

(1) (A}=^ TdtcbMA}}
l JQ

for all Ae^,
(2) 0} is periodic with period T, i.e., co o TJ^ = co,
(3) co and co o T/ are disjoint, co i co o T^, whenever 0 < t < T

.

Furthermore, a pure state co with the properties (l)-(3) is iinique up to

transformations by if

PROOF. Let 931 = n,o(^liy'. Since

u,(t)mu,(tY=m
for all / R, one must have

u,,(t)m'u,,(tY = m'

for all ^ e [R. Hence one can define T on 9JI' by
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Tt(A) = Uo,(t)AUa,(tY ,
Aem'

.

But since Qf^ is separating for 901', one has

a,(m') = a(Ua,l^,^)

in the notation of Definition 3.2.37. Now it follows from the ergodicity of co, and

Theorem 4.3.17, that

m'r^U^(U)' = U^ ,

i.e., T is ergodic on 50l' in the usual sense. Therefore, the argument used in the proof
of Theorem 4.3.33 implies that (j^(^') is additive. But cr^(9Jl') is Symmetrie by
Lemma 3.2.42. Hence the spectrum ar(^') is a group and since a(Ufo) is not the

whole real line there are only two possibilities.
Case L a^C^') = 0.

In this case the action T on 501' is trivial, i.e.,

m' C U^(R)'
and hence

^' = 'm'nu^(u}' = Ua^ .

It follows that Tioj is irreducible and co is pure.
Case 2. ff.Cm') = 2nI./T for some T > 0.

It follows from ergodicity, äs in the proof of Theorem 4.3.31, that the spectral
subspaces

(yR'Y({2nn/T})

are one-dimensional, and there exists a unitary operator

K e (9[R')^({-27ü/r})
such that the linear span of the powers K", w G Z, of K is dense in ^'

.
In particular

501' is abelian.

Note that

i,(V) = e'^^^^^V

and hence the spectrum of K is equal to the unit circle,

a(F) - T
.

The Gelfand transform, Theorem 2.1.1 IB, identifies the C*-algebra ( generated by V

with C(T), and the restriction of T/ to ( identifies with rotation through the angle
2nt/T.

Define a probability measure // on T by

^(c) - (QO;, CQ^)

for C e CC, where C denotes the Gelfand transform of C. By t-invariance, /i is the

normalized Haar measure on T. Put F^, = [SJl'Qo;]- If ^4 e ^ is an element with

bounded i-spectrum, then

F^n,,(A)F^ G F,,mF^ = m'F,,

is an element in '^'F^^ with bounded i-spectrum and hence

F,,7i,,(A)F,, G (:F,, .
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It follows by norm continuity that

F,7ü,,(3I)F,, C ^F^ .

Thus, if ^ G ^, there exists a unique C 6 ( such that

F,onj(A)Faj = CF(,

and hence a unique function

yeJ^cb,(A) = C(y)
in C(T) corresponding to A. Since ä)y(i) = l and d)y(A) > 0 if ^ > 0, it follows that
cby is a State for all y G T. (If H ^ ^l, one uses an approximate identity and Proposition
2.3.11.) Now if D G G: we have

(ü,,,n,,(A)DÜ,) = (^,,,F,,n,,(A)F^DQ,,)
= (Ü,,,CDQ,,)

= l d^i(y]C(y]b(y]= j d^i(y)ü,(A]b(y] .

Jj Jj

Since ( is dense in 9}!' = 9J1" n 9JJ^ it follows from this expression, Proposition
4.1.22, and Theorem 4.2.4, that

w(A) = J^d^i(y)co,(A)
identifies with the central decomposition of co, and this is just the unique extremal
decomposition in this case.

Since co is i-invariant we find

27rA/ di.i(y)d),(A)D(y) = (^^,n,,(A)DQ,,)= / di.i(y)(I).(i,(A))D(y ,

Jj \ T

and äs this is true for all D G C(T) it follows, by continuity, that

^y + 2Kt/T(A) =a)y(lt(A))
for all ^ G [R, y G T, and A e'^. Thus we may define

co = coo

and then the central (= extremal) decomposition takes the form

CD(A]=l-[ dtäMA)) .

^ JQ
Since co o a^ is pure for /i-almost all t, co is pure. If co were equivalent to co o a^ for
some 0 < / < r, then co o a^, would be equivalent to co o a^^.^ for all s e U, and this
contradicts the fact that the decomposition of co is the central decomposition. The
uniqueness Statement follows from the uniqueness of the central decomposition.

Remark. Since the decomposition in Theorem 5.3.43 is the central de
composition the corresponding measure is an orthogonal measure. Moreover
one concludes, a posteriori, that the decomposition coincides with that of
Theorem 4.3.37 with H = TZ, but the //-ergodic states {ij^co; t G H} are in fact
pure. Finally one can establish that the assiimptions of Theorem 5.3.43 do not

imply that the pair (^, co) is //-abelian and hence the result is not a direct
conseqiience of Theorem 4.3.37.
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The important feature in Theorem 5.3.43 is the occurrence of a periodic
structure. The construction used in the proof allows one to conclude a strong
uniqueness Statement for the decomposition of ergodic states of Systems for

which T is periodic.

Corollary 5.3.44. Lei (21, IR, T) be a C*-dynamical System where T is periodic
with period T, and assume that CD is an R-ergodic state on 91.

It follo\vs that there exists a pure state cb such that

co(Ä)=^ [ dtcö(T,(A)}
^ JQ

for all A G 91, and any two translates cö o T^ and cboi^ ofco are either equal or

disjoint. Furthermore, o) is unique up to translation by T.

PROOF. The periodicity assumption on T implies that the unitary representation U(a
is periodic with period T, and hence

(7(Ua,) C 2nZ/T .

If (D is pure we may set cö = co, if not we use the cä of Theorem 5.3.43 and note that

the period T of T is an integer multiple of the period T occurring in Theorem 5.3.43.

This last result partially complements the discussion of the uniqueness of the

ergodic decomposition given in Chapter 4. It should, however, be emphasized
that the periodic assumption which is crucial for the uniqueness of the extremal

decomposition in Corollary 5.3.44 is largely incompatible with the conditions

of asymptotic abelianness which are relevant for uniqueness of ergodic de-

compositions. More precisely, if (91, G, T) is a C*-dynamical System based on a

compact group G one can establish that (91, co) is G-abelian for all co e E^if
and only if the fixed-point algebra 91^ is abehan. The latter Situation is atypical
if 91 is simple and G is compact.



5.4. StabiMty and Equilibrium

5.4.1. Stability of KMS States

In the previous section we analyzed properties of individual KMS states and
affine properties of the set of KMS states. But hitherto we made no attempts to

justify the Interpretation of KMS states äs equilibrium states of quantum-
mechanical Systems. The purpose of this section is to remedy this omission.
We have noted several times that the finite-volume Gibbs states are the

unique KMS states and that the KMS property, or at least the accompanying
modular structure, has a tendency to persist in the infinite-volume Umit. Thus
empirical acceptance of the Gibbs formalism indicates that the KMS property
is a suitable characterization of equihbrium and this motivated the foregoing
analysis. Now, however, we attempt to derive the KMS condition from various
general, physically motivated, properties, notably properties of ergodicity and
stabiUty. As a prehminary we analyze the stabiHty properties of KMS states
and ground states under perturbation of the dynamics.

In Section 3.1.4 we discussed perturbations of generators of CQ- and Q-semi-
groups and we now apply this theory to groups of *-automorphisms T of C*- and
^*-algebras. We are particularly interested in perturbations by bounded sym-
metric derivations, and the algebraic structure leads to several refinements of the
general theory. For example, the derivation property ensures that the perturbed
group T^ is a group of *-automorphisms and hence it is norm-preserving by
Corollary 2.3.4. This strengthens one of the conclusions of Theorem 3.1.33.
Next recall that every bounded Symmetrie derivation (5 of a ^*-algebra 9Jl is
inner by Corollary 3.2.47, i.e., there is an // = //* G 9JI such that

ö(A) = i[H,A]
for all ^ G 9J?. A similar result is true for representations of C*-algebras,
Corollary 3.2.48. Thus, it is natural to concentrate on inner derivations. The
perturbation series for T^ then assumes a distinctive form in terms of com-

mutators and T, and T^, are related in a simple algebraic fashion by a unitary
co-cycle.

Proposition 5.4.1. Let (^,T) be a C*- or W*-dynamical System and let 3
denote the infinitesimal generator of T. Fiirthermore, for each P = P' e ^
define the bounded derivation dp by D(dp) ^ and dp (A) = i[P^A]for A G 51.
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Itfollows that d -{- dp generates a one-parameter group of"-automorphisms
1^of ^ given by

T^(A)^x,(A]+Y,f f'dti r dt2--- r"'rf?K(p),[--.K(p),T,(^)]]]
~^i JQ JQ JQ

Moreover, one has

Tf(^) = rfT,(^)rf* ,

where Pf G 9l is a one-parameter family of unitary elements, determined by

rf = l + ^ f /' dt, r dt2--- /'""' dt^,(p} - T, (P)
~^ Jo Jo Jo

= 1 + V f /' dti r dt2--- /'"'' ^?< (/')--< (P] ,

t^ Jo Jo JQ

which satisfies the co-cycle relation

YP r^r (r^}^
t+s

^ t^t(^ s) '

All Integrals converge in the strong topology for the C"" -System and in the a-

weak topology for the W*-system. The Integrals define norm-convergent series

of bounded operators and

||Tf(^)-T,(^)ll < (ei'iii^" - i)IMII, lirf -i|| < (ei'iii^ii - 1) .

PROOF. We give the proof for the C* -System. The ^*-case follows by transposition
from the predual äs in the proof of Theorem 3.1.33.

The first Statement of the proposition can be obtained from Theorem 3.1.33 by
suitable replacement of J^ by ^, etc. but it is most easily deduced from the proof of

the latter theorem. This proof established that T^ is the unique solution of the

integral equation.

^(A}=T,(A]+i /'c/r,[T(P),TTf_J^)] .

JO

Alternatively T^ is the unique solution of the integral equation

^,(A)=,,(A] + i l" dt,r^^T.([r(P),,,(A)]) .

JQ

Solution by iteration gives the perturbation expansion of T^. The automorphism
property of i^ follows with the aid of the derivation condition, e.g.,

^t^,(<(^)^r(5))=o.
Next consider Pf defined by the first series. The nih term in this series is well-

defined and has norm less than \t " ||P||"/!. Thus Pf is a norm-continuous one-

parameter family of elements of ^ with FQ = 1
. Consequently Pf is invertible for all

t G [-^0,^] for some ^ > 0. Next one has

.IpP .JT^P*^=,Tr.(P), ^=-.-.(p)rr,
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in the strong sense and hence

^(rfrp^Q
dt

Therefore, FfPf* = D and Ff is unitary for t e [-^o,^]- Unitarity for other t will
follow from the co-cycle relation. To establish this relation we first note that

^^=iT^, T,, (P)
äs "' ' '

and rf,J,^o = rf .
But T, (Ff) - F^^'^^^ and hence

^FfT,(F;) = /FfF;'(^)T,(T.(P)) = /FfT,(F;)T._,,(F) .

Moreover, FfT;(Ff)|^,^Q = Ff. Thus ^-i^Ff,^^ and 5'^FfT;(Ff) satisfy the same

first-order differential equation and boundary condition, for each t G (R. Therefore,
the two functions are equal and can be obtained by Iteration of the integral equation

X,(s} - Ff + / / ds'X,(s')i, + ,^(P)
Jo

(;.z + <5)(^)=(;.z + ^)(rfT,(^)rf)Uo

Next the unitarity and norm continuity of F^ ensure that / ^ FfT;(^)Ff* defines a

strongly continuous one-parameter group of *-automorphisms of 51. Let ö denote the
infinitesimal generator of this group and SQi A = (}i i -}- Ö -^ öp^^B) for / 6 [R\{0}.
One has

fT

7tj
-(FfT,(az + <5 + ^p)(^))Ff*)|,^o-^

But (Az + dY^ is bounded, by Proposition 3.1.6, and hence

A = (}.i^ ~dr\B] = (Ai^d + (5p)"' (B]
for all B 6 "il. It then follows from Theorem 3.1.10 that

Tf(^)- Yim(i--(d + dp]Y\B)
// -> oc v 77 /

= lim (l --5]"' (B] = rfT,(5)rf*
// 00 v n J

which gives the desired relation between T^ and T.

Now if one perturbs r^by a perturbation -P, then the final group of auto-

morphisms is T because it has the generator (b ^ bp] - bp b.
Therefore, one niust have

T,(/!) = ff^f (/()ff* ,

where

rr-^+E(-^')" /'^^' r^^2--- /'""^^.Tf(p)---<(p) .

~^\ JO ./o JQ

Consequently

rf = (ff)*T,(^)(ff) .

But then
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^(ff)'=/Tr(p)(ff)*=/(ff)'t,(p) .

Thus, (f^)* and F^ satisfy the same first-order dififerential equation and boundary
condition at ^ = 0. Therefore, Pf = (rf )* which is the second Identification of F^.

Finally the estimates on T^ - T and F^ - H are straightforward.

Throughout the sequel we use the notation introduced in Proposition 5.4.1 for
the perturbed automorphism group T^ and the related co-cycle F^. This pro-
position establishes that the map P G ^ i> T^ G Aut ^ is continuous with re-

spect to the norm topology on ^ and the strong topology on the

automorphism groups. If (^, T) acts on a Hubert space and T is unitarily
implemented, one easily attains continuity properties for strong convergence.
Moreover, the group T^ is unitarily implemented and the co-cycle F^ has a

simple identification.

Corollary 5.4.2. Adopt the assumptions ofProposition 5.4.1 but also assume

that ^ acts on a Hubert space and

i,(A] = U,AU; ,

vvhere Ut = Qxp{itH} is a strongly continuous one-parameter group ofunitary
operators.

It follows that

Tf(^) = L/r^c/f* , rf = [/fc/_, ,

where

Uf = QXp{it(H -{- P}} .

If, finally, P is a sequence of selfadjoint elements of M \^^hich converges
strongly to zero, then

lim ||(rf" - r,)tA|| - 0, lim ||(Tf"(^) - x,(A)m =0,
>CX) ->00

for fl// i/^ G and A G ^, uniformly for t infinite intervals o/ [R.

PROOF. If U^ is defined äs in the Statement of the corollary and Xf = UfU-t, then

^ = iU^PU., = iX,r,(P)

and XQ = '^. Thus, Xt is the unique solution of the integral equation

Xt = i^i [ dsX,i,(P} .

JQ

This solution can be obtained by iteration and one finds Xt = r^, where F^ is defined
äs in Proposition 5.4.1. The identification of T^ follows immediately from this pro-
position. Moreover

ll(rf'-i)i/'||< l' ds\\pu.,n
Jo
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But strongly convergent sequences are uniformly bounded and hence F^" converges

strongly to the identity, with the appropriate uniformity, by the Lebesgue-dominated
convergence theorem. The convergence of T^" to T then follows from the re-

presentation

Tf"(^)^rf"T,(^)rf"* .

EXAMPLE 5.4.3. Let ^l(l)) be the CAR algebra over the Hubert space l) and T a

one-parameter group of Bogoliubov transformations such that T^ ((/)) = a(Utf)
with Ut Qxp{itH}. The simplest Symmetrie perturbations are given by quadratic
elements, a*(f)a(f] or combinations of such elements, e.g.,

a*(f)a(g) + a\g)a(f) = (*(/ + g)a(f + g) - a'(f - g)a(f - g))/2 .

The group T^ resulting from a quadratic perturbation is also a group of Bogoliubov
transformations because for

P=^Aja^(fj}a(f,)
y=i

one has

5p(a(f))^iy^lj(f,/))a(fj) ./ ^

7=1

It follows that tf (fl(/)) = a(Uff) with t/f = Qxp{it(H + I.]^^ljEj)} where Ej is the

projection on /), i.e.,

Ejg = (fj^g)fj
for all t/ G t).

Quadratic perturbations of Bogoliubov transformations of the CCR algebra can

also be introduced for regulär representations but äs the creation and annihilation

operators are unbounded these perturbations are only affiliated with the re-

presentation.

Next we examine stability properties of KMS states co over a dynamical
System (^, T) and establish that each such state has a vector state co^ which is a

KMS state for the perturbed evolution T^. Subsequently, we deduce that the

(T, ß}-KMS States and the (T^, ^)-KMS states are in one-to-one correspon-
dence. If the KMS states are identified äs equilibrium states of a physical
System, these properties correspond to stability of the pure phases, and the
Overall phase structure, under perturbations. These results are obtained with
various perturbation series which are easily understood in the finite-dimen-
sional Situation.

Let Mfi denote the C*-algebra ofnxn matrices on the /7-dimensional Hubert

space ,j and for // = //* G M,j define the automorphism group T by

i,(A)^e^^^Ae-^^^ .

The perturbed group T^ corresponding io P = P* G M,, is then given by

Tf(^)=ß'^(^ + ^)^^-^(^ + ^)
.
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Moreover, by Example 5.3.31, the state

Tr>2^"(^^=Tr,M^)
is the unique (T, jS)-KMS state and the state

i:T^^^(e-(^(^ + ^^A)co^(Ä} =
Tr(^"^^^^^^)

is the unique (T^, j5)-KMS state. But co^ can be expressed in terms of CD in
several ways.

First,

ca''(A) =

where

,,^,_co(Ar^
^c^-ß}

l^P ^^-ß(H + P]^ßH

i.e., r^ is the analytic extension of the co-cyde F^, which relates i^ and i, at

the point iß. This identification follows simply from cyclicity of the trace. But

one has

Ff, - l + V(- l )" / ds, r dS2 ' /'""' dSn T,, (P) . T,,, (P)
^l JO JQ JQ

and this allows co^ to be expressed äs the ratio of two perturbation series. This
ratio can then be rearranged äs an expansion of co^ in terms of co. Somewhat

surprisingly, the terms of this latter expansion are integrals of truncated
functions.

Similarly one finds the Symmetrie form for CD^ in terms of CD

.,.,_co((rf,,,)*^(rf,,,))
^^ "

-((r^,/,)*(rf,/,))
and this yields a different set of expansions. This Symmetrie expression is

particularly useful for the study of the associated representation because one

may choose Q^^p such that

a/ -

'^co(^iß/2}^oj
l^f^(r^/2)^w|

and then deduce an expansion of the cyclic vector.

Stability properties of general i-KMS states can now be analyzed by ex-

ploitation of these algorithms for a;^,Qf,/, etc., and the perturbation series for
the Ff to construct i^-KMS states. In the ünite-dimensional case the various
series are evidently well-defined and uniformly convergent but in the general
case this is less evident. The necessary estimations are consequences of the r-

KMS condition.
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The major features of stability of KMS states are shared by C*- and ^*-

dynamical Systems. Discussion of the J^*-case is however more complex be-
cause it depends upon approximations in the strong operator topology while
the C*-case can be handled by uniform approximation. We next state the
common results, give the detailed proof for C*-systems, and outline the proof
for )^* -Systems.

Theorem 5.4.4. Let (^, T) be a C*- or a W-dynamical System acting on a

Hubert space such that

T,(A) = U,AU: ,

vvhere Ut = exp{/Y//} is a strongly continiioiis one-parameter iinitary groiip,
and fl a normalized U-invariant cyclic vector such that the associated vector

State, (jo(A) = (Q, ^Q), is a i-KMS state.

The following Statements are valid:

(1) //P = P* G ^, then Q G D(^(z)), where

^(z) = T, (P) - T,j (P) = e^^"Hp^(zn-^-z,^}Hp . . . p^-L-i//

for all z = (zi, . . . ,z,j) in the tube ^_i /9 defined by

X)[,"^ = {z; a < Im zi < Im Z2 < Im Zn < 0} .

The vector-valued function ,^(z)Q. is holomorphic in the tube X |/^,
strongly continuous and uniformly boiinded on its closure T)_jp, and

sup ii.^(z)fi|i < i|pir .

--^^':;/.

(2) IfP = p* 6 21, then Q 6 D(e^"+^^^'-) and the vector Q'' = e^^ + ^^^l-Q.
has the strongly convergent perturbation expansion

Q^ - 1} + V / ^^1 ... dSn T/. (P) . T,,, (P)0 .

,,>! J-1/2 <5i<-<5<0

Moreover, the state (jf defined by

(ü'-, A^P)(o''(A) =
(Q^ QO

is a i^-KMS state and it is the unique i^-KMS normal state if, and
only if, ^r^ is a factor.

(3) For each ^ G Ul and P = P* G ^, the truncatedfunction

F^(^i, . . . , tn] = CDT(A, it,,(P], . . . , T,, (P))

is the boundary value ofafunction FA(Z)(= cor(y4, TZ(^)) ^^^i (P)))
vvhich is holomorphic in the tub(

bounded on its closure X'^j,
,
and

vvhich is holomorphic in the tube D_p continuous and uniformly
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sup \F^(z]\ <2^n\\\P\nA\\ .

zeD^^'J

Moreover, //2||P|| < l the perturbed state (jf is determined by the

uniformly convergent series

of(A) =co(^) +
^<5/,<0

E/
>i ^-i<^i<-

xdsi'" dsn COT(A, %, (P), . . . , T/^i (P))

and hence

lim||co^' - co|| = 0
a

for each net PO, = P^ e ^ such that \\Py\\ > 0.

Remark. The convention ß = l which we adopt in the theorem is con-

venient but slightly confusing for later applications. With this convention the

perturbation corresponds to the addition of the "energy" P to the Hamiltonian

//, i.e., the generator of the modular unitary group. If, however, one rescales by
replacing T/ with i-ßt and simultaneously replaces P by ßP, then H is replaced
by H P. Thus, the perturbation corresponds to the subtraction of the "en-

ergy" P. This is most easily seen by examining the perturbation of Q. With

ß l one has

Q^-^(^+^)/2Q
.

But the rescaling T^ \-^ i-ßt corresponds to the replacement H\-^ ßH and
hence for general ß one has

^ßP ^ ^(-ßH + ßP}/2^ ^ ^-ß(H-P}/2^
^

PROOF. We examine first the C* -System.

(1) First choose PL e ^^ such that ||Pi|| < ||P|| and \\PL - P\\ -> 0. This is

possible by Proposition 2.5.22 and one has

||(^,(Z)-^M(Z))Q|| < ^||T.(P.)...T,XPl-PA/)---T..(PM)ß|| -

y=i

For z e ^_i/9 the right-hand side can be estimated by repeated application of the
three line theorem, Proposition 5.3.5, to the vector-valued functions

F(z)-T,(a)---Tz,(ßi)n ,

where the ß/ e ^T are subsequently identified with P/,, PM, etc. Thus, the maximum
value of the norm of F is attained at one of the + l points

Si =S2 = '" =Sj = --, Sj+i =Sj+ 2 = =Sn=() ,

where si = Im z/. But at such a point
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|F(/i -zy2,...,ry-zy2, /y+l,...,/)|-
< liail' llöy+i ll'l|T-./2(Tr,(a-) ^Jßi))^ll'

= liail'---llö7+ill'l|T,(ßt)---T.xß;)^ll'<nilßyll'
7-1

The equality of the second line follows from the t-KMS condition (at value ß = -l)
in the Symmetrie form derived in Proposition 5.3.3. Therefore, one has

iiG^,(z)-,^M(z))oii < \\pL-pM\\i^\\pL\r' \\pM\r
7=1

for all z e X)^"^,p. Henee ^L(Z)Q. is a Cauehy sequenee uniformly on D^'l^'j/^. Beeause
of the uniformity and the ehoiee of PL G ^T the limit function Q(z) has the holo-

morphy and eontinuity properties stated for -^(z)O. Moreover, by the same estimates

||D(z)|| < lim \\^L(zm < \\P\\"
L^oo

for all z G X)^"\ /^. It remains to identify Q(z) and .^(z)Q.
It follows from Corollary 5.3.4 and Theorem 5.3.10 that A = e^ is the modular

operator for the pair (^'',n) and in partieular 5IQ c D(A'") whenever

-| < Im z < 0. But A'" is closed and hence

A'"^PQ = lim A^^PL O
.

L^co

This establishes ü(z} = ^(z)Q. for n=l. Next assume the identification for
?^ <N - l.ln partieular for z G '^^^\/j

p^^i(zN-,-ZN]p^ - . . A'^-^'^^'-^P^D -^ PA'(-''^-'~^^^P- PA'^-"'"-^^^PQ
.

But one also has

^/z;vp^^/(-^^-i--v)p^ . . . A'("'-"^)p^Q ^ O(z)

by the previous estimates. Thus, äs A'^'^ is closed, one obtains Q(z) = ,^(z)Q.
The bound on ||^(z)Q|| follows by ehoosing Qi = P in the previous set of estimates.

(2) Assume P G ^^ and define Tj^. by

r^ '^+y](-i)" r^^i r ds2"' r"'j^T,,,(p).-.T,,,(p)
.

,7^ Jo Jo Jo

Each term in the series is well-defined because P G 31^, the series eonverges uni-
a^

eludes that T^, G ^-r and
formly, and Of ^ ^^.^2^- Now caleulating with convergent power series one eon-

T,,(rf;^) = Tf,(^)r^
for all ^ G ^IT- Therefore,

(r!,/,^, Tf/,(^)T!,/2(s)r!,/2fl) = (T-,y2(r5/,^*)a, T_,y2(r!*/,5)n)
= (r!,y2Q, 5^r!,y2n)

for all y4, ^ G "^IT, where the second Step uses the Symmetrie form of the i-KMS

-//2
condition, Proposition 5.3.3. But ^ is separating for ^ and hence r^//2^ 7^ 0.
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Therefore, the vector state o/ is well-defined and is a i^-KMS state by Proposition
5.3.3. Next note that F^ is invertible.

(rD'' = 1 + 5] frf^i r ds,--- r" ./.T,,, (P) ... T,,, (P)
n^l J^ -'O JO

and hence the set of vector states of co and c/ are identical. Thus, the equivalence of
the uniqueness of of, äs a t^-KMS normal state of co, and the factor property of CD

follows from Theorem 5.3.30 or Proposition 5.3.29.
Next choose ^/, e 31^ such that \\PL - P|| ^ 0 and define D^^ and O^ by the

perturbation expansion given in the theorem. It follows from the estimates of (1) that

||Q^^ - Q^ll ^ 0. Moreover, ||Tf^(.4) - rf (.4)|| -^ 0 for all ^ G ^ and ^ G IR by Pro

position 5.4.1. Therefore, of^ converges to a state of and this state is a t^-KMS state

by Proposition 5.3.25. By the same approximation procedure one concludes that the
vector States of co and of are identical and the uniqueness-factoriality equivalence
follows äs before.

It remains to identify ^ and e^^+'^^/^Q.
First, define Q^(z) by

Q^(Z) - Q + ^ z / ^51 ... dSn^is^.(P] ' T,,,,(P)Q ,

n > l -'-1/2 < ^1 << 5< 0

then Q^(z) is holomorphic for Re z G (0, 1) and strongly continuous for Re z G [0, 1]
äs a corollary of the estimates of (1). Moreover, ^^(1) = Q^. Now let D denote the
Union, over the intervals / C R, of the ranges ofE(I) where E is the spectral family of
/f + P. If (^ G > one has

(^(^-^^^/^cp, Q) = (cp, (/(z))
for pure imaginary z. But both sides are holomorphic for Re z G (0, 1) and con

tinuous for Re z G [0, 1]. Hence they are equal for Re z G [0, 1] by the edge of the

wedge theorem, Proposition 5.3.6. Since D is a core for e^^+^^/^, one concludes that

QGD(e(^+^)/2), and

Q^ = Q^(l) = ^(^+^)/2n
.

(3) Again we choose PL G ^^ such that ||Pz,|| < \\P\\ and \\PL - P\\ -^ 0. Setting

/^,^(z)-co(^T,(P,)...T,,(P^))
one has

\fA,L(z)-fA,M(z)\ < Y.\O^(AX,(PL)"'^.J(PL-PM]"'^.APM]]\ .

7=1

But if Qi G ^T, repeated application of the three-line theorem gives

SUp |co(^T,(ß)---^z,(ßl))|
zD5_"J

< SUp SUp|w(^T,(ß)...T,._/(ßy)...T,,_/(Öi))|
l <y< ^6 K"

= sup sup|a)(T,Xöy)---t(Ö,)^tJß).-.t,.,,(ß;+,))| < |M||fT||ß,-||
l<y<n(6R" ,Vi
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where the second step uses the i-KMS condition. Combination of these estimates

establishes that /A^L is a Cauchy sequence uniformly on D^"^j and thus the limit

function /^ is holomorphic in D*^j| and continuous on its closure '^_\. Moreover,

sup l/, (z) l < IM II ||P||" .

zeT)^'|

But the truncated functions are finite linear combinations of products of the non-

truncated functions and if we define F^ äs the appropriate combination of the /^ ,
it

follows that FA has the correct holomorphy and continuity properties and the desired

boundary value.

To derive the uniform bound on FA we first take P G ^H^ and remark that

C0r(^, T,, (P), - . . , T.,,, (P), T,,-KP), . . . , T,_KP))
- COKT/,(P), . . . , T, (P), A, TjP), . . . , T,^.,, (P)) .

This equality follows from the definition of the cor in terms of co and the i-KMS
condition. It then follows äs above that

sup|F^(z)|< sup sup|cor(T,XP),...,TjP),^,TjP),...,Tr,.,(P))| .

,g-j,(") I <j<n tW'

Now recall that a function F over the Index set 3 and its truncation FT are related

by

F(/)=Fr(/)+ Y. FT(J]F(I\J) ,

aeJc/

where a is any point in /. Next assume that \F(I]\ < l and |Fr(/)| < 2\^\-\\I\ - 1)!
for l/l < n where n>2 and |/| denotes the number of points in /. For \I\= n+ l one

obtains from the foregoing equation

\FT(I]\ < H-5;]"C,_,2-i(m-l)!

- Tn\{(Tn\Y^ ^^ ^

^ ( -m+ 1)! 2"-'" + ^
m=\ ^ '

< 2"/7!|l/8 + e^/--l| <rn\.

We may apply this result to truncated functions 097(^1,^25 5^) with ||^/|| < 1.

One has \o}(AiA2 ^)| < l and |cor(^/)| < l, |cor(-^/, Aj}\ < 2. Hence

|cor(^,,...,^)| < 2"-^(^-l)!
for all > l by induction.

Combination of the conclusions of the two preceding paragraphs immediately
gives

sup|F^(z)|<2"!||P|nM||
z^^^:]

for P G ^IT; and the general result follows by uniform approximation. Thus, we have
established the existence and convergence properties of the perturbation series given
in the fourth Statement and it remains to identify this series with co^ when 2||P|| < 1.

Let P G ^, and define co^(^) by o}^(A) = (^(A) and
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>^(A)= [ ds,---dSn CO(^T,-,, (P) ... T,- (P)) .

J-\ <S\ <-<5<0-l <5i <-<5<0

It follows that

Y,o^:(A] = o,(AY^_:) .

n>0

But r^ G ^T and it satisfies the analytically continued co-cycle relations

-p

i(s + t}

7>0

rP

riH-,-r^,(rfj, T,(r^,) ^ (r!,)*, (r^)-' = (r^,)*.

Therefore,

ü;(^r^,) = w(^r^,/,T_,y2(r!,y2))
= co(r5/2^r!,y2)
= w''(A)co(r%, r^,) = a;^(^)co(r!,) .-i/2 ^ -i/2

These two identities lead to the relation

X:A":(^) = a,^-''(^)^;X(i) .

> 0 > 0

But it follows from the representation of co^ given in (2) that A G IR H^> co^-^ has a

power-series expansion

o,'^(A) = ^r&^(A)
n>Q

with a nonzero radius of convergence. Thus, by multiplication and term-by-term
comparison of power series one obtains

a,:(^)=(ö^(^)+)jä,:_x^)r(i) .

r=\

o^(A) = ä^,(A) + Y^'^''
r-

In particular äs cog (^) = <^(^) one finds

/.o

d)f(^)-cof(^)-co(^K(l)- / dswT(A,iis(P]] .

J-\

Now for / = {/,, . . . , /l } adopt the notation

CDT(A; /) - cor(^, T,,,.^ (P), . . . , T,,,^ (P)) ,

co(^;/)-co(^T,v (P)...T,,,JP)) .

We assume that

^^(A)= l ds,--'dsnWT(A',{l, 2,...,r})
>'-l <^l <-<Sn<^

for r < 77 - l and then use the relation (*) to prove that it is valid for r = n. First,
from (*)one has
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CO^(^) =O}^,(A) + V / dSn-r+l. ..dSnCOT(A] { - T + l
, . . . , /7})r=\'^-'^<Sn-r+\<---<Sn<Q

X / ds\ . . .dsn-r0}('^j{l, . . . ,n - r}) .

J-\ <si <...<.y-,-<0

But by change of Integration variable one finds

^r(^) -= ^n(^} + l dsi- dsnY,^T(A: J)a;(1; I\J] ,

J-l <^| <---<5<0 J^l

where / = {!,...,} and the sum is over the strict subsets of /. But the general
relation between a function and its truncations gives

^COT(A] J)co(1; /\J) = co(A', I] - COT(A', I]
Jci

and hence

^n(^} = ^n(^) -l dsi--- dSn{co(A', I) - CO^^; /)}
J-1 <Si <-<Sn<Q

= / dsi 'dSnCÜT(A]I) .

./-l <si <---<Sn<Q

This establishes the correct identification of the perturbation series for P G ^I^. For

general P the series is obtained by uniform approximation.
Thus, the proof of the C*-version of Theorem 5.4.4 is complete. The W^*-version

can be established by the following Variation of the above arguments.
The first Statement of the theorem is established by an inductive reasoning which

necessitates a multivariable version of the three-line theorem. This allows one to
define Of for all selfadjoint P G ^l. Next one proves that if PM ^ P in the strong
operator topology, then Q.^'^^ -^ Of strongly. This is an imaginary time version of the
last Statement of Corollary 5.4.2 which follows from a double approximation pro-
cedure. One first introduces regularizations.

/T r

PM:. = \- dte~^^'^~i,(PM] ,V 717

and PX, of PM and P, and then PM, A
^ PM and P^ ^ P strongly by Proposition

2.5.22. Next, one uses the explicit form of the regularization and a change of vari
ables to deduce that

lim HA-'-PM. ;A--'-'"PM,;. A^'-^/'M. ;
A->00

- A-PMA^-'-^'-PA/ A^'-^^PM^II - 0

for all z G ^_i/9, and a similar result for P;, and P. But one can also conclude from
the uniform boundedness of convergent sequences, the Lebesgue-dominated con-

vergence theorem, and the regularization that

lim HA-PM,; A--'--'PM,A A-"'--^^PM,;O - A-P; A--'--P;. - A-''-"^P;P|| - 0
M -^ 00

for all z G D_| 79.
It now follows from these two estimates and the uniform bound

edness property of the first part of the theorem that

lim ||A""PMA-^'-'~"^"PM - A'-'-'-PMÜ - ^"P^-^'^-P A-''~^'-Pn|| = 0
.

M -^00
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Another application of boundedness and the Lebesgue-dominated covergence the-

orem finally yields the desired convergence Q.^-'"' > H^. But the i-analytic elements

form a strongly dense subspace of ^l, by Proposition 2.5.22, and hence the continuity
of Q^ allows the further discussion to proceed through approximation with analytic
elements in the same manner used for the C*-version of the theoreni.

Note that the vectors Q^ are cyclic and separating for ^( (or for 51^' in the

C*-case) äs a consequence of the i-KMS condition, Corollary 5.3.9. But if

P G ^ then r^ G ^, and

(i^ = r!^./,Q = r!^./4T_,/4(r^/4)o

by use of the analytically continued co-cycle relation. Moreover,

T- (r^ } (r^ v^T/^i^i _/^; (i _j^)

Therefore,

Q^ = r!,/,A'/Y^,/,o
= r-_,,,A'/^,v4(r:,y4)^
_ pP AV2pP *Q _ pP TT-P Q-^ -//4^ ^ -i/4 ^"^ A -//4^i -i/4^^ 5

where J is the modular conjugation associated with the pair (^, Q). This
establishes that Q.^ Hes in the natural cone ^ corresponding to (^, Q), Defi
nition 2.5.25, and this conclusion extends to all P = P* G ^I by strong ap
proximation of P by analytic elements and the continuity of P^^Q^. Thus,
Q^/||O^|| is the unique normahzed representative of the i^-KMS state c//
contained in the cone ^, Theorem 2.5.31. This allows one to readily identify
the modular operator associated with co^. For example, if A = exp{//} is the
modular operator associated with (^, ^) and if

Ap-e^ + ^-^^^
,

then by a perturbation expansion

tf (^) = A^^A-'^
for all ^ G ^l and ^ G IR, i.e., Ap implements the modular group of the pair
(^, Q.^). But the Trotter product formula, Corollary 3.1.31, shows that

A^iA= lim (A^'^/" e'^^/'Ve'^^/V)> .

n-^oo

This representation demonstrates that Ap ^ C .:^ and hence AP is the modular

operator for the pair (^, Q^) by Corollary 2.5.32.
The conclusions of Theorem 5.4.4 extend to (T. ^)-KMS states, for any

ß e U,by rescaling. Thus, for each (T, j5)-KMS state CD the theorem provides a

recipe for construction of a (T^, ^)-KMS vector state co^. The following cor-

ollary summarizes the properties of this map c/jt-^ co^.
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Corollary 5.4.5. Lei (^, T) be a C*- or W-dynamical System and for
p = p* G ^l, ß^R, associate mth each (T, ß]-KMS state CD a (T^, ß)-KMS
State cü^ by

p (0^4^4)00"^^)=
(Q^Q'^)

and

rß/2 rs,

(i- = ao +
^.
n> l

/p/^ rs\ r^n-i

l)"/ J^l / J52---/ Js7r(T(P)---T,,,(/'))aa .

JO JO Jo

It follows that the map y^^co^-^co^ is an isomorphism of the set o/ (T, ß)-
KMS States onto the set of (T^, ß)-KMS states which maps extremal points
into extremal points. The inverse map is given by (yf)"^ y^^.

PROOF. The map yf is well-defined, and it maps extremal points into extremal

points, by Theorems 5.4.4 and 5.3.30. Next assume that P G ^T, then
Q^ = nf,)(r^ßj^)Q(^. But the image of co^ under y~p^ is then determined by the vector

_P rß/^ rs\ fSn-i
ü~ = 7I,Xr^V2)^- + E / ds, ds2--- dSn7l,,(T^,,^ (P) - - - tf,, (P}r^ß/2}^co

> l 70 JO Jo

It follows readily from the second identification of F^ in Proposition 5.4.1, and

analytic continuation, that

Ü"'' - 7l,,((rf^/2)" Vco(rr^/2)ao = ^0 .

Thus, y'/'y^co = co and interchanging T and T^ one also has y^y'/'co^ = <jf This
establishes that (yf )~^ = 7"^^ and yf is an isomorphism. The result for general P

follows by approximation with a sequence of analytic elements and use of the con-

tinuity property Q^" -^ Of
.

It should be emphasized that the map y^ is not affine.
There is a second "time-dependent" approach to the stability of KMS states

which is less complete than the above but is of interest for various reasons.

First, it emphasizes different physical aspects; it is dynamical rather than ki-
nematical. Second, it plays a fundamental role in the subsequent attempts to

justify the KMS condition äs a characteristic of equilibrium. Third, it applies to

ground states and ceiling states for which the above "time-independent"
analysis has no analogue because the whole modular structure is lacking.

To illustrate the difference between the two approaches and to explain the

time-dependent time-independent nomenclature we first recall the discussion of
the finite-dimensional System which preceded Theorem 5.4.4. In this example
the relation between the perturbed state co^ and the unperturbed state co arose

by expansion of the co^ density matrix in terms of the co density matrix. But
these density matrices determine the probability distribution of the various
kinematic states of the System and hence this method is basically a time-in

dependent, or kinematic, way of linking the appropriate equilibrium dis-
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tributions. The second approach is distinct in that it is time-dependent and

consists of attempting to identify the perturbed equilibrium state äs the evolute

of the unperturbed state under the perturbed dynamics. Conversely, the ori

ginal State should arise by evolution of the perturbed state under the original
dynamics. This latter phenomenon, which is often referred to äs return to

equilibrium, is not universal but depends intimately upon some form of er-

godicity of the System (^, T) and purity of the state co. It appears that the

necessary ergodicity should be some form of asymptotic abelianness. Proper-
ties of this type for the dynamical group correspond to dispersion, with time, of

local disturbances. Their role in the time-dependent approach is illustrated by
the following result which establishes the tendency of perturbed KMS states to

return to equilibrium.

Proposition 5.4.6. Lei (M, T) be a C"^-dynamical System, where ^ has an

identity, and T^ the perturbed evolution corresponding to the perturbation
P = P* G a. Further let co^ be a (T^, ß)-KMS state for ß G [Ru{ 00} and CD

a weak^'limit point ofi^co^ äs t tends to infinity.
If (^^ T) is asymptotically abelian in the norm sense, i.e., if

\\mJ[A, T,(5)]||=0

for all A, B e^l, then CD is a (T, ß)-KMS state.

PROOF. If j? 0, then of is a trace and co is a trace, i.e., a (T, 0)-KMS state. Next

assume ß G [f5\{0} and let d denote the generator of T. The generator of T^ is ^ + dp
where dp(A) /[P, A]. The (T, j5)-KMS condition now follows by verification of the

auto-correlation lower bounds of Theorem 5.3.15. Explicitly one has

(^^)-S^^Ä""'<"(-)-.M)-^:|:g!^
< \im-iß(o''(t,(A*](5 + 5p](x,(A]))

t^OO

= -tßcD(A^Ö(A}) + lim jßco^(T,(^*)[P, T,(^)])
/> oo

- -ißcD(A^Ö(A)) .

The first step uses the lower semi-continuity of w, v\-^u log (u/v), the second uses

the auto-correlation lower bounds for co^, the third relies on öi = xd, and the fourth

follows from asymptotic abelianness. Similarly, \iß = + oo, i.e., co^ is a -f ground state,

-i(D(A^d(A]] = -i lim co^(T,(^*)(5(T,(.4)))
/>oo

> - lim O}^MA*)[P, T,(^)]) = 0
t^ oo

and co is a T ground state. The case ß oo is identical.

This proposition does not establish the existence of the limit of T*CO^ but if

there is a unique (T, jß)-KMS state, this follows because all limit points must be

equal. In fact, one can deduce a stronger result for jS G IR by use of the time-

independent theory.
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Corollary 5.4.7. Let co^ be an extremal (T^, ß]-KMS state for ß G U\{Q}
and assume that (^, T) is asymptotically abelian in the norm sense.

It follows that the limit

(D(A] = lim of(it(A]]

exists for all A G ^, and CD is the iiniqiie (T, ß]-KMS vector state of <jf
.

PROOF. Corollary 5.4.5 establishes the existence of an extremal (T, ^)-KMS vector

state CD, of co^, and co is a factor state by Theorem 5.3.30. But it then follows from
Example 4.3.24 that

lim coMT,(^)C) = co(AC)o}(B)
t-^oo

i.e., Ti,('it(B]] converges weakly to co(5)llf^ for all 5 G "jH. But of is a vector state of co

and hence

(ß(A] = lim co^(Tt(A]] .

t-^oo

Thus asymptotic abelianness and extremality imply the existence of the limit
States and äs the argument works equally well äs ^ ^ oo one deduces that the
two limits are equal. In fact, if one replaces the pointwise limit by a mean value
one can deduce an existence result without extremality of co^. One exploits the
mean ergodic theorem and the methods of Section 4.3. Again the mean over

positive t and the mean over negative t are equal.
In Order to fiirther develop the time-dependent formalism it is useful to

introduce a stronger notion of asymptotic abelianness.

Definition 5.4.8. A C*-dynamical System (^, T) is defined to be Z'(^o)-
asymptotically abelian if

f
Jc

dt\\[A, T,(5)]||<+D
)

for all .4, B in the norm-dense *-subalgebra ^o-

This strong form of asymptotic abelianness is useful because it implies the
existence of the norm limits 7.^ of T^^T+/, äs ^ ^ 00, for all P G ^o, Propo
sition 5.4.10. Thus, if ft}^ is a i^-invariant state,

lim CO^MA)}= lim oj^(T^_,T,(A}} = co^(y^(A)}
r->oo /->oo

exists. The problem with such conditions, however, is that they are difficult to

verify in particular models. This is not surprising because these conditions
express a form of ergodicity. Nevertheless in the simplest example, the ideal
Fermi gas, the L^ property can be verified.

EXAMPLE 5.4.9. Let ^ be the CAR algebra over L-(r) and 31^ the even C*-
subalgebra, i.e., the subalgebra generated by even polynomials in the annihilation
and creation operators a(f) and a^(g). Next let T denote the free evolution discussed
in Section 5.2.4. Thus T is a group of Bogoliubov transformations, it(a(f)) =
a(Utf), and
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(U,f](K) = (InY^'l^- / rf>/(p)e'> + '-(''^-")'

If V > 3, define 5Io äs the *-subalgebra of ^^ formed by even polynomials of the

a(f] and a* (g] with / and g of compact support. It follows that the pair (^g, T) is

'^H^o)-asymptotically abelian. This is established by first noting that if ^, B ^ ^g,
then II [^, T^(ß)]|| is bounded by a sum of terms of the form

UlV2d^'x \(UJ'](x)\~
.

This follows from the CARs because we have chosen an even subalgebra and the

compact support property. To estimate these bounds we note that

(U,f](x] = (2nr J dy f(y] J d'p ^P(^-y^^(p-^^^

= (-^mt]-'''^ l d'y f(y)e-^^''-y^''^^e-^^^
,

where we have used the Fresnel integral

f d'pe^^P' = (iu/t]'''' .

But then

-ix~/4t -it^it r
^

(u,f](x]=- ^ / ^> ^^y~i^^f(y)^^yi^^.
(-471/0 -^

Therefore,

\(u,f}(x]\ < (47tM)-'/2 / dy !/(;,) l <J^1_ 11/11 ,J^' (47ik|)'^-
where |A^| is the volume of the support A' of /. Hence,

(iA'l |A"|)'/^/ ffxg(x)(U,f](x)
A"

d^'xg(K)(U,f)(x) <\\g\
(47:|,

where A'' is the support of 0^. Thus, the bound for ||[^, 1^(5)] || is integrable for all

v>3.

If v= l, 2, then (^e, '^} is not L'(^o)-asymptotically abelian with the above
choice of ^o- If, however, one redefines ^o äs the algebra of even polynomials in

a(f) and a* (g), where f,g are in the domain D(X~] of the multiplication operator,
(X'^f](x) =x~f(x), and their Fourier transforms vanish in a neighborhood of the

origin, the property is again valid. To see this one simply remarks that

.^(., ^,/) = (^)7'^>^^/')(^|:)^'-'^"""
i\- /-./öl7''KI;^)"^^^^^^^^^^'",i(p~-H}l2V

Now the right-hand side can be bounded by the Cauchy-Schwarz inequality and use

of the special properties of /and g, e.g., /vanishes in a neighborhood of the origin
and df/dpj,d~f/dpj ^L'(R''). Thus, one finds \(g, UJ)\ < constant x t\~- and

(^e,T) is once more L'(%)-asymptotically abelian.
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Note that the integrability conditions arise directly from the action of U on

L"([R'). Thus, if one considers the füll CAR algebra ^, then (^, T) is L^(3Io)-
asymptotically abelian in a slightly more intricate sense. The commutator norms

II [^, i(B)]\\ are integrable whenever A, or 5, is an even element of a subalgebra ^lo
built with appropriate test functions but the anti-commutator norms \\{A^ i:(B]}\\ are

integrable if ^ and B are both odd elements.

The motivation for the introduction of Z/^(^o)-^symptotic abelianness is
provided by the following.

Proposition 5.4.10. Let (^, T) be an L^ (^Q)-asymptotically abelian C*-

syStern. It follo\vs that the limits

y^(A) = lim T!,T,(^)
r^ioo

exist in norm for all A ^^ and P = P* G ^o- The y^^ are norm-preserving
*-morphisms of^ \vhich satisfy the intertwining relations

7T-:/7 .

If^ has an identify, then the adjoints y^ are affine transformations of the
States E^i into E^n with the following properties\

(1) 777^ 7^ map i^-invariant states into i-invariant states and extremal
i^-invariant states into extremal i-invariant states.

(2) The 7^ map (r^, ß]-KMS states into (T, ß^KMS and extremal

(T^, ß)-KMS states into extremal (T, ß]-KMS states for all

^G(ff^u{oo})\{0}.
(3) ff ß ^ ^\{^} ^^^^^ f^^ maps 7^ coincide in restriction to the (T^, ß)-

KMS states.

PROOF. By differentiation and integration one obtains the estimate

||/T.(^)-/T(^)||< r ds\\[P, T,(A]]\\
Jtl

and hence

y^(A)= lim /,T,(^)
r-^oo

exist in norm for all ^ G ^o ^nd P = P* G 2Io. But äs ^o is norm dense and T^ and T

are norm-preserving the limits must exist, and satisfy ||7(^)|| = ||^||, for all ^ G ^.
As limits of *-morphisms the 7^ are automatically *-morphisms and the intertwin-

ning property follows because

7(T,(^))= lim /,T,+,(^)- lim Tf/,_^T,+,(^) = -^f^il^)
5^00 S^00

Since the 7.^. are *-morphisms their adjoints are affine maps of the dual which map
positive functionals into positive functionals. But 7(11) = (1) and hence 7;^ must

map PsTi into E^I.

(1) If co^ is T^-invariant, it follows that
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(y>0(T,(^)) = co^(7T,(^)) = a3^(r^7^(A)} = (y>0(^)

because of the intertwining property. Moreover,

(7>0(^T,(5)) =^(7(^)Tf(7(5))) .

Thus, if cü^ is extremal i^-invariant and M is an invariant mean over [R, then

M((y>0(^T(5))) =M(co^(yi(^)/(y(5)))) .

= (co''(y^(A))w''(y^(B)) = (y>0(/l)(ylo/)(5) ,

where the second Step follows from the mean ergodic theorem and the criteria for

extremality given by Theorems 4.3.17 and 4.3.22. But (51, T) is asymptotically abelian

and hence this düster property is equivalent to extremality of y^co by the same

theorems.

(2) If co^ is (T^, ß)-KMS

(7>0(^)= lim CO^(T!,T,(^)) - lim co^(i,(A))
/> 00 r>CXD

and y^co^ is (T, j5)-KMS by Proposition 5.4.6. If co^ is extremal CD is extremal, by
Corollary 5.4.7, for all ß G [R\{0}. Now if ^ ^ +00 and co^ is an extremal (i^.ß)-
KMS State, i.e., an extremal T^ ground state, then co^ is pure by Theorem 5.3.37 and

T^-invariant by Proposition 5.3.19. In particular, co^ is extremal i^-invariant and

y^co^ is extremal r-invariant by the first Statement above. But y^o)^ is a i ground
State by Proposition 5.4.6 and hence it is an extremal T ground state by Theorem

5.3.37. The argument for j5 = - cxo is identical.

(3) If co^ is an extremal (T^, jß)-KMS state for ß e U, then y^co^ = CD = f_cD^,
where co is the unique (T, ^)-KMS vector state of co^, by Corollary 5.4.7. Therefore,
the maps 7^ coincide on the extremal points of the (T^,j9)-KMS states and because

they are affine they must coincide on the convex closure of these extremal points. But

this is exactly the set of (T^, j?)-KMS states by the Krein-Milman theorem.

The *-morphisms y.j_ are algebraic analogues of the wave operators, or

M011er matrices, which occur in quantum-mechanical scattering theory and
hence we refer to them äs Moller morphisms. They provide a global comparison
of the two evolutions T and T^. These morphisms are not necessarily *-auto-

morphisms because they may not be invertible. Their kernels are zero but their

ranges may be strict subalgebras of ^. In scattering theory the formation of
bound states is a typical phenomenon which signals the lack of invertibility of
the M011er matrices and in statistical mechanics lack of invertibihty of the
M011er morphisms y^ certainly occurs if the perturbation P isolates finite

Subsystems. The formation of bound states, or the isolation of Subsystems, is
indicated by the appearance of a point spectrum for the perturbed evolution.
But if y^ or y_ is invertible, the intertwining relations give

y^ry-i = /

and hence the point spectra of T and T^ are identical. Conversely, if the point
spectra differ the y^ are not invertible.



164 States in Quantum Statistical Mechanics

Although the ranges of the y^ are not automatically equal to "^ the

morphism and isometric properties imply that they are C*-subalgebras ^ and
the intertwining property shows that these algebras are i^-invariant. It is then

interesting to note that if (^, T) is asymptotically abelian in the norm sense, the

(^_i_,T^) are asymptotically abehan in the same sense, e.g.,

||[7^(^),Tf(y^(5))]|| = |h/^(M,T,(5)])|| ^ ||[^,T,(5)]|| .

Similarly if the pair (^(,T) is L ^(Ulo) -asymptotically abelian the (^,T^) are

L^(7(^o))-asymptotically abelian. Thus, stability of the various forms of

asymptotic abelianness under perturbations of the group is directly related to

the invertibihty of the corresponding M011er morphisms. In fact, stabihty of the
L^-condition is essentially equivalent to invertibility of y.^. (Assume (^,T), is

I^(^o)-asymptotically abehan in order that y^ exist. If the y^ are invertible,
^ = ^ and (^, T^) is I^(y(%))-asymptotically abelian. Conversely, if

(^, T^) is Z.^(7_j_(^o))-asymptotically abelian, the limits

ß^(A}= lim T_,Tf(^)
/>oo

exist for all ^ G ^ and P =- P* G y(%) and for those P G ^^o n y(%) one

has^i^yji.)

EXAMPLE 5.4.1 1. Let ^ be the CAR algebra over L~(U'') and T the free evolution

given in Example 5.4.9, with /z = 0. Let P = a*(f)a(f) be the quadratic perturbation
of Example 5.4.3 and then T and T^^^ are both Bogoliubov transformations it(ci(f]] =
a(UJ) and rf(a(f)) = a(Uf-^f). The groups U and U^-^ have infinitesimal gen-
erators -V^ and -V- + /lE" where E is the projection on /. It is a Standard result of

scattering theory (see Notes and Remarks) that the strong limits

W^g= lim U^:^U,g
t-^oo

exist on Z-(R'). Thus the M011er morphisms 7^^ exist on ^l and y(a(f}) = a(Wf).
Moreover, the W are given by

(W^(l](p} = j d^'qWi(p,q)(l(q] ,

where

W,(p,q) = 6(p-q)-J^^^>^^>_ ,^^^

mp)f(q) l

p- -q^i &.(q
and

/'v \f(p}\'A(^^)=i-^yj>- '^
- p^-- i

If A(0) > 0, the W are unitary and the 7^ are invertible. If, however, A(0) < 0,
i.e., if

i/.>^<-, ,J P~
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the W are isometric but not unitary. In this case V" + >!" has an eigenfunction /;.
and the ranges of the W are exactly the orthogonal complement of /;. .

These results extend to more general quadratic perturbations and, for example, if

P= -(a*(VV)a(/) +a*(/)(VV)), then

Tf(a(/))=e-'-'(/.^^/)a(/) .

One of the most significant features of the time-dependent formahsm is the

set of "stability" conditions necessary for consistency with the time-in-

dependent formalism. The origin and nature of these conditions, which we

intend to derive below, is readily understood by examination of an extremal T-

KMS State co from the two different points of view. The time-independent
formalism expresses co äs a vector state of a unique i^-KMS state co^ which is

related to co by the convergent perturbation expansion of Theorem 5.4.4. After

rescaling this assumes the form

o)^(A)^oy(A)^Y.(-\Y l ds^rds^--'!" J^cor(^,T,-,^(P),...,T,-,,(P)) .

rTi -'O 7o JQ

Now consider the orbit of co under the perturbed evolution T^. The time-

dependent formalism indicates that under certain general ergodicity hypotheses
co evolves into a t^-KMS state. It is natural to define the System äs stable if the

evolved state is the unique i^-KMS vector state of co, namely, co^. Explicitly
this definition of stability requires that

co^(^) - lim co(Tf (^)) .

t-^ 00

It then follows from the t-invariance of co and the definition of T^ given in

Proposition 5.4.1 that

co^(^) - lim co(T_,TfM))
/-^oo

-CO(^)+ lim 5^f / dt, r dt2'" r J^.CO([TJP),[...[T,(P),^]]]) .

^"^
>1 ^-t J-t J-t

Thus one obtains two seemingly different series expansions for co^ and the

identity of these series, term by term, yields the stabihty conditions. The sim-

plest and most important is the first-order condition.

Theorem 5.4.12. Let co be a (T, ßYKMS state over the C*- or W-dynamical
System (^, T) and assume that co is strongly clustering, i.e.,

lim cD^(Ai:t(B)) = CD(A](D(B]
t-^oo

for all A, B e M.

It follows that

lim / dt(D([A, it(B]]] = i l ds(DT(A,iis(B]]
'^OOJQ JQ
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and hence

r^
lim / dt(D([A,it(B]]]^^
T^ooJ_j^

forallA.B^^,

PROOF. For each ^,5 G ^ the function t^^(jo(Ai:t(B]] is the boundary value of a

function, which we denote by z^-^ co(^T.(5)), analytic in the strip D/j;0<Im
z < ß (or jS < Im z < 0 if ^ < 0), continuous on the boundary of the strip, such that

Slip a;(^T,(5))| < IMIIII5II .

zel^ß

Now the (T, j5)-KMS condition gives

co(Ai:fß(B)) = CD(BA)
and therefore

r^ [T/ dtcD(Ai:,(B] - i,(B)A) = / dtco(Ai,(B} - Ai, + ,ß(B))
JQ Jo

rß
= i / ds(D(Ai^,(B)-ArT + is(B)) .

Jo

The second identity follows because the integral of z^co(y4T.(5)) around the par-
allelepiped with corners at (0,0), (r,0), (T,ß), and (0,ß) is zero. But

o}(Ai:T + is(B)) = (U,,(is/2)Ti,,(A^]Q.,,, U,,(T)U,,(is/2)n,,(B)^,,]
and the strong clustering condition is equivalent to the weak convergence of Uco(T)
to the projection on Q^^ äs T oo. Therefore,

lim co(AiT + is(B)) = co(A)a}(B) = CO(^)CO(T/,.(^)).
T> 00

It then follows from the Lebesgue-dominated convergence theorem that

/'"
jm /

T-

rß rß
lim / dscü(Ai:T + is(B})= / dsco(A)a)(T:i,(B)) .'-^^7o JQ

Combination of these results gives the first Statement of the theorem and the second
follows by subtracting the two cases T -^ 00.

The stability condition

lim / dtcD([A,,,(B)])=Q
l^CG J _j

will be of special significance in Section 5.4.2 where we demonstrate that under
suitable ergodicity hypotheses it is equivalent to the KMS condition for
^G [Ru{oo}.

Comparison of the two perturbation formalisms also gives higher-order
stability properties for KMS states.

Proposition 5.4.13. Let co be a (i:,ß)-KMS state over the C*- or W*-dyna-
mical System (51, T) \vith ^ G R and assume that co is strongly clustering.
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It follows that

lim ... lim r dt,--- l" dtn co(K (B), [ - [T, (B], A]]])
Ti-^ioo 7;,^oo7o Jtn-\

= Hr / ^^1 r dS2'-' r' dSnO^T(A^Tis,.(B],...,Ii,,(B]]
JQ Jo JQ

forallA, 5e 21.

PROOF. Let 5 e ^T and introduce B(s\ ,... ,Sj) = T/^-^(5) T/^, (5). We first argue

that

/""^O+i / ^^i-" r"^^ya;([T,^.,.(5), Ch^.,,(^(.,,...,5,-))
Jtj Jo JQ

rß r^j
= -i / ^51... / dsj+iO}(Ci,j(B(si,...,sj+i)) - CTT,,,(B(SI,...,SJ+I)))

Jo JQ

for all C e ^. This follows by an application of the KMS condition and con-

tour integration äs in the proof of Theorem 5.4.12. The KMS condition allows

one to reexpress the left-hand side äs the difference of two terms LI and ^2,
where

rTj+\ rß rsj,\

L,= / dtj+i / J^i-.. / dsjO}(C^^,(B(ß,si,...,Sj))) ,

Jtj JQ JQ

r^y+i
L2 -

.

JQ JQ
L2= /'"^^y+i / ^^i--- /' '^5yco(CT,^.^,(5(^i,...,5y,0))) .

Jt, Jo JQ

Next by a change of variables s'j, = Sk+\ - Sk + ß, k l
, ... ,7 l

,
and s'j = ß - si

and a subsequent shift of the contour of integration one finds

fT^j+i rß
L2 == r^ dtj+i l dsi... l' dsjO}(Ci:,^^,(B(ß-sj,si-sj,...,sj.^-Sj,Q)}')

Jti JQ JQ

rß f^j
i l ds\ .,, (

JQ JQ

rß
= LI +i ds\ .,, l dsj+\

X {co(Citj(B(ß -Sj+sj+i,..., sj-i - sj + sj+ 1 , sj+i)))
- O}(CT:TJ+ , (B(ß - sj + Sj+i,. . . .sj^i - sj -\- sj+i.sj+i)})} .

Another change of variable gives the desired identification of Z/i 1.2. A similar

identity is valid for a general B E ^ by approximation with analytic elements äs in

the proof of Theorem 5.4.4.

Next define C and X by

c(/i,...,o = [Tj5),[...K,W,^]]] ,

X(T,,...,Tn)= l 'dt, r~ dt,,., r dtn03(C(t,,...,tn]) .

JQ Jt\ Jtn-l

Application of the above identity and strong clustering gives
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lim X(T,,...,T)
TI,...,/,, -^00

-E-Hr% 1^^^ r dt,...r^ dt,w(c(t,^...,tj]]
j^l r,,...,7;->oo Jo Jf._^

rß rs-j-\
X ds\--' l dSn-j W(B(SI , . . . , Sn-j]]

JQ Jo
rß f^n-^

+ (-/)" / dSi--- ds(D(AB(s^,...,Sn))
7o jo

for n >2 and foT n = \ one obtains tlie result of Theorem 5.4.12.
The proof is conducted by induction. Theorem 5.4.12 gives the n=^l case and

we now suppose the result is true for 7 = 1,2,...,- l
.
The above identity then

gives

lim X(T,,...,T)
ri,...,r > 00

= - (-^')" E / ^^1 ' /'"'"' ^^'^~J ^(^-n-, (^) ^"-l (^))~f Jo Jo

rß rsn-i

X / ^^,,_y + l . / dSn COT (A , T/,,, (5) , - . . , T/,^_^.^ , (B) )
Jo JO

+ (-/)" / ds^ l"' ds üj(^T (5) ... T; (5))
Jo Jo

= (-/)" / ds,--- ["' dsn caT(A, T,-, (5), . . . , T, (5)) ,

Jo Jo

where we have changed the integration variables and used the general relation be-
tween a function and its truncations. (For a similar argument see the conclusion of
the proof of Theorem 5.4.4.) This completes the induction and the proof.

To conclude the discussion of stability of KMS states we examine various
properties of ground states, i.e., KMS states at the value +00. All oiir com-

ments apply equally well to ceiling states.

The principal difference between ground states and i-KMS states, in the
present context, is that the ground states have a tendency to be less stable.
There exist C*-systems (^, T) and perturbations P such that (^, T) and (^(, T^)
have unique ground states which are disjoint. Thus these states, which are

automatically pure by Theorem 5.3.37, generate unitarily inequivalent irre-
ducible representations (see Example 5.4.15).
We begin with a positive result concerning existence of ground states of

perturbed C*-systems.

Proposition 5.4.14. Let (^, T) be a C^-dynamical System mth a ground
State co and assiime M has an identity,

It follo\vs, for each P = P* e ^, that the perturbed System (5l, T^) has a

ground state.
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PROOF. The ground state co is i-invariant, the corresponding unitary representation
Uoj(t} = exp{zY//,J e 7Cf^(^)", and HO, > 0, by Proposition 5.3.19. Moreover Cor-

ollary 5.4.2 establishes that T^ is unitarily implemented by the operators

U^(t) ^g'X//o. + 7r,,(P))

But Hfo + T[(Ü(P} is lower semi-bounded and hence one may find a A e R and a

sequence of unit vectors i/^ ^ S such that H^j + Tc,a(P) > AH^o but

lim ||(//,, + 7r,o(P)-;j^)iAJ|-0 .

Now let con be the sequence of vector states associated with the i/^ and co^ a limit

point of this sequence in the weak* topology. It follows from the estimate

(^,7i,,(^*)[//.o + 7r..(P) - ;j.7i,,(^)liAJ > -|M||'||(//co + n,,(P) - ;:1,,)^J|

that cü^ is a ground state of (51, T^).

The following example shows that co^ is not necessarily jCco-normal.

EXAMPLE 5.4.15. Let ^ be the CAR algebra over L-(IR'), T the free evolution,
and P = ß*(/)fl(/) the perturbation discussed in Example 5.4.11. It follows from

Example 5.3.20 that (^, T) has a unique ground state coo, the gauge-invariant quasi-
free state with the two-point function

coo(a*(ö'i)(^2)) ^ te, Tgi) ,

where

(fg)(p) = g(p)^ ifp'^<^
= 0, if p- > ^ .

But Example 5.4.11 establishes that the M011er morphisms 7.1. corresponding to the

perturbation }^P exist for all >l G (R and are invertible if

d"pp-V(p}\' '

Therefore, the T and T^'^ ground states are in one-to-one correspondence, by Pro

position 5.4.10, for small A, i.e., there exists a unique T''-^ ground state. This ground
state is given by CÜQ^ = y^^coQ and it is the gauge-invariant quasi-free state with two-

point function

o4^(a^(g,)a(g2)) = (W+g2.TW^gi) = (g2. W^TW^g,] ,

where W^ is the M011er matrix of Example 5.4.11.

There are various possibilities for COQ^ which depend upon the support properties
of the Eourier transform /of /. If supp f ^ {p^ < {j}, then COQ is T''-^-invariant and
CD^'^ = O}Q. If supp / g {/?- < ;u}, the states are distinct but two cases occur which

can be differentiated by examination of the particle density.
The state coo has finite particle density because

N^(coo) = ^o,o(a^(fn)a(f)]=-^ [ d^'p
n>l ^^^^ ^p-<^

for any orthonormal basis {fn}n>\ of L^(A). Hence, COQ is locally normal with

respect to the Fock representation. The particle density of CD'-^ is given by
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^A(CO^O = (271)-" / d'p d'q u(P -q} l d'r W+(p,r)W^(r,q) ,
J Jl--<f.l

where

U(p)= j d^'xe'P^
JA

and ^+(-, ) is the integral kernel of the M011er matrix ^+ given in Example 5.4.1 1.
Now if supp fr\{p^ = /(} = 0, then N\(o}^^) < + oo by explicit calculation. On the
other hand, if supp fr\{p~ = i^i} ^ 0, the integral for N^(co^'^) can diverge because
of the sharp cutoff in the r-integral. But it follows from the special structure of quasi-
free states (see Notes and Remarks) that co^^^ is locally normal if, and only if, it has
finite particle density. Thus, co^^^ is not locally normal and hence the two pure states
co and CD^'^ must generate unitarily inequivalent representations.

The foregoing example demonstrates that ground states are less stable than
KMS states at finite values of ß. There exist T ground states which do not have
T^ ground states äs normal states. The phenomenon which occurs in this ex

ample and destroys the normality is quite general and is usually called an

infrared divergence, The energy difference between the perturbed and un-

perturbed Systems is finite because P is bounded, but this energy is shared by an

infinite number of particles each with an infinitesimally small energy. A similar
Situation occurs for the ideal Böse gas. All particles in the ground state have
zero energy but a bounded perturbation can introduce an infinite number of
infra-particles.

Another aspect of instability of ground states is given by examination of the
condition

fT
lim / dt 0}([A, T,(5)]) - 0

.

T^OGj_j^

In Theorem 5.4.12 we showed that each strongly clustering (T, /?)-KMS state co

satisfies this condition for all ^, 5 G ^ but for ground states this condition can

fail for certain A and B; in particular for those A and B which give emphasis to

low-energy excitations. If co is a strongly clustering T ground state, the Fourier
transform of

teU^(i^,u^(t)i^)-(i^,Q^)(üa^,i^} ,

where Uco is the unitary group implementing T on ^ and i/^ G ^^5 measures the
energy distribution in the vector state il/. The next result demonstrates that the
stability condition is satisfied if, and only if, these measures give zero weight to
the origin, i.e., if, and only if, infra-particles are absent.

Theorem 5.4.16. Let (^, T) be a C*- or W-dynamical System, co a strongly
clustering T ground state, and U^o(f} = exp {itH^o} the unitary group which
implements T in the cyclic representcition (^, TT^O, ^co)-
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The follomng conditions are equivalent:

r
(1) lim / J^co([^,T,(5)]) = 0

T -^ 00 J_j^

forallA.B^^,
fT

(2) lim / dt{(ß(Ai:t(B]] - a)(A)(D(B)} = 0
T ->ooJ_'P

forallA.Be ^.

(3) lim / Jr{(iA,^..(0^)-(iA, ^co)(0,, iA)}-0
T -^ 00 J_r

for all \l/ e ^.
(4) There exists an s > 0 such that

<T(//a;) C {0}U[8, (^>

where <j(Hco) denotes the spectrum of H^^.

PROOF. The state co is automatically i-invariant, Proposition 5.3.19, and hence

a;(^T,(5)) - co(^)co(5) - (TI^(A''^^^, V^(t)Ti^(B}^^}
-(7ra;(^*)Qco,na,)(Qa.,7ra;(5)a.) -

Therefore (3) ^ (2). But (2) ^ (1) trivially. To prove (1) ^ (3) it suffices to consider

\\i such that (i/^, Qfü) = 0. Now o; is pure by Theorem 5.3.37 and hence (S^j^^w) is

irreducible. Therefore, it follows by an application of the Kadison transitivity the-

orem identical to the application in Example 4.3.24 that one may find ^ e ^ such

that ^l^ü(A}^^^ = ^ and 7rfü(^*)ßü == 0- Therefore,
.T .T

lim / dt(^,UJt]\l/]= lim / dt cD([A\x,(A)]] = ^
.

r->oo7_7^ T-^^J_T

It remains to prove (3) ^ (4).

(3) ^ (4): Let H be the restriction of //^j to a closed, separable, Ua^ -invariant

subspace R of ^ 0 C Q^),

y-oo
// = / J^(;7)j.

7o

the spectral decomposition of //, and dv the measure in the corresponding spectral
representation. Then

/ dt(ilj,^^^cp)= r d(^,E(p]cp]2p-^^mpT
J-T JQ

for all (p, i/^ e R. Hence condition (3) implies that

roo

lim / dv(p}g(p)2p~^ sinpT ^0
T^oojQ
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for all g L\dv}. But the uniform boundedness theorem then implies that the
functions p -^ 2p~^ sin pT^ are uniformly bounded in L'^(dv) for all sequences T^
such that T > oo. It follows immediately that v([0, E)) = 0 for some s > 0, i.e.,

a(H) C [e, oo) .

In principle, could depend upon 5\ but äs the closed subspace generated by a

countable number of such 5\ is still separable and ^^j-invariant it follows by an ad
absLirdiim argument that we may choose s independent of the subspace.

(4) => (3): Adopt the above notation. The strong clustering assumption means

that

lim [dv(p)f(p}e^^P = 0
r 00 J

for all / L^(dv). But if ^ G L^(dv), then the function/defined by f(p) =g('p)/p is
also in L^(dv} because 8 > 0. Hence,

dv(p]g(p)2p~^ sinpT = 0
.

Therefore,

fT
lim / dt(il/, e'^^>)-0

r -^ 00 J_j^

for all (p,\l/ G , GCÜco-

The existence of an energy gap in the excitation spectrum, i.e., the spectrum
of //fü, is not generally expected for ground states of nonrelativistic Systems.
Infra-particles are usually present because of a mechanism referred to äs

Goldstone's theorem. Thus the stability condition, condition (1) of Theorem
5.4.16, is not generally expected for strongly clustering ground states. Never-
theless, this condition is satisfied for those ^, ^ G ^ which give no weight to
zero energy, e.g., if A, B e '2lQ([R\[-e, s]) for some g > 0, where '^HJ denotes
the spectral subspace of Definition 3.2.37, then

fT
lim / dt M(Ait(B}) = 0

.

T ^OGj_j^

This follows by noting that t ^-^ co(ATt(B)) is the boundary value of a function
which is analytic in the upper half plane and the choice of ^ and B ensures that
this function decreases like exp{e Im z}.

Although the stability criterion for ground states is not valid on the whole
C-algebra when infra-particles are present, it is possible that it holds on a dense
C-subalgebra. This is the Situation if (^(, T) is Li(*i(o)-asymptotically abelian,
Definition 5.4.8, äs we next demonstrate. Subsequently we discuss the stability
of such Systems with the aid of M011er morphisms.

Theorem 5.4.17. Let C^ll, T) be an L^('^lQ)-asymptotically abelian
dynamical System.

It follows that
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)

dt w([A, T,(5)]) = 0
)

for all A, B G MO, andfor all (T, ß]-KMS states co mth jS G [R u {ib oc}.

PROOF. First adjoin an identity, if necessary, and extend t to 5l = CH + ^ by
setting ff ((a, ^4)) = (a, T/(^)). We have already noted, in the discussion preceding
Theorem 5.3.30, that there is a one-to-one correspondence between the (T, ^)-KMS
States of (^, T) and the (f, j5)-KMS states co of (^, f) with \\cb\<^\\ = 1. Thus we can

assume that ^ has an identity.
Next assume ß e U and that co is an extremal (T, ^)-KMS state. Therefore, by

Theorem 5.3.30, co is a factor state. But the L^-asymptotic abelianness, and the

continuity of T, imply that (^, T) is asymptotically abelian in the norm sense.

Therefore, co is strongly clustering by Example 4.3.24. Thus, the stability condition

follows from Theorem 5.4.12. This condition immediately extends to finite convex

combinations of extremal (T, ß)-KMS states. Using L^(^o)-asymptotic abehanness

the condition may be expressed äs

/ /-oo \

co / dtlA, T,(5)]UO
oo

and this relation extends to any (T, ^)-KMS state by the Krein-Milman theorem.

Finally, consider the cases ß = oo. As they are similar we assume that ß = -{- oo.

First for >0 define x, by x,(l) = (In^^'/s for l G [s, 28] and y^} = ^

otherwise.

By Fourier transformation one has

r2E

X,(t) = ~^ dAe^^-^ = e^'^^/2(sin Bt/2)/(Etl2]
JE

and hence

/im^Z.W-^1
Thus, another application of the Lebesgue-dominated convergence theorem,
L^(^o)-asymptotic abelianness, and Fourier transformation gives

/oo
roo

dto4[A,r,(A')]) = lim / dt x,(tM[A,r,(A^)])
00

^ u J_Qo

l r^^
= lim- / d(n,,(A*)Q^, ^^(;.)7r,,(^*)Q^) > 0
^0 J,

for all A e ^Q. We have used EO^ to denote the spectral measure associated with the

unitary group U(o which implements T and the second step follows from the ground
state condition, i.e., the support of E^^ is in [0, cxo). An identical argument with /(/.)
chosen to have support in [-28, -B] gives however

roo l /.-

/ dt a}([A, T,(^*)j) - - lim - / öf(7r(^)Q^, E,,(}.)Tio,(A)^,,) < 0
.

7-00 ^^0j-2

Therefore,
^00

dto}([A,it(A'')]) = 0/:
for all ^ G ^0- The general result follows by polarization.
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We conclude this section with a discussion of a different type of stability
condition which is expressed in terms of perturbed states and is often valid if
the System (^, T) satisfies a condition of asymptotic abelianness.

Let (*5ll, T) be a C*-system which is asymptotically abelian in the norm

sense, and let co be an extremal (T, jS)-KMS state for some ß e U. (If^ ß = 0,
we adopt the convention that co is an extremal invariant trace.) It follows from
Theorem 5.4.4 and Corollary 5.4.7 that there exist perturbed states co^ of 5-1 for
all P = P* e 51 such that:

(1) CD^'^ is T^^^-invariant for P = P'' e ^ and A sufficiently small.

(2) /l 1-^ 0)^^ is continuous at l = 0 in the sense

lim co^^^(A] = CD(A]
A-.0

^ ^ ^

for all A ^ ^, and all P = P* G 5.1.

(3) The stability properties

lim co^^(it(A]] = a}(A)
?> 00

hold for all ^ e ^, P = P* G ^, and A sufficiently small.

In fact, the co^^ exist for all i G [R and are Tüfo-normal for ß ^ U. (If ß ^ 0,
one may choose co"^^ = co for /l G [R and P P* e 'ü, the asymptotic abe-
hanness is irrelevant, and property (1) follows because i^ and T are related by
an inner co-cycle F^, Proposition 5.4.1.)

In the introduction to the next subsection we show that the existence of a

family of states with properties (l)-(3) is a stronger stability condition than the
condition

/: dtoj([A, T,(5)])=0

occurring in Theorem 5.4.17. It is not known if a version of Theorem 5.4.17 is
valid with the stability properties (l)-(3) but some special cases can be handled.
If O) is an extremal T-KMS State atvaluej5 G [R and co^ is the i^-KMS state given
by Theorem 5.4.4, and (^, T) is asymptotically abelian, then it follows from
Theorem 5.4.4 and Corollary 5.4.7 that the stability properties (l)-(3) are valid.

If co is a ground state with an energy gap, i.e., the condition

(^(H(o) ^ {0} u [e, oo) of Theorem 5.4.16 is fulfilled, then it follows easily from
resolvent identities that H,o + ^T^co(P) has a unique (up to a phase) normalized

eigenvector \l/ ^ of minimum energy for l small enough. One may verify that
the corresponding vector states co^^'^ satisfy properties (l)-(3) and in this case

the co^^ are still TToj-normal. There do, however, exist ground states co where

properties (l)-(3) are valid but the co^^ are not Tito-normal. This is a con-

sequence of the following proposition applied to the free Fermi gas.

Proposition 5.4.18. Let (^, T) be an L^ (^Q}-asymptotica!ly abelian System,
and assiime that (^21, T) has a unique ground state co.
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// follows that for each P = P* G ^o there exists a ground state CD^ for
(^, T^). If {cD^} is an arbitrary family of such ground states, then

and

lim (D^^(A] = o}(A]
;. ^0

lim co^fi/M)) = CD(A]
/ -> 00

for all A G ^, P = P* e ^o-

PROOF. The existence of ground states of (^,T^) follows from Proposition 5.4.14

and we let co^ be an arbitrary ground state of the System. The assumed asymptotic
abelianness ensures that the M011er morphisms

y1(A)= lim /,T,(^)
/ 00

exist for all P = P"" e ^o, Proposition 5.4.10, and the y define *-isomorphisms
between ^ and 7(^l). These *-isomorphisms also satisfy the intertwining relations

7^, = <7:
for all / G IR. Hence, the C*-dynamical Systems (y(^),T^) have unique ground
States co^ which are defined by a}^oy^ = CD. Since co^|.^^(gi) is a ground state, it

follows that

p p
co o y^ = CD

and hence

CD(A) = CD^(y^^(A))= lim CO^(T,(^)) .

t'OC

Now by the estimate

roo

\\yi'(A)-A\\ < m / dt\\[PMm\
Jo

which is valid for ^4 G ^o it follows that

.limj|7f(^)-^||=0
for all A e '^. Combining this with

'^(yf (^)) = o}{A)

one concludes that

lim CD^-^(A) = CD(A) .

/. ^ 0

Thus properties (l)-(3) are valid.

Note that the discussion of the preceding paragraph is applicable to the free

Fermi gas if one works with the even C*-algebra ^^ over L"([R^') (uniqueness of

the ground state follows from Example 5.3.20) and hence properties (l)-(3) are

valid for this model. Nevertheless, Example 5.4.15 demonstrates that the
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corresponding co^ are not TTcü-normal, and the absence of an energy gap in the

spectrum of /f^o implies that the ground state cannot satisfy the stability
properties of Theorem 5.4.16. The latter fact can also be shown by an explicit
calculation on elements A = a*(/)a*(öf), B = a(f]a(g) where /and g are suf-

ficiently singular at the Fermi surface p" = /i.

5.4.2. Stability and the KMS Condition

In the previous subsection we studied various stability properties of KMS
States and our next aim is to establish that stability of a state can imply that the
State is a KMS state. Roughly one deduces that all extremal r-invariant states
of asymptotically abelian dynamical Systems which are stable under local
perturbations of the dynamics are necessarily KMS states at some value
jS G [R u {dzoo}. In fact, no completely satisfactory result of this kind occurs

unless one has Z^-asymptotic abelianness. We will, however, prove two theo-
rems in this direction. The first presupposes stronger clustering properties than
are implied by extremality but relatively weak requirements of asymptotic
abelianness. The second theorem is proved under weak clustering assumptions
but with L^-asymptotic abelianness of (51, T).

Let US begin with a description of the stability properties which are central
to both results. These properties arise from a reconciliation of two distinct

ways of envisaging perturbations of a System, the time independent and the
time dependent, in a manner already partially described in Section 5.4.1. First,
assume that CD is to describe a state of equilibrium of the System (^, T) then it is

physically reasonable to postulate that co is r-invariant, i.e., the values of ob-
servations are stationary in time. Now consider a local perturbation P of the
dynamical group. One could well expect the perturbed System to have a T^-
invariant equilibrium state co^, which differs from o; in a substantial way only
in the immediate neighborhood of the localization region of P, and such that
the set of states co^^^ for A G [-, e] approximate co in the sense (D^^(A) -^ (Jo(A)
äs |/l| -^ 0 for all vi G ^. This is the time-independent point of view. Second,
envisage the evolution of the perturbed states CD""^ under the dynamical group T.

If the group T is sufficiently ergodic, then one would expect the spatial effects of
redistribution caused by the perturbation P to gradually disperse and the states
co^^^ should evolve to the state co, i.e., one should have

lim (D'^^(it(A]] = 0}(A)
\t\ > 00

for all .4 G M. This is the time-dependent point of view. But then differ-
entiating and integrating one obtains

lim r dt ß;^^([P,T,(^)]) = lim /^ A|;^ft)^^(Ti^,(/l))
r>cx)J_j^ T ^ 00 j _Y Aul

= lim i{o^^^ (IT(A)) - cü^-^(T_r(^))}/i = 0
T -^ 00
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by use of the r^-invariance of CD^ and the time-dependent postulate. For-

mally, one then finds

/oo
/-oo

dt <a([P, x,(A}]} = lim / dt <o^([P, T,(^)]) = 0
CX)

^^ "7-00

by the time-independent postulate, and the exchange of limit and integral
would, for example, be justified for P, ^4 e 9lo if (91, T) is L^ (^o)-asymptoti-
cally abelian. Thus, one concludes that the equilibrium state co of the dyna-
mical System (91, T) should satisfy the stability requirement

f
Jc

dtCD([P, T,(^)])-0

for all P, ^ G 21, or at least for a sufüciently large subset of P and A^ e.g.,
strictly local elements of a quasi-local algebra.

The foregoing heuristic discussion relies upon a property of ergodicity of

(91, T), or of (91, T, co), which we did not specify exactly. We postulated that the

System was suffidently dispersive, or mixing, to ensure that the perturbed states

return to equilibrium. This problem has already been discussed in Section 5.4.1
and Propositions 5.4.6 and 5.4.10, and some form of asymptotic abelianness is

certainly sufficient. But it also appears necessary to postulate that CD is rela-

tively pure in order to ensure uniqueness of the limits of Ö}''-^(T/(^)) äs

f -^ dl 00. Therefore, this discussion of the behavior of equilibrium states co is
based on four types of postulates:

(1) T-invariance, i.e., stationarity in time,
(2) ergodicity of (91, T), e.g., asymptotic abelianness,
(3) relative purity of co, e.g., extremality of co among the r-invariant states,
(4) stability under perturbations.

These four postulates lead to the quantitative expression

fT
lim / dto}([A,Tt(B)])=Q
T^<^J-T

for ^, 5 G 91, of stability and our aim is to show that they also imply that co is a
KMS State. (The relation between stability and the KMS property is in fact not
so suprising when one remarks that the above stability condition reexpresses
the KMS condition at zero energy in the form given in Proposition 5.3.14.)

The first result of this type is the following.

Theorem 5.4.19. Let (9J, T) be a C*- or W-dynamical System and co a state

over 91. Assume that

lim ||7r,([T,(^),5])iA||-0
|/|>CX)

for all, A, B G 91, and all \l/ G <y. Furthermore, assume that co satisfies the

following conditions:

(a) co is i-invariant.
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(b) The fiinctions

t^ Co(Plt(A]] - CD(P]CD(A]\ ,

^K-^sup (ß(Pii:,(P2)i:t(Ai^s(A2))) - o^(P\^s(P2)]o^(Aii:s(A2)]\
seU

are L^-functions for all A\^ P\^ ^2, f^nd PI in a norm dense (a-\veak!y
dense) i-invariant ^-subalgebra 5Io.

(c) co is Stahle in the sense

fT
lim / dt (D([A,it(B]]) =0
r_oo J_j

r
r->oo

for all A, B e ^o-

It follows that (jo is a (T, ß)~KMS stäte for some j8G[Ru{cxo}.

PROOF. By elementary reasoning one may assume that ^o is invariant under reg-
ularization with Z/^-functions. The düster properties of o; adopted in the hypotheses
of the theorem are preserved under this regularization since the convolution of two

I^-functions is an L^-function. For example, the stability condition gives

J dt co([ATf(B)^i,(C)]) = jj dt dsf(s]o,([A^,(B), T,(C)])

= j ds f(s] j dt co([^T,(5), T,(C)]) = 0

if y4, 5, CG^IO and/GL^(ff^).
Next, for P/, AI e ^o and i = 1,2 define FA.,p^ and G^.^p. by

F^,pXO = (^(Pi^t(Ai]) - co(Pi}co(A^) ,

G^,P,(0 = o^MAi)Pi} - oj(Ai)w(Pf)

for t G [R. The i-KMS condition can be reexpressed in terms of the Fourier trans-

forms of these functions äs in Proposition 5.3.14. We derive the condition from a

series of observations concerning these functions.

OBSERVATION 1. t ^FA,,P,(t]FA,^P,(t] - GA,^p,(t]GA,^P,(t] is an L'-function
and

/ dt{F^,, P, (t}FA,, P,(t) - GA P, (t)GA,, P,(t)} = 0

PROOF. By the stabihty condition one has

f-OO

0=1 rf?Co([P,T,(/'2),T,(/l,T.(A))])

)

dt{FA^r^(A2),P\i:,(P2)(^} ~ <^.4|T,(^2), PiT.lPz) (0}
D

But it follows from the second clustering assumption and the i-invariance of co that
the integrand is dominated by an L^-function uniformly in s. Now from the first

clustering assumption
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lim CO(PTX^)) = co(P)a}(A)
s>- oo

for A, P G ^0- ßut using the asymptotic abelianness one also has

lim a)(PiTX^2)T,(^iTX^2))) = lim (/'.[iX/':), t,(^,)]T,+.(^2))
5> 00 S^ 00

+ lim Co(PiT,(^i)T,(P2T,(^2)))
s^00

= CD(Pir,(A,))co(P2i:,(A2)) .

From this and similar relations and the Lebesgue-dominated convergence theorem

applied to the above integral in the limit 5 > oo, it follows that

roo

0 = / Ö?^{CO(P,T,(^1))CO(P2TK^2)) - Co(T,(^i)Pi)co(T,(^2)P2)}
J -00
roo

= / dt{FA,,P,(t)F,,^P,(t) - G^p, (OG,p,(0}
J00

/.QO

+ co(P2)w(^2) / ^^(^^,,p, (0 - GA.^P, W)
o/ -00

/oc dt(FA,^P,(t] - GA,^P,(t)]
-00

)

rf;{F4p, WF^P,(0 - GAP,(t)GAPm .-f
J-c

Now, all the functions F^,,p, and G^.^p. are Z,'-functions, by assumption, and

hence their Fourier transforms F^,,p, and G^.,P. exist äs continuous functions van-

ishing at infinity.

OBSERVATION 2

FA,,P,(P]FA.,P.(-P] = GA,^P,(P]GA._^P.(-P)
for all /> G R == [R and all ^/,P/ G 5Io.

PROOF. Since F^,,p,, G^.,P. GZ,^nL ^ ^^, it follows by Parseval's theorem and
Observation l that

/oo ^ ^

/DO
^ ^^P^A,,P,(P)FA,,P,(-P)= l dpGA,^p,(p]GA,_^P,(-p] .

00 J00

If/is an L^-function, one computes that

^V(^2),P2W =0)(P2J ds f(s]l,^,(A2]) - j ds f(s)oj(A2}cD(P2)

= j dsf(s)FA,^P,(s + t] .

Taking the Fourier transform of this convolution one obtains

Frf(A,],P,(p]=FA,^P,(p]f(-p] .

Similarly, one derives

G^f(A.],p.(p] = GA,,p2(p}f(-p) .
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Inserting these relations in the earlier relation, with ^2 replaced by T:f(Ä2}, one

obtains

/OO fOO

dpF,,,P,(p)F^,,P,(-p)f(p]= / dpGA,,P,(p)GA,,p,(-p)f(p]
OO J OO

As FA^^P^ and ö/i,,p, are continuous in p it follows by letting / converge to the point
measure öp that

FA,,P,(P]FA.^P._(-P] = GA,^P,(P]GA,,P._(-P] -

Now, introduce the unitary group

U,(t) = e^^"'" = l e^^P dE,,(p)

implementing T in the cyclic representation (^^, 71^0,^0^) associated with co.

OBSERVATION 3. If the spectmm of H,, is not contained in

[0, + 00} or in (-00, 0], then for any p ^ U there exists a pair ^, P e ^lo such that

FA,P(P)J^O .

PROOF. Let ^?/ C R be the set of j9 6 (R such that F^,p(/?) / 0 for some A, P e'ÜQ.
By asymptotic abelianness and two-point clustering, one has

l /"^
lim / dta)(AT:f(B)C)=co(AC)co(B} .

T-^oc 2T J_'p

for all A.B.C^'^Q. Hence, it follows essentially äs in Theorem 4.3.33 that the

Spectrum cr(t/oj) is additive,

(j(U,] + (j(U,,) C(T(U,,) .

Now E(o = 'fo({0}) is the projection onto CQf,j and hence

FA^p(p]dp = d(n,,(p-'^)Ü,,E,(p)n,,(A)^,,) - (n,,(F')Q.,,,E,,Ti,,(A]Q.,,]ö(p]dp .

The continuity of F^^p then implies that cr(^fo) cannot contain isolated points. Hence,

(j(Uay] = K

by Example 4.3.34. But it follows froni this, and Proposition 3.2.40, that f/ is dense
in R. We argue that '^?/ = [R by contradiction. Assume that p^^^l/., i.e..

l dtFA^p(t)e-'P^^ = Q

for all ^,P G ^lo- Next set A = .411^(^2) and P = P\'Cs(P2) in this relation and take
the limit 5^00. It follows from the clustering assumption and the Lebesgue-
doniinated covergence theorem that

0-y dte-^^^^'FA,^P,(t}FA,^P,(t)

+ oX/^2)to(P2)|^/e-'^"^F,,,p,(0
+ oX^i)oXPi) l dt e-'>"^F,,,p,(0 = Jdt e-WF,,^p, (OF^p,(0
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Replacement of ^i by T:-S(A\) gives

dte-^^^^F^^^P^(-s + t}F^,,P,(t)=0

for all s e U. But by Fourier transformation in s one then obtains

FA,^P,(-P)FA,^P,(PO + P) = ^

for all p R. Now, if /? + /?o ^ ^^ we can find ^2 and p2, such that

F^2 P2(po + p) 7^ 0, and hence

F^P,(p)-0
for all /? e /?o - '^. But the latter set is dense and /^4,,p, is continuous; hence F^i,p, is
zero everywhere and we conclude that

CO(PT,(^)) =- co(P)o}(A)
for all P, ^ G ^0 and t G IR. This implies that co is a i-invariant character. In par-
ticular, dim ^ = l and t/cü(0 ^ for all /. This contradicts the assumption that the

Spectrum of Ua^ is not one sided. (Incidentally, co is a t-KMS state for all

ß G [Ru{oo} in this case.)

OBSERVATION 4. If ö-(//^ü) is not one sided, then there exists a unique con

tinuous positive function (|) on (R such that

FA^P(P} = ^(P}GAAP}

for all p G

PROOF. If /> G R is fixed, there exist, by Observation 3, elements ^i, PI G ^o such
that F^,,p, (-p) ^ 0. Define

^( )^|WZ^ .

FA^.P.(-P}

Then

FAAP} = ^(P}GA^P(P}
for all ^,PG^O by Observation 2. One can show äs in Observation 3 that

GA,P(P} ^ 0 for some A,P e^ and hence O is uniquely determined by the last
relation. Furthermore, äs ^/i,,p, is continuous we can use P^,.p, and GA^,P^ to define
O in a neighborhood of /?, and hence CD is continuous.

It follows immediately from the definition of FA^P and GA^P that

FAAt}=f^P^A^(-f} = GA^^P^(t) .

Hence, FA^A'^ and GA, A- are real for ^ G ^o and

FA^P(-P) = GP^A(P) .

Therefore, O is real and satisfies the relation

<D(-p) = a.(p)-'.
But 0(0) = l by a direct application of the stability condition. Thus ^ is positive.
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We are now prepared for the end of the proof of Theorem 5.4.19.

If a(U^^] is one sided, co is a KMS state at 00 by Proposition 5.3.19. Thus we

assume from now on that (j(Ufj,) is not one sided. If //co ^ P dEa)(p] is the spectral
decomposition of //^j and E^^ is the projection onto CQf,j, then

FAA^} = j ^"^(^*ao, (dE,,(p) - E,,ö(p)dp)AÜ,,) ,

GA,p(t} = j ^''^(^*QC., (dE,,(-p] - E^Ö(p)dp)P^,,)

foY A,P e^Q. Here, and in the sequel, we identify ^ and nco(^). Observation 4 then

implies that the spectral measures are absolutely continuous with respect to Lebesgue
measure, and

(P'n<, (dE,(p) - E,ö(p}dp)AQ,,) = (D(;7)(^*n, (dE^-p) - E5(p]dp]PQ.,] .

Since O is positive with 0(0) = l, it follows that

(P''Q.,dE(p]AQ.,) = ((D(p)'/-^*n,rf(-p)(I>(p)'/n) .

Hence, 2Ion, C D((D(-//)'/'-) and

(p*n,/in,) = (<D(-//)'/2^'n,a)(-//,)'/-pQ) .

Now 7r,o('älo) is strongly* dense in 9JJtu = 7t(o(2I)", by Theorem 2.4.11, and äs

<!>(//,)''' is a closed operator it follows from the above relation that

aRncD(<D(-//)'/2)
and by continuity

(5Q,^Q,,) = (a)(-//,)'/-^*Q,(D(-//,J^/Va,)
for all ^, 5 e 931oj. From this it follows that

AQ., = ^^ A'Q.,^ = 0

for all A G 9Jff;j. Hence Q(^ is separating for ^l^^ by Lemma 5.3.8. Since 9J^fy^fo is a

dense, C/f,j -invariant, subset of ^^ which is closed under regularization with functions
in L\ it follows by the reasoning used in the proof of Theorem 5.3.10 that SfJff^Qoj is a

core for ^(-H,oY^^. But 93Iaj^oj is also a core of A'/-, where A is the modular

operator associated with the pair (QU^j,^)- Moreover, äs

((D(-//,,)^/-.iQ,,ö[)(-//,,)^/-5Q,,) = (^*Q,^*Q,,) = (A'/-^au,A'%Q,,)
for all A, B e ^M,, it follows from the remarks before Lemma 5.2.13 that

(D(-//)'/^ = A'/^
.

Now identify T with its normal extension to 9JIf,j, and let

ff,(A) = A^'^V^A-'^

be the modular automorphism group. As co is i-invariant, it follows from Proposi
tion 5.3.33 that

Itffs = (^s^t

for all t^s G IR. But äs co is separating for '^M^o one has
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inf \o}(AB'C) - (D(B)cD(AC)\ = 0
5'6Co(rK(5))'

for all A, B, C ^ ^Jl^j by Theorem 4.3.23. Now Theorem 4.3.33 and the subsequent
remark imply that the joint spectrum of H^^ and log A is additive. Since

log ^(-H^] = log A

and cr(//(ü) := [R by Observation 3, it follows that the function p H-^ log O(/?) is linear,
and there exists, a ^ e IR such that

^(p] = e-^P
.

But then

e-ß^- = A
.

Hence o) is a t-KMS state at value ^ äs a consequence of Theorem 5.3.10.

Remark. Instead of the clustering conditions imposed on co in Theorem 5.4.19,
one could require that the truncated -point functions or^ satisfy strong
clustering properties for /i = 2, 3, 4, i.e., if ^i , ,^ G ^o there exists a non

negative, nonincreasing, integrable, function gA^ - -An on [R+ such that

|cOr^K(.4i),...,Tf(A))| <ö'^,...^(sup \ti-tj\\
^ ij ^

for /7 = 2,3,4 and tt G R.

We now show that the clustering properties of the state imposed in Theorem
5.4.19 can be weakened if one imposes a stronger form of asymptotic abe-
lianness. In fact, the following theorem essentially characterizes extremal (T, ß)-
KMS States of L^-asymptotically abehan Systems äs stable factor states. The

only discrepancy in this characterization occurs if ^ = 0 because the extremal

(T, 0)-KMS States, i.e., the extremal traces, are not necessarily factor states. Of

course, this discrepancy is absent if ^ has a unique trace-state.

Theorem 5.4.20. Let (^, T) be a C*-dynamical System which is L^(^Q)-
asymptotically abelian in the sense of Definition 5.4.8, and co a i-invariant
state over ^. Assume that

(1) Either

lim Co(T^,(^i)T^,(v42)T^3(^3)) = (D(Ai]o)(A2]cD(A^]
M \ti-tj\^ CG

for all AI, AI, A-^ G ^, or co is a factor state.

(2) co satisfies the stability requirement
'"

dt(o([P,x,(A}]) = 0l'
J -C

for all A, P G ^o-
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Itfollows that (D is an extremal (T, ß)-KMS state for some ^ G ff^ u {i oo}.

PROOF. As t^-^i:t(B) is uniformly continuous for each B G ^o, it follows from the

L'(^)-asymptotic abelianness that

lim ||[^,T,(5)]|HO
?^oo

for all ^, 5 G ^0, and hence for all ^, 5 G ^. Thus if co is a factor state it follows

from Example 4.3.34 that

lim Cü(lt, (A\]--' T^(^n)) = ^(^l) ^(^Az)
inf |r/-^-|>oo
' /;'

for all G Z+ and AI G ^. Therefore, it suffices to prove the theorem under the

three-point clustering assumption.
If {Ey} is an approximate identity on ^, it follows from Proposition 2.3.11 that

lim Tito ('a)^co = ^co
a

and using this one easily proves the two-point düster property

lim (D(Ait(B]] = a}(A)co(B}
t^00

from the corresponding three-point property. Also, äs in the proof of Theorem

5.4.19, we may assume that ^o is closed under regularization by L^-functions.
Let US define

FM = F^,,P,(0 = o}(Pt^,(Ai)) - w(Pi}cD(Ai) ,

GM = GA.^P^ = ^MAi)Pi) - cD(Ai}(D(Pi} ,

for^/, P,- G %.

OBSERVATION l
.

t ^Fi(t)F2(t) - Gi(t)G2(t) is an L^ -function, and

/oo dt{Fi(t)F2(t) - Gi(t)G2(t)} = 0
.

00

PROOF. By the stability requirement we have

/oo dta)([Pn:,(P2),it(Aii:s(A2W=Ii(s}-\-l2(s)+l3(s}-^l4(s} ,

oo

where

/oo J;a)(P,[T,(P2),T,(^,)]T,+,(^2)) ,

h(s)= / dto}(Pir,(At)[T,(P2),T:.,+,(A2)]) ,

J
- 00

Ij(s)= /"rf?Co([P,,T,(^,)]T,+i(^2)T.(P2))
,

J OO

/oo rf;Co(T,(^l)[P|,T,+,,(^2)]T.(/'2)) .

- 00
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The integrands of /2 and /3 are dominated by L^-functions which are independent of

5-, and using the two-point clustering and the Lebesgue-dominated convergence
theorem we obtain

lim {/2(^) +73(5)} - /" dt co(PiT,(^i))co([P2, ^t(A2)]]
^-"^ 7-00

/oo rf/ü;([P,,T,(^,)])cü(T,(^2)/'2)
-co

= r dt{FA,,P,(t]FA,,P,(t] - GApMGA^,pm ,
J 00

where the last Step uses the stability condition. Hence it is enough for Observation l
to show that

lim I\(s) = lim 74(5) = 0
.

5> OO 5> OO

But, by a change of variable,

/OO dt(a(-c^,(P^)[P2,r,(Ai)]T:,+,(A2)) .

-00

Again the integrand is dominated by the L^-function t i-^||Pi|| ||[P2,'z^/(^i)]|| iMill,
which is independent of s, and the limit of the integrand äs 5 > co is

CO(P1)CO([P2,T,(^1)])CO(^2)
by the three-point düster property. Thus, by the Lebesgue-dominated convergence
theorem,

/OO dtco([P2^,,(A,)]) = Q
.

.00

One shows that lim^^ 0074(5) = 0 by a similar reasoning, and this ends the proof of
Observation 1.

Now, from the relations

FAA^} = Gp^A(-t], F,^(^),p(0 -F^,p(^ + 5) ,

and Observation l it follows that

j dt{F, (t]G2(s -t]~G, (t]F,_(s - 0} - 0
.

Define 77^^p = F^^p GA^P and set 77] =: 77^,, Pj so

H,(t] = F,(t] - G,(t) .

Then 77i is an 7,^-function, and from the relation above we obtain

and

j dt{H, (t]G2(s -t] -G, (t)H2(s -t)} = 0
.

j dt{F, (t]H2(s -t] -H, (t]F2(s - 0} - 0

If (7^(0 f^'^^ dEaj(p} is the spectral decomposition of t/o), let

/^/""/^^P,o V/ = V^,.,/>.



186 States in Quantum Statistical Mechanics

be the measures defined by

rfft(p) = (P;a, dE,(p)A,Q^) - w(P,)w(A,)5(p)dp ,

dVi(p) = (A*Ü,dE,(-p)P:Q.,)-o4A^)w(P,)S(p)dp .

Then

FM = l e"''dß,(p), G,(t) = y e"''dv,(p) ,

and thus

di.ii(p} - dvi(p) = Hi(p]dp ,

where /// is the Fourier transform of ///. From the convolution relations above we

now obtain

OBSERVATION 2

H2(p)dv,(p)=H,(p)dv2(p} ,

H2(p]d^i,(p]=H,(p]d^i,(p] ,

for all^/,P/ G Ulo.

Next, define a siibset 6' C [R by

S = {p ^ [R; HA^P(P) / 0 for some A,P ^ 3Io} .

OBSERVATION 3. 5 is an open set, S = -S and 0^5*.

PROOF. S is open since each HA^P is the Fourier transform of an L^-function, and

thus is continuous. The symmetry follows from the relation

dpHA,p(p] = (P'^Ü,,,dEcD(p}AÜ,,} - (A'Ü,,,dE,,(-p)P^,,)
= -dpHp^A(-p) ,

and HA^P(Q) = 0 by this same relation (or stability).

OBSERVATION 4. There exists a well-defined pair /.(, v of cr-finite measures on S

such that

dl-^A,p(p] = HA^p(p]di.L(p], dvA,p(p} = f^A.,p(p)dv(p)
for p ^ S, and, furthermore

^/^(p) = -dv(-p]

PROOF. Since S is open, S is the union of an increasing sequence of compact sets,
and äs each HA^P is continuous, it follows that there exists a countable partition
{S\, 82, } of 5 into Borel sets, and elements ^/,P/ G % such that

fep,(/^)l>l
for p G Si. Now, define
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, f .
d^^ p(p] dvA,.p,(p}

dLi(p) = ^ , dv(p) ^

ffAp,(p) HA.,P,{P)

for j!? G 5/, z = l, 2, Then /.i and v are well-defined a-finite Borel measures on 5,
and Observation 2 implies that

^M^, p(p) == ffA, p(p]d^(p], dvA, p(p) = HA. p(p)dv(p)

for all /4, P e ^0 and all p e S. Finally,

,,(^)^1^..,M^)^'^:^.,^.(-P)^_^,( )
//,,,P,(P) -Hp.,A,(-p)

Now, the Radon-Nikodym theorem implies that there exist |/i| + |v|-measurable
functions i/^^- on S such that

^KP) = ^i(p)d(M + v|)(;7), ö^v(;?) = ^2(p)d(\^\ + M)(p}

Since di.i(-p) = -dv(p) we have d(\i^\ + |v|)(j9) = d(\^\ + |v|)(-;?) and

j/^j(-jr,) = _j^,,(p). Define subsets So,Soo, and 5/ of [R by

SQ = {P e 5;iAi(/^)-0}, ^oo-i/? e 5:>2(;^) = 0} ,

Sf = R\(SQuS^) .

Since iAi(/?) = 0 if, and only if, \IJ2(~p] 0^ we deduce immediately

OBSERVATION 5

SQ = Soo, Sf = Sf

in the sense that the sets differ only on a set of |;u| + |v|-measure zero.

Define a Borel function cp on IR\^oo by

rMp)
^2(P}
^^ on S\S^

9(p) =
[l, on U\S .

OBSERVATION 6

d^^A,p(p} = 9(p)d^A,p(p)

on [R\*S'oo. Furthermore, (p(p} > 0 and (p(-p) = (p(p}~^ on Sf (except for a set of

|/i| + |v|-measure zero).

PROOF. It follows from Observation 4 that

d^iA,p(p) = ^|^^(p]HAAp]d(\^\ + |v|)(p) ,

dVAAp]=^2(p]HAAp]d(\ß\-^ ^\)(p) ,

for p e S, while

d^A,p(p] - dvA,p(p] = HA^p(p)dp = 0
.

for p G 5^ As d^LA.^A(p] > 0 and dvA^.A(p) > 0 for all ;? ^ 0 and all A G ^o. it

follows that (p (p) > 0 and since <p(p) ^ 0 for p G 5/, one has (p(p) > 0 for p e Sf.
Thus (p(/?) = (p(-p)~^ is a consequence of\l/^(p) = -\l/2(-p]-
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OBSERVATION 7. If ^cü is the projection-valued measure corresponding to H^^,
then

^o.(^o)-0

and, consequently,

E(S^^Sf]=^ .

PROOF. From the relation

d^iA,p(P^ = ^l',(p]HA,p(p]d(\A + v|)(p)

it follows that

A^/i,p(^o) = 0

and hence, äs O^iSo by Observation 3,

(P*Q,^,,(5o)^Q) - /i^,p(^o) = 0

for -dllA, P G %.

OBSERVATION 8

(P*ao,^(^/Ma.) -^ (9(-Ho.]"'^'^o^. (^(-//,,)^/-PO,,)
for all y^, p e 911,, = 7r^(5I)^

PROOF. By Observation 6, one has

(P*Q, dE,,(p]AÜ,,] = d^i^^p(p) + co(P)co(^)^(;7)J;7
- (p(p)dvA,p(p) + a;(P)co(^)(5(/?)^/7

-((^(;7)'/^^*a.,^^.(-/^)c/)(;7)^/'PO^)
for p G IR\-S'co, and ^,P G ^o, where we have identified ^l and 7rfo(3I). Integrating
over IR\iS'oo = Sf u SQ^ we obtain from spectral theory that

^oOro C /)(9(-//,,)'%,,(-(5y- U^o)))
and

(p*ao, ^oX^/M^o.) = (P*a.o,^.o(^/ u^oMa.)
- ((^(-//,,)'/-^*Q,,(p(-//,,)^/-pQ,,)

where we have used the relations ECO(SQ) and Efo(-(Sf^SQ)) = Eaj(Sf u Soo) which
follow from Observations 5 and 7.

Since 9Io is strongly* dense in SPl^^ by Corollary 2.4.15, this last equation extends
to all ^, P 9^0..

Next define

Ef = [aR;nj .

Then / e aJI.
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OBSERVATION 9

E^(Sf] = E^(Sf]Ef = EfE^(Sf] .

PROOF. Since

^itH^,ffl'^^-itH^ - ^'^
for all r G [R, it follows that Ef commutes with e'^"^

,
and hence

E^(Sf]Ef=EfE^(Sf) .

By Observation 8, one has

(E^(Sf](^ -Ef}P*Ü^,E^(Sf)(^ -Ef]A^,,]
= (cp(-H^]^'^A^(^-Ef]ü^,cp(-H^]^f^P(\ -/)Q,) -0

for all ^, P E ^[Rcü, and hence

eo(^/)(l-^/)-0 .

Now, ßcü is cyclic and separating for the von Neumann algebra 9Ji = Ef^^Ef
on = Ef9)f^ by Lemma 4.3.13. Define HE Hf^Ef = EfHo) and let A and / be the
modular operator and modular conjugation associated with the pair (93l,Q).
Then

HE = j p dEE(p] = j p dE^(p)Ef

is the spectral decomposition of //. As e'^^^ leaves QCÜ invariant and defines an auto-

morphism group of SOI^, it follows äs in the proof of (3) ^ (2) in Theorem 3.2.61 that

JHEJ = -HE

and hence

JEE(B]J = EE(-B]
for all Borel sets 5 C [R. In particular, it follows from Observation 7 that

Ef = JEfJ = JEE(Sf u ^oo)^ - EE(-(Sf u 5-00)) .

But

^^(-^oo) = EE(SQ) = 0

by Observations 5 and 7. Thus,

Ef = EE(-Sf)=E^(Sf}Ef
and Observation 9 implies:

OBSERVATION 10

Ef=E^(Sf) .

Now, Theorem 4.3.22 implies that E^^ = 'ö>({0}) is a one-dimensional projection,
and äs QÜJ is separating for ^E it follows from Theorem 4.3.23 that

inf IcoiAB'C) - a}(B]o}(AC)\ = 0
5'CO(TM(5))'
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for all A, B, C e QJl^. As HE and A commute strongly by Proposition 5.3.33, (2), it
follows from Theorem 4.3.33 and the subsequent remark that the joint spectrum E of

(log A,//^) is a closed additive subset of IR". But since üoj is separating for 9[R,
Lemma 3.2.42, (2), implies that Z is Symmetrie, and we conclude

OBSERVATION 1l. The joint spectrum 2 of (log A,//^) is a closed subgroup
of [R-.

We next show

OBSERVATION 12. E,o(Sf) is not one-dimensional, then Sf is dense in [R and

(J(HE) = ^.

PROOF. ff(HE) is a group by the remarks before Observation 1l, and äs 0 is a simple
eigenvalue of H(o it follows from the assumption and Eco(Sf} = Ef that (J(HE] i=^ {0}.
But cr(//) cannot have any nonzero isolated points because this would imply that H^^
has a nonzero eigenvalue /l with a corresponding eigenvector i// such that

c/^(OiA-^"''A
But then

(lA,7ü,.(T,(5))a) = (U,,(-t)llj,7l,,(B)ü^) - e'^^^(lA, 71^(5)0,,)
for all 5 e ^. Therefore, choosing B such that

(iA,7i,(5)Q^)^0
this contradicts the fact that

lim n,o(i:t(B)) = a)(B)^
?>CXD

in the weak topology. It follows from Example 4.3.34 that

(T(HE) = U
.

OBSERVATION 13

(T(HE) ^ (J(H^-E) Q ff(H^-E)

PROOF. This is demonstrated äs in the last part of the proof of Theorem 5.3.22.

OBSERVATION 14. The restrictions of the measures di^i^p and dvA,p to ^o^^oo
are absolutely continuous with respect to Lebesgue measure, and

. , ,
ro, ps,

""^-"(^^ = U.XPV;., pes^,

dv.Ap} = { -"^'"^P^'^P^ P ^ ^

0, p ^ S^

PROOF. This follows from the relation
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d^iA,p(p} - dvA^p (P] = HA^p(p]dp

together with the equations

d^^A^P^ = ^^ P^ '^o, d^^AAp') = 0' P^S^

Next, define subsets S^ C [R by

^+ - n (p'^^^^^^^(p^ ^ 0}' ^- = n {p''^^AA^(p^ < 0}
A 6 ^y.Q A 6 ^^to

Then S are closed sets, and since

^- U {P-.HA^A^P]^^} .

^3lo

by polarization, it follows that

5+ n 5_ n 5 = 0
.

But the measures dp.A,A*(p] ^^^ dvA,A^(p] are non-negative for p 7^ 0, and hence it

follows from Observation 14 that

^00 Q -^+5 5*0 C 5_

except for sets of spectral measure zero. By subtracting the latter sets from ^oc and 5o
we may assume that the inclusions are strict and hence

SQO ^ S^^ SQ C S-
,

where the bar denotes closure. Therefore, one has

OBSERVATION 15

^n'SQnS CS+nS-r^S = 0 .

Now, by Observations 7 and 10, one has

E,,(S^) = ^ -Ef
and thus

OBSERVATION 16

O(H^,E]^'S^ .

We now finish the proof of Theorem 5.4.20. We consider two cases:

Case 1. Ea)(Sf) is not one-dimensional. In this case ^(HE) = IR by Observation

12. We show, ad absiirdum, that Ef = \. If not, cr(//i _;) = [R by Observation 13 and

hence 6*00 = [R by Observation 16. But then SQ = S^ = IR by Observation 5, and

hence S^r\SQC^S = S. But S^0 since 6*00 C 5, and hence this contradicts Ob

servation 15. It follows that Ef = ^, Now E,^(Sf} :^ 1 by Observation 10, thus

Ea}(Soo} 0, and we may assume that ^^^ = 5o 0 by modifying ^\,^i on sets of

1^1 + v l -measure zero.

It follows from Observation 8 that

(A'/-^*^^,A'/2pQ,J = (P*ß^,^a,)
- ((^(-//^)^/-^*a(p(-/f,,)'/^pa,,)
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for all y4, P 6 y)l(o- As 501^0^ is a core for A^/^, and H^o and A^/" commute strongly, by
Proposition 5.3.33, (2), it follows from this relation and a joint spectral re-

presentation of //,^ and A that

A = (p(-H,,) .

It follows that

EC{(\og(cp(-p)),p)-p^U} .

Now, 2 cannot have any isolated points by the reasoning used in Observation 12,
and Z is a closed subgroup of U^ by Observation 1l. As (j(Hco) = IR it follows that
Z must have one of the forms:

(1) I = IR-,
(2) Z is an array of equidistant straight lines, not parallel with the log A axis,

one of which contains the orgin.
(3) Z is a straight line through the origin not coinciding with the log A axis.

In case 3, there exists a j5 e R such that Z = {(-ßp, p]] /? ^ IR} and thus log A
- -ßH,,, or

^ = e-ß^'^
.

But Theorem 5.3.10 then implies that co is a r-KMS state at value ß. Hence to

complete the treatment of Case l, we must eliminate possibilities (1) and (2) above.
There are now two possibilities:

Case l a. HA^ A* = ^ for all A e^Q. In this case

co(^^*) =FA,A^(0)+a}(A)cD(A'')
= GA,A^(0}^CD(A)co(A^) = cD(A'A)

for all A G ^0, and hence co is a trace, i.e., co is a (T,0)-KMS state.

Case Ib. HA,A*(PQ) ^ 0 for some^^ e ^o and p^ G (R. Since HA^A^ is continuous,
we may assume that />o / 0 and that HA^A^ (p) 7^ 0 for all /? G (PQ - &, PQ + &), where

is some positive number. From Observation 6 and the relation

d^^A^A^ (p) - d^^A,A^ (p] = HA, A' (p]dp ,

we deduce that

(q)(p] - l)dvA,A^(p) = HA,A^(p)dp ,

(l-Cp(pr')d^A,A4p}=HA,A^(p}dp .

As HA^A^ is a real function we have two possibilities: HA^A^(PO) <0- ^^ ffA,A^(pQ} > 0,
then HA, A* (p) > 0 for p G (PQ e, /?o + ß)- We now deduce from the relation

d^A,A^(p] = ffA^A^(p)dv(p)
that v is a positive measure on (PQ - e, ;?o + s) and

((p(p) - l)dv(p) = dp
on this interval. It follows that (p(p) > l for p e (PQ a, po + E) except for a set of
v -measure zero. But d/^(p) = (p(p}dv(p) and so (p(p) > l for /? G (PQ , PQ + e)
except for a set of /.i-measure, and hence spectral measure, zero. Thus we may choose
(p such that (p(p) > l on (PQ - , PQ -^ B). But this means that the set

{(log((p(-p)),p)-pe



Stability and Equilibrium 193

does not contain any point of the form (d, p), where d <0 and p e (po , PQ + s).
As e is contained in this set, this excludes possibilities (1) and (2).

The case HA^A^(PQ) < 0 is treated by noting that HA^A*(-PO) = -ffA,A*(po}-
Case 2. Ef.^(Sf] is one-dimensional. If J5'cü(5'/) = H in this case, it follows that co is

a T-invariant character, and hence co is a KMS state at all values ß e !Ru{ oo}. If

Eoj(Sf) + H, then E^(8^} = \- E,^(Sf) ^ 0_a.nd S^0 because 6*00 C 5^e _argue,
ad absurdum, that S^Q^"^. If not, then SQ = S^o = ^ and hence S^. n 6*0 n 5

= S j^0m contradiction with Observation 15. Thus SQQ ^ [R, and by Observation 16

a(H^}CS^^{0}^U .

But since cr(/4j) has no isolated points, it follows from Example 4.3.34 that ö-(/4j) is

contained in one of the sets [0, +00), and thus co is a ground state or a ceiling state,
i.e., co is KMS state at value + oo or oo.

By summarizing the results of the last two subsections, we obtain an almost

completely satisfactory theory for the connection between stability and the

KMS condition for C*-dynamical Systems (^,T) which are Z^(^o)-asymptoti-
cally abehan in the sense of Definition 5.4.8. Assume that 51 has an identity H,
and let co be a t-stationary state on ^. If P = P* G ^o, it follows from Pro

position 5.4.10 that the M011er morphisms

rf- lim Ti^T,
/-^oo

exist strongly for A G IR. Furthermore, one has the intertwining relations

and
yfT. - Tfyf

lim y^(A) - A
/i^o^

for all v4 G M by the estimate

/i OO

\\y^(A}-A\\<\^\ d\s\\\[P,r,(A)]\\
JQ

which is valid for A e^Q.
Now, there exists a unique state co^^ on 'y^(^) satisfying

(o^(y':^(A))=w(A)
and co^ is r'^-stationary by the intertwining relations. But co^-^ extends to a

state of 21 by Proposition 2.3.24, and applying an invariant mean to this
extension composed with T"^ we obtain a state co^ on ^ such that the relation
above remains valid, and

(1) 0}^ is 1^-stationäry.

Next, it follows from the estimate

|co^(^) - c,(A]\ = \co^(A - y>^(A])\ < \\A - y^(A}\\
that
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(2) /l \-^ cü^^ is continiioiis / A = 0 in the sense

lim co^^^(^) - co(^)

for all Ae"^.

Now, define a state co^^ on W by

<(^)=cünTi''(^))
From the relation

0,^^(^,(A)) = CO^-^(Ti^T,(^))
it follows that

(3) The limits lim^_ 00 o^^^^(^t(A]] exist for all A e% and

lim cD^^^(it(A)}=a}(A), lim co^^(T,(yl)) - cof (^) .

/> -00 t-^ + 00

We call any family {co^^; P = P* G ^a, |A| < s^} of states satisfying require-
ments (l)-(3) (including the existence of (D^_f} afamily ofpertiirbed states ofco.

Corollary 5.4.21. Let (^,T) be an L^ (^Q)-asymptotically abelian C'-dyna-
mical System, and assume that 51 has an identity. Let co be a i-stationary state

(9/^, a?id let {60^^; P = P* e ^ÜQ, |/l| < Sp} be a family ofpertiirbed states of
(D. Consider the follovving conditions:

(Iß) cü is an extremal i-KMS state at value ß.
(2) (a) CD has the three-point düster property

lim ö;(T^,(.4i)T^,(^2)T/3(^3)) = co(A[}(D(A2)cD(A2}
inf \titj\-^oo
i^j

(b) (D satisfies the stability property

\im\cD^^(A}-(D(A}\/l = Q
;.->o + ^ ' ^ ^''

for all ^ G 51.
It follows that (2) implies (Iß) for some ß G Ru{oo}. Conversely (Iß)

for jß G ([R u { oo})\{0} implies (2) and (Iß) for ß = 0 implies (2) when

(2)(a) is replaced by the weaker düster property

M(a}(Ai(B))) = CD(A)CD(B)

for all A^B G 5l, and any invariant mean M on U.

In particular, (Iß) for some ^ G IR u { 00} and (2) are eqiiivalent ifco is a

factor state or z/ 5t has a iinique trace-state.

Fiirthermore, the family of pertiirbations {co^^} can be chosen such that

co"^ (O in the following cases:

(A) if (l) holds with ß e U

(B) (/(l) holds with ß = -\-oo and there exists an > 0 such that
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(^(HCO) C {0}U[, + 00)

(C) //(l) holds mth ß -^oo, and (^, T) has a unique groundstate. In these

cases 0}^ can even be taken to be a i^^-KMS state at value ß.

PROOF. We first show that the stability condition (2)(b) is äquivalent to the by now
familiär condition

/oo dtw([P,T,(A)]) = 0 (*)
00

for all A^ P G ^0- But this is a consequence of the relation

Ti^T,(^):=^-Ü r^5T^4([P,T,(^)])
JQ

which gives
/00

CD(A) = 0)^-^(7^ (^)) :- co^-^(^) - Ü / dsco^^([P,T,(A)])
JQ

/oo dsco^-^([P,T,(A)])

(^) - w(A))/l = -i r dso,^([P, T,(A)]) .

J -CG

The Lebesgue-dominated convergence theorem and requirement (2) on the family
{co'''^} now immediately imply that the two stability conditions are equivalent. Thus,
it follows from Theorem 5.4.20 that (2) implies (1^) for some ß E [Ru{oo}. But (1^)
for ß e [Ru{cxo} implies (*) by Theorem 5.4.17.

Now, (Iß) for ß G IR\{0} implies that co is a factor state by Theorem 5.3.30 (3)
and if (1^) is true for ß G {(X)}, then co is pure by Theorem 5.3.37. Thus, co is a

factor state in both cases, and it follows from Example 4.3.34 and the asymptotic
abelianness that

lim CO(T,, (Ai)'-'T:f^(An)) = o}(Ai) - - o}(An)
inf|r,--/y|-^oo
'Vy

for all G Z+ and all AI G ^.

If (1/j) holds for ß = Q, i.e., co is an extremal invariant trace, then co is an extremal

invariant state by asymptotic abelianness, and thus

MCO(AT:(B)) = o}(A)o}(B)

by Theorems 4.3.17 and 4.3.22.

If co is assumed to be a factor state, one derives n-poini clustering äs above, and

hence (2) and (1^), for some ß G [Ru{oo}, are completely equivalent.
But if 31 has a unique trace-state, then every extremal (T, ß)-KMS state co must be

a factor state. For j? ^ 0 this follows from Theorem 5.3.30. (If ß = Q, then co is the

unique trace and is automatically a factor state.) The equivalence and (2) and (1^),
for some j? G (R u {00}, follows once again.
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The last Statement of the corollary follows from Corollary 5.4.7 and Theorem
5.4.4 in case A, Proposition 5.4.18 in case C, and the remarks preceding this pro-
position in case B.

A slightly annoying feature of the stability requirement (2b) of Corollary
5.4.21 is the small order in 1 behavior required for CD^(A) (D(A). One may
avoid this by assuming stability in norm of the limits lim^_,oo <^ ^^^^- To be
more precise, assume that T satisfies a uniform Z^-asymptotic abelian property
in the sense that

^^||[P,T,^-''{^)]||
is an L^-function for all ^, P = P* G 2lo and l sufficiently small. Proposition
5.4.10 and its subsequent remark then imply that the M011er morphisms

yf = lim ti^T,
t^00

exist strongly and are *-automorphisms of ^. Furthermore,

yf^. = ^rrf
Define states co^ by'

a;f(^)=co((7f)-^(^))- lim cD(,f(A})
t^OG

and then CDJ^ are r^'^^-stationary states. Now the stabihty condition

lim llcof -a)\\=0
;.^o

=^ "

implies that co is a i-KMS state for some value jS G [R u {ib oc}. This is seen äs

follows. First, note that the states co^ have a property of return to equilibrium,
i.e.,

^_lim^<(T,(/()) = Jm^<(Ti^T,(^)) = <(yf(^)) = o^A]

and

lim a}^(if(A)) = co(A]
.

t-^ 00

Thus, letting T -^ oo and xS' > - oo in the relations

<(T,(^)-^)/I = -i /'j^<([P,T,(^)]) ,

JQ

co^(A-,s(A})/l = -i f dtcD^_^([P,T,(A]]] ,

Js

we obtain

/oo J^<,([P,T,(^)]) . (*)
-00

Theorem 4.3.17 implies that the two states co^^ = coo (y^)~^ are centrally er-

godic with respect to the action rf = 7^1^(7^)"^ and hence it follows from
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Theorem 4.3.19 that the co^^ are either equal or disjoint. But \\co^^ co^H < 2

for small /l by the stability requirement, and 0;^^ and co^^ cannot be disjoint by
a straightforward extension of the argument used to prove Corollary 2.6.11. It

follows that

cüf = ca^:^

for small A. Hence, letting l -* 0 in (*) we find the Standard stability condition

'dtco([P,r,(A)]) = 0f
J -C

and co is a r-KMS state at some value ß G [Ru{ cxo} .

The stability required for the state in Corollary 5.4.21 could be viewed äs a

stability against contamination of the System. The perturbation of the Ha-

miltonian represents the introduction of an impurity into the System. One

could alternatively envisage another kind of stability, namely, that the System
(9l, T) in the state co is stable in coexistence with another System (91', T') in a

state CD', i.e., the joint System (91 0 91', T 0 T') is stable in the sense of condition

(2) of Corollary 5.4.21. One then has directly

/dt(F(t}F'(t)-G(t)G'(t))=0
where F,F', G, and G' are defined äs before Observation l of Theorem 5.4.19.

If cü' has strong clustering properties and is a i'-KMS state at value jß G !R, one
can now proceed äs in the proof of Theorem 5.4.19 to show that o; is a i-KMS

state at the same value ß, without assuming any purity of co. Assuming purity
of co, it is enough that co' is not a ground, or ceiling, state to reach the same

conclusion.

5.4.3. Gauge Groups and the Chemical Potential

In the previous subsection we described how the inverse temperature ß enters

the formalism of thermodynamic equilibrium from requirements of stability.
But in the description of equilibrium states of the ideal Fermi and Böse gas in

Sections 5.2.4 and 5.2.5, these states were also characterized by a second

Parameter ju, the chemical potential. Equilibrium states cp were considered to

be states which are Ty^-KMS states at value ß, where 1 1-^ y^^ is the group of

gauge automorphisms of the algebra, i.e., t^-^y^ is the group of Bogohubov
automorphisms induced by the unitary group t \-^ e^^H on the one-particle space.

In Order to see how the chemical potential enters one has to examine the role

of gauge invariance more closely. The setting of the problem is described by the

following definition.

Definition 5.4.22. Afield System is a sextuple (5, 91, G, 1,7,0-) where 5 is a

C*-algebra with identity, called the field algebra, G is a compact group, called
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the gauge group, and g e G\-^ jg is a continuous, faithful, representation of G
into the *-automorphism group of g. Further ^ = 5'^', the fixed-point algebra
under the action of G, is called the observable algebra and /^ ^^ T/ is a con

tinuous one-parameter group of *-automorphisms of 5^ called the time-trans-
lation group. Finally, ö" is a fixed *-automorphism of g such that

a^ ^i, ö-G {y,j]g G} .

The groups T, y, and o are interrelated by

oit - T/ö- , (jjg = jgG , T^y^ = y^T^ ,

for alH e [R, ö' e G.

Deüne the even and odd subalgebras of g by

S+ - {^ e S; ^(^) - A], g_ = {^ G S; (T(^) - -A] .

Then 5 is assumed to have the following asymptotic commutation property
with respect to T:

lim ||M,T,(5)]||=0
|/|->oo

if^GS,^Gg^, and

lim ||{^,T,(^)}||-0
I/HOO

if^,5e5_.
In typical applications the field algebra, or the algebra of quasi-local op-

erations, is the algebra generated by creation and annihilation operators a*(/)
and /(/), where the index / denotes the different particle types and their
transformation properties under internal symmetries. The group of these
symmetries constitutes the gauge group G. In an example of scalar particles the
index / would ränge over 1,2, ... ,77, for some G f\l and G would be the n-

dimensional torus T". An element 0^ G G is parametrized by n angles
0 ^ (Pi < 271 in this case, and the action of the corresponding automorphism y^
is explicitly given by

y,K(/)) = e">"a^(f) , r,(/(/)) = e-'"'.fl,(/) .

As G represents inner symmetries of individual particles one expects y to
commute with time translation T, and one also expects y-dependent quantities
to be macroscopically unobservable. Hence the name observable algebra for
^ = g^. The other concepts occurring in Definition 5.4.22 have been explained
earlier (see, for example, Definition 2.6.3).

Since T and y commute, it follows that ^ is globally r-invariant. Moreover,
äs ö- G y(5 one has ^ C g^, and hence ^ is asymptotically abelian with respect
to T. The results of the previous section then justify the KMS condition äs a

criterion for a state co of ^ to be an equilibrium state. But in Sections 5.2.4 and
5.2.5 the equilibrium states (p of the ideal Fermi and Böse gases were defined to
be KMS States at value ß for some group of automorphisms of the form
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r e IR H-^ T^7^^ where ^ i> (^^ is a one-parameter subgroup of G given by the

chemical potential. Conversely, t ^-^ ^t determines the chemical potential. But

the restriction of ^ i-^ t/y,^^ to ^ is just rl^j, and hence o) = (p\<i^ satisfies the T-

KMS condition at value ß.
The aim of this section is to show that knowledge of the state o) = (p\^ is

enough to determine the chemical potential under quite general circumstances.

This is achieved in two Steps:

(1) If co is an extremal r-invariant state of ^, then co has an extremal T-

invariant extension cp to 5, and any two such extensions (pi and (^2? ^^e

related by
9l=<P2^ yg

for some g ^ G.

(2) If, in the Situation described by (1), Uco is a faithful representation of 91

and co is a T-KMS state at value ß e 1I^\{0}, then there exists a con-

tinuous one-parameter subgroup t \-^ ^^ of G such that (p is at \-^ '^tl^-
KMS state at value ß.

We first prove these two results, and subsequently make several remarks

pertaining to variants, the case ^ 0, etc.

Before the actual proof of these theorems, we characterize the extremal

invariant states of field Systems by düster properties. In the case that the

System is asymptotically abelian, i.e., a = i, these properties follow already
from Theorem 4.3.17 and Example 4.3.5. For general a we use a method of

proof which is similar to that used to characterize states with trivial even

algebra at infinity in Theorem 2.6.5.

Proposition 5.4.23. Let (g, 91, G, T, 7,0-) be a field System, and cp a i-in-

variant state of 3f. Then cp o a = (p^ i.e., (p\<^^ 0. The follomng conditions

are equivalent:
(1) q) is i-ergodic,
(2) q) has the clustering property

lim ^ / dtcp(Ai,(B)] = cp(A)cp(B} .

T-S -> 00 l >J Js

Furthermore, in this Situation one has

l /"^
(p(^)l - lim / dtn^(it(A)]

T-S^oo l :^ J^

where the limit exists in the sträng operator topology. Finally,

T 'r 7^ / ^^ <P(A^,(A')yg(Bxt(B')]) = BA; B<p(Ajg(B))<p(A'yg(B'])
l o ^ <X) l i3 J^

for all A^ A'
^ 5, B' G "^.^^g G G, where the convergence is uniform in g, and

SA', B = l if ^'5 ^ ^ 5_ ^nd SA', B = + l otherwise.
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PROOF. Let cp be a T-invariant state on g. If U(p is the unitary group which im-
plements T on ,^, and E^p is the projection onto the t/^^ -invariant vectors, it follows
from Example 4.3.5 that

lim - - / dtn,p(i,(A))ü,p = lim - - / dt U,p(t)n,p(A}Ü,,y o > oo l ^Js 70^00 l ^Js

= E,pn,p(A)ü,p
for all Ae^.

The last assumption of Definition 5.4.22 and the relation above imply that the
following Hmits exist

lim
T-S-^oo T

l f^
- / dtTL,,(l,(A]]Tl,,(B]ü.,,

^ Js

( l (^
= A^Bn,p(B) hm - - / dt7i,p(i:t(A))Q,p

\T-s-^oo y ib j^

= SA^Bn,p(B)E,pn,p(A)ü,p

and, by uniform boundedness, the limits

M(A)= \nn -i- / dtn,,(T,(A))
T-S-^cc T-S Js

exist in the strong topology. Now, if ^ e 5+. then M(A) commutes with 7c,^(g) and
M(A) is T-invadant, hence

M(^) e {n^pm^U^p(R)}' ,

'

(*)
for^ eg+.

If A E 5-5 then ^* G 5-? ^.nd we have

l f^
(ü,p,n,p(AYE,p7i,p(A)Q,p)= lim - -/ dt (p (A'' i, (A))

T-S^oo / t3 J^

-^r
T-SJs

= -^lun^,^^l dtcpMA}A^)

= -(ü,p,n^(A)E,pn^(AYQ,p) ,

and hence, applying this on (A + A*)/2 and (A -A*)/2i ,

E,pn,p(A)^^ = 0
.

In particular, (p(A) = 0 for all ^ G 5_ and this implies that

(p o a = (p .

Let Ucp((j) be the unitary implementing er on ,^. Then M(A)U(p((j) commutes with
7r,p(g), and it is also i-invariant, hence

M(A)U^(c,) G {n^p(^)uU,p(R)y

. Ergodicity of (p is equi

{n^(^)uU^p(U)}' = U

foT A G g_.
We now prove (1) =^ (2). Ergodicity of (p is equivalent to
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by Theorem 4.3.17. If ^ E 5^, it follows from (*) that

M(A) = (Q^, M(A)a^)^ = (p(A)'f^ .

If^ e g_(**) implies

M(A)U^(a) = (Q^, M(A)U^(a)Q^)^
= (Q^, M(^)Q^)11 - 9(^)11 - 0

,

where the last relation follows from the first part of the proposition. Hence

M(A) = 0 = (p(A)'^

for ^ e 5_ ,
and by linearity

M(A) = (p(A)'^

for all .4 e g. Thus

lim -i^ / dtq>(A^,(B]] = (ü^,n^(A}M(B}ü^) = 9(A)9(B}
TS^00 l iJ Js

Conversely, (2) =^ (1) is an immediate consequence of Theorems 4.3.22 and

4.3.17. It remains to establish that

r 'r ^ l dtcp(Ar,(A')y^(Br,(B'))) = e,,,BV(Ay,(B))cp(A'y,,(ß')}
y :> > cx) l o Js

for A, A', B, B' e'S-^, uniformly for g e G. Since G is compact and g i-^ y^l^) and

g\-^yg(B'] are continuous, it follows that

g ^ (p(Ai,(A')yg(Br,(B'}))
is equicontinuous in g when t ranges over R. Hence, the uniformity of the con-

vergence in g follows once we can show pointwise convergence. But this follows

immediately from the two-point düster properties of (p and the asymptotic com-

mutation property

lim \MA')B-SA',BB^,(A')\\=()
|?|->oo

together with the fact that yg('S) 5 for ^11 ^ e G, äs a consequence of cry^ = y^a.

We now State the first main theorem of this section.

Theorem 5.4.24. Lei (5, ^, G, T, y, er) be afield System, and co an extremal T-

invariant state on 21.

It follows that 0} possesses an extremal i-invariant extension (p to thefield
algebra g. Moreover, two such extensions cpi and cp2 are related by

92 = 92^ Jg

for some g G.

PROOF. We first prove the existence of 9 by a method analogous to that used to

prove Proposition 2.3.24. This proposition implies that cü has an extension to a state

of g and, by applying an invariant mean to this state composed with T, we deduce

that the set ^^ of i-invariant extensions of co to states of g is nonempty. But ^"^ is
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clearly convex and weak* compact, and thus it contains an extremal element cp by the
Krein-Milman theorem. If cp = A(pi + (\ - I)(p2, 0 < l < l, where cp^ and (p2 are T-

invariant states of g, one has CD = (p\,.^^ = },(p^\,.^^-\- (l - A)(p2\yi and hence

cpj yj
= (/)2|fli = co, by the extremality of co. It follows that cp^ = (p2 = (p since (p is

extremal in E^^.
To prove uniqueness of cp up to gauge transformations, fix an extremal i-in-

variant extension (p of co and define

G,p = {g ^G](poy^^ = cp} .

In the sequel we denote by C(X) the C -algebra of continuous functions on the
compact set X, and for /G C(G) and ^ 6 G we define

(p(g}fm = /(^s), (^^(ff)/)W = /(f7^'^) ,

for j e G.

OBSERVATION 1. The norm closure of

c;(G) = {pf") : i/ 6 G ^ <p(y,(A)); A&'S}
in the continuous functions C(G) on G coincides with C(G(p\G).

PROOF. Indeed Qj,(G) is selfadjoint since (p(^'> = cp^'"^'^ for ^ 6 5, and multiplicative
since by Proposition 5.4.23,

lim -i- l' dtcp('^^'W\g) = (p(-^'(3)'?''''(ff)
r-5-^00 i :^ j^

for ^,5 G g, uniformly for g E G.

Define an equivalence relation ~ on G by 0^1 ^ ^2 if, and only if, f(g\] = /(gi)
for all / G C^J,(G). It follows by the Stone-Weierstrass theorem that

Ci (G) - {/G G(G); ^1 ^ ^2 ^ f(gi] = f(g2)} = C(G/ ^) .

But G/ ^ = G,p\G because

^i - ^2 ^ (p(yg, (A)) = (p(yg,(A}) for alM G 5

^(p(^)-(p(y^^^^,(^))forall^Gg
^ t/20'r^ ^ <^^/^ ^ ^2 e G,^^i .

Hence

CUG)-G(G.AG) .

OBSERVATION 2. Let J^/,/ = 1,2, be closed subgroups of the compact group
G, and identify C(Ki\G) with the space consisting of the functions in C(G) which are

invariant under all left translations l(ki}^ki G ÄT/,/ = 1,2. It follows that each -iso-
morphism of C(y^i\G) into C(K2\G} which commutes with the right translations
P(9]i9 ^ GI is of the form X(h] for some /z G G such that K2 = hK\h~^ .

PROOF. The transposed map a* of a maps the pure states K2\G of C(K2\G)
continuously onto the pure states Ki\G of C(Ki\G) and hence defines a
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homeomorphism a* : K2\G ^-^ Ki\G which commutes with right translations by
g eG.

Thus

cT*(^2^) = (T%K2eg) = (j\K2]g = (K^h-^]g
for all g e G, where /z G G is any element such that ff*(K2) = K\h~^ . By transposition
we obtain o = ).(h]. Since af,feC(Ki\G}, has to be invariant under all

1(^2), ^2 ^ ^2, we must have

f(h~^k^^g) = (of](k2^g] = ^(k2)(af](g] = af(g) = f(h-^g]

for all k2 eK2,f e C(Ki\G), and hence h'^k^^ e Kih'^ or K2 C hK^h'^ .
A similar

argument with a replaced a~^ shows the reverse inclusion, and

K2 = hKih~^ .

We now resume the proof of the uniqueness part of Theorem 5.4.24. Let cp^ and

(P2 be two extremal T-invariant extensions of co to 5, and Kj G<p. the corresponding
stabilizers in G. Now the element

f dgyg(A^i,(B)}
J G

belongs to 2l for all ^,ß 6 5, and thus gives the same value of (pj and <p2- It follows

that

(<?!"- PS")^^!^^^) = jdgvf\g}<ff\g)
-sf^^^l
- ^ Js \JG

= lim / dt^pA dgy,,(A\(B))
T-s^oo l ,^ Js \JG

= lim -i-/ dtcpJ fdgy,,(A'r,(B))
T-s^oo l :^ Js \JQ
( (^) (5)\^(9V^^\ \\K.\G~] '

where we used Proposition 5.4.23. It follows that there exists a linear isometry V

from I^(KX\G) onto L~(K2\G) defined by

for /4 G g. Since
K-pf' = ^i^' ,

L_ l^'dtv(^-^'^^\g) = v(^^(g)<p^^\g)lim
T-S^ooT C^ JS

uniformly in ^f G G, it follows that

K(<pl^)^r)) = <,(-)^r)
for v4,5 G g. If r/ is the representation of C(Ki\G) on L~(Ki\G) obtained from

pointwise multiplication, one then has

r2(K/) = Kr,(/)F*

for / 6 C(KI\G). As the f, are isometric, one concludes that Kis a *-isomorphism of

C(A:i\G) onto C(A:2\G). The computation

{F(p(Ä)<p<^')}(g) = cp,(y(A]) = {p(h)V(p^{'^}(g)
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shows that F commutes with the right regulär representation p, and Observation 2
yields ^g^G such that q)^^~^ = l(g)(p\'^^ for all ^ e ^, i.e.,

^2(^)-^l(V(^))
for all A ^^. This ends the proof of Theorem 5.4.24.

The main result on the existence of the chemical potential is the following.

Theorem 5.4.25. Let (5, ^, G, T, 7, a) be afield System, and CD an extrema!
I-KMS State over ^ at valiie ß G [R\{0} such that the corresponding re

presentation of^ is faithfiiL Then each extremal i-invariant extension cp of CD

to g is a KMS State at valiie ßfor a one-parameter groiip of ^-automorphisrns
of g of the form t H-^ '^r?^,? where t \-^ ^^ is a continiioiis one-parameter siib-
group ofthe center ofthe stabilizer G^^ = {^ G G; cp o y^ = cp} ofcp. The groiip
t \-^ ^f is uniquely determined by cp.

PROOF. The proof of this theorem requires at several points the spectral theory of
the group G, i.e., the theory of the unitary representations of G. Since we have not
developed this theory for general compact groups, we will content ourselves with
proving the theorem for the slightly more transparent case of abelian groups G. The
extension to general G is accomplished by replacing characters with irreducible
representations (which are automatically finite dimensional), and products of
characters with tensor products of representations. As a final remark on non-abe-
lian G, note that if cp satisfies the ry^s-KMS condition at value ß G IR\{0} for some

one-parameter group t^^ ^fin G, then c/? is ry^- -invariant by Proposition 5.3.3 and äs

(p is T-invariant it follows that ^^ G G^p for all t. But if 0^ G G^^, then cp = (p o y^^ and
hence y^-^^tj^^yg = T^ty^^, by Proposition 5.3.33, thus g~^ ^t9 C/j i-^., / ^> C^ is con-

tained in the center of G. Throughout the sequel of the proof G is assumed to be
abelian.

Let {^^, Ti^/,, U(p,^(p} be the covariant representation ofthe G*-dynamical System
{Jy, [R X Gfp, T X y}, and let {9}i, (R x G^/,, T x 7} denote the corresponding J^F* -System,
i.e., 9JJ = T^(p(^]" -, etc., and let Jy^"' and ^M^'^ be the fixed-point algebras ofthe action
of G,p on g and 9JJ, respectively. By integrating over the compact group G,p one

easily shows that Wf'^ is the weak operator closure of 5^'% but in fact we can show

OBSERVATION l

m^^^ = Ti,p(^S)" .

PROOF. Let G be the dual group of G, and if 7 G G, let

W({l}] = {Ae\^'^^y,(A] = y^(g]A}
be the corresponding spectral subspace of ^ (see Definition 3.2.37). Define the subset
S,/, C G by

E,^ = [j^^G] there is an^ G 5'({z}) with q)(A) ^ 0} .
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OBSERVATION 2. Z^ is a closed subgroup of G with annihilator G^,

^^ = G^^={^e G; i(g] = l for all ^ G GJ ,

G^ ^ S^ - {^ G G; ;((^) - l for all 7 G SJ .

PROOF. If X, z' ^ ^(p there are^ G g^'(x), ^' ^ S^''(/), with (p(^) 7^ 0, q)(A'] + 0. But

then^T,(^') G 5^(nO and äs

lim -i^ / ^r(^(^T,(^0) - ^(^)^(^O 7^ 0
,

r-s^00 L ^ j^

by Proposition 5.4.23, it follows that (/)(^Tf(^')) 7^ 0 for some t. Hence 77^ G S<p and

S^ is additive. On the other band, if v4 G ^^(7) then ^* G ^'''(7) and äs

(p(yi*) =: (^(A) it follows tbat Z^^ is Symmetrie. S^ is then a elosed subgroup of G

sinee G is diserete.

In general we have

9(l,(A^^-W}9(A}
if y4 G 5^'(/()- Thus if ;^ G S(p and ö' G G<p we must have ;^(^) = l, i.e.,

G.CS^ .

Conversely, if g 6 2^, and ^ e ^''(x) then

<p(y,,(^)) = (p(^) if;(ei;^
= 0 = <p(^) ifx^S^ .

Hence ^ e G,p and the reverse incltision

S^CG,
holds.

OBSERVATION 3. TO*^" is the von Netjmann algebra generated by the

^eg'W.xeZ^, i.e.,

^'
= l U 5''(^)|"

'^ / P r.. >

XR^'" -
^

x6"i

PROOF. If ^ G g^(;(),7 G Z<^, Observation 2 implies that A G 9}Z^^ and hence the

inclusion D is valid. To show the converse, note that any ^4 G 9J1 has the weak-

operator convergent Fourier expansion

^-^^(X), ^(%)- [ dgx(g)yg(A) .

/ec
-^^

Thus if ^ G ^Jl^"^
,
it follows from the uniqueness of this expansion that

(x(g)-^)A(x) = o

for all g G G,/, and all x ^ G. Hence ;( G G^ if .4(7) ^ 0 and äs G^ == Z^ by Ob

servation 2, the reverse inclusion follows since
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A = ^A(x) .

/es,,,

We now finish the proof of Observation l, The inclusion

m^'^D7i^,(^df
is evident since 5l = g^. To show the converse, it suffices, by Observation 3, to show
that ifA G y (;;:), X ^ ^(p^ then A G n(p(^)" .

But since / ^ S,^, by Observation 2, there
exists a ^ G y (x) with (-/)(5) = 1. But by Proposition 5.4.23 the limit

lim -i^ l dtTi^,(i,(B]A) = cp(B)A=A
T-S^OQ l ö J

exists in the strong-operator topology. As i:t(B]A G 5^ = 31 for all t, Observation l
follows.

Since Ti,p(^)" Cn,p(^'^'^]" <^'m^'^ it follows from Observation l that

7r,(Ul)" = 7E,,(g^'0'
and hence Corollary 5.3.4 implies that the restriction of c/? to g*^'-' is still a T-KMS
State at value ß. Hence, replacing ^l by ^'^'^ and G by G^^, it suffices to prove Theorem
5.4.25 in the case that G.^ = G, i.e., we may assume that cp is gauge invariant from
now on. (Note that a G G,^ by Proposition 5.4.23.) With this assumption we prove:

OBSERVATION 4. The set C,^(G) of functions of the form

cj^G^cp(Ayg(B]] ,

where ^,5 G 5, ünearly Spans a norm-dense subspace of C(G).

PROOF. [C^^(G)] is closed under multiplication, because Proposition 5.4.23 imphes
that

lim ^^j\t,p(A,,(A']y^^(BT,(B']]]=^,,^B9(^^^^ ,T-S-^ocT - S
^

when A^ A'
^ B^ B' G 57 uniformly in g. Thus

g^cp(Ay,j(B]]cp(A'y,^(B']]
is contained in [C^^(G)], when A, A'

, B, 5^ G 5.j_, and by linearity this is still true for
general A,A',B,B'^ ^^
We next show that [C^^(G)] is closed under complex conjugation. First, note that

äs 71(0 (5) is strongly dense in 9JI, [C2(G)] is also the norm closed hnear span of the
functions

c/^'^);^^(i:!^7_,/5)a,) ,

where A^ß 9JJ. But B has a weak-operator convergent Fourier expansion

ß = ^B(x) , B(x}= l dgi(g]y,^(B] ,

zeö -^^

and hence it is enough to consider elements B which are eigenvectors for y, i.e.,
y^^(B] = x(g}B. If BQ,p = 0, then f/>^'^'^) = 0 and there is nothing more to prove. If
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BQ,p ^ 0, then BB* ^ 0. But since BB* G 9J1*^ and (p\^j^G is a KMS state at value ß, it

follows from Corollary 5.3.9 that (p|s;j{G is faithful and hence (p(BB*} ^ 0, i.e.,
5*n^ ^ 0. But y,j(B~^) = 7.(gW, and hence

,p(^^^\g] = ^(C.B^^(g)

for a suitable C G 9Ji Now, Q^(G) is globally left and right invariant under trans-

lations by G by the relations

X(g)cp^^^^^ = r/'''(^)'^) , p(^)(p(^'^) = cp^^^- '^^^^
.

Hence, it follows from the Stone-Weierstrass theorem, äs in the proof of Observation

l in Theorem 5.4.24, that

N^ = {g^ G-(p(Ay,^(B)) = cp(AB) for all ^,5 E 5}

is a normal subgroup of G and

[C2(G)] = C(G/N,) .

But A',, is trivial because if h e N,,, and Be')X''({x}) for some ;/ G. then

B - W)B 6 W({x}). But

cK(5 - i(h)Br(B - i(h}B)) = v((B - /.(h)BY(B - -f,,(B))) = 0

by the definition of N,/, and äs

(5-H^5r(5-^5)e9Jt^
and (pljjjG is faithful it follows that

B = x(h)B = y,,(ß) .

By Fourier expansion we find that B = yjj(B) for all B G 9JJ. But 7 is a faithful

representation of G on 5^ ^.nd TT^^ is a faithful representation of 5 äs we shall

subsequently show. It then follows from the last relation h = e. Hence A^^,, = {e} and

one concludes that Observation 4 is valid.

To establish faithfulness of n^^ we assume that /^ G 5 and 7l^p(A) = 0. But then the

Fourier expansion of n(p(A) takes the form

7ü,X^)-^7r,,(^(7)) ,

/G
where

^U)= [ dgx(g)y,,(A)
J G

65 .

However 7i^(^(x)) 0 by the uniqueness of this expansion, and hence

7r^(^(7)*^(x)) = 0. Since^(7)*.4(x) G ^, it follows from the faithfulness of 7r^|,)j that

^(/)*^(z) = 0. Thus A(i) =^ 0 and y4 = 0.

We now complete the proof of Theorem 5.4.25. Since (p\,^i is a i-KMS state at

value ß, we have

j dgcp(A^^,(A']i^,(y,j(B-^i,(B'm = j dgq>(y^(B^i,(B']]A^i,(A']]

when A, A'
, B, and B' are entire analytic for i. If ^, yl^ ^, 5' G 5 it follows from

this relation and Proposition 5.4.23 that
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^. B l dg (p(^*7^(T,-^(5*)))(p(^%((T.X50)) = ^B'.A l dg cp(y,^(B-^)A^)(p(y,^(B')A') .

Now, using S^; c g^, J5?. c5^, g^g_ cg_, g_j^^ c g_, and the fact
that (p\c!^ = 0, it follows that both sides of this equation are zero if SA>^B ^ SB', A, and
äs a consequence

j^(/)(^*y,(T,yK5*)))9(^%(t//j(^0)) -y ^^^(y,(^*M*)^(7,(^0^0 .

This relation extends by linearity to all entire r-analytic A^ A'^ B^ B' ^. Using
Tjß^B*} = T: -.iß (B)* this may be written äs

(^^(-.,-(S),^)_^('l',r,{S')) = (^(^5), 5^(5' '')) ,

where ( , ) denotes the scalar product in L"(G]^ and (sf](g] = f(g~^} for all g ^ G.
Replacing B' by i_iß(B'] in this relation we obtain

(V-'/'W.^),,p(-^' S')) = (^(-4.fl)^^,^(T-,(S').^')) .

If AI and EI are entire analytic for T and a/ G C,/ = l, ...,/7, we obtain from this
relation

(^a,V^-'^^(^'-)'^'),(^(^' ^')) = ('^a.(p(^"^'),V'-'^(^')-^')) .

V/^i / V/^1 /

As [C^^(G)\ = C(G] by Observation 4 it follows that we may consistently define a

linear operator S on /^~(G) by

{"̂a/c/)^"^"^'^: ^/,5/ entire analytic for T

/-l

and

5(5;] a, (p(^"^'-)) ^;^a,.(/)(-'^(^')'^') .

\/=l / /=!

One then obtains the relation

(S^,cp] = (ilj,S({)]
for l//, c/) D(S]. Hence iS is a densely defined Symmetrie operator,

Using the relations

l(^)./)(^^' ^)
= r/)(>'^^^)' ^)

, p(^)(p(^' ^)
= c/)(^^'>''^(^))

,

one then deduces that S commutes with the left and right regulär representations of
G on L^(G]. Since 51(^) = X(g)S for all g, it follows that 5 commutes with the
projection

/ = / dgx(g)).(g) = / dgx(g)p(g)
JG JG

onto the one-dimensional subspace of L- (G) spanned by the element g ^ x(^)-
Hence S is essentially selfadjoint with spectral decomposition of the form

S=Y,S(X)E, ,

XÖ
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where 5'(%) G U. Now, äs the set of (^^^'-^^ spans C(G) by Observation 4, there exists

for all ;( G G a pair A^B of r-analytic elements such that

Ä^<p(^'^)^0 .

If one defines

B-,= j dgW)yg(B} ,

J G

then Bj^ is still t-analytic since yi = ry. Moreover,

(^(^'%)=^,(p(^'^)^0
and in particular

v(B\Bj) ^ 0
.

Furthermore, B = T:iß/2(B*) satisfies

<p(^''^)6,C(G)
since

<p(^-.^)(ö) = <p(T_,ßf2(B^),^ß/2(y,B^)) = W}V^''' '\e) .

We then compute

0 < ,p(5i5j) = ^((T_,.;;/2(ß))(T_,^/2(5))*)
= <p(t_,-/j(ß)5*)
= V^--*)(e)=5(x)<p(5*5)

and this implies

^(Z) > 0
.

It follows that ;S is a strictly positive selfadjoint operator and hence S^^ exists for all

t G [R.

The weak clustering of q) implies, by an argument which is by now Standard, that

5.(^(^,s)<p(^'.s')) = 5'(^(>',s))5'(^('<',fi')) .

In particular using B = 5^, etc.,

5to') = 5(;f)5(x')
for all elements %, / G G. But this implies

5"((p(^'^)(/)(^'^')) ::. 5''((p(^'^))5''((^(^''^'))
and hence

t^S^' .5-^' = M~S''

defines a one-parameter group of *-isomorphisms of C(G) acting by multiplication
on L^(G]. Since this action for each t commutes with left and right translations, it

follows from Observation 2 in the proofof Theorem 5.4.24 that for each t there exists

a ^f G G such that

Ad ~S'' = l(^ß,) .
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But äs the automorphism Ad ?' of C(G) is uniquely determined by the underlying
homeomorphism of G, ^^ is unique, and hence ^ ix^^ is a continuous one-parameter
group in G. Thus,

f^t = T,7,=,

is a continuous one-parameter group of *-automorphisms of g.
Now, if A^B G 5 äi's entire analytic for the two commuting groups er and T, then

the one-parameter curve

^^^(^,-.
in L- (G) has an analytic extension to t = iß. But

<p(^.-.W)(3) = (p(^y^=,y^T,(5)) =5-"/^/.(^7,T,(5))
and so this extension is given by

5<p(/l7,T,.X5)) = v(By_,,(A)) = (p(yg(B)A) .

In particular

(p(Aff^ß(B)) = <p(BA)
which is just the KMS condition at value ß,

In the course of this proof we showed that TT^^ is a faithful representation of Jy ',
hence the uniqueness of the group t^^ C^ follows from Theorem 5.3.10.

We end this section with several remarks concerning Theorem 5.4.25. If G is
a compact Lie group, the one-parameter group t^^ ^t is defined by an element
in the Lie algebra of G which may be called the chemical potentiell of cp. Since

any two extremal t-invariant extensions cp^ and (^2 of co are related by a gauge
transformation, Theorem 5.4.24, it follows from Proposition 5.3.33 that t^^ ^f
is uniquely determined by CD up to the transformation

(t^^,)^(t^g-^^,g)
for g G. Hence, if G(p ~ G for some (p, or G is abelian, then the chemical
Potential is uniquely determined by co alone. Note also that / 1-^ C^ is trivial,
i.e., the chemical potential vanishes, whenever G(p is trivial, i.e., cp has no gauge
symmetry whatsoever. In the usual case G = T = [R/Z, the chemical potential
is a real number, and if it is nonzero cp is gauge invariant, i.e., G^p = T for
all (p.

In the Situation covered by Theorem 5.4.25 assume that ^^ is a closed
subgroup of G(p, i.e., t\-^^f is periodic, and define subgroups GQ and HQ of
[R X G by

Go-KxG,,, HQ = {(t,^,)',teU} .

Then HQ is a closed, normal subgroup of GQ and GO///O is compact. Now

TO = T X 7 defines an action of GQ on g, and since (p is extremal t-invariant, cp is
extremal tQ-invariant. Assuming for simplicity that a i^ i.e., 5 is asympto-
tically abelian with respect to T, it follows easily from the compactness of ^^
that g is asymptotically abelian with respect to t^^ity^,^ and hence it follows
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from Theorem 5.3.32 that the decomposition of cp into extremal KMS states

for t\^ity^,, at value ß, coincides with the decomposition into extremal HQ-
invariant states. (This decomposition also coincides with the central decom

position by Theorem 5.3.30.) But then it follows from Theorem 4.3.37 that
there exists a state (p e ^(E^^) such that this decomposition is given by

(p(A) = l dgq)(T:Q^g(A)) ,

^GO/HO

where dg is normalized Haar measure on GO///O, and one may choose (p to be

^i-^T^y^^-KMS. Thus, all the translates ^OTO,^ are Ty^-KMS, and they are

extensions of co to g, but they are not necessarily time-invariant states, they are

only periodic in time.
In our treatment of the chemical potential we assumed some form of

asymptotic abelianess of the System (g, R, T). This assumption is usually not

satisüed in quantum spin Systems, and for the treatment of such Systems it is
more appropriate to consider co which are invariant under space translations in

some direction in addition to being time invariant. If a is the space-translation
automorphism, then it is natural to assume that

lim \\A(x,,(B) - A,BOCn(B)A\\ = 0
l l * cxo

for y4,^ G g_t, and then one can build up a theory of the chemical potential by
considering extremal a-invariant extensions (p of co to g. Theorem 5.4.25 re-

mains valid in this setting by virtually the same proof.
Finally we note that a modified version of Theorem 5.4.25 remains valid

when jS = 0, i.e., when co is a faithful extremal T-invariant trace-state of ^. In
this case an extremal i-invariant extension (p of co to 5 is not necessarily a

trace-state. Nevertheless, there exists a continuous one-parameter subgroup
t^-^^t of G(p such that cpisa. KMS state (at value -1) for t^-^y^^. This follows by
essentially the same proof, normalizing such that Ad S^^ = ^^^-t)-

5.4.4. Passive Systems

Passive states of a dynamical System (^, T) were introduced in Definition 5.3.21
äs states satisfying

-io}(U*ö(U)} > 0

for all U G '^o(^)nZ)((5), where ö is the generator of T and ^o(^) is the
connected component of the identity of the group ^(91) of all unitary ele-
ments of 9l. This notion reflects a property of stabihty of equilibrium states

which is basically kinematic. For Gibbs states of finite Systems it is a con-

sequence of the principle of minimum free energy. This was discussed in
Section 5.3.1 prior to Theorem 5.3.15 and it follows from this discussion that

io}(U*ö(U)) is exactly the difference in energy of the state co and the perturbed
state CDU where cot/(^) = co((7M(7). We next demonstrate that this energy
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difference can be directly interpreted äs the energy transferred from the System
when it undergoes a series of external changes. But this transferred energy is
the mechanical work performed by the System and thus one establishes that a

State is passive if, and only if, it is unable to perform work in a cyclic process.
This is the second law of thermodynamics. Combination of this result with the
characterization of r-KMS states at positive ß given by Theorem 5.3.22 then

provides a different justification for the i-KMS condition äs a characterization
of equihbrium.

It is first necessary to have a "time-dependent perturbation" analogue of

Proposition 5.4.1.

Proposition 5.4.26. Let (91, T) be a C*- or W-dynamical System and let ö
denote the infinitesimal generator of T. Furthermore, assume that
t ^ U\-^Pt = P^ ^ ^ is a norm-continuoiis one-parameterfamily ofselfadjoint
elements,

It follows that there exists a unique one-parameter family of ""-auto-

morphisms i^ of ^ satisfying

^(^)-Tf(^(^) + /[P^])

and TQ (y4) = A^ for all A G ^. This family is given by

Tf(^)=T,(^)

+ Y^i" (' dt, r dt2--- r""'rfrK(Pj, [[T,(P),T,{^)]]] .

,f>^, Jo Jo Jo

Moreover, one has

tf (^) = rfT,(/i)rf* ,

\vhere Y^ is the unique iterative solution ofY^ = ^ and

^-^ = iT^r,(P.) ,

i.e., one has

rf-^ + Z^"/^^i r^^2"- /""'j/.Tjpj..-Tjp,) .

~^i JQ JQ Jo

We will not give the proof of this proposition äs it is essentially identical to

that of Proposition 5.4.1. The principal difference introduced by the time de-

pendence of the perturbation is that the group property of T^ and the cocycle
property of F^ are no longer valid. Nevertheless, one can interpret the time

development of states and observables in the same manner äs when the per
turbation is time independent.
We next consider perturbations t\-^Pt with the property P^ = 0 for t < 0 or

t>T and we also assume that t\-^Pt is norm-differentiable. This type of
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perturbation can be thought of äs a smooth, and temporary, alteration of the
external conditions. But changing the external conditions transmits energy to

the System, i.e., mechanical work is performed by the external forces. Ifco is the
State of the System at / < 0, then at time / the state is given by co/ = if^oj and
the work performed on the System can be calculated by summation of the
incremental energy changes of co/ for all t G [0, T]. Explicitly one divides [0. T]
into 7V intervals (tf, tf^i) vvhich are sufficiently small that co/ is essentially
constant on each interval and defines the work by

A^

rp^o,^ ^ y"
/ ^

cü)- y"co,,('p/,-A,-,)

Thus in the limit 7V i> oo this definition takes the integral form

L'(^>,rj-!f\=rj,^(^-iiJo \dt ) 7o V V ^r
An alternative way of calculating the work performed on the System is to

subtract the energy of the initial state co = coo from the energy of the final state

<DT- But

0,T(A]^CD(Y^r^T(A]Y^T]
and analogy with the finite System, discussed prior to Theorem 5.3.15, indicates
that this energy difference shoiild be given by -zco(rf(5(r^*)). This explains the

following resiilt.

Lemma 5.4.27. Let (^21, T) be a C*- or W^-dynamica! System and o) a state

over *3I. Fiirthermore, let i^ denote the perturbation of T arfsing from a

norm-diff'erentiahle faniily {Aj/^iR of selfadjoint elements Pt ^ D(Ö) such
that Pt = 0 for t <0, t>T, and dd(P,]/dt ^ d(dPt/dt). Where ö fs the

generator of T.

Itfollows that

L"(a^)=jjdtco(r^(^^^^ = -Ko(r^^(r^/)) .

where F^ is the unitary element relating T^ and IT-

PROOF. The derivation d is closed and it follows from Proposition 5.4.26 and the
analysis of Section 3.2.2 that ff e D(d), t^ö(Y^^] is differentiable, and

^-^'>-^^-
Therefore

-/oxr;<5(r-)) = -ifjdtco(^^s(r^') + rf5(^))
But the differential equation for F^ immediately yields
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-/co(r?.5(r?*)) = r dtw(r^,,{p,)S(r^*) - rf5(T,(p,)rr))
JQ

= - /^^^co(rfT,(^(p,))rf*) .

Jo

The second step uses the derivation property of ö and öi = TÖ. But remembering
that r^ relates T and T^ one can reexpress this äs

-/(r^.5(r^*)) = - /'rf?a;(Tf(<5(P,)))
Jo

On the other hand one may integrate by parts and use PQ = Q = Pj^ io find

rT / ///r^\ \ r^
L''(co) = - dtw((-^](P,)]=- dtw(,^(5(P,))) .

Jo v v "^ / / ^0

This establishes the desired equality.

Combination of Lemma 5.4.27, Theorem 5.3.22, and an approximation
argument then gives the following characterization of i-KMS states.

Theorem 5.4.28. Let (^, T) be a C*- or W-dynamical System and co a stäte

over ^l. Consider the following conditions.

(1) co z^ a (i:^ß]-KMS state for some ß G [0, oo] and co is i-invariant.

(2) The work performed on the System is positive, i.e.,

. = f.,<,(<()), 0.

for every norm-differentiable family {Pt}t^u of selfadjoint perturba-
tions Pt e "il such that Pt = 0 for t < Q and t > T.

Itfollows that (l) =^ (2) and if there exists a group G and an action ÖL of G
äs *-automorphisms o/ 21 such that co is oc-invariant, a commutes with i, and co

is \veakly OL-clustering, then (1) <^ (2).

PROOF. (1) ^ (2). First, assume that {Pt}t^m satisfies the condition of Lemma
5.4.27. It follows from the passivity property established in Theorem 5.3.22, and
Lemma 5.4.27 that

1^(0;) - -zco(r^^(r^*)) > 0
.

Second, if P^ ^ ^(<^), then one replaces it by the regularization

P'l = J- l dse-'^^\,(P,] .

V T^J

In the C*-case one has ||P'/ -P/|| -> 0 and \\dP'Jdt - dPt/dt\\ ^ 0 by Proposition
2.5.22 and it follows easily that L^'\(D) -^ L^(co}. Hence

L^(co) = lim L^"(a)) >0
/; ^ oo
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by the argument of the previous paragraph. In the W*-casQ the argument is a little

more delicate. As co is i-invariant the group T is implemented by a unitary group U(,j
in the representation (g^^, Tifo,^)- But if P" are the above regularizations of P/, one

then has

lim ||7i,XP;'-Pr)A|| < lim Ti-i/^ /^5^--||7r,,(T,/^(P,)-A)^||
n > co n ^ oo J

< lim 7ü-'/2 /"rf5e--{||/',|| ||(i7(-V%^)-1)AII
"^00 J

^\\(U^(s/V^}-^)n,,(PM} = ^

for all i/^ G ,j, and similarly for dP^ /dt. It follows immediately from the uniforai
boundedness of strongly convergent sequences, and the Lebesgue-dominated con-

vergence theorem, that 7Cfy(rf" - Pf ) -^ 0 in the strong-operator topology. There-

fore,

(wp/zx \ / //yp"\

^jj = (^n,7r<(rr>W'ta,(^^jc/,(-0't<(rf")*a,
<^))

and another application of the Lebesgue theorem gives

L^(co)- lim L^"(co) >0
//>oo

äs before.

(2) =^ (1) : We argue that condition (2) implies that co is passive and then apply
Theorem 5.3.22.

Let U belong to the connected component ^/o(^) of the unit element in the group
of all unitary elements of ^. It follows that there exists a finite sequence {Aj}^ <^.<Y

of

selfadjoint elements Aj G ^ such that \\Aj\\ < n and

A^

^ ^ n ^'''
7=1

(This follows because \\U\ - U2\\ < 2 implies U\ ^2^'^ by spectral analysis.) Next
let d denote the generator of T and assume that Aj G D(d) for all 7 = 1,2, ... ,A^.
Therefore, U G D(d] by Lemma 3.2.31. Now if/is a twice-differentiable function on

[R such that f(t] = 0 for ^ < 0 and f(t) := l for /^ > T we define U^ by ^7, = 11 for

t<Q,Ut = U for ^ > r, and

f;^^g//i, ...g^^yg/7(^-7T//VK-^,

for yT/A^ < ^ < (/' + l)r/A^. Further define perturbations Pt by

. = --,(;^
i.e., P; and Ut are linked by the dififerential equation

'^ = iU,.,(P.)

Thus, Ut = rf and in particular U = Y^. But P/ satisfies the conditions of Lemma
5.4.27 and hence
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-ico(Ud(W]]=L^(o3] >0 .

Finally, the case that U G D(d) but Aj 0 D(d] is handled by approximation. We omit
the details.

Remark. There is one simple but interesting application of the identity

L^(o)) = -zco(r^^(rf ))
of Lemma 5.4.27. Assume that ^ = 5Ii (g) ^2, T = TI 0 12, and co = co\ ^ 0)2,
where co/ is a (T, ^^)-KMS state with ßj > 0, z = l, 2. Thus C^K, T) can be envis-

aged äs two independent Systems. Next consider an external interaction

{Pt}teu^ of the type considered in Lemma 5.4.27 which temporarily links the

Systems. As T is a product, ö = ö\ <^i^ i^ Ö2, where (5/ is the generator of T/

and hence

L^(a))=Zf(co)+I^(co) ,

where

If(cü) = -m(r'^(ö, ^)(^?*)) , Zf (co) = -rco(rf (z ,52)(r?*)) .

These latter quantities represent the mechanical work performed on the first
and second Subsystems, respectively. But co is a (f, 1)-KMS state where

^t = ^\,ß^t^^2, ß,t and hence

^ilfH + j52Lf (co) = CD(r^T(ß^öi ^^^ß2^^ ^2)(r^*)) > 0

by Theorem 5.4.28. Thus setting ß^ = l/T/ one finds

(T, - T2}L^,(cD) < ril^(co) .

Now if TI ^ T2, then co cannot be a (T, ^)-KMS state for any ^ > 0. Thus, it
could happen that L^(co) < 0. If, however, T\ > T2 then one must also have

/.{'(co) < 0 and

-L^(co)
^

TI - 72

-^f (co) - n

This is Carnot's formiila which states that the efficiency of a heat motor is
limited by (T\ T2}/T\ where T\ and T2 are the temperatures of the heat source

and heat sink, respectively.



Notes and Remarks

Sections 5.2.1, 5.2.2, and 5.2.3

The study of the CCRs and CARs over ^ = L^(R^) was a direct outcome of

attempts to combine quantum mechanics and classical field theory.
The CCRs were introduced by Dirac [Dir 1] in 1927 in the context of

radiation theory and are generahzations of Heisenberg's commutation rela-
tions in quantum mechanics. The CARs were introduced by Jordan and

Wigner [Jor 1] in 1928 for the purpose of quantizing the electron field. These
authors also proved that the CARs over an -dimensional Hubert space gen-
erate the füll 2" x 2" complex matrix algebra. Since the late 1920s the theory of
creation and annihilation operators has been developed by many people in a

multitude of specific contexts, e.g., many-body physics, quantum optics, sta-

tistical mechanics, relativistic field theory, etc. Much of the analysis is, how-

ever, of a heuristic nature. Rigorous mathematical analysis of the commutation
relations, and the associated algebras, only began in the 1950s, e.g., essential

selfadjointness of ^(/) was first proved in 1953 by Cook [Coo 1] who estab-
lished that the <!>(/) zH have dense ranges. Cook also gave a precise de-

scription of the Fock space, introduced by Fock in 1932 [Foc 1], and the

corresponding representation of the CCRs. Consequently, this representation
is often called the Fock-Cook representation.

The abstract structure of the creation and annihilation operators was also
studied in the 1950s, notably by Friederichs [[Fri 1]] and Segal (see [[Seg 1]] for
a description of the subject during this period). In particular Segal emphasized
the C*-algebraic structure and introduced several new features and results. For

example, it was traditional to analyze the CARs over a real Hubert space I) in
terms of "fields"

0(/)=2-^/2(a(/)+a*(/))
and their "conjugate fields"

n(/) = -/2-'/2((/) _'(/))
but Segal emphasized the advantages of considering complex l) and a single
field.

The algebraic uniqueness of the CCR algebra, Theorem 5.2.8, was estab-
lished in 1971 by Slawny [Sla 1] by the method we have described.
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The Stone-von Neumann uniqueness theorem, Corollary 5.2.15, was an-

nounced by Stone in 1930 but the first published proof was given by von

Neumann [Neu 4] a year later. The lack of uniqueness for Systems over infinite-
dimensional spaces 1} caused a lot of confusion which was not fully clarified
until the late 1950s, and early 1960s. Until 1950 it appeared that most people
tacitly believed that a Weyl System over a general Hubert space I) had a unique
regulär irreducible representation. Counterexamples appeared in various dis-

guises in the 1950s. Segal realized that various canonical transformations of the

Bogoliubov type were not unitarily implementable (see [[Seg 1]]), van Hove

subsequently showed [Hov 1] that the uniqueness hypothesis led to a para-
doxical "orthogonaHty of two complete orthogonal sets of eigenfunctions in
Fock space," and Haag [Haag 4] estabhshed a general result which imphed the
existence of inequivalent representations. The work of Haag also clearly de-
monstrated that representations which are inequivalent to the Fock re

presentation are crucial from the physical point of view. Roughly stated, Haag
showed that each dynamics has a distinct set of relevant representations and
different dynamics lead to inequivalent representations. (A precise Statement of
this type is given in Corollary 5.3.41.) Another aspect of inequivalent re

presentation was provided by the work, in 1954, of Gärding and Wightman
[Gär 1]. These authors proposed a classification of the (regulär) representations
of the CCR and CAR algebras based upon properties of a number operator
and, in particular, a result of the type given by Theorem 5.2.14. Various ver-

sions of this theorem were subsequently proved by several authors, e.g.,
DeirAntonio, Doplicher, and Ruelle [Ant 1], Dell'Antonio and Doplicher [Ant
2], Chaiken [Cha 1], [Cha 2], and Courbage, Miracle, and Robinson [Cou 1].
Our discussion is an extension of this last reference. It should be emphasized
that the CCR version of Theorem 5.2.14 may be false if /2fü(^) is defined by
summing \\a(o(f)^\\^ over all /in a fixed orthonormal basis of t) (see [Cha 1]
for Counterexamples) but the CAR version remains valid.

In 1964 Haag and Kastler [Haag 9] proposed a C*-algebraic reformulation
of quantum field theory which emphasized the quasi-local structure of the field

algebra. They also clarified the importance of the global C*-structure and the
existence of inequivalent representations for the discussion of topics such äs

physical equivalence and superselection rules.

Truncated functions were introduced in quantum field theory by Haag
[Haag 5] who realized their convenience for describing düster properties (see
Example 5.2.19). Analogues of these functions occur in other disciphnes, e.g.,
cumulants in probability theory, Ursell-Mayer correlation functions in classical
Statistical mechanics, etc.

Bogoliubov exploited automorphisms arising from transformations of the

one-particle space I) in his 1947 investigation of the equilibrium states of the
Böse gas [Bog 1] and subsequently these automorphisms have been called

Bogoliubov transformations. The names one-particle automorphism, or quasi-
free automorphism, also occur. Combination of the Fock state with a Bogo
liubov transformation immediately yields a quasi-free state and this was one of
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the origins of such states. They also naturally occur äs equilibrium states of the
ideal gases and other noninteracting Systems. The general notion of a quasi-
free state äs a state whose higher-order truncated functions vanish was in-

dependently introduced by Robinson [Rob 3] and Shale and Stinespring [Sha
1]. Robinson concentrated, however, on translationally invariant states while
Shale and Stinespring only examined gauge-invariant states. The general the-

ory was subsequently developed by numerous authors, e.g., Araki, Balslev,
DeirAntonio, Manuceau, Powers, Stornier, Verbeure (for a review up to 1969

see the proceedings of the Cargese Summer School [[Car 1]]). One of the most

striking early results was due to Powers who constructed a one-parameter
family of mutually nonisomorphic type III factors äs the weak closures of

representations of the CAR algebra from quasi-free states [Pow 1]. Explicitly,
the weak closure of 7r(^;(^), where co;^ is the gauge-invariant quasi-free state

given by

cü,(a(/ra(0)) = %,/) ,

is a factor of type ni;^/i_; in the sense of Definition 2.7.24, for 0 < A < 1/2.
Subsequently, the quasi-free factor states have been completely typed by
properties of their two-point functions and criteria for quasi-equivalence of
such states have also been given. For example, every gauge-invariant quasi-free
state of the CAR algebra is a factor state and if co^, and coA2 are such states

with two-point functions given by

coAMfT^(9}} = (g.Aif}. ^'-1,2,

then 7ico,,| is quasi-equivalent to Tico^,^ if, and only if, A\'~Aj and

(l -.4i)^/^-(l -^2)^^^
are both Hubert-Schmidt operators. The sufficiency of these latter conditions
was derived by Dell'Antonio [Ant 3] and Rideau [Rid 1] while the necessity was
established by Powers and Stormer [Pow 5].

Note that in particular n^o^^ is quasi-equivalent to the Fock representation if,
and only if, A^^~ and (H - A}^'~ H are both Hubert-Schmidt operators. But äs

/l > ((l /l)^/^ 1)^ the latter condition is redundant, i.e., Ti^y^ is quasi-
equivalent to the Fock representation if, and only if, A is of trace-class. But the
trace of A defines the number of particles in co^ ,

Tr(^) = ^cü^(fl*(/,.M/;-))=K) .

/>!

Hence, CDA is normal with respect to the Fock representation if, and only if,
it has finite particle number.

It is interesting to note that the equivalence between A being trace-class and

Tift;^, being quasi-equivalent to the Fock representation 71^0^ is formally clear
from the identity

coA(B}=Tr(r(A)B) ,



220 States in Quantum Statistical Mechanics

where B is represented in the Fock representation. One uses that T(A] is of
trace-class if, and only if, A is of trace-class.

The generalization of these results to the CCR algebra and nongauge-in-
variant states was obtained by Araki [Ära 10], [Ära 1l], Araki and Shiraishi
[Ära 12], and van Daele [Dae 3].

Sections 5.2.4 and 5.2.5

The ideal gases are discussed in most Standard textbooks on Statistical me-

chanics (see, for example, Huang [[Hua 1]] or Landau and Lifschitz [[Lan 1]])
and it is common to perform the thermodynamic limit implicitly. Rigorous
proofs of the existence of these limits are in fact quite recent. The most difficult
case, the Böse gas in the region of condensation, was treated by Cannon [Can
1], and Lewis and Pule [Lew 1], in 1973-1974. But both these works were

partially based upon unpubhshed lecture notes of M. Kac. Our discussion is
somewhat different and is based upon unpubhshed lectures of D.W. Robinson.
The algebraic structure of the Gibbs thermodynamic limit states had, however,
already been analyzed by Araki and Woods [Ära 8] for the Böse gas and by
Araki and Wyss [Ära 9] for the Fermi gas. The Araki-Woods paper showed for
the first time that equilibrium states lead to type III factors.

The ideal Böse gas exhibits more complex condensation phenomena than we
have described. Theorem 5.2.30 estabhshes that if A/^ is a parallelepiped with

edges whose lengths tend to infinity in a homogeneous manner then at high
densities a finite proportion of the particles occupy the lowest energy state, i.e.,
the ground state. But it is also possible to have a finite proportion of the
particles occupying the energy levels in an arbitrary small band above the
ground state with no macroscopic occupation of the ground state itself. This
latter phenomena is referred to äs generalized condensation. In general there
are two critical densities p^^ < PC- If the density p < Pg^ there is no form of
condensation, if p e (p^^, p^] generalized condensation occurs and for all

p > p^ the System condenses into the ground state. For example [Ber 2], if AI
is a parallelepiped with sides LI > 1/2 > > ^v with L/ -^ oc and (L2 -^v) /
Zi > cx) but log Z2/(l3 . . .Z/v) -^ ß then p^ Pg^ -^ Bn~^

.
Thus properties of

condensation are sensitive both to shape and to boundary effects. The general
theory of both forms of condensation was developed by van den Berg, Lewis
and Pule [Ber 3] and a variety of examples given by van den Berg, Lewis and
Lunn [Ber 4]. But these papers were the sequel to various earlier investigations,
see, for example, Girardeau [Gir 1], Schultz [Seh 1] and van den Berg and
Lewis [Ber 1]. Other references and background material are given in these
references.

The allusion to negative temperatures made in the footnote following
Lemma 5.2.25 can be understood by reference to the models of magnetic
materials discussed in Chapter 6. The equilibrium states for these spin Systems
are defined for all values of ß and a change of sign of ß corresponds to a change
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of sign of the interaction. Thus if the temperature could be lowered beyond
absolute zero, an attractive interaction would immediately become repulsive,
and vice versa. Consequently, ferromagnetic materials would become anti-

ferromagnetic, and conversely. But these two phenomena are physically quite
distinct and hence the passage to negative temperatures would be heralded by a

sudden change of magnetic properties. Such transitions have been observed,
for example by Abragam and Proctor [Abr 1] in experiments on lithium
fluoride and the same authors give a more detailed theoretical discussion in

[Abr 2].

Section 5.3.1

The KMS condition was first introduced in quantum statistical mechanics by
Kubo [Kub 1] in 1957 and Martin and Schwinger [Märt 1] in 1959 äs a con

dition satisfied by thermodynamic Green's functions. This condition was sys-
tematically exploited in the analysis of Green's functions by Kadanoff and

Baym [[Kada 1]]. It was first formulated in C*-algebra language by Haag,
Hugenholtz, and Winnink [Haag 6]. The original formulation of this condition
is the one used in Proposition 5.3.12.

During the same period, 1966-1967, that Haag, Hugenholtz, and Winnink,
investigated the algebraic formulation of the KMS condition, Tomita devel-

oped the essential points of the theory of the modular automorphism group
(see Chapter 2). Although it was apparent that some connection existed be-
tween these two formalisms no complete synthesis was provided until 1970
when Takesaki [Tak 3] published his investigation and elaboration of Tomita's

theory. In particular, Takesaki proved that the modular automorphism group
satisfies the T-KMS condition with ß = - l and that this condition uniquely
determines the group T when the state is given (Theorem 5.3.10). In the in-

tervening period, 1967-1970, various other authors working on the KMS
structure established partial results in this direction. For example, Winnink

[Win 1] obtained the uniqueness oft from the KMS condition and also [Win 2]
proved that this condition implies invariance of the state and pointwise in-
variance of the center of the corresponding representation. Both these in
variance results were obtained independently by Hugenholtz and the state

invariance was also obtained by F. Rocca and M. Sirugue.
The multidimensional version of the edge of the wedge theorem, alluded to

prior to Proposition 5.3.6, is discussed in [[Stre 1]], while more general forms of
the Paley-Wiener theorem, Proposition 5.3.11, can be found in [[H0r 1]], [[Ree
2]], [[Rud 1]]. The three-line theorem can be found in the books by Titchmarsh
and Rudin [[Tit 1]], Proposition 5.3.5 or [[Rud 1]], Theorem 12.8.

The earliest correlation inequality of the type encountered in Theorems
5.3.15 and 5.3.17 was given by Bogoliubov [Bog 2] who proved in 1962 that the
Gibbs state o) of a finite System at inverse temperature ß satisfies

\o)([A,B])\^ < -ißo}(AA^ +A''A)co([B\d(B}]}/2 .
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This inequality was extended to general (T,jS)-KMS states in 1972 by
Garrison and Wong [Gar 1]. Basically, it follows from the Cauchy-Schwarz
inequality applied to the Duhamel two-point function, introduced before
Theorem 5.3.17. A detailed derivation and an application is given in Chapter 6

(see Section 6.2.6, Lemma 6.2.51).
Alternative upper bounds for the Duhamel function which improve the

Bogoliubov inequality were subsequently derived for Gibbs states by Berman,
Bruch, and Fortune [Ber 1] and by Roepstorff [Roe 1]. Falk and Bruch [Fal 1]
and Roepstorff [Roe 1] also derived lower bounds. RoepstorfFs results were

extended to general KMS states by Naudts and Verbeure [Nau 1]. This gen-
eralization relied partially on earlier work of Naudts, Verbeure, and Weder

[Nau 2]. Subsequently, Fannes and Verbeure [Fan 1], [Fan 2] established a

converse to these results by showing that the KMS condition could be derived
from the Roepstorff inequality.

Independently Sewell, partially in collaboration with Araki, had been at-

tempting to prove the equivalence of a maximum entropy principle and the
KMS condition for spin Systems (for details and references to this development
see Chapter 6) and the Fannes-Verbeure result provided the strategy for pas
sing from the entropy principle to the KMS condition. Sewell [Sew 1] deduced
the correlation inequality of Theorem 5.3.15 from the argument outlined prior
to this theorem and also showed that this inequality implied the KMS con

dition. The converse implication followed for spin Systems by the earlier work
of Araki and Sewell [Ära 22]. For general KMS states it was given in the
lecture notes of Araki [Ära 13].

Generators of positivity-preserving semigroups on C*-algebras have been

extensively studied in connection with the theory of irreversible quantum
processes, [[Dav 1]], [[Eva 1]]. If the semigroup is norm continuous, one can

give several equivalent characterizations of such generators, and the most

complete result in this direction was proved by Evans and Hanche-Olsen in

1977, [Eva 1].

Theorem. Let y be a boiinded map on a C*-algebra ^ with identity such that

y(^*) =y(A]forallA G ^.

The following conditions are equivalent'.

(1) e^^ is a positive map for all ^ G [R+.
(2) (h y]~^is a positive map for all large positive reals X.

(3) IfA G ^+,5 G 51 satisfy AB = 0, then B"'y(A)B - 0.

(4) IfA G ^+ and CD G E^^i satisfy CD(A) = 0, then o}(y(A)} > 0.

(5) y(A^) -i-Ay(^}A > y(A)A -^Ay(A) for all selfadjoint A G ^21.

(6) y(1]) -f ^*y(1])[/ > y(^*)^ -f t/*];(t/) for all unitaries ^ G ^.

Note that in the special case y(1]) -= 0 conditions (5) and (6) follow from the
condition

y(A''A] > y(v4*)^ + A^y(A)
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mentioned prior to Theorem 5.3.15 and in Proposition 3.2.22, but in fact the

latter condition is strictly stronger than (5) and (6). An explicit example, [Eva
1], is given by ^ = ^(C^), the complex 2x2 matrices, and y(A) A^ A,
where A^ is the transposed matrix of A,

^
1 \ ^ /

a b\
_

/ a c

d)~\b d
/ \ /

In fact the groups generated by a generator 7 satisfying the strong condition are

characterized by the generalized Schwarz inequality, i.e.,

Corollary [Eva 1]. Lei y be a linear map on a C*-algebra ^ such that

y(^*) =y(AYforallA G 91.

The following conditions are equivalent:
(1) e^^(A^A) > e^^(A^y^(A)for allA^^.t^ tR^-
(2) y(A''A] > y(A^}A + A*y(A} for allAe^.

One has an even better understanding of norm-continuous semigroups of

completely positive maps on von Neumann algebras. The notion of a com-

pletely positive map between two C*-algebras ^ and S was introduced by
Stinespring in 1955 [Sti 1]. Let ^ = ^ (g) ^(C") be the C*-algebra of all x

matrices with entries in ^. A linear map (/) : ^ H-> 35 is said to be n-positive if

the induced map (^ : %j \-^ S defined by

v((Aij]lj^,) = (<p(Aij))lj^,
is positive, cp is said to be completely positive if it is -positive for n l, 2, 3, ....

For example, an automorphism of a C*-algebra is completely positive, while an

anti-automorphism of a non-abehan C*-algebra is positive, but not 2-positive.
For all n there exist maps which are -positive but not n + l -positive.

There does not seem to be any deep inherent reason for studying completely
positive maps among all positive maps except that they are relatively easy to

handle due to the following result, which is often referred to äs Stinespring's
theorem.

Proposition [Sti 1]. If^isa C^-algebra with identity, and cp : ^ i-^^() is a

linear map, then (p ts completely positive if and only if it has the form

(p(A) = V^n(A)V

for some representation n of ^ on a Hilbert space 5^, andsome bounded linear

map F : t> 5t. // ^ and are separable, then 5^ can be taken to be se-

parable. If^isa von Neumann algebra and (p is normal, then n can be taken

to be normal.

The observant reader may have noticed that this proposition was actually
established during the proof of the generalized Schwarz inequality, Proposition
3.2.4, where it was also established that a positive, identity-preserving map
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from an abelian C*-algebra into another C*-algebra is completely positive. One
can also show that a positive, identity-preserving map from an arbitrary C*-

algebra into an abelian C*-algebra is completely positive, in particular states

are completely positive [St0 1].
During the course of the proof of Proposition 3.2.4 we established that the

generalized Schwarz inequality

cp(^}(p(A^A)>(p(AYcp(Ä)
is always valid for a completely positive map cp. Araki proved in 1973 that this

inequality follows from 2-positivity alone [Ära 23]. In 1976 Evans [Eva 2]
proved that if c/?: ^ ^^ =^() is a /z + l -positive map, where n > l, then the
matrix inequality

(<P(^;^y));',y=, > (<?>(^;S)<p(ß*5)-V(5*^y));:y=,
is valid for all B, A\, ^2,---, A,^ G^ (with the proper interpretation of
(p(B'^B)~^). In particular

\\cp(B-^B}\\(cp(A^A,}}l^^, > (cp(A^B)cp(B^Aj))l^,
and, setting 5 = H

,

M((p(A*Aj))lj^, > ((p(A*)(p(Aj))l^, .

For n = l this is just the generalized Schwarz inequality. One can show con-

versely that if a bounded linear map cp: ^i> =^() satisfies these inequahties
for all /7, then (p is completely positive.

If ^ is a von Neumann algebra on a Hubert space (or ^ = =^^()) it
follows from Stinespring's theorem and Theorem 2.4.26 that a normal map
(^ : ^ 1-^ ^ is completely positive if and only if it has the form

C/)(^) = ^F:/(F,
a

for a suitable set {V^} C =^(), where the convergence is in the weak-op-
erator topology. The set can be taken to be countable if is separable, and
finite if is finite dimensional.

The following theorem is a generalization of the derivation theorem, Cor-
ollary 3.2.47, to generators of norm-continuous semigroups of completely
positive maps. It was proved in some special cases by Lindblad and in-

dependently by Gorini, Kossakowski, and Sudarshan in 1976, and was ex-

tended by various authors until the final version was proved by Christensen
and Evans in 1978 [Chr 1]. The latter paper contains a complete history and

bibliography of the subject, and the final result is

Theorem [Chr 1]. Suppose that t^ U^i-^e^''' is a norm-continuous semi-

group ofcompletely positive maps on a C"" -algebra ^ acting on a Hubert space
. Then there exists a completely positive map (p from 51 into its weak closure
^ and a selfadjoint element H = H* E ^ such that the generator y has the
form
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y(A) = [iH,A]-{R,A}/2 + cp(A) .

Here R = (p(^} y(^)and {, } denotes the anti-commutator
.

In particular, if the maps e^'' are normal the map cp can be taken to be

normal and y has the form

y(A) = [iH,A] - {R, A}/2 + ^ V^AV,
a

for suitable F e J^().
The theory for generators of norm-continuous, normal, completely positive

semigroups on von Neumann algebras can thus be summed up äs follows:

Corollary. Suppose that ^ G [R+ i-^ e^"^^ is a norm-continuous C^-semigroup on

a von Neumann algebra ^R on a Hubert space , such that 6^''(1]) = 1 for all

te IR+.
The follomng Statements are equivalent:
(1) e'^' is a completely positive map for each ^ G [R+.
(2) (700(-^*^) > (y^i](A'']A-^A''(y^i](A}foreachA G 501 (g) ^(C")

and each n = 1,2,3, ... (here z: ^(C") ^ ^(C"} is the identity
map}.

(3) There exists a set {F} ofoperators in =^() such that R = Y^^^ F*Fa
is a bounded operator in 501, and such that ^^ V^AV^ G 501 \vhenever

A G 9Jl, and a selfadjoint operator H = //* G 9JI such that

y(A) = [iH,A] - {R,A}/2 + ^ V^AV,
a

for all Ae'm.

To prove that (3) => (1) in this corollary, one uses that 7i, 72? ^^^ 73 defined

by

yi(A) ^ [iH,A], y,(A) = -{R,A}/2, j,(A) = ^ VIAV,
y.

are all generators of completely positive semigroups, i.e.,

g<7, (^) = e''"Ae-''", e'-'^- (A) = e-('/2)^e-('/2)
,

^"''(^) = E 7i y"(^^ '

n = Q
^

and then the Trotter product formula, Corollary 3.1.31, implies that y gen-
erates a completely positive semigroup.

The theory of non-norm-continuous semigroups of positivity-preserving
maps has not been developed very much, but there exist some results on quasi-
free evolutions on the CCR and CAR algebras (see Evans' review paper [Eva 3]
for results up to 1980). For other results in this direction see [[Bra 1]], [[Rob 2]]
and [Arv 1].
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The connection between the Duhamel two-point function of a KMS state
and various quantities of linear response theory has been described by Naudts,
Verbeure, and Weder [Naii 2].

Ground states, äs described in Definition 5.3.18, are versions of the positive-
energy vacuum states studied by innumerable authors since the early 1950s and
Proposition 5.3.19 is an algebraic reformulation of Standard results in this field.
The set of groimd states of a C*-dynamical System was studied by Araki in 1964
[Ära 7], and Sirugue and Testard in 1971 [Sir 1] examined these states äs

^ ^ 00 limits of (T, ^)-KMS states.

The notion of passive states and Theorem 5.3.22 is due to Pusz and Wor-
onowicz in 1977 [Pus 1].

The results on convergence of KMS states are more or less folklore, but the
proofs by means of the auto-correlation lower bound appear to be new.

The algebras (9^ in Example 5.3.27 were introduced and studied by Cuntz in
1976 [Cun 2]. An alternative definition was suggested by Evans in 1979 [Eva 4].
Let be an /7-dimensional Hubert space, where 2 < /i < KQ- Define (9^^ äs the

C*-algebra generated by creation and annihilation operators on the füll (un-
symmetrized) Fock Space

oo

m) = e('') .

r = 0

Evans' definitions are then

(9n = (9^J^^(^(9)]), ^00 -C
Then the group i^ on (9

n
is induced from the group Y(e^^](-]Y(e~^^) on (9^,

where

CX)

r(e'0 = @(&-e^^]=e^^^
r = 0

and 7V is the number operator. (In particular 7V > 0, so the ground state for
((9oo,i) identifies with the Eock vacuum state.)

The algebras On have several interesting properties, e.g., although the weak
closure of (9 is a hyperfinite von Neumann algebra in any representation ((9^ is
nuclear), 0^ is not the inductive limit of an increasing sequence of type I C*-
algebras.

Example 5.3.27 is due to Olesen and Pedersen [Öle 5]. More refined ex-

amples will be described in the Notes and Remarks to Sections 5.3.2 and 5.3.3.

Sections 5.3.2 and 5.3.3

The Simplex property of Kß and the coincidence of the central decomposition
with the decomposition of KMS states emerged from studies of the set of KMS
states by Araki, Hugenholtz, Lanford, Ruelle, and Takesaki in 1967-1970,
[Ära 14], [Ära 15], [Lan 4], [Rue 5], [Tak 3]. The possible breakdown of Eu-
clidean symmetry in the decomposition of KMS states has been discussed by
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Emch, Knops, and Verboven [Emc 1]. Various invariance properties of the

type given in Proposition 5.3.33 were initially derived by Sirugue and Winnink

[Sir 2]. The absence of breakdown of symmetry in Theorem 5.3.33A was

proved by Fannes, Vanheuverzwijn and Verbeure [Fan 4] and will be discussed

further in the Notes and Remarks to Section 6.2.6.

Connes' cocycle theorem, Theorem 5.3.34, is a key result in the classification

theory for von Neumann algebras and was proved in 1973 [Con 4]. The dis-

jointness of KMS states at different temperatures, Theorem 5.3.35, was de-

monstrated by Takesaki in 1970 [Tak 5]. The type III property of the weak

closure of a KMS representation of asymptotic abelian Systems, Corollary
5.3.36, was shown by Araki and Stormer in 1972 [Ära 16], [St0 5], and with a

little more work they could show that the type III part occurring is actually
type IIIi.

Although Remark 2 after Theorem 5.3.32 has no later applications it is

rather striking because it equates a physically natural algebraic-ergodic prop

erty, weak-asymptotic abelianness in mean for all co E Kß, with a purely geo-
metric property, the facial property of Kß. Equivalences of this type occurred in

the decomposition theory described in Chapter 4, e.g., " is a simplex if and

only if (^, co) is G-abelian for all co e ", but these involved sUghtly more

artificial ergodic assumptions, e.g., G-abelianness or G-centrality.
Parts of Theorem 5.3.37 and Corollary 5.3.40 can be recovered from Araki's

1964 paper [Ära 7]. The characterization (4) in Corollary 5.3.40 for separable
C*-algebras is due to Dang-Ngoc [Dan 2]. The idea of considering more general
faces in E^ than the set of ground states, äs well äs characterizations (5)-(7) in

Theorem 5.3.38 are essentially due to Batty [Bat 1] [Bat 2] and he also proves
the theorem without any topological restriction on the group G. If S is a C*-

algebra, F is a closed face in "..3 and co G F he defines P^ äs the projection onto

those vectors rj G ^0 such that

(^,7r,,(.)/7) G U+F .

These vectors form a closed subspace in ^ since F is a face. Using the facial

property of F, it follows that P^ G 7ra;()'', and CD is said to be F-abelian if

P^^n(j^(&]"P^^ is abelian. The face Fis said to be abelian if every state in Fis F-

abelian. The F-multiplicity of co G F is defined to be the dimension dim

(^S)-
Batty [Bat 1], [Bat 2] proves that the following conditions are equivalent

1. Fis abelian.

2. For each co G F, na^(^]' is abelian.

3. Fis a simplex.
4. Every pure state in F has F-multiplicity l

.

5. Any factorial state in F is pure.
6. Any two distinct pure states in F are disjoint.
7. If coi , C02 are distinct pure states in F then the face generated by coi

and C02 in E^ is equal to the convex set {/Icoi + (l /^0<^2; ^^ ^ [0, 1]}.
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He proves this without any separability assumption whatsoever by invoking
Pedersen's noncommutative Integration theory [Ped 3] rather than the more

pedestrian measure theory used in our proof of Theorem 5.3.38.
In Order to prove Theorem 5.3.38 from the above theorem Batty rehes upon

a very useful observation due to Ed Effros and in more rudimentary form to
Kastler and Robinson [Käs 1]. Let ^ be a C*-algebra with identity, G a discrete
group and T an action of G on 51. Let ^ (8)1 G be the crossed product of ^ by
the action T, Definition 2.7.2. Then ^ and G are canonically embedded in
^ (8)T G. If v4 G ^H and g e G WQ iise A, g also to denote the images of ^4, ^ in
^I (8)1 G. Then there is a bijective correspondence between the state space of
^^T G and the set of all bounded functions <!> : GK^^* such that ^(e) is a

State and O is positive definite in the sense

^ ^(g7^g,-)(T~\A^A,))>Q
/,7=1

for any A/ G ^,ö'/ ^ G. The correspondence is given by p \-^ <l>p, where

^,(g}(A) = p(Ag) .

The correspondence is a homeomorphism for the weak*-topology on E^H^^G and
the topology of pointwise weak*-convergence on the space of functions from G
into 3l*. In particular, if co G " the function ^co(g) = <^, for all ^ G G, is
positive definite. This establishes an affine homeomorphism between E^^ and
the closed face F^ of states p on ^ 0^ G with the property

p(g\ Agi) = p(A)
for all gi, g2 ^ G,^G ^. If p is such a state, and co = p\,^^, then ^ = ,^,
7ip(A} = na,(A} and np(g)= U^(g). Thus if F is a face in E^^ then its image
FO in F^ is a face in FS^, and hence in F9t0^G- One now shows for co G F that
FCO = F^o is exactly the projection onto the vectors r] G E,^^^^ such that
A G ^H-^ (;7,7rco(v4)/7) is contained in [R+F. If the Statements of the previous
theorem of Batty are translated into this new Situation, we see that the fol-
lowing conditions are equivalent for each closed face F G Fg:

1. P(,^na)(^]"Pco is abelian for all co G F.
2. {Ti,,,(^)\jU,^(G]}' is abelian for all co G F.
3. F is a Simplex.
4. Each extremal state in F is weakly clustering in the sense that

inf |co(^'5)-co(^)co(5)| =0A'eCo(,G(A]]^ ^ V y V yi

for allyl,5G^.
5. Any state co G F such that {KCJ(^)^U,O(G)}' is a factor is ergodic.
6. If coi and co2 are distinct ergodic states in F then the covariant

representations (ö^^^, TI^^, t/^,) and (,^.,, TI,,,, U,,,^ are unitarily
equivalent (äs covariant representations).
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7. If coi and co2 are distinct ergodic states in F then the face generated
by CD\ and co2 in E^ is equal to the convex set

{Acoi + (1-^)0)2; A e [0,1]}.
As P

03
< E

03
Condition (1) of this theorem is weaker than Condition (1) of

Theorem 5.3.38. The special condition on F in Theorem 5.3.38 immediately
imphes PO^ = E^j. Since Condition (1) of the theorem is equivalent to

E(ßnfj^(^]"Ea^ being abehan, Proposition 4.3.7, this shows that Theorem 5.3.38

is also true for general groups G.

Batty also gives examples of C*-dynamical Systems based on simple C*-al-

gebras where the sets of ground states form 77-dimensional simplices, n=\, 2....

Let (^, T) be a C*-dynamical System and assume that ^ has an identity. For

each ß G [-00, oo], let Kß be the set of (T, jS)-KMS states of (5l, T). In particular
Ä'+oo(^-oo) is the set of ground (ceiling) states. Define r(^,T) = U/?e[-oo,oc] ^jß
with the topology inherited from the weak*-topology on E^. Further endow

this space with the fibre bündle structure äs a bündle of compact convex sets

defined by the map co i^ j8(co) where ß((D) is the ß such that o) G Kß. In order for

the latter map to be well defined we assume that Kß^ n^^^ 0 ^^^ ß\ T^ ^2^ i-^-?
that the one-parameter group defined by T on ^/3 for any i-invariant closed

two-sided ideal 3 c ^ is nontrivial. The bündle r(9l. T) is called the tem-

perature state space of (^, T).
It follows from Proposition 5.3.25 that r(^. T) is closed in E^, and hence

compact. By Theorem 5.3.30, each Kß is a simplex if ^ G IR and by Theorem

5.3.37 both ^+00 and K^^Q are faces in E<^. The explicit computation of the

temperature state space of (M, T) is in general a very hard task, äs we will see in

Chapter 6, but there are a few cases, apart from Example 5.3.37 where it can be

achieved. In 1979, Bratteli, Elliott and Herman [Bra 14] proved that if F is an

arbitrary closed subset of [-(X),CXD] then there exists a C*-dynamical System
(^, T) such that ^ is a simple C*-algebra with identity and (^, T) admits a

(T, j8)-KMS state if and only if ß e F. The C*-algebra ^ was obtained äs the

crossed product of an AF-algebra by an automorphism with T the dual action.

(A C*-algebra is said to be an approximatelyfinite dimensional C*-algebra or an

A.F-algebra if it contains an increasing sequence of finite-dimensional *-sub-

algebras with dense union. (Particular examples are the UHF-algebras of

Example 2.6.12, [Bra 1]). The analysis in [Bra 14] was extended by Bratteli,
Elliott and Kishimoto in 1980-83 [Bra 18], [Bra 19]. They proved that each

metrizable simplex bündle U ^ ß ^-^ Kß can be realized äs the finite ß part of the

temperature state space of a C*-dynamical System (^, T) where ^ is simple,
separable with identity and T is periodic with period 271. (The formal definition

of a locally compact bündle of compact convex sets can be found in [Bra 19],
page 210). This is even proved for the chemical potential-inverse temperature
state space in [Bra 19]. The construction can be made such that Foo are

isomorphic to the state spaces of two arbitrary simple AF-algebras '^^^ with

identity. Furthermore, if Foo are arbitrary faces of the state spaces of ^^^ one

can perturb the dynamics T by an inner perturbation P, äs in Proposition 5.4.1,
to obtain a new C*-dynamical System (^, T^) such that the finite ß part of the
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temperature state space is äs before, but the set of (T^, ib oo)-KMS states is
affinely isomorphic to FQQ. The paper [Bra 18] concludes by showing that any
metrizable simplex is affinely isomorphic to a face in the state space of a simple
AF-algebra with identity. Hence Fj-oo can be taken to be arbitrary metrizable
simplices (but this certainly does not exhaust all possibilities for F^oc, see, for
example, Corollary 5.3.40).

For quantum spin Systems, äs described in Chapter 6, there are a few specific
Systems where the temperature state space has been completely analyzed. In
addition there are many partial results. These matters will be discussed in
Sections 6.2.5-7 and the associated Notes and Remarks. In this case the sim
plices Kß are always nonempty, Proposition 6.2.15, and generically there is a

critical inverse temperature ß^ such that Kß consists of only one point for
1^1 < ß^, Proposition 6.2.45, and ß^, -j-oo for one-dimensional Systems,
Theorem 6.2.47. This feature is also shared by the only other non-trivial C*-
dynamical System (^, T) for which r(^, T) is known in detail. This example was

analyzed by Bost and Connes in 1995, [Bös 1], [[Con 1]]. Their C*-dynamical
System is intimately connected with the Statistical theory of the distribution of
prime numbers. It is defined äs follows: Let Q be the rational numbers and
define

r-<l( J ^);fl,öeQ,a>0
Using the formulae

l b\(\ b'\^(\ ba'^b'\ (l b\_(\ -b/a
0 ayVO a')~\{} ad )\^ a) ~

\(^ l/a
one checks that P is a group under matrix multiplication. Let FQ ~ Z be the
subgroup

r, = {(; ;);.z
It follows from the identity

l n\(l b\(\ 1\^(l na^b^Z
0 lj\() a)\0 l J

~

\0 a

that the Fo-orbit through yFo, when FQ acts on the left on F/Fo, con-

tains exactly cj points when y = (Q^)and a = p/q with /?, q mutually prime.
Since all these orbits are finite, one may define the Hecke algebra (F,Fo) äs

the algebra of functions / on Fo\F/Fo, with finite support, with product

(/*/)(y)- E /()^)^r^)/(ri) .

yi ero\r

where /, /' G (F, FQ) are viewed äs FQ- biinvariant functions on F. The C*-
algebra ^ is defined äs the norm closure of (F, FQ) in the regulär re-

presentation l on L-(Fo\F), defined by
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W/)!?) = E /(^vr')^(yi)
yi6ro\r

The algebra is closed under involution, since /l(/)* /!.(/*) where

f*(y) = /(y"')- The automorphism group t, on Sl is defined through its action

on (r,ro) by

t/(/)(7) - a'7(7)
if

{l b

^=^0 a

In fact T is the modular automorphism group for the state on

9}^ = l((r, FO))'' given by the unit vector corresponding to the coset

FO G FO\F, i.e., this state is a (T, -1)-KMS state.

There is a natural action er of the group W X p(Z//?Z) on ^ commuting
with T, where p ranges over all prime numbers. For 0 < ^ < l there is a unique
(T,j5)-KMS state q)ß on (^, T) which is a type IIIi factor state. Moreover, for

l < jS < 00 each extremal (T, j5)-KMS state is a type I factor state and if q) is

any such extremal state then the map W 3 g\-^ cp o (jg is a homeomorphism
between W and the set of extremal (T, jß)-KMS states. All of these are com-

puted explicitly in [Bös 1].
Corollary 5.3.41 is related to a famous theorem of Haag proved in 1955

[Haag 4] which gave an important impetus to the C*-algebraic approach to

quantum field theory. Let ^ be the C*-algebra generated by the time zero fields

in a free, relativistic, irreducible quantum field theory (we refer to the mono-

graph by Streater and Wightman [[Stre 1]] for definitions and a complete ac-

count of the theorem), and let rf^^ be the free time evolution,

Tf^^(^) ::. e'^^O^e-^V//o
^

where HQ is the free Hamiltonian and ^ G ^. Now, assume that there exists

another relativistic field theory on the same Hubert space with the same time-

zero fields and time evolution ij^^ Moreover, assume that for each t e U there

exists a unitary operator V(t) such that

T;"'(^) = v(f}^^^%A)v(tr
for all A e^. Haag's theorem then states that the new theory is unitary
equivalent with the free theory. The operators V(t) played a large role in the

early attempts of constructing interacting quantum fields in the so-called in-

teraction picture, but Haag's theorem implied that the interaction picture only
exists when there is no interaction. A program of circumventing these diffi-

culties by using automorphisms of C*-algebras instead of unitary operators on

Hubert space was proposed by Guenin in 1966 [Gue 1] and this program was

followed in the early days of constructive quantum field theory. Around 1972

these methods were replaced by the more powerful probabilistic methods of

Euclidean quantum field theory (see Notes and Remarks to Chapter 6).
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Modular theory and the theory of KMS states have entered into quantum
field theory for various reasons some of which are disciissed in Chapter 5 of the
book by Haag [[Haa 1]]. First, the relativistic vacuum is separating for the W*-
algebras of observables corresponding to space-time regions whose causal
complement contains a non-empty open set. Hence the field theory has a

modular structure. Bisognano and Wichmann [Bis 1]. [Bis 2] established an

unexpected identification between the modular automorphisms for wedge-
shaped regions and the Lorentz boosts in the relativistic symmetry group. The
wedge-shaped regions provide the simplest examples of horizons (see Rindler
[Rin 1]) and the Bisognano-Wichmann result has an interesting interpretation
in terms of the Hawking temperature of the corresponding black hole (see
[[Haa 1]] page 248). In general wedge-shaped regions are the only ones for
which the modular automorphisms correspond to point transformations in
Minkowski space. Hislop and Longo [His 1] have, however, extended this
identification to other regions for theories with a conformal invariance. Sec-
ondly, Jaffe, Lesniewski, Osterwalder and Wisniowski [Jaf 1] [Jaf 2] have in-
troduced a super-KMS condition in the context of Connes' theory of entire
cyclic cohomology of quantum algebras [[Con 1]]. This concept allows one to
deal with situations such äs supersymmetric field theory on noncompact
manifolds for which the Hamiltonian has continuous spectrum. It relies on the
existence of a super-derivation whose square is the generator of a one-para-
meter semigroup on the quantum algebra. The analytic properties of this su

per-derivation were discussed further by Kishimoto and Nakamura [Kis 6].
This super-KMS condition was partially inspired by work of Kastler [Käs 4].
Thirdly, Bros and Buchholz [Bro 1] [Bro 2] have suggested a relativistic for-
mulation of the KMS condition for thermal equilibrium in which the group of
time translations is replaced by the group of space-time symmetries. This
Suggestion is based on the observation that the relativistic correlation functions
have stronger analyticity properties than those characteristic of the usual KMS
condition.

Theorem 5.3.43 was proved by Kishimoto [Kis 4] and he also generalized
the Borchers-Arveson theorem, Theorem 3.2.46.

For classical Systems the KMS condition is not an appropriate condition of
equilibrium because it forces the dynamics to be trivial. An alternative char-
acterization was proposed by Katz [Kat 1] and has the form

o,({f,cj}] = ßcD(g{f,H}) .

Here ß is the inverse temperature, H is the Hamiltonian, and {, } is the Poisson
bracket:

yf^^ _

dj^d^
4^ \dqi dpi dpi dqi

This condition has been studied by several authors and the equivalence be
tween States satisfying this condition and canonical Gibbs states has, for ex-

ample, been estabhshed in [Aiz 1].
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Section 5.4.1

The perturbation expansion for Ff = UfU-t in Proposition 5.4.1 and Cor-

ollary 5.4.2 goes back at least to work in the late forties by Tomonaga [Tomo
1], Schwinger [Schw 1], Feynman [Fey 1], and Dyson [Dys 1], (see also [Ära
19]), while the direct expansion of if was defined by Robinson in 1973 [Rob 8].
The existence of a normal T^-KMS state co^ for the perturbed dynamics T^, and
the expansion for the corresponding vector Of in Theorem 5.4.4 is due to Araki

in 1973 [Ära 20] (see also [Ära 2l]), while the expansion of co^ in terms of the

truncated functions of co in the same theorem was derived by Bratteli, Kishi-

moto, and Robinson in 1978 [Bra 13]. Note that Theorem 5.4.4 is a partial
converse of Connes' cocycle theorem, Theorem 5.3.34, and the investigation of

CD^ was partially inspired by Connes 1973 paper [Con 4].The notions of per
turbed State and perturbed dynamics were extended to some unbounded re

lative Hamiltonians by Donald [Don 1] [Don 2] using completely different

methods from those of Araki.

The time-dependent approach to stability was initiated by Robinson in

1973, [Rob 8], and Definition 5.4.8, Example 5.4.9, and Proposition 5.4.10

come from this paper.
The morphisms ^.j. are not always automorphisms under the assumptions of

Proposition 5.4.10. This problem has been discussed by Golodets [Gol 1] and

Maassen [Maal]. Proposition 5.4.13 and most of the remaining results in this

section were proved in [Bra 13].
Example 5.4.11 is basically the second quantization of quantum-mechanical

scattering theory with a rank-one projection äs perturbation, i.e., interaction.

The abstract theory of this problem is described fully in Kato's book on per
turbation theory [[Kat 1]] and in particular the M011er matrices are proved to

be unitary. This latter result was crucial in the Birman-Kato proofs of unitarity
of the iS-matrix for physically more relevant scattering problems.The explicit
form of the kernels of the M011er matrices can be found in a variety of places,
for example, in Newton's book on scattering theory [New 1].

The equivalence of normality and finite density for quasi-free states which is

used in Example 5.4.15 has already been discussed in the Notes and Remarks

to Sections 5.2.1-5.2.3. It is a special case of the criterion for quasi-equivalence
of representations generated by two quasi-free states.

Section 5.4.2

The original idea of deriving the KMS condition from conditions of stability
and purity of a state appeared in a paper by Haag, Kastler, and Trych-Pohl-
meyer in 1974 [Haag 7]. This paper assumed L^-clustering of the truncated n-

point functions for = 2, 3, ,
6. By exploiting the additivity of the joint

spectrum of the Hamiltonian and the modular operator, Bratteli and Kastler

were subsequently able to replace 6 by 4 [Bra 12]. However, both these papers



234 States in Quantum Statistical Mechanics

had a gap in the proof (Observation 3 of Theorem 5.4.19 was not explicitly
proved). This gap was finally filled by Hoekman [Hoe 1]. The proof of The
orem 5.4.19 is based on these three papers.

In 1977, Haag and Trych-Pohlmeyer [Haag 8] suggested that one could
replace the L'-clustering assumption of the truncated n-poini functions up to
^ = 4 by simple three-point clustering.

lim co(it^(Äi)i:t,(Ä2}i:t,(Ä3)} = co(v4i) (^(^2)^0(^3)
inf \ti ~ tj\ -^00

' r J

or alternatively by the assumption that co is a factor state, in the presence of an
L'(%)-asymptotic abelianness, and they proved Observation l of Theorem
5.4.20 under these assumptions. The proof of the theorem itself was however
incomplete. The final Version of Theorem 5.4.20 was proved by Bratteli,
Kishimoto, and Robinson [Bra 13]. The stability condition (2b) of Corollary
5.4.21 was also suggested by these latter authors, while the stability condition.

lim llcoi^ coll = 0
A^o" =^

in the subsequent remarks was proposed by Haag and Trych-Pohlmeyer [Haag
8]. The final remark of this section is due to Kastler [Käs 2].

Section 5.4.3

The theory of the chemical potential presented in this section was developed in
1975-1976 by Araki and Kishimoto [Ära 17], and Araki, Haag, Kastler, and
Takesaki [Ära 18]. We benefited greatly from the lecture notes by Kastler in
preparing this section [Käs 3].

Section 5.4.4

This section is based entirely on material from the 1977 paper by Pusz and
Woronowicz [Pus 1].



Models of Quantum Statistical
Mechanics





6.1. Introduction

In the previous chapter we examined various applications of the formalism of

*-algebras to quantum statistical mechanics. These applications principally
concerned equilibrium properties of macroscopic Systems and feil into one of

two categories. First, we analyzed thermodynamic limit phenomena of specific
particle models by use of the Gibbs ansatz for the equilibrium states. Second,
we examined the structure of a set of states, the KMS states, which appeared
appropriate for the description of equilibrium. The first of these approaches
was developed for the ideal quantum gases in Sections 5.1 and 5.2, while the

second was contained in Sections 5.3 and 5.4. It should be reemphasized that

the thermodynamic limits of the Gibbs equilibrium states of the ideal Fermi gas
are exactly the KMS states of the C*-system formed by the CAR algebra and

the corresponding free evolution. For the Böse gas, however, the Situation is

more complex because the free evolution T is not a strongly continuous group
of *-automorphisms of the CCR algebra M and hence (91, T) does not form a

C*-system. Thus, it is not evident that one can use a global C*-structure to

characterize the set of equilibrium states. Nevertheless, the Gibbs equilibrium
states (D are faithful states of the CCR algebra ^, the free evolution T has

extensions f to the corresponding von Neumann algebras na:,(^]" ,
and the

(7rco(^)'',T) form ^*-dynamical Systems for which co is f-KMS. Thus, the

modular or KMS structure is still a characteristic of the equilibrium states

but it is manifested state by state without the synthesizing C*-dynamical System.
The aim of this chapter is to extend these investigations by examination of a

larger class of models. In the latter half of the chapter we analyze point par-
ticles interacting at a distance but before this we describe a simpler, but more

artificial, type of model, quantum spin Systems. Spin Systems were first in-

troduced in the discussion of magnetic properties of crystalline substances but

have subsequently been reinterpreted äs models of Hquids and gases with re-

straints on the movements of the constituent particles. There are two ad-

vantages in examining spin Systems. First, there is a certain understanding of

the collective effects occurring in these models which lead to phase transitions

and, second there is a fairly well-developed analysis of the KMS structure, at

the C*-level, of these models. The results for continuous Systems are much more

modest, however, and even the collective phenomena are barely understood.

Basically there are two directions for analysis, the existence and properties
of the dynamical evolution, and the properties and structure of the equilibrium
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States. For most quantum spin Systems the evolution can be handled in-
dependently of the equilibrium structure but for more general models, in-
cluding continuous Systems, this is not the case. There is virtually nothing
known about the evolutions of continuous Systems of interacting particles
except in, or dose to, equilibrium and even in the equilibrium Situation
knowledge is scant.



6.2. Quantum Spin Systems

6.2.1. Kinematical and Dynamical Descriptions

Basically a quantum spin System consists of a set of particles confined to a

lattice and interacting at a distance. There are, however, two possible physical
interpretations of these models, either äs a lattice gas or äs a spin System. The

first views each point of the lattice äs a possible site for a finite number A^ of

particles, i.e., each point of the configuration space can be either empty or

occupied by l, 2, . . . ,7V particles. These particles then interact with one another
and this leads to an evolution in which one envisages the particles jumping
from lattice site to lattice site. The second interpretation assumes that every
lattice site is permanently occupied by a particle but the particles have various

internal degrees of freedom, e.g., the particles could have an intrinsic spin with
several possible orientations. The interaction between the particles then follows
from a coupling of the internal degrees of freedom and this yields, for example,
an evolution in which the spin orientations are constantly changing.

In some applications of these models it is important that the lattice L has a

symmetry. For example one commonly examines the case L = Z^', i.e., the
lattice is a v-dimensional cubic array, and then the configuration space of the
model is invariant under the group of lattice translations. More complex
symmetries are also possible.

Invariance properties of this type reflect the traditional view of crystals äs

objects with a regulär spatial order. There are, however, other crystalline
structures, quasicrystals, which appear to lack a precise spatial symmetry.
Experimentally quasicrystals are characterized by a discrete diffraction spec-
trum which is incompatible with any translation symmetry. The determination
of the quasicrystal structure from the diffraction data is, however, extremely
difficult if not impossible. One possible model of quasicrystals is by a lattice
associated with an aperiodic tiling of the configuration space K' but there

appears to be no compelling evidence for any particular aperiodicity. Lattices
constructed from aperiodic tilings have a homogeneous structure, but no

complete spatial symmetry, and homogeneity rather than symmetry should be
the essential feature for any model of a crystal. In the sequel we will see that
for some properties such äs the construction of dynamics it suffices to assume

that the lattice L is a countable set of points. We assume throughout that L is
both countable and infinite. For many results some homogeneity is required
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and we usually assume symmetry and specialize to the simplest case, L /^'

although other symmetries or weaker homogeneity properties would often
suffice.

The kinematic structure associated with a quantum spin System has already
been described in Chapters 2 and 3. It consists of a quasi-local UHF algebra
constmcted over the finite subsets of L. (See Examples 2.6.12 ancj 3.2.25.)
ExpHcitly, one first Orders the set of finite subsets of L by inclusion. Next, one

associates with each point x G I/ an (A^ + l)-dimensional Hubert space j-^| and
with each finite subset A c L the tensor product space

A = (g)W
.xeA

The local C* -algebra ^A is then defined by ^A = ^(A)- If AI n AI = 0,
then AI u A. = ÖA, ÖAz ^^^ ^AI i^ isomorphic to the C*-subalgebra
^AI (^ I^AZ of ^(AI u AO? where 11A2 denotes the identity operator on A2- Iden-
tifying ^A, and ^AI (8) 'B A. one concludes that the algebras {"^IAJACL form an

increasing family of matrix algebras whose union is a normed *-algebra, which
is incomplete because L is infinite. The norm completion ^l of this union is a

quasi-local C* -algebra when equipped with the net of C*-subalgebras ^A (the
orthogonality relation J_ between the A is defined by Ai_LA2 if AI n A2 = 0).

The local algebras '^U represent the physical observables associated with the
particles at the points of A and the algebra 51 corresponds to the observables of
the complete spin System. The quasi-local structure of ^, U^ ^A, is sum-

marized by the following;

(1) ^A. C^A2 ifAi ^A2 ,

(2) ^ = U ^A ,

Acl

where the bar denotes uniform closure,
(3) ^ and each ^U have a common identity D

,

(4) [^A,,Aj=0
whenever AI n A2 = 0,

(5) ^ is simple.

The first four properties follow by construction and the fifth follows from
Corollary 2.6.19. The first property reflects the isotony of observables and the
fourth the quantum-mechanical independence of observables associated with

disjoint Subsystems.
If L = /\ then the group T has an action T äs *-automorphisms of 5l. This

action was constructed in Example 4.3.26. Referring to this construction one

finds that the translations T have the properties

(6) (a) if^ G^IA, thenT,(^) G^IA+.X,
(b) hm ||[^,T,(5)]||=0

|.X| -^ 00

for ally4,5 G 51.
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The asymptotic abelianness follows from conditions (2), (4), and (6a), and

ensures that the theory of ergodic states described in Chapter 4 is applicable to

the group Z^ of lattice translations. Physically the group T corresponds to

translations in the configuration space and the asymptotic abelianness de-

monstrates that any pair of observations becomes independent when per-
formed sufficiently far apart.

Classical-mechanical spin Systems can be described in a similar algebraic
fashion. One associates with each x G L a maximal abehan C*-subalgebra
^{x} C ^(^^x}) ä^d defines the local algebra GA by

^^-^(.}
jce A

for each A c I. The global C*-algebra is introduced by

ß:- U GA .

AcL

If L = Z^, the ^i^x] are chosen such that the group T of space translations leaves

invariant, i.e., one takes

^{^+y} = '^y^{^}
for all jc, 3; e Z\

EXAMPLE 6.2.1. Assume N = l, then each 9)^^-^^ is two dimensional, ^(;c} is an

algebra of 2 x 2 matrices and each such matrix can be decomposed äs a sum of

multiples of the Pauli matrices ÖQ(= H), cr^, 03, cr^ defined in Example 4.2.7. Thus if |A|
denotes the number of points in A, then ^A is a füll algebra of 2l^l x 21^' -matrices
corresponding to polynomials in the Pauli matrices {öf;z = 0, l, 2, 3, ;c G A}. A

general element of the quasi-local algebra ^ is a function of the cj^ which can be

constructed äs the uniform limits of polynomials. If L =: Z^', one has ixCcrf) = cr^^-^,
etc. In this latter case the classical algebra is *-isomorphic to the C*-subalgebra
( C ^ generated by the third-component Pauli matrices {0^3; x G //}.

This model is often referred to äs a spin-^ System because a quantum-mechanical
spin-^ particle has exactly two degrees of freedom. The general case corresponds to

spin-A/'/2 because spin-A^/2 particles have 2(N/2) + 1 = N -}- 1 degrees of freedom.

The foregoing structure defines the kinematics of the quantum spin Systems,
i.e., the instantaneous observables. We next consider the dynamics and for this

purpose it is necessary to introduce interactions. An interaction ^ is defined äs

a function from the finite subsets X (2L into the hermitian elements of 91 such
that O(Jf) G ^x- Each <^(X] represents the energy of interaction of the set of all

particles in the finite subset X. Now in the spin System the particles are con-

sidered to be fixed at the lattice sites and hence the total energy of interaction in

a subset A consists of the interaction energy of all Subsystems. This total energy
is defined to be the Hamiltonian H^(A.) associated with A. Explicitly

H^(A) = Yl ^W
^C A

Clearly, H^(A) is a hermitian element of ^A-
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An interaction <I> is said to be of finite ränge if the only non-zero con-

tribution to the energy arises from finite clusters of neighboring particles. In
Order to make this precise one must assume that the lattice has some rudi-

mentary form of homogeneity or symmetry. If, for example, L is equipped with
a metric d(-]-) then we define L to be homogeneous if the metric has the
following two properties. First, d(x ; j) > l for all x,y ^ L, Second, for each
r > l there are at most a finite number A^^ of points y with d(x]y) <r uni-

formly for jc G L. The interaction > is then defined to have finite ränge if there
exists a öfd) > l such that ^(X) = 0 whenever D(X) = sup.^^^;^ d(x]y) > Jo.
The minimum possible value of d^ is called the ränge of Ö and there is no

mutual interaction between particles whose Separation is greater than this

ränge. Lattices that are homogeneous include f, equipped with the usual
metric, or more complicated periodic sublattices of [R^, and the lattices asso-

ciated with aperiodic tilings of [R^.
If L = Z^, or some other subgroup of R^', one can also consider transla-

tionally invariant interactions. These are the O satisfying the additional re-

quirements

<D(J^+;c) =T^O(X)
for allXcZ^' andxGZ\

If C C 5l is the abelian algebra describing a classical spin System and

^(X] G ö^;^ C ^A- for all X C.L, then O is called a classical interaction.
The set of interactions of a quantum spin System forms a real vector space

when equipped with the obvious linear structure (^\^<I)2)(X]
= ^\(X) ^<^2(X) and (/i))(^) = 1(^(X). Moreover, the finite-range interac
tions form a real vector subspace. Subsequently, it will be convenient to con

sider certain real Danach subspaces of interactions. For example, if
X c L\-^ ^(X) > 0 is a family of positive functions, one can specify a norm by

||>||^ = sup ^\\^(X)U(X)
xeL X3X

and then introduce a Banach space B^ of interactions by

B^ = {^-m^<^^} .

This method, and variations of it, will often be used in the sequel. The ^(X} will
always be taken äs a simple functions of the number of points \X\ in Z and the
diameter D(X) of X if L = Z\ The conditions \\^\\^ < -foo often have a phy-
sical interpretation. For example, if ^(X) l and one defines

,j(x) = ^<i.(^) .

X3X

it follows that E^(x} G ^ and ||'CD(;C)|| < ||O||^. But E^(x) corresponds to the

energy of interaction of particles at the point x ^ L with their surroundings.
Thus this choice of ^ corresponds to a restriction of finite energy per particle.
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Note that if one considers only translationally invariant interactions, then
each of the Banach spaces B^ contains the subspace of finite-range interactions.
This follows because.

sup ^IlOWil^W^^IIOWIItW
xeT' X^x ^30

and the right-hand side is a finite sum, and hence bounded.

EXAMPLE 6.2.2. Let L = Z'' and consider the spin-j System described in Example
6.2.1. The simplest interesting interaction is a one-body and two-body translationally
invariant interaction, i.e., ^({x}) = T,-O({0}), O({;c, 3^}) = Tx-^({0, v -.Y}) and

^(X) = 0 if l y^ |> 2. One such choice is detemiined by

0({0})=/.cr ,

(D({o,x}) = ;^7,-W'^^-; ,

/:=1

where h e U and they/ are real functions over Z\ This model is usually referred to äs

the anisotropic Heisenberg model if the y/ ^ 0 and j/ 7^ jj for some pair /, j ; the

Isotropie Heisenberg model if y, = j\_ = j. 7^ 0 ; the X-Y model if ji ^ Q.i = 1.2 but

j\ = 0] the Ising model if y, = j, = 0. In each case the energy of the system confined
to A consists of two parts

E ^^3- E E/x^-j')'^-;'^;'
.v G A .v, 3' A / l

The first contribution corresponds to the interaction of the spin4 particles with an

external electromagnetic field of strength h at x and the second corresponds to an

interaction, at a distance, of particles x and y.

The dynamical evolution of any System can be defined in terms of the
evolution of the associated observables. For a finite spin System confined to

A C L, with interaction O and Hamiltonian //(D(A), this evolution is given by
the Heisenberg relations A G ^A f^ T^^(^) G ^A, where

I^(A] = e''^^*(^)ylg~'^^'J'(^)

i.e., r G [R i-^T^ is a one-parameter group of *-automorphisms of the matrix

algebra MA- We now want to analyze this evolution for various classes of
interactions and for Systems which consist of a large number of particles. The
Standard method of approach to this type of problem is by asymptotic ex-

pansion in terms of inverse powers of the total number of particles. The first
term of such an expansion corresponds to the approximation that the System
has an infinite number of particles and this approximation then coincides with
the thermodynamic limit discussed in Chapter l and applied to the ideal gases
in Chapter 5. Thus, computation of the time evolution of a fixed observable
Ä G ^AO consists of calculating limits

i,(A} = lim x^(A)
A> 00
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of the evolutes i:^(A} äs the System grows indefinitely in size. We adopt for

simplicity the convention that A ^ oc indicates A eventually contains any
finite subset of L.

There are various possible senses in which the limits T^(^) might exist and
these govern some of the basic properties of the evolutions i, e.g., the con-

tinuity of the map t\-^i:f(Ä), For many classes of interactions the limits

actually exist in the norm sense for all A G ^AQ and all AO C L. Therefore, the
evolution T extends by continuity to a strongly continuous one-parameter
group of *-automorphisms of the quasi-local algebra

^- y 2lA
Acl

and (^, T) forms a C*-dynamical System. For more general interactions the
limits only exist in certain representations and the evolution determines 3. W-

system. Our immediate purpose is to describe the C*-results.
There are several methods of proving the existence of the norm limits of the

evolutes T^(^). Each method applies to a slightly different class of interactions
and emphasizes a different physical feature of the interaction. All known
methods are either implicitly, or explicitly, dependent upon the equations of
motion

"^^) = <5A(Tf (^))
JT^
dt

of if (^)- Here ö\ denotes the bounded derivation defined by

öf,(A) ^ i[H^(\),A], Ae^i
.

First we examine convergence of the T^ via convergence of the infinitesimal

generators ^A- For this one needs the following version of Proposition 3.2.52.

Proposition 6.2.3. Let ^ be an interaction of a quantum spin system sa-

tisfying

p,^(x) = Y,mm<+^
X3X

for all X L.

It follows that there exists a derivation 6 of the quantum spin algebra ^
such that

D(ö] = U ^A
ACL

andfor A G ^A

d(A) = i Yl [i-w-^.
JTnAT^ 0

The derivation ö is norm-closäble and its closure d is the infinitesimal
generator of a strongly continuous one-parameter group of "^ -automorphisms T

of ^ //, and only if, one of the following conditions is satisfied:
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either

d possesses a dense sei of analytic elernefits

or

(^ + aJ)(D(J))-^, aGK\{0} .

Finally if ö generates the group i and if

^A(^)_^/.//.(A)^^-/r//.(A) ^

lim ||T,(^)-Tf(^)|HO
A > oo

for all yl G 21, uniformly for t in compacts.

PROOF. First for v4 e ^A

i E [^W'^1
A'nA7^0

<Y^ Y. ii[*W' ^111 ^ 2 IAIIMII supp<tw < +^
xeA ^9A: ;ceA

and hence ^ is a norm densely defined derivation. But d satisfies the hypothesis of

Proposition 3.2.22 and thus ^ are dissipative. Consequently, d is norm-closable by
Lemma 3.1.14 and

||(z + aJ)(^)||>|M||
for all a G R, and A G D(d], by Lemma 3.1.15. The criteria for J to be a generator
follow directly from Theorem 3.2.50.

Finally, if d\ is the bounded derivation defined by

df,(A] = i[H^(\),A]

for all y4 G ^, then

for all y4 G^(^). Thus

lim \\d^(A]-~d(A]\\=(^
A> CXD

lim \\^t(A]-e^^^(A]\\=^
A* 00

for all ^ G ^, uniformly for t in compacts, by Theorem 3.1.28.

Remark. Proposition 6.2.3 has a converse, i.e., any derivation d of the

quantum spin algebra ^ with D(d] = UACL^A can be obtained from an

interaction O. To see this first note that the last remark in Example 3.2.25

implies that for all finite sets A c L, there exists an J^(A) = ff(A)* 6 ^ such
that

ö(A)^i[H(A),A] (*)
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for all A G ^A. Moreover, ^(A) is determined by ö iip to addition by elements
in ^^^ n 31 = ^^^ .

Here A^ denotes the complement of A and

2lA. = u ^A'
A'c A"

To normalize Ä(A) we define a projection E/^ of norm one from ^ onto ^A
for any (finite or infinite) region A äs follows. Write 3l = ^A (8) 31AS and let T

be the unique normalized trace on the UHF algebra 3(A^ Then E\ is defined

by

^A(^A-^^/) -5ZT(5/H-

for.4/ e ^IA and Bi G 31A^.
By replacing ff(A.) by ^(A) E^c(ff(A.)) we may choose an ^(A) satisfying

(*) and

AK^(A)) = O, M
and conditions (*) and (**) determine Ä(A) imiquely.

Now, define

//(A) = ^A(^(A)), r(A) = H(A) - //(A)
and define inductively

^(&) = 0, (D(A) = //(A) - ^ )(X) .

;rc A

Then one has

//(A) - ^ (D(X), Ä(A) = //(A) + W(K) .

;rcA

Using the normalization condition one can now show that

W(^} = lim r(A ; AO
A'^ co

where the limit converges in norm, and

r(A ; AO = ^{^(X\, Xn A ^ 0, l^n A^' 7^ 0, 1^ c A'} .

To prove this note that if AI C A, the following computation is valid

A, (^(A)) - //(AI) = A,(//(A) - ^(Ai))
= T(//(A)-//(A,))
- t(A.(//(A))) - T(AC(//(A,))) = 0

. (;j

Here the second equality follows from

//(A)-Ä(A,)e2lA,'^2I = älA.

which is a consequence of (*), while the last equality follows from (**).
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Next one computes that if A C A', then

//(A'\A) = A,\A(^(A'))
= A'\A(^(A')-^(A))
= E^Ef,^(H(M) - H(^)) = E^,(H(\') - ^(A)) , (11)

where the first two equalities follow from (*^) and (**), respectively, and the
last from

^(AV^(A)^^A^ .

We can now derive a manageable expression for the surface term ^(A; A'),
^(A ; A') = H(A'} - //(A'\A) - H(A)

= E^iff(A'}}-E^>(ff(A')-ff(A))-H(A)
^E^iff(A))-H(A}

for all A' 5 A, where (**) was used in the second Step. But E^'(A) -^ A in norm
when A' > oo, for all ^ G ^, and hence

lim W(A ; AO = ^(A) - //(A) = ^(A) .

A'^ oo

The first specific result on existence of a time evolution is based upon the
first criterion of the above proposition and is applicable to interactions for
which the many-body forces are negligible in a suitable sense.

Theorem 6.2.4. Let ^ be an interaction of a quantum spin system satisfying
the requirement

Mi = E^"'f^"pE ii<i>wii) < +'X)

"^0 ^^^^.&, ^

for some >! > 0, and define a derivation d by

D(ö) ^\J^^
AcL

and

ö(A]^i ^ [^(X],A], ^G^A .

Xr^\^0

Itfollo\vs that D(S) is a norm-dense *-subalgebra ofanalytic elements ofthe
closure 6 of ö. Therefore, ö generates a strongly continuous one-parameter
group of "" -automorphisms i of^ and

lim ||T,(^)- 1,^^)11=0
A>oo

for all A G M, uniformly for t in compacts, where

^A/^\ _ ^////,i,(A)^^-/7//cp(A)
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Remark. Less severe restrictions on the growth of ||$(^)|| with |^| may be

imposed at the cost of making the elements of D(ö) non-analytic, but never-

theless ö remains a generator. (See Notes and Remarks.)

PROOF. Once we have established that each element of D(ö) is analytic for ö
then the remaining Statements follow directly from Proposition 6.2.3 because

P^(x) < ||0||^forallxGL.
NOW take ^ G ^A- One has ^(X) G "^x, and 51A and ^x commute whenever

T n A = 0. Therefore,

ö"(A) = f ;^ [a)(jr,),[...[(D(xo,^l]] ,E
X] n5o/0,...Jr;, n5_i7^0

where SQ = \ and

Sj = Xj u Xj-\ u u Xi u A

fory > 1. But

E- = E E-
Xi

and

\Sj <\Xj +|jr._i| + ... + |jri| + |A|-7 .

Thus

where

ii<5"(^)ii<2" Y. n(i+---+"'-i+i^i)ii*iui
i,...,rt>0 /=!

iii'ii, = ^^p E ii'^wii
x^L x^.^

\X\^i + \

But fl" < n \r"e^^ for A, a > 0 and hence

P"(^)||<(2/Ari|(D|i:;j|^||;.!exp(A|A|) .

This establishes that A is an analytic element for 5 with radius of analyticity
tA > (V2||<I>||;,), i.e.,

^^||5"(^)||<+oo
> 0

^

for 1^1 < (^/2||(I)||^), and the proof is complete.

EXAMPLE 6.2.5. Assume O contains only one- and two-body interactions, i.e.,
^(X) = 0 for \X\ > 2. The conclusions of Theorem 6.2.4 are then valid whenever

sup||a)(W)||<+oo, sup^||0({x,>^})||<+oo .

x&L
-x e I v e L

If L = Z^' and O is translationally invariant, these conditions reduce to the single
restraint
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E ii<i'({o,y})ii< + ^ .

Q^y ^V

This is obviously satisfied if O is of finite ränge and in general it can be
understood äs a restriction on the ränge of the two-body interactions.

The evolution i constructed in Theorem 6.2.4 can be considered äs a

function of the interaction $ and the perturbation estimates used in the proof
estabhsh that T is continuous in O. For example if Oi and <I>2 both satisfy the

requirements of the theorem, and if ^CD, and b^^ denote the generators of the

corresponding groups T^^ and T^^ then

Tf'(^)-T^(^)=^^ Y,bl^(b^,-b^,}bl^"'-\A} .

n>\
^'

m = Q

Hence for A G ^A the above estimation procedure gives

l|Tf'(^)-Trn^)ll <E '"(T)" Eil'i''liril*i'2l"-"'-'
>1 V'^/

m = 0

x||$, -<D2||,|M||e^l^l

<^||<D,-a.2||,|Mlki^i(i-^||a),|
X (l -f 11^.1

whenever (2|^|//i)||O/||; < l,/ 1,2. Continuity for general ^4 and small t then
follows by approximation of ^4 by strictly local elements. Finally, continuity for
all A and t results from the group property of t^-^if,

The second result concerning the existence of dynamics emphasizes prop-
erties of the energy interaction across the surface of each finite subset A C Z.
This energy is defined by

ffo(A)= ^ <I>(^)
A-nA^0
A- n A'' 5^ 0

where A^ again denotes the complement of A. The following theorem, which is
a consequence of the result of Section 3.1.4, covers two cases which are typi-
cally applicable to one- and two-dimensional Systems respectively.

Theorem 6.2.6. Let ^ be an interaction of a quantum spin System satisfying
the requirement

p^(^) = Y,mx}\\<+^
X^x

for all jc G L, and define a derivation d by

D(6) = U ^A
Acl
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and

d(A) = i ^ mX],A], A^^^ ,

X^^^i^&

Assume that there exists an increasing seqiience A C Z/ such that A^ > oo

and

either E ^(^^
Xr^^n^^0
A'nA^j^0

<M

for some M > 0

or
/ ^

X n A ^ 0
.YnA^, ^!2

<D(^) < 0()e-""

for some a > 0.

It follows that the closure d of d generates a strongly continuous one-

parameter group of *-aiitomorphism ofü and,furthermore,

lim ||T,(^)-Tf"(^)||=0
n^r oo

for all A G ^, iiniformly for t in compacts.

PROOF. This result follows from Theorem 3.1.34, and the discussion subsequent to

the theorem, when one makes the identifications X = ^^ Xn = ^A, S = d^ and

Sn,m = ^+/,o = ^n+m, where

dn(A)=i[H^(\n),A]

for all yi G ^.

Thus under the first assumption of the theorem the result follows from the dis

cussion at the end of Section 3.1.4 because

II^U, -^,o|| = ||(<5-.5)k ||<2 E
A'nA^0
.rnA^-^0

^(X] <2M
.

Similarly, the second assumption of theorem implies that

L,,-5,,|| = ||(c)-5+,)U^J|<2 E (^)
.r n A / 0

.V n A'^
,
^0

= 0(n)e-^'"

and the result follows from Theorem 3.1.34.

Theorems 6.2.4 and 6.2.6 both give conditions on the interaction which are

sufficient for the construction of dynamics. The conditions of Theorem 6.2.4

imply that

sup||(D({x})|| <-f-oo
,

jceL



Quantum Spin Systems 251

i.e., the interaction energy is uniformly bounded on the lattice. Theorem 6.2.6

does not impose this type of boundedness and ||O(^)|| could grow indefinitely
provided that the surface energies are appropriately bounded. Thus, Theorem

6.2.6 appears more general than Theorem 6.2.4. Unfortunately, the bounds of

Theorem 6.2.6 are rather restrictive and essentially Hmit the result to one- and

two-dimensional models. These applications are illustrated by the following
examples.

EXAMPLE 6.2.7. Let L = Z, A = [,], and assume that O is a translation in

variant interaction. It follows that

E i'W
Xr^\^0
A'nA^/0

<2^D(X)\\^(X)\\ .

^90

Thus if the right-hand side is finite the first case of Theorem 6.2.6 is applicable. This

requirement differs from that of Theorem 6.2.4 insofar the possible growth of

||0|| = E li^'WII
X3Q

\X\=n+l

with n is less restricted. On the other hand, the ränge of O is more restricted. For

example, if O is a two-body interaction, i.e., if ^(X) = 0 for \X\ > 2, then the con-

dition becomes

^|x||0({0,z})||<+oo .Z^
x^Q

Thus, the two-body interactions should decrease roughly äs |jc| -2-g

EXAMPLE 6.2.8. Let L - Z^

A, - {x-x = (xi,X2) e Z\ \Xi\ <n,i= 1,2} ,

and assume that O is an interaction with finite ränge d(^. It follows that

E "^W
A'nA5^0

A- n A^ 5^0

^ E
xA\A-rf^

E*^w < 4Ö?(D SUp
xeA\A;,-rf^

Ew
X^x

D(X)>m

But the right-hand side vanishes identically if m > J(D and hence the second case of
Theorem 6.2.6 is applicable.

The third and final method of discussing the dynamics of quantum spin
Systems applies only to a subclass of the interactions covered by Theorem 6.2.4

but it establishes more detailed propagation properties. This method only
applies to regulär lattices, e.g., L = Z^, and differs from the previous methods
insofar it establishes the Cauchy convergence property of AI-^T^(^) directly.
The starting point of the method is the estimate
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d
|T^(^)-T^(^)|

0

Y~^

^^^(^^^f-y^))

rf.T^([//o(A,)-ÄI,(A2),Tfj,(^)])
kl

^ ^ E / ds\\{<^(X),^^^-(A]]\\
.YGAl\A2 X3X^^

which is valid for A2 C AI, and A G ^A,. Thiis to prove the Cauchy property
one must estimate the commutators occurring in the last summand. These
estimates can be understood äs bounds on propagation velocities. We discuss
this Interpretation subsequently.

Propositioe 6.2.9. Let > be an interaction of a qiiantum spin System on the
lattice L T and assiime that

Ill-ll, - sup ^ |X|(yV+ lfWe^W||(D(X)|| < +00
.T6Z^'.r9x

for some /l > 0. Let i^ denote the evolution assodated with <I> and A C Z^' and
X eZ^ \-^ TY the action of space translations.

ItfoUo\vs that

[Tf(^),5]||< \A\\Y, sup
.,t?vC^il{0}

Kx(c),^]
\\c\\

,-|.T|A + 2M||cD||,

for all A e ^10} ^^d B e ^l
.

PROOF. First define

C,%(,r,0 = [T,T;^(^), 5]

and remark that

C.%G^,O-C^,^G^,O) + |'J.^C^^,CT,.)
^c^.^(x,o)+/^ rj.[T,Tf([(D(x),^]),5]

.

r^n^O

Next define

Cß(x, t) = sup sup
Acr' Ae UI{o}

\\C^,B(^,t)\\

The integral relation for C^^, and several applications of the triangle inequality,
yields the integral inequality

v- f'''
CB(x,t) < CB(X,Q) + \ / äs sup sup

XBO-fO Acz^' ^e^i(o}

\\[^^T^([^(X),A]),B]\\
IMII

Next we seek a majorization of the integrand in terms of Q.
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Let e(ix, jx], ixjx = 0, l, . . . , A'', be a set of matrix units for ^{x}- Each [O(Jr),^]
has a unique decomposition of the form

[^(x],A]= Y. ca>({/.},{Ä})n^(w.)
{/.}{/.} ^e^

with coefficients CCD e C satisfying

|c*(0.},a})| < \mx],Ä\\\ < 2||<i'WII IMII .

Substitution of this decomposition into the integrand of the above inequality, use of
the linearity properties of commutators and the triangle inequality then gives the new

integral inequality

CB(oc^t]<CB(x,(^] + Y. Y.'^(N-^\?^^^mX]\\ r dsCB(x + y,s] .

X^Q y&X ^0

But this takes the simple form

r\t\
CB(x,t) < C5(x,0) + 2 V (y) / dsCB(x-{-y,s) ,

yer J^

where

w = E(^+i)"'"ii*wii
A-BO
X^y

Iterating this last inequality yields

CB(x,t] < ^ ^(3^,0)-!-, / ^v^^/ö(.-,)^2Me(ö)
^

^T^v (27r) 7o<0,-<27r

where e is the Z^-Fourier transform of s. (This use of Fourier transformation is where
the regularity assumption L = Z^ is important.) As e is analytic and periodic one may
change the integration to an integration along Im ö = 7 to estimate

(2.

But

J_ /'^vg^/0(x-^)^2WS(fl) <g-(x-^), l /'rfV^|^2WI(e+,|
_

(27c) J (In) J

K(> + iy}=^e-'^'>^'^^ys(y) .

yel"

Hence, using s(y) > 0, one concludes that

\8(9 + iy)\<Ye^yB(y) = B(iy) .

yez^'

Consequently

|g2|/|(0+/| <g2Me(/y)

Combination of these estimates immediately yields the bound

CB(x,t) < Y, C5(y,0)e-(^->')^e2|^l^('^) .

yer

But choosing y = ((x y)/\x y\)^ with A > 0 gives
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e(^ = Y^ ^(A^+ l)-'^'||)(X)||e^-(-^->')'^'/l-"--^l
XBÖ yex

< V|^|(^+l)-W||<l.W||e^-^W<||<D||, .

/ ^

X^O

Consequently

Q(x,0< ^Q(>',0)e-'-l->'le2|'IWb- .

y&r'

The Statement of the proposition now follows from the definition of CB-

Corollary 6.2.10. //

C(.,.)=sup sup
"[^^^'(^)'^]ll

AcT A,;7^,, \\A\\m '

then C(;c, 0) < 20^^ and hence

C(^,0<2exp{-|f|(AW/|^ -2||(1)||,)} .

These estimates now allow a new discussion of dynamical evolution for a

suitable class of interactions.

Theorem 6.2.11. Let ) be an interaction of a quantiim spin System on the
lattice L = Z^ and assiime

||(D||^ ^ sup ^ \X\(N^l)^\^^e^^^(^^\\^(X)\\ < +00
.T G Z' JTB.r

for some A > 0. Further let T^ denote the evolution associated mth ^ and A.
It foHows that T^ converges strongly to a one-parameter group of^-auto-

morphisms T of^, i.e.,

lim ||T,(^)-Tf(^)||=0
A> cxD

for all A ^, and the convergence is uniform for t in compacts.
Moreover, for A^B ^ ^{Q} one has

\\[i:^it(A),B\\\ l
^ii^ii ||^||g-klUW/kl-2||a)||,}

||[T,T,(^),5]||J"
where x G Z^ H^ TX denotes space translations.

Finally if^\ and ^2 are two interactions of the above class andi^^^ andi^-
the appropriate aiitomorphism groups, then

||T*'(^)-Tfn^)ll<IMII |AO|||<1>1-02||
e2k| ||0||,

_ l
' II*L A-/

jez^

e
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for all A e ^A, ^vhere ||O||, - min(||Oi|| ||O2||;j and

bc n
= mm-10

y^\Q
x-y\

PROOF. Prior to Proposition 6.2.9 we established the estimate

r\A
||Tf'(^)-T^(^)||< Y. E/ ds\\[^(X].^^'~(A]]\\

A:eAi\A2 X3x'^^

whenever A G ^AQ with AQ C A2 C AI .
But then decomposition of ^(X] in terms of

matrix units, äs in the proof of Proposition 6.2.9, yields the estimate

||tf'(^)-T^(^)||< ^ ^||a)(jr)||(7v+ifi^i
jceAi\A2 X3X

'^' \\[^y(B],^^^-(A]]\\
^JQ Äe^r^o} ll^ll

X V^ / ds sup
^-^Jo

Therefore, an application of the bound of Proposition 6.2.9 gives

||tf'(^)-T^(^)||< ^ ^(7V+lfl^l||<I.m||2|Mi|
xAi\A2 ^^x

xY" y^e-^^i^-i /%.^^ii^ii^-
.

JoZ^ Z^
yeX zGAo

But -|3^ - z| < - z - jc| + A: - >;| and |;c - j;| < D(X) for jc, y e J^. Thus one obtains

||Tf'(^)-Tfn^)ll<2|M|| ^ ^|Z|(7V+lf'^l||^(Jr)||e^-^(^)
a:eAi\A2 ^3^

X y^-^^i-^i /'" ^56^11^"^-
zt^o ^0

<|M|||Ao|(ß''^lll^ll^-l) 5^ e-^-Wo
.

x6A,\A2

Hence T^(.4) converges in norm for all strictly local A and the convergence is

uniform on compacts. Convergence for general A follows by continuity.
The second Statement of the theorem follows directly from Corollary 6.2.10.

The final Statement follows from the estimate

||T*'(^)-t^(^)|| < /'"rf5 ^ ||[0,(^)-a.2W,T^(^)]||
70 xcZ"

and an argument similar to the above.

EXAMPLE 6.2.12. Assume 0 is translationally invariant and contains only two-

body interactions. The condition of Theorem 6.2.11 then reduces to the condition

^||a)({o,^})||^^^w<oo
xer'

for some A > 0, i.e., the interaction must decrease exponentially with distance.
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Let US now consider in a little more detail the significance of the foregoing
commutator estimates. If ^ G ^{o}, then A corresponds to an observation at
the origin and TYT/(^) can be thought of äs an observation at the point x at time
t. The commutator [i:,cit(A),B] with B E ^{o} then gives a measure of depen-
dence of this observation on the observation B at the origin at time t = 0, i.e.,
the commutator measures the effect of the observation Tx^t(A} at the origin.
Thus, the estimate

['-'<^>'*l<exp(H,|ffl-2||*l|,
2IMII llll

shows that this effect is exponentially decreasing with time outside of the cone

/2||$||AW<klM^ .

\ A /

Thus physical disturbances propagate with velocities less than

K. = ,f^
A A

Another way of arriving at this same qualitative conclusion is to reexamine
the essential localization of T^(^). The estimate used in the proof of Theorem
6.2.11 shows that

IK(^) - rf (^)ll < Mll(e*!l^- - 1) X^ g^^-W
.reA"

<2\\A\\m,\t\Y,e-
,reA"

for A G ^{0}. But if A = {x; |;c| < V\t\ + D}, then

V e-^\^\ < S, l dr

xeA^- Jr>V\t\+D~l

where S^ is the surface area of the v-dimensional unit sphere. Therefore,

||T,(^)-Tf(^)||<2|M|| m,F(\t\]e-^-\'\(^-^>^

where V), = 2||<l)||;y/l and F(\t\) has the form

F(\t\] = \t\P,..,(V\t\+D)e-'^\'\ ,

where PV-I is a polynomial of order v 1. Thus, if K > F(D and e > 0, one may
choose D such that

|K(^)-Tf(^)| <B\\A\\
for all t G [R, i.e., it(A) is essentially localized in a cone

|;c| < V^\t 4-Z)
.

This conclusion that the propagation of physical effects is exponentially
damped outside of a causal cone determined by a group velocity V^ is essen-

^v-l^-A.
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tially restricted to interactions which are exponentially decreasing in config-
uration space (see Example 6.2.12). If the interaction decreases more slowly,
then one would expect the damping to be less important but no quantitative
results in this direction have been obtained.

Although these results show that propagation takes place only in a causal

cone with asymptote determined by FO the method provides no information

concerning the distribution of effects within the cone. The characteristics of this
distribution depend much more intimately on the details of the interaction. For

certain interactions the maximum velocity of propagation is sensibly smaller
than the estimate FO and it is typically zero for classical interactions such äs the

Ising interaction.

EXAMPLE 6.2.13. Consider the spin-| Ising model introduced in Example 6.2.2. If

A G ^{;c} is of the form

A =flof7j+ 0(3(7^

with üQ^a^ e C, then the commutation relations [0^,0-3] 0 and the identification

ÖQ = 1 show that A is a fixed point for the Ising evolution, i.e.,

r,(A)=A .

Altematively if

A' = a^o^^ + a-0^_
,

where a e C and 0^ ^^^ the spin raising and lowering operators defined by

cr'^ = K/a^2)/2 .

then one finds

T,(^0 - fl+6'^^^4 + fl_e-^''^V_
,

where

^*=E^'3(^->'X
yeZ'^

Thus the time development t\-^'T:t(A') has a multiperiodic nature which is periodic if
0 has finite ränge. In this latter case T/(^) remains localized within a distance d^ (the
ränge of O) of the point jc. Einally a general element of ^{^^ has the form A-\-A' and
combination of the above cases gives the generic behavior.

The Ising model illustrates a behavior typical of classical interactions. If
( C ^ is a classical spin algebra and O takes values in , then all elements of (

are fixed points of the corresponding evolution. This follows because Cf i s
abelian.

More interesting types of propagation are expected for models such äs the

Heisenberg model and the X-Y model. To analyze the dynamics of the latter

we first describe a connection between the kinematics of the one-dimensional

spin-^ System of Example 6.2.1 and the corresponding CAR algebra of
Theorem 5.2.5.
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EXAMPLE 6.2. 14A Consider the spin-^ model with L = 1. The C*-algebra of local
observables ^U is generated by polynomials in the Pauli operators
{ö-J; z 0, l, 2, 3, :c G A} and the corresponding quasi-local algebra 51^ is isomorphic
to the UHF-algebra (8)?l_ooM2. An explicit matrix representation of the Pauli op
erators was given in Example 4.2.7. They satisfy the Pauli relations

(cr;)^ = i, 0-7 = 0-;, O;CT;^, = -O-]^,O; = .V;^,

where addition of the indices is modulo 3. Moreover, [öf , crj] = 0 if ;c 7^ y.
NOW define the Fermi algebra ^^ äs the C*-algebra generated by elements

{fl^,fl*;jc G Z} satisfying the anticommutation relations

X,a*} = d.,^y , {a^^.ay} = 0

for all jc, j; G Z. In Theorem 5.2.5 it was established that ^^ is also isomorphic to the
UHE-algebra (8)Jl_oo^2 but due to the anticommutation at large distances there
cannot be an isomorphism between ^^ and ^^ which respects the^ spin structure.
Nevertheless one can embed ^^ and 51^ in a larger UHF-algebra Ul in such a way
that ^^n 31^ is the C*-subalgebra of even elements, i.e., the C*-subalgebra gener
ated by even polynomials in the a and a*, or in the a. The embedding is defined äs

follows.

Let 0_ be the automorphism, of order 2, of ^^ defined by

r\ f \ f <^x if X > l
,-(-^) = {-a, if.io
.

The crossed product ^ = 31 Q_ Z2, of ^ and this action of ^2 = Z/2Z, is then the
C*-algebra generated by ^^ and an operator T G ^ satisfying T- == H, r = T* and
TA = &-(A)T for ^ G 51^. One can check that S is also isomorphic to (8)?^_^M2.
Now realize the Pauli algebra ^^ äs the C*-subalgebra of ^ generated by

ö-j - TS^(a, + a*) , (r\ = iTS,(a, - a*), er] = 2fl>., - ^

where

fnr=:^3 if-x>l
,

S,= <i ifx=\,
[n;=.x<^3 if^<i

.

The operators then satisfy the Pauli spin relations and this defines an embedding of
^^ into ä. (The significance of the operators TS^ S^T is explained by noting that
one has the formal relation

Ts.= n o^.)
V= co

Next define an action 0 of the group Z2 x Z2 on ^ by

0(z,7)(x) - (-l)Vx, Ö(/,7)K) = (-l)X, ^(iJ](T] = (-lyr

for all /,7 = 0, l, and let ^ denote the four spectral subspaces of 3t defined by this
action (see Section 3.2.3). Then one checks that 31++ is the even subalgebra of 31
alluded to in the previous paragraph and

-F
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5I^-ä++ + ^-+
,

^^:^ä+++ä__ .

The even subalgebra 5I++ = ^^r^ 51^ is itself isomorphic to (8)^_^M2.
An interesting automorphism a of ^ is defined by

ö-K) = jc+i , ^(^) = (T\T =Ta\ .

One checks that a restricted to ^^ is the twosided quasi-free shift and its restriction

to ^^ is the twosided shift. Thus these shifts coincide on the even subalgebra.
Finally note that ^^ is also generated by the spin raising and lowering operators

<4 = Ki<4)/2
which satisfy the relations

KX-} = 1, KX-] = <T^ .

The ö^, ö^ commute if x ^ y. The üx.a* can be recovered from the cr^ by

a^ = TSxO^_, al = TS^o^. .

We now use this description of the kinematical structure of the spin-| System to

analyze the time development of the XY model.

EXAMPLE 6.2.14B Consider the Jt^-7-model of Example 6.2.2 fo v - l but

assume, for simplicity, that ji(x] = (^ for |A:| 7^^ 1. On the algebra ^ the local

Hamiltonian then has the form

//=//a,([-,l) = -j|^((l+yKali+' + (l-7)<^,(T^+') + Ä ^ al
x=n xn

n-\

= 2J "^ ö;c+i + ö*+iß;c + 7ü!>J+i + yax+\a^)
x= n

+h y;(2ax-ii) .

Z-^
x= n

Therefore the Hamiltonian H^ defines a time development of ^ which leaves the two

subalgebras ^^ and ^^ invariant. Assume, for simplicity, that /z = 0. The in

finitesimal time change of the a is then given by

<5a)K-) ^ lim /[//, J = -2zJ(ür;c+i +x-i +y(fl*+i +ö*_i))
/J> OO

For h = (f,g) with f,g^ hW it is now convenient to introduce

B(h} = a* (/) +a(g) = Y.M +Z ^J'^J '

J j

One then computes that the derivation d^ generates the one-parameter group

^,(B(h-)] = B(e'^>^'h]
where

/ (U + W] y(U-W]
\-j(U-U^) -([/ + [/')

and
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(C//)^. = /;+,, ([/*/), = /,-! .

The time evolution of T G ^ is given by i:t(T) = TVt where

F, - lim Te^^^^Te-'^""
n^^oo

= lim ^/^ö-(^.)^-w. ^g,-^ r dt, r dt2... r^ dtn^,^(A]...i,,(A) ,
-^^ f^Q JQ Jo Jo

by Theorem 3.1.33, with

A = lim (0-(//) - //) = -4J(aQai + a\aQ + y(aQa\ + ßi^fo))
AZ> OO

These formulae give the time-development on Ut. Next, using Fourier transforma-
tion, one deduces that K has a Lebesgue spectrum on [2, -2y] u [2y, 2] with uni
form multiplicity 4. Therefore e'^^^/z ^ 0 weakly äs t > 00 for all
h G /2(Z) 0 /2(Z). Hence the limits

&(A) = lim MF;
r^00

exist for all ^ G 31^ and define automorphisms of 51^. In fact

e.,(B(h)) = B(U^h)
where ^ are unitary operators which can be computed explicitly. Using these ob-
servations, and a method similar to that of Example 5.4.9, one nojw establishes the

following twisted asymptotic abelianness for ^,5 G 21^ : if ^,^ G ^++ then

lim ||[^,T,(5)]|| = 0
,

;^oo

if .4 G 2I__ and B G ^++ then

lim \\Ai,(B)-e+(i,(B))A\\=0 ,
^^00

and if ^ G ä++ and B G ä__ then

lim \\Ait(B)-i,(B)^+(A}\\=0 .

/> 00

These general conclusions^remain vahd if /z 7^ O^Note that it is also possible to show
that the automorphisms 0 do not extend to ^ (see Notes and Remarks).
A special case which is illuminating is the case 7 = 0, i.e., the isotropic X-Y

model. Then the infinitesimal time change is given by

(5$) - \im^i[Hn,a^] = 2iJ(a^_, + a^^j) + 2^^

and this can be integrated by Fourier transformation to give

T,K) = 5]G,(x-j)a;
.veZ

where

Gt(x) = (2nr^ r\0e^--o^^t(4JcosO+2h}
JQ

Thus if ^ =: a^QÜQ = a^d^ = (d^ + 1])/2 then ||[TxT^(^),yi]|| is proportional to \Gt(x)\.
But one finds that \Gt(yt)\ decreases exponentially with t if \V > 4|J| and decreases
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like |f|~^/^ if 1^1 < 4|J|. Within the cone \x\/\t\ < 4|J| there is propagation which is

essentially homogeneous and decreasing proportionally to \t\~^^'^ and outside the

cone the propagation effects are exponentially small.

Throughout this subsection we have analyzed the time development of

quantum spin Systems äs a norm limit of the local dynamics. For many in-

teractions, e.g., long-range interactions, it is possible that the appropriate limits

only exist in certain representations. (See Notes and Remarks.)
The periodic time behavior exhibited by the Ising interaction in Example

6.2.13 is easily seen to be typical of classical interactions and of course all

elements of the classical subalgebra ( are left invariant. On the other hand it is

not at all evident that the propagation exhibited by the J^-7model in Example
6.2.14 is typical of quantum interactions although this is believed to be the

case.

6.2.2. The Gibbs Condition for Equilibrium

Throughout the rest of this section we analyze the equilibrium states of

quantum spin Systems and we often assume that the dynamics is given by a

strongly continuous one-parameter group T of *-automorphisms of the quan
tum spin algebra ^. In this paragraph we compare the traditional Gibbs de-

finition of equilibrium and the definition through the i-KMS condition.

Subsequently we discuss other characterizations of equilibrium.
First define the local Gibbs state associated with the interaction 0 by

,._Tr5>-^(^
'^^^^^ " Tr5,(e-^*(A))

for all ^ G ^A. Occasionally it is useful to indicate the dependence of COA on O

and then we use the notation co^. It is also natural to insert a factor jS G IR,
corresponding to the inverse temperature, in front of //<E)(A) but for simplicity
we often omit ß.

Although COA is defined äs a state on ^A, it has an extension to a state on ^

by Proposition 2.3.24. Let co^ denote an arbitrary such extension. The ther-

modynamic limit of COA äs A ^> oo can now be analyzed with the aid of the co^.
The spin algebra 91 contains an identity and hence the state space Esa is

compact in the weak* topology. Therefore, there exist nets of extensions co^^ of

coA^ such that A ^ oo and co^^ converges in the weak* topology to a state co

over 9l, i.e.,

limco^J^) -:co(^)

for all y4 G 9l. Hence, co is a thermodynamic limit point of the local Gibbs states

in the sense that

(D(A) = limcoA,,(^)
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for all A G ^A and all A. Henceforth we define a state CD^ over ^ to be a

thermodynamic limit point of the local Gibbs states co^ if it is the weak* limit of
a net of extensions of co^ to ^.

It is a consequence of the general analysis of Chapter 5 that the thermo
dynamic limit points co are KMS states.

Proposition 6.2.15. Let > be an interaction of a quantiim spin System, o}'^
the local Gibbs states

^/^.,,^ Tr,,(.-/^^(AU)
^ ^ '' Trg,(e-/'i'(A)) ' ^^ ^A '

and f^ the local automorphism groiips

r^(A) = e''..(A)^e-'W*(A)_ v4 e 31
.

Assume that r^ converges strongly to an automorphism group T, i.e.,

lim ||Tf{^)-T,(^)||=0
A> oo

for all A^^ and t e [R.

Itfollows that every thermodynamic limit point co^^ ofco^ is a (T, ß)-KMS
State over ^.

PROOF. As ^ is separable w^"^ is the weak* limit of a sequence of extensions of the
local Gibbs states. Therefore the result follows from Proposition 5.3.25.

This proposition shows that the thermodynamic limits of the usual Gibbs
states are KMS states and our aim is to derive a converse of this Statement and
thus deduce that the Gibbs equilibrium states are completely characterized by
the KMS condition. It is, however, overly optimistic to expect a strict converse

to the proposition. The difficulty is that the foregoing notion of Gibbs state is
too restricted. The state coy^ describes a closed System, i.e., a System completely
isolated in A and lacking interaction with the exterior. But external interac-
tions, or interactions across the boundary of A, are of relevance whenever
multiple phases, i.e., multiple thermodynamic equihbrium states are possible
because these interactions inüuence the relative proportion and disposition of
the phases. Thus, Variation of the external interactions is necessary if one

wishes to describe all equihbrium distributions. Hence, it is necessary to
broaden the notion of Gibbs states to allow these external effects. There are

two approaches. Either one may modify the interaction near the boundary of A
in Order to reproduce the boundary effects or one may consider the System äs a

Subsystem of a larger System. Although these methods are conceptually dif-
ferent they are technically similar. We adopt the second point of view and refer
to the Subsystem äs an open system, i.e., open to external interaction. We next
introduce a set of states which describes equilibrium for open Systems.

For orientation let us first examine the Gibbs state co^/ of a finite spin System
with interaction ß<l), If A c A^ is a Subsystem then the restriction of the Gibbs
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State C0y^,' to MA is not the Gibbs state CL)A of ^A. The restricted state describes

particles in A interacting with particles in the external region A^\A. If, however,
the state C^A' is modified by removal of the interaction across the boundary of A

and A'\A, then the restriction of the modification is equal to COA- In order to

express this quantitatively reintroduce

^ci)(A;AO=^X]{^W;^^ A7^0,A^n AV0,;^C A'} ,

the energy of interaction across the border of A and A^\A. Now subtraction of

this external interaction corresponds to a perturbation of the state co^ in the

sense of Section 5.4.1 with the perturbation P = ßW^(A ; A'). Explicitly

A'(^) =

and therefore

^
_

Tr^, (^-^^a,(A')+/^^)
_

Tr^^, (^-/i//.(A)^-^//.(A'\A)^)
A'V ) ""

Tr ,(e-^^'i'(^')+^)
"~

Tr ^(e-^^<i>(^)e-.^^i>(AA))

Ö>A' ^ ^A 0 COA'\A
In particular co^, |v)i^= COA-A' l^^A-

Next consider the infinite System and assume that the interaction energy

W,^(\}= Y, ^(^}= lim ^o(A;AO
A'uA?^0
yVuA^=i 2

is well defined, i.e., the limit exists in norm. This energy represents the inter

action of the Subsystem A with the remainder of the System in the complement
A^ of A. The above observations then motivate the following definition.

Definition 6.2.16. Let O be an interaction of a quantum spin System such that

the surface energy ^(t)(A) is a well-defined element of ^ for all A c L.

A state a; over ^ is defined to satisfy the Gibbs condition with respect to ß^
if the following conditions are fulfilled.

(1) co is faithful, i.e., QÖ, is separating for Tico(^]

(2) CD^^ :=: CO^^O)

for all A c L, where OJA is the local Gibbs state corresponding to O, d)

is a state over ^AS o}^^ is the perturbation of co constructed in The

orem 5.4.4, and PA = ^^CD(A).

All limit points of the local Gibbs states satisfy the Gibbs condition. This

follows from combining Proposition 6.2.15 and the following result.

Proposition 6.2.17. Let ^ be an interaction of a quantum spin System and T^
the corresponding local automorphism group. Assume that

(1) T"^ converges strongly to an automorphism group T, i.e.,

lim ||Tf(^)-T,(^)||=0
A^ cxo

for allA^^ and t G IR.
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(2) The surface energies ^$(A) are well-defined elements of ^ for all
\CL.

It follows that every (T, ß)-KMS state satisfies the Gibbs condition with
respect to ß^, for all ß e U.

PROOF. If ^ = 0, the implication is trivial. H ß ^ 0, it suffices, by rescaling, to
consider the case ^=^-1. First let Q = -(Wc^(\) + H^(\)) and consider the
perturbation T^ '- of the local groups T^ for all A^ D A. It follows from assumption
(1) and the definition of T^ that T^''Ö converges strongly to an automorphism group
T^' which acts trivially on ^A and which leaves ^A^ invariant. Similarly if P =

^(i)(A), one finds

T'' = T'^T'^"
,

where we identify T'^' with its restriction to 2I/i'. But the corresponding perturbation
ca'' of O) is a T''-KMS state by Theorem 5.4.4.

Next for 0 < 5 e StA' define the state co^ over äU by

p,^, w''(AB)"^(^) = ^;/W
As T^ = T^ (g) T^' the T^-KMS condition for o)^ implies that c/j^ is a t'^-KMS state.
But coA is the unique such state by Example 5.3.31. Therefore, co^ = COA and

co^(ÄB) = CD^(A)(D^(B]
for all ^ E ^IA and 0 < 5 e ^IAS i.e.,

CO^ = COA <^<^^kl^.
Thus the Gibbs condition is valid.

The converse of this proposition is valid under slightly more striogent
conditions on the interaction >. We first derive a result in which these con-

ditions are stated in an implicit form and subsequently give alternative explicit
assumptions which also imply the converse.

Theorem 6.2.18. Let ^ be an interaction ofa quantiim spin System andi^ the
corresponding local automorphism group. Assume that:

(1) T^ converges strongly to an automorphism group i, i.e.,

litn||Tf(^)-T,(^)||=0
A> OD

for allAe^ and t G U.

(2) The surface energies W^(A.) are well-defined elements of ^ for all
AC.L,

(3) D={J^,
\CL

is a core for the generator d of i.
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Then the follomng conditions are equivalent for each ß ^R\

(1) (D satisfies the Gibbs condition with respect to ß^.
(2) CD is a (T, ß)-KMS state.

Remark. If ^ is a Symmetrie derivation defined on D, then one ean always find

an interaetion O' sueh that d = ö^', and the surfaee energies ^^'(A) are well-

defined elements of ^. This follows from the Remark before Theorem 6.2.4.

The surfaee energies are not well defined for all interactions defining (5, how-
ever. The same remark applies to later theorems on variational prineiples in

this seetion.

PROOF. If j5 = 0, both conditions state that co is a trace. Thus by rescaling it suffices

to consider the case ß = l. Moreover, throughout the proof we identify na}(^) and

^.

(1) => (2). By assumption, CD is separating. Let er denote the corresponding
modular automorphism group. Now for each P P* G 51 the perturbed state co^ is

also separating and has modular automorphism group cr^ where cr^ is the pertur-
bation of <j introduced in Proposition 5.4.1. Choosing P= -^o(A), the Gibbs

condition implies that o/ = co/^^ co, where a)A(= CD^^) is the local Gibbs state on

^A and 60 is a state on 5tA^ As co^ is separating, it follows that both COA and cö must

be separating. But the modular group of WA is the group T^ and we let f denote the

modular group of cö. Now of = cD\cb satisfies the modular ((T, 1)-KMS) con

dition with respect to T = T^ 0 f and therefore by the uniqueness of the modular

group, Theorem 5.3.10, one has 0^ = T^ 0 f. In particular ö^lgj^ = ^^'
Next let (5^ denote the generator of er. It follows that the generator d^p of a^ is

given by D(d^p] = D(da] and

d,(A] = d,p(A]-i[P,A\

for all A G Z)((5ff). Thus äs 0^ and T^ coincide on ^TA one concludes that ^CA C D(df^)
and

d,(A] = i[H<^(\],A]-{-i[W^(\],A]
= i Yl [^W.4- lim ^A'W

XnA^0
^-"

for all A G ^IA? where we have introduced ö/^> , by D(ö^>) D and

öAA}=iY,[^(X),A] ,

xcA'

and the limit exists in the norm sense.

But if ö is the generator of T, it follows from Theorem 3.1.28 that ö is the graph
limit of öj^' äs A' -^ 00, hence A ^ D(ö) and

Ö(A} = Ö,(A)

for all A e D. But D is a core for ö. Hence D is a core for da and ö = Ö^by Theorem

3.1.19 and Proposition 3.2.52. It follows that T: = a, i.e., co is a (T, -1)-KMS state.

(2) ^ (1). This follows from Proposition 6.2.17.

If we combine this theorem with Theorem 6.2.4 we obtain a Statement which

involves the interaetion in a mueh more explieit manner.
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Corollary 6.2.19. Let O be an interaction of a qiiantum spin System
satisfying

iii>iL = E^'"(^"p E ii'Wii)<+~
/2>0 \'^^^ X3X J

\X\^n-V\

for some 1 > 0 and let i^ be the associated aiitomorphism group (see Theorem
6.2.4).

The follo\ving conditions are equivalent:

(1) co satisfies the Gibbs condition with respect to ß^.
(2) co is a (i^.ßYKMS State.

PROOF. The restriction ||)||^ < +00 is sufficient to ensure that W^(!^] is well
defined. The other two hypotheses of Theorem 6.2.18 then follow from Theorem
6.2.4. Hence the two conditions are equivalent.

A similar result can be derived from the assumptions of Theorem 6.2.6.

EXAMPLE 6.2.20. Suppose L is homogeneous, the interaction ^ is of finite ränge
and

sup||(D(X)|| < +00 .

XCL

Then the assumptions of Corollary 6.2.19 are satisfied and a state co is a (T^, ^)-KMS
State if, and only if, it satisfies the Gibbs condition with respect to ^<I>.

6.2.3. The Maximum Entropy Principle

The Gibbs states of isolated, i.e., closed, Systems can be characterized by a

principle of maximum entropy at fixed energy. This principle was outlined in
Section 5.3.1 prior to Theorem 5.3.15 and it is often referred to äs the principle
of minimum free energy. Our intention is to give a more detailed description of
this principle for quantum spin Systems and to extend it to open Systems.

The notion of entropy first arose in thermodynamics äs a measure of the
heat absorbed, or emitted, when external work is done on a System. In the
subsequent development of classical Statistical mechanics this quantity was

related to the order, or disorder, of the microscopic particles which constitute
the System. Thus, the principle of maximum entropy describes equilibrium äs

the State of maximum disorder compatible with a given energy or particle
density, etc. The concept of entropy was then abstracted from Statistical me
chanics and used in both probability theory and information theory. In the
former it constitutes a measure of the "uncertainty" and in the latter it mea-
sures the information content although a direct justification of these latter
interpretations is difficult. Nevertheless, the entropy arises naturally in the
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formalism of the law of large numbers and it is apparently this fact which leads

to its general Utility (see Notes and Remarks).
The relative entropy S(^\v] of a probability measure ii e M\(X) with respect

to a positive measure v G Mj^(X] is usually defined by

5(/i|v) = -y'rfv(a))(^g)(a>)log
-<'-(S))

*)()

if ^ is absolutely continuous with respect to v, and CXD if this is not the case.

Thus if X is discrete with a finite number of points coi,...,co, and

^(ft)/) -: A-,V(CO/) =^/, then

n

^(A^IV) = -X^(A-iogA-- A'iog^f) .

i=i

In particular the entropy, S(fi), of the measure jj, with respect to the measure

which gives unit weight to each point is given by
n

S(f^) = -Y^pi\ogpi .

/=!

In the sequel we need to generahze both these concepts, the entropy S(^) and

the relative entropy S(j^\v), to the states of quantum spin Systems, and for the

discussion of open Subsystems it is also necessary to introduce a third concept,
the conditional entropy. We begin by recalling the relevant description of a

closed Subsystem.
Each State CD of the local (matrix) subalgebra 9lA of the quantum spin

System is determined by a unique density matrix p^ on ^^ in the form

0}(A} =TTf,^(p^A}
for all A G ^A, and the entropy S/^(co) of co is defined by

S/,(o}) = -TrJpAlogpA)

If {A}I</< is a complete set of eigenvalues of p^, this definition takes the

classical form

n

S\(o}) = -Y^pilogpi .

/=!

(The function x log x is always defined by continuity to be zero at jc = 0.) If (p

is any other positive functional on ^A? then (p is also determined by a positive
trace class operator CTA, i.e.,

(p(A) =Tr5jaA^)
and one can define the entropy ofco relative to (p by

5(co|(p) = -TrJpAlogPA-PAlogö-A) .
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Thus if PJ^ and CTA commute,
n

S((D\(p) = -^(pi\ogpi - pi\og qi) ,

/=!

where {qi}\<i<n ^^^ ^^^ eigenvalues of (JA- Therefore *S'(-|-) is a natural
extension of the classical relative entropy. The next lemma establishes that this
generalized relative entropy is negative and the subsequent proposition
demonstrates that this negativity is equivalent to the principle of maximum
entropy, at fixed energy, for the Gibbs state of ^A-

Lemma 6.2.21. Let A be a positive n x n matrix and B a strictly positive n x

n matrix.

It foUo\vs that

-^r(A logA - A log B) < Tr(5 - A)
with equality if, and only if, A = B.

PROOF. Let {öt/}i<^< and {^/}i</< be complete sets of eigenvalues of ^ and B
with corresponding orthonormal eigenvectors {^}\<i<n ^^^ {'Af}i</<- O^e has

-Tr(^log^-^log5) = -^a,log,- + ^^a,|(.Af,^f)|2logZ.y .

/ = l i=\ j=\

But

5;]|OAf,iAf)|'iogZ>,- < iog^|(^,iAy)l%-iog(^,5^)
7-1 7=1

by convexity of jc ^ log x. Therefore,

-Tr(.,o.. -.,.., <_ p,;. .*,',{- -^,0,-,^}
^S*'^'-w:s*?)}^"'<"-^''

where the second inequality follows from the convexity of .T -^ -x log x in the form

-^ log .T < l - ^
.

This gives the desired inequality. But we have used two estimates and equality occurs
in the first if, and only if, there is a relabelingy -^ j(i) such that I/A<^ is proportional to

i/^J( -) and equality occurs in the second if, and only if, a/ = Z?y(/) .
Hence equality occurs

in the total estimate if, and only if, ^ = B.

Proposition 6.2.22. Let co and cp be states over the local siibalgebra ^A ofthe
quantum spin System with corresponding density matrices p^ and (j\.

It follows that the relative entropy S\((D (p) is negative, i.e.,

S^(co\(p} = -TT^^(p^logp^-p^\oga^} <0

and S\(a}\(p) = 0 if, and only if, oj = cp.
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Moreover if co^ is the Gibbs state of ^A corresponding to the interaction O,
then

5A((ü|ü)*) = 5A(w) - CD(H<,(^)) + logTrgJe-^*'^)) ,

where the entropy S/^(CD) is given by

SA(o}) = -TTf^^(p^\OBp^) .

Consequently co^ is the unique state which maximizes the functional

co e ^2iA ^ Ff,(cD] - S^(cD] - co(//o(A))

and the maximal value is given by

logTrgJe-'^'C^)) .

PROOF. The first Statement follows from Lemma 6.2.21 with the choice A = p^ and

B = a/^ because

Tr(^-5) = Trs,(pA-<^A) = l-l=0 -

The other Statements follow from the first by noting that the Gibbs state is de-

termined by the density matrix

Q-H<,(^]

^^^Tr^,(e-^^(A))

Remark. The function

(D^E^^^ o}(H^(A]) - ß-^S^(cD)
is often called ihefree energy of the spin System at inverse temperature ß. Thus,
the Gibbs state co^^ is the unique state which minimizes this energy. The term

free energy is also used for the minimum value

FA(^O) = -r^QgTr^J^-^^-^^))
of this function. In the lattice gas interpretation this latter quantity corre-

sponds to the pressure.

In Order to extend the maximum entropy principle to open Systems it is

necessary to analyze properties of the entropy S\(o^] both äs a function of the

finite subsets A C L and of the state co G E<^^. Moreover, one must extend the

notion of relative entropy to pairs of states of the total spin System. We begin
by analyzing the entropy.

First, remark that äs jc G [0, 1] i-^ - x log x is positive, the entropy must be

positive. Next, note that if v is chosen to be the (normalized) trace-state over

^A, then iS'A(co|v) < 0 implies that

^A(co)<log{(7V+ 1)1^1} .

Thus

0 < Sf,(cD) < |A|log(A^+l) .
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Moreover, S(co v) = 0 if, and only if, co = v and hence S\(o}) attains its upper
bound if, and only if, co is the trace-state.

It should be emphasized that S^(o}) is an extensive quantity, i.e., it is es

sentially proportional to |A|, and hence the total entropy

lim S/^(co)
A > oo

of a State co is only finite under exceptional circumstances. A more suitable
global measurement of entropy is the entropy per unit volume

.. S^((D)
hm '/
A^oo |A|

of co and we will examine this quantity for translationally invariant states in the
next subsection.

EXAMPLE 6.2.23. Let co be a product state over ^, i.e., if P{^| denotes the density
matrix determining CD\<^ ,

then the density matrix p^ which determines co sij is given
by

PA-n%)
.vA

It follows immediately that

^AH - ^5|.,}(CO) .

xeA

Hence A -^ S\(a}) is monotonically increasing and the total entropy

lim S/^(co) = Y]5'{.^|(co)
^-^ f^L

is well defined but it is only finite if jc ^ 5'{Y}(cü) is summable. But 6'{^}(co) = 0 if, and
only if, co|s)i is pure and iS'{;^}(to) is small if, and only if, co|<)j is "almost pure" in the
sense that one eigenvalue of p|^} is dose to one and the others are dose to zero. Thus,
for (D to have finite entropy the restrictions co ^ij must be predominantly "almost
pure." Thus, finite entropy is only possible for states which are pure in this very
strong sense.

Probably the most important property of A h-> ^A(^) is strong sub-ad-
ditivity,

Proposition 6.2.24. The entropy A c L \-^ Sj^(a)) G (R of ecich state co over

^A scitisfies the strong siibadditivity inequality

^A, u AZ uAs (^} - SA^ u ^2 (^} ^ *^Ai u A3 (<^) " '^A, (<^)
for all mutiially disjoint AI , AI, AS c Z/.

The proof of this proposition consists of a rather long, but elementary,
series of arguments based upon convexity and positivity or convexity combined
with complex analysis. As this proof is not very illuminating we omit the details
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(see Notes and Remarks) and satisfy ourselves with comments on two special
cases.

Note that S0(w) = 0 by definition and hence setting AI == 0 in the strong
subadditivity inequality one finds the usual subadditivity property

^AzuAsH <S^,((D]-^S^,((D]

for A2 n A3 = 0. This explains the terminology strong subadditivity. More-

over, the ordinary subadditivity follows directly from Lemma 6.2.21 by
choosing A = PA, ^ AS and B^ p^^ p^^.

Strong subadditivity is also easy to derive whenever the various p^ com-

mute. For example, if co is faithful, the p^ are invertible and

(^AiuA2uA3(ö;) -^AiuA2M) - (*5'A, uA3(co) - iS'A, (co))
= -Tr^^^^^^^^(pA,uA2uA3log^) ,

where

l l^ = PA]uA2uA3PA,PA,uA2/^AiuA3 '

But convexity of ;c jc log x gives jc log jc < l jc. Hence

-log^ < ^-^ -H

and strong subadditivity follows immediately. Nonfaithful co can be handled

by approximation.
The next proposition summarizes various properties of the function

A, co 1-^ *S'A(CO). Some of these properties will only be relevant in the following
subsection when we discuss translationally invariant states and interactions.

Proposition 6.2.25. For each A c L the function

0} eE^ \-^ S/i((D) G R

is continuous, when E^ is equipped with the weak* topology, and concave, i.e.,

5A(AC01 + (l - ^)C02) > A5A(c^l) + (l - ).]S^(CD2) .

Fürther it satisfies the "convexity" relation

5AacOi + (l-A)c02)
< A^A(COI) Hh (l - A)^A(co2) - AlogA - (l - ;0 log(l - ;.)

and the triangle inequality

I^A, (co) - ^A2 (co) l < 5'A, uA2 (co) < ^A, (co) -f- SA, (co)

for all disjoint AI , A2 C L.

PROOF. If coa ^ <^ in the weak* topology on Ey[, then co j^
> colgj^ in the weak*

topology on Ey^^^. But 51A is a matrix algebra and hence C0a|^^ ~^ ^^^A in the uniform

topology. In particular, the density matrices p^ corresponding to co oj^ converge in

norm to p^. Thus, if {}Jf} and {A/} denote the eigenvalues of p^ and PA, arranged in
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decreasing order and repeated according to multiplicity, perturbation theory implies
that }Jf -^ /i/. Therefore

^A(CÜ) = -Y^^i log ^^-^'^ A, log l, = S^(w) ,

/ /

i.e., S^ is continuous.
To prove concavity let p^^^ and p;^^ denote the density matrices corresponding to

0)1 and C02 over ^A. Let E\ and 2 be two mutually orthogonal rank-one projections
in ^A' f'or some A' with A n A' = 0 and define co äs the state over Ul^ ^ A' with
density matrix

p = Ap^^^^E,^(l-l)p^-^E2 .

One has

5AH-^A(AtOi+(l-;>2)
and

'5'AuA'(^) - ^A'(W) - ^S^(cOi] + (l - /1)5A(C02) .

Thus concavity follows from subadditivity.
Next note that

;.p<,') + (i-Ä)pJ,-'>Ap<,">o
and hence

iog(ip;,'^ + (i-;Op\-0>iogH" .

(This last conclusion follows from the representation

log ^ - log 5 = /co d).
' ' -^

\B + n A + n)
for A, B > 0 and Proposition 2.2.13.) Therefore

-lTr^,(pj,') log(Api') + (l - ;0pi'^)) < -m^Jpi^^ log Api'^)
= -Alogl + 15A(<:üi) .

Similarly

-(l - l)Tr,3jp(c^ log(/p^^) + (l - A)p|e^))
<-(i-;Oiog(i-x) + (i-;o^A(co2) .

The "convexity" relation follows by addition.
The right-hand side of the triangle inequality is subadditivity which results from

Proposition 6.2.24. To establish the left-hand side we proceed äs follows.
Let p be a density matrix on the /?-dimensional space with eigenvalues

{A/}, </<^,
and corresponding orthonormal eigenvectors {iA/}i </< Further let ' be

an m-dimensional space with an orthonormal basis {cp/}i</<,, where m > n If E is
the one-dimensional projection on 0 ' with ränge

r.
=
^-^'

it follows that

il^E = 2^^^/''^h^(pi ,

/=!
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Tr^^^.(^(^01))^Tr^(p^) ,

Tr^^^.(^(105))-Tr^KP^^) ,

where p' denotes the density matrix on ' whose first n eigenvalues are //, with

corresponding eigenvectors (p^, and whose remaining eigenvalues are zero.

Thus it follows from these observations that if co is a state over ^IA, then one can

find A' with A n A' = 0 and a state co over "S^AU A' such that (1) cö|gj^ = oj, (2) the

density matrix corresponding to cö is one-dimensional, i.e., cö is a pure state, and (3)
5^(c5) S^(o}) = Sj^'(a)). By a similar argument it follows that if CD is any pure state

on ^AuA' - ^A ^AS then S^(ü) = Sj^>(co).
Therefore, replacing A by AuA^ we can consider co, over ^I^uAS to be the re-

striction of a pure state cö over ^AuA'uA" f^r some A'^ C L, It follows from purity that

'^AuA'uA"(^) = ^ ^^d '^A'uA"!^) = S^(^) =S/i(a}). Finally an application of Pro

position 6.2.24 with the identifications AI A', A2 = A, AS = A'', and CD = co gives

-^AuA'H<^AH-^A'(^)

Thus by interchange of A and A' one concludes that

^AuA'(^)>l'^AH-^A'HI

Proposition 6.2.24 is basically a Statement concerning the difference

^AuA'(<^) ~*^A'(<^) ^^^ Proposition 6.2.25 gives further information concern

ing this difference which we summarize in the following.

Proposition 6.2.26. For A C L consider the functional

(A', co) G A^ X ^51 ^ ^A,A'(^) ^ ^AuA'(^) - ^A'(^)

It follows that:

(1) For CD G E<^fixed, A' C A"^ ^~^S\^M(^] ^^ decreasing.

(2) |5A,A(aj)| < 5A(co) < |A|log(;V+l).

(3) For A and /\! fixed CD^-^ S^ A'(^) ^^ continuous ifE^ is equipped with
the weak* topology.

(4) For A and A.' fixed CD^-^ Sj^ A'(^) ^^ concave, i.e.,

5A.A'(Aco, + (l - A)co2) > A5A,A'(a;i) + (l - A)5A,A'(2)

and Satisfies the "convexity" relation

5A,A'(ACO, + (l - ;0(Ü2) < A5A,A'{CÜ1) + (l - A)5A,A'(W2)
-Aiog;.-(i-;oiog{i-A)

for 0 < A < l and coi^coj ^ ^^21-

PROOF. (1) This is a reformulation of Proposition 6.2.24.

(2) This follows from the triangle inequality of Proposition 6.2.25.

(3) Again this follows from the continuity of 5'A(co) given in Proposition 6.2.25.
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(4) Let coi and co2, be states ^^AUA' with corresponding density matrices p)^^^
and p^l^j^'- Next let E\ and 7 be mutually orthogonal rank-one projections in il^"
for some A^' with A'' n (AuA') 0. Now define co äs the state over ^t^^A'uA" with

density matrix

p = lp^^l^.^E, + (l-l)p^^l^,^E, .

Thus

^AuA'l^) - SA'(O^} = ^A,A'(>^1 + (l - ^)C^2)

and

^^AuA'uA^Ö^) - ^A'uA"(^) = ^S^^^'(cDi) + (l - ^.)S^^^'(C02)
Concavity of ^/^ A/ now follows from Proposition 6.2.24.

The convexity relation for S/^^^' is a consequence of the concavity of ^A, and the

convexity relation for ^'A, established in Proposition 6.2.25.

The difference Sj^^j^'(o}) - S^'(co) measures the entropy of the spin System
on AuA', in the state CD, minus the entropy of the System on A^ Thus, it
measures the entropy of the A-subsystem in interaction with the A'-subsystem.
Therefore, the entropy of the A-subsystem in interaction with the remainder of
the lattice System is given by the limit of this difference äs A' ^ A"". The limit
exists because A.' \-^Sj^^j^'(co) is decreasing by Proposition 6.2.26 (1) and this
limit is often called the conditional entropy. It represents the entropy of the A-

subsystem conditioned by interaction with the exterior.
It is also referred to äs the entropy of the open A-subsystem in contra-

distinction to S^(co} which measures the entropy of the isolated, or closed,
Subsystem.

Definition 6.2.27. Let S\(a}) denote the entropy of the Subsystem A of the

quantum spin System in the state co G E^^. The corresponding conditional en

tropy S\(CD) is defined by

5A(cü)= inf (5A,A,()-5A'(co))
A'cA'

= lim,(5A^A'H-5A'()) .

A^A'

The conditional entropy S\(co) is again an extensive quantity, i.e., essentially
proportional to |A|. In fact, if co is a product state, then S\(co) = S\(co) and we

have already argued that S/^(co} is extensive (see Example 6.2.23). Several basic
properties of *SA(CO) follow immediately from Propositions 6.2.24-6.2.26.

Proposition 6.2.28. The conditional entropy S\(CD) has the follomng prop
erties:

(1) For co G E^fixed, the function A C L^-^S^(co) G D^ satisfies
(a) (Strong superadditivity)

*5'AiuA2uA3(<^) -^AiuA2(<^) ^ *5'A,uA3(<^) ~ '^Ai (^)
for AI, A2, and AS mutually disjoint.
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(^) |^A(co)|<^A(a;) .

(2) For A. C L fixed, the function co e E<i^\-^ 5/^(0}} G [R is upper semi-

continuous if E<^ is equipped with the weak* topology and

A5A(cOi) + (l - ^)^A(C02) - Alog A - (l - A) log(l - ;0
> Sl^(X(Di + (l - }.]0}2) > ^S/,(o}i) + (l - 1)S^(0}2}

for 0 < l < l and coi , C02 ^ E^-

PROOF.

(l a) By definition

S'A, uA2 uA3 (<^) - S'A, uA, (ö^) - ^'A, uAj (<y) + ^'A, (to)
= lim ^{(^AO uAI uA. uA3M - '^'AoH)

AO > (AiuA2uA3)

('S'AouAiuA2uA3(<^) '5'AouA3(<^)) ('^AouAiuA2uA3 (<^) '^AouA2 (<^))
+ (^AouAiuA2uA3(co) '^AouA2uA3(<^))}

= lim ^{-6'AouA2uA3M +^AouA3(^) +'5'AouA2M -^AoMI
AO -^ (AI uA2uA3)'^

>o

where the inequality follows from the strong subadditivity Q^ S\((ß].
(Ib) This is an immediate consequence of (2) of Proposition 6.2.26.

(2) By definition ^'A is the infimum over the family of functions 5/^^A' ~ '^A But
these are continuous by Proposition 6.2.26 (3) and hence ^A is upper semi-con-
tinuous. The concavity-convexity relations follow directly from (4) of Proposition
6.2.26.

Proposition 6.2.22 established that the Gibbs states of a closed Subsystem
are given by maximizing the entropy at fixed energy. But the conditional en-

tropy measures the entropy of an open Subsystem of the infinite System and our

aim is to demonstrate that the states satisfying the Gibbs condition are exactly
those which maximize the conditional entropy with the conditional energy
fixed. By conditional energy we now mean the energy of the open Subsystem,
i.e., the Subsystem in interaction with its surroundings. This principle of
maximal conditional entropy is also referred to äs local thermodynamic stability.

If one refers to Proposition 6.2.22 one sees that the maximum entropy
principle for closed Systems follows from the negativity of the relative entropy
of finite Systems. The same is basically true for the infinite spin System but in
Order to establish this it is first necessary to generalize the notion of relative

entropy. We next extend this notion to pairs of faithful states of ^, i.e., states co

such that QCÜ is separating for n(j^(^)" .
In fact we define relative entropy for

pairs of faithful normal states of a von Neumann algebra and then use this to

discuss the corresponding notion for states of a C*-algebra. (It is possible to

introduce the relative entropy of nonfaithful states but this is not directly
relevant to the discussion of equihbrium states.)



276 Models of Quantum Statistical Mechanics

Let 9[R be a von Neumann algebra acting on a Hubert space and let

^i5 ^2 ^ be two vectors which are both cyclic and separating for 9Jl. Next
reintroduce S^^^^, äs the closure of the operator defined on 9}J^2 by

5^^,^^2=^*^l .

This operator was already discussed in Chapter 2 and in particular Lemma
2.5.33 established closability. Let

C, .
- / ,

A V2^c^l,C2 ~^Cl,6^Ci,C2
denote the polar decomposition o^ S^^^^^. The selfadjoint operator

^^,,C2=^C*C2^^i'C2
is called the relative modular operator of (9JI, c^i, (^2)- It is instrumental in the

following, useful, definition of relative entropy.

Definition 6.2.29. Let coi and co2 be two faithful normal positive linear func-
tionals over a von Neumann algebra 301, and QI and ^2 the unique vector

representatives of coi and co2 in the natural positive cone ^ = ^^^ = ^^2- The
relative entropy of coi and C02 is defined by

/oo

S(a)i\co2}= l (^(Qi,^(l)Qi)logi ,

Jo

where E is the spectral family of the relative modular operator AQ,,!^,, i.e.,

/oo dE(^)X .

_

Let CD[ and 602 be two positive forms over a C*-algebra such that their

unique normal extensions a)\ and cü2 to 9Jl = (na^^ © 71^02 (^))'' are faithful. The
relative entropy of coi and co2 is then defined by

S(oji\cD2} ^S(a)i\ä)2)

We now analyze various basic properties of the relative entropy.
First note that Ay^^^ yj^^^ = (l2/^\}^Ü2,ü, and hence

^(^iCOi 1^2^02) = Al^(cOi|oJ2)+/lllog(/i2/>^l)a)i(l) ,

and in particular
S(10}1\10}2) = 1S(COI\C02) ,

i.e., (co l, 0)2)^-^ S ((Dl 0)2) is homogeneous of order one.

Next remark that log /i < 1 - l and hence

/"OO

^(coi|a;2)< / J(Oi,^(A)Qi)(i- 1)
JQ

- (Oi, Ao,,n,Qi) - (QI,OL) = (02,^2) - (ni,Qi) .

Thus if coi and co2 are states, (Q2,^2) = l = (^1,^1), and one concludes that

*S'(coi|a;2) is negative. Moreover, S(co[\(D2} =0 if, and only if, E(X) is con-
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centrated at the point 1=1. But this only occurs if An,, DI = H and hence

S(coi\a)2} 0 if, and only if, coj = co2-

In contrast to the entropy and conditional entropy the relative entropy of
States of a spin System is a global quantity. Nevertheless, one can argue that

S(a}i 0)2) takes finite values only for pairs of states which are globally similar.
This qualitative notion will be illustrated in Example 6.2.31. It motivates the

following examination of the entropy of a state CD relative to a perturbed state

Cü^.
Let (D be a faithful state on the von Neumann algebra 9JI with corresponding

cyclic and separating vector Q. For each selfadjoint P G 9Jl we can define the

perturbed vector Q^, and the corresponding perturbed positive form

cbP(A} = (Q^,AQ.^} ,
Ae'ü

.

äs in Theorem 5.4.4. Note that co^ is not normalized and cb^ = \\Q^\\~co^, where
co^ is the perturbed state given in Theorem 5.4.4. Now let us recall some of the
basic facts derived in Section 5.4.1.

First one has

Q''-r^,y2Q,
where r^f/2 is the analytic continuation to the point i/2 of the unitary co-

cycle which intertwines the modular group er associated with (501, Q) and the

perturbed modular group cr^ which corresponds to (501, Q^). If AQ denotes the
modular operator corresponding to (501, Q.) and H = log AQ is the infinitesimal

generator of er, then

F!./2 - ^(^+^)/2^-^/2
.

Now assuming for simplicity that P is analytic with respect to er one has

F^./2 G 9Jl. Therefore,

S^ r^//2*^^ = ^*r^,-/2^ = ^*^^ = V, n^^

But SRQ is a core for both SQ_ and S^p Q. Moreover, F^^y2 is invertible and hence

F^^/2*50Zß is a core for iS^. It follows immediately that

Sa r_//2* = ^^^^,0
Consequently

AQ^Q = r!^-/2Aar!,//
= (g(^+^)/2^-^/2)g^(e-^/2e(^+^)/^) = e(^+^)

and

logA^F^ = logAQ-fP .

These relations then extend to general P = P* G 9J1 by approximation in the

strong topology with sequences of analytic elements P. One uses, for example
||Q^" - Q^ll ^ 0. Thus we have deduced that
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5(cüCüO = (^,logAj2P_nfi)
= (Q,logAnQ) + (Q,PQ) = cü(P)

where the last Step follows because AQÜ = Q. By rescaling one also obtains the

identity
S(cD\CO^)=CD(P)-log\\ü^\\- .

But it follows from Corollary 5.4.5 that (co^)"^ = co and (O^)~^ = O. Thus

interchanging co and co^ one finds

^(co^|a;) = -co^(P)+log||0^||' .

Combination of these two relations then provides a lower boimd for the re

lative entropy. One has

0 > S(cD co^) > S(cD\(D^)+S(co^ co) - (ß(P) - c/(P) > -2||P|| .

Thus both S(co\co^) and S(a}^\a}) take values in the interval [0, -2||P||].
It is of interest to remark that the nonpositivity of S(a}\CD^) combined with the
above expression yields the bound

iiQ^ir > e"(^^
.

This is a generalization of the inequality

Tr(e^+^) /Tr(g^P)|
Tr(e^) - ^"""^{T^^^j

which is valid for matrices // = /f* and P = P* and is known äs the Peierls-

Bogolitibov inequality. (One can also derive the upper bound co(e^) > ||O^|r
corresponding to the Golden-Thompson inequality Tr(e^e^) > Tr(e^+^)).

These relations and bounds will be of importance in the sequel.

EXAMPLE 6.2.30. Let coi be a faithful state over the algebra 9JI,, of /? x /? matrices
and pi the density matrix determining coi. Furthermore, let co2 be a positive faithful
form determined by the positive matrix P2- Faithfulness implies that pj and p2 are

invertible and hence one can define H\ and //2 by

Hi = \ogpi .

-H2-Hi. Thi

S(w\a}^) = co(P}
gives

S(coi\co2) = coi(//2 -H\] = -Tr(p, logpi - pi Iogp2) .

Thus the general definition of the relative entropy coincides with the previous defi-

nition for matrix algebras.

EXAMPLE 6.2.31. Let coi and co2 be product states over the quantum spin algebra,
äs in Example 6.2.23, and assume they are both faithful. The representations
(fo,, ^oj,, ^w,) can be realized äs tensor products of the representations
(Sfo,,5 ^fu;,5 ^oj,x) associated with co/^.^ = co/ sji .

The relative modular operator is
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expressible äs a tensor product of the corresponding one-point relative operators and

consequently

S(co,\co2) = ^5(,,,|co2,,) = ^-Trö,(pi')(logp(') -logpf )) .

xeL xeL

In this last expression p^'^ denotes the density matrix which determines co/,.x and the
identification follows from Example 6.2.30. Thus for finite relative entropy the
function jc G Z/ 1^ S(coi^x\(^2,x) '^ 0 must be summable. Now if L = Z^ this means that

xer -^ -Tr5,,,(p(')(logp(') - logpf))) < 0

must vanish sufficiently fast äs |jc| -^ oo. But this function is a continuous function
of p^^^ and p^^\ because )^,^j has dimension A^ + l, and it vanishes only if p^^^ = p^^^.
Thus for finite relative entropy one must have ||p^^^ p^^^ || -^ 0 äs ;c| -^ CXD. But this

implies ||coi,;c <^2,A:|| ^ 0 äs |jc| > CXD, i.e., the restrictions coi,.x and co2,x must be

asymptotically equal.
If coi is Z^-invariant it is possible to estimate the rate of decrease of ||p^^) pP||

sufficient to ensure that S(a}i\co2) is finite. Again we use the representation
/* / l l

log.-log5 = | ^;{^^-:^^
for positive matrices A and B to deduce that

|^(coi,;c|a)2,x)| = (roopi')/ rfA(pf + Ai)-'(p(')-pf)(p(') + ;j)-'
/O

s/-^0
= r

Jo

rfA|i(pi"+Air'iiii(P<'^+^^ir'iiiiPi"-pf

^^{(11 pF'-' r' +^r' - (II pi'^-' r' +^0}

p(')-pp
p<"-' II-' - II pf'-' II-'

= iogfMJ:;i)(ii p(')-' r' - II pf-' r')-' ii P!" -PP ii
\ll P'-c II/

<llpf-MlllPi'^-pf II .

But II pi^) - pi^MH 0 äs |:c|->oo and || pi^^-MH II Po^^"Ml by ZMnvariance.

Therefore, || p^^^~^ || -^ || PQ II äs |:c| -^ oo, and we conclude that

|5(co,M|<||p^^^-MlEllAl^^-pf II .

Next we derive an extension of the rule before Example 6.2.30 for the

entropy of a state CD relative to the perturbed state co^.

Proposition 6.2.32. Let coi and 0)2 be faithful states over the von Neumann

algebra 9K andfor each selfadjoint P G 9Jl introduce the perturbedform

&^,(A} = (Q^,^Q^)
where D.2 ^^ ^^^ perturbation of the cyclic and separating vector associated
with CO2'
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Itfollows that

S((ß\\cb^) ^ S((D\ 0)2) ^ 03\(P) .

PROOF. The proof combines the argument used to derive the relation

^(coi a)f)-coi(P)
and the 2x2 matrix arguments used in Section 2.5.4.

Adopt the notation of Lemma 2.5.33, and perturb the vector QQ = ^ol'^h ^2)
^\ n\\ ~^ ^i^nr^ by an operator of the form

P^E22 = ^21^^21 + U22PU22

By Lemma 2.5.34 one has that

7

logA^, = Y, ^log(A.^^)t;^
/,y=i

and hence

^0(^1,^2)^^" - ^(^^S^"o+^^-)/2^-^ogA^^/2^^(^^^^^^^)
= Ci (g)^ii + C2 ^fe = no(Ci,c2) (*)

But if A = exp H and J are the modular operator and conjugation associated with

Oirt,Qo) then

AF = exp{// + P' - JP'J]
is the modular operator associated with (9[R, QQ'). (A proof of this appears prior to

Corollary 5.4.5.) Also by Lemma 2.5.34 one has

J=Y,U,jJ,^,,,U],
and hence

J(PE22]J = t/l2^c,^,,C2^^ + U^^^PJ^JJ^ .

It follows, using P' =PE22. that

log A^,,(.,,.p) - log A^^(,.,,,.^) P (g) "22

= logA^(^.^) + U,,PU^_, + U22PU^
- U^^_J^_^^.^PJ.^^.^Ul^_ - Uj_^_J^^PJ.^U'^2 ^

where the first equality is a consequence of (*). Taking the (2, l) component of this

equation we obtain

logA^.p^^.^ =logAc,,,., +P

and applying this to Ci = QI and ^2 = ^2 one deduces

S(cOi\a)2) = S(COI C02) -^CDi(P} .

Next we examine the connection between the relative entropy and the

conditional entropy.
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Let coi and coi be states over the quantum spin algebra and {PA JAci ^^^

{/^A JAci ^^^ corresponding families of density matrices. If A' c A*^, then

^AuA'(coi) - ^A'(coi) = - Tr(p^^l^. logpi^^A') + Tr(pj,V logp^V)
^-Tr(pi^i^,(logp(,^)^,-log00pj,^;)))
+ Tr(pj^V(logp^V-logp^';))

= ^(<^ik, ,,KA(8)a)22t .)-S(a;i|3i |a)2|^ .) ,^A'^ v "=ctA" '-'^"A'AuA'

where we have used the identification of the relative entropy established in
Example 6.2.30 and TA denotes the (unnormalized) trace on ^A, i-e.,

TA(^)=Tr,(^) , ^G^A .

This relation can be translated to a relation between the conditional and re

lative entropies by taking the limit A' ^ A^. But this requires knowledge of
continuity properties of the relative entropy.

Proposition 6.2.33. Let ^ be a von Neumann algebra with an increasing net

of finite-dimensional subalgebras 971 such that U ^a ^^ dense in 50l. Let

0)1 , C02 be two faithful, normal, positive, linear functionals over 93^ and

^i,a,<^2,a. their restrictions to SR.
It follows that ai-^'S'(coi^a|<^2,a) is monotonically decreasing and

\imS((D\^^\(ß2,a} = S((D\\(I>2]
a

Although this is a key result, the proof is rather long and so we choose to
omit it (see Notes and Remarks). Combination of this result and the discussion
preceding it gives a relation between the conditional entropy and the relative

entropy which is fundamental for the derivation of the maximum entropy
principle from the Gibbs condition.

Corollary 6.2.34. Let coi and 0)2 be states over the quantum spin algebra 51
and let TA denote the (unnormalized) trace over ^A-

It follows that

S^(o}i} =5'(cOi|TA(8)a>29i^J - 5(601 |5J^JC02|5I^J -

This follows from the relation preceding Proposition 6.2.33 by taking the
limit A' ^ A".

Proposition 6.2.35. Let ^ be an interaction of a quantum spin System such
that the surface energy W^(A.) is a well-defined element of^for all A CL.
Furthermore, let at be a state which satisfies the Gibbs condition mth respect
to O.

It follows that

S^(CD] - ßo)(H^(A}} = sup {^A(coO - ßo}' (ff^(\}}}
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for each A C L, vvhere S/^ is the conditional entropy, Ät>(A) = H^(^) + W(^(A.)
the conditional energy, and

C^ = {co'; CD' G E^j, CD'
,^^^

= co .j^^J .

PROOF. The Gibbs condition states that

CO/'^MA)=^^|^^^_^^ ,

where COA is the finite-volume Gibbs state. This is equivalent to

^ßH..W ^ ^0

where T^ is the (normalized) trace state on ^A, i-C-,

<(^)=1:M' '^^^-

It follows from Proposition 6.2.32 and rescahng that

5(<B||a;''(^)) =5(co,|) +/Jco,(Ät(A)) +log(nff(^', flfC^)) .

But then the Gibbs condition, Definition 6.2.16, and Corollary 6.2.34 give

S(co,|co''('^)) = 5(cO||<HauJ
= 5(<:oi|TAco|.,,J-logTrö,(1l)
= 5(cü,|u^^, co|,^J+5A(cü,)-logTrö^(1l) .

Combining these relations one finds

S/,(cDi ) = S(o}i |co) - S(cDi 1,1^^ \oj .t^^^, ) + ßcoi (ÄD(A))
+ log{(nf''(^),Qf''(^))Tr^Jl)} .

Now setting 0)1=01 this gives

5^(0;) = /?o,(//<p(A)) + log{(nf*<'^', a/f""^')Tr5,(1)}
and hence, by subtraction,

^AH - ^co(//ci>(A)) - ^A(COI) - ^co,(^ci>(A)) -^(co,|co) +6'(coi|,i^^Jco|s,i^^J .

Therefore, if coi e Q^

^AH - ^CO(ÄD(A)) - ~S^(cDi} - ^COI(ÄD(A)) - S(WI\CD)

>^A(coi)-jÖcoi(Ä,(A)) ,

where the inequality follows from the negativity of the relative entropy. As equality
is achieved if co = coi, the proof is complete.

Note that S(O}I\CD) = 0 if, and only if, co^ = co and hence the state co is the

unique state in C^^ for which the supremum is attained.
Next we establish a converse of Proposition 6.2.35 under stronger as-

sumptions on the interaction. In fact, we use the assumptions that sufficed to

establish the eqiiivalence of the Gibbs condition and the t-KMS condition.
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Theorem 6.2.18. This is slightly unsatisfactory because the Gibbs condition

and the maximum entropy principle can both be defined when the surface

energies W^(A.) make sense and it is not essential that the dynamics are de-

termined by a strongly continuous one-parameter group of *-autoniorphisms T

of ^. Thus, this hypothesis in the following theorem appears redundant. (See
also the Remark after Theorem 6.2.18.)

Theorem 6.2.36. Let ^ be an interaction ofa quantum spin System and T^ the

corresponding local automorphism group. Assume that

(1) T^ converges strongly to an automorphism group T, i.e.,

lim ||Tf(^)-T,(^)||=0
A> cx)

for allAe^.te U.

(2) The surface energies W^(A) are well-defined elements of ^ for all

Acl.

(^) I^-U^A
ACI

is a core for the generator d of 1

The following conditions are equivalent , for jS G [R andfor a state co G "91.

(1) SA(a)) - ßo,(ff^(\}} - sup {^A(coO - ßo,\H^(A})}
co'eq

for all A C L, where S/^ is the conditional entropy, ff^(A.} H^(A.}
+ W^(A) the conditional energy, and

C^ = {co'; 0}' 6 ^21, 0}'
^^^ =0)^^^} .

(2) co is a (T, ß)-KMS state.

PROOF. (1) =^ (2) : lfß = 0 and T^ denotes the (normalized) trace state on ^A, it

follows by choosing co' = T^ 0 co ^^^
in the maximum principle and also invoking the

bound given in Proposition 6.2.28 that

^A(T^)<5A(COO<5A(CO) .

Thus *S'A(CO) achieves its maximum value ^A('Z^A)- Hence cojgj^ = T^ and co is a trace.

If ^ 7^ 0, the proof is indirect. We argue that condition (1) implies that co satisfies

the autocorrelation lower bound and then appeal to Theorem 5.3.15.

First note that if ö denotes the generator of T, then

Ö(A) = i[H^(A),A]
for all ^ G ^IA by the argument given in the proof of Theorem 6.2.18. But if co^ is

defined by

w,(B)=co(e^^^Be-^^^)
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for all 5 G 2t, then condition (1) implies that

^{co,(Äp(A)) - co(//ci)(A))} > ^A(CO,) - ~S^(co)

whenever ^ = A* e ^A. But it follows from the defmition of SA and properties of the
trace that

SA(cot) = S/^(co)
and consequently

^{co,(Äi.(A)) - CO(^CD(A))} > 0
.

Thus, t^^ ßcot(H,i,(A)) has a minimum at / = 0 and hence its first derivative vanishes
at this point. Therefore

ßco(ö(A)) = 0

for all A e^A and A c L and since ß ^ () this shows that co is invariant under Ö.
Next consider the operator y^;^^^^!, introduced prior to Theorem 5.3.15, i.e.,

yB(A) = B'AB - {B^'B.A}/! .

If we choose 5 G ^U, it follows that yß(A]^^ for all A G 2lA^. Therefore, ^IA^- is
pointwise invariant under the semigroup r > OH^ T/ = exp{?7^}, and hence

^*^kuc. = ^ yL^c

We already argued in Section 5.3 that T*E^n C E^n, t > 0. Thus it follows from
condition (1) that

^{(7;*oj)(Äi>(A)) - CO(ÄD(A))} > ^A(r - ^A(CO) .

Next by the invariance of CD under ö one has

-ißco(B''d(B)] = -iß{(D(B''d(B]] - co(ö(B-')B) + co(ö(B''B))}/2
= -iß{cn(B-^ö(B)) - CD(d(R^)B]}/2 = ßw(ys(ff^(A})) .

Thus, the previous estimate gives

-ißcD(B*ö(B)) =lim ß{(T*co)(H^(A)) - CO(ÄD(A))}/^

>^lim_^{^A(7;*co)-^AH}A .

Next note that äs r*co
i^,

= ^l^i^, one has

5v(r = 5^,(w)
for all A' C A''. Therefore,

5A(r-5A(co)= iim(5A,A,(r;.o)-5A,A,H) .

A -^A'^

But if A'' = AuA', then

5^^^(r-VH-- [^ds^T:r^^(p\Aogp\.) ,

Jo ""^

where p^/, denotes the density matrix which determines the restriction of T*(o)) to

^j^". But each p^,/ is a positive invertible matrix, and hence the expansion
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^00 / l

logp>
/.oc /

= ^M^
JO Ŷ.l + U A + p^,

is valid. It follows that

l lJ />OO J /

-Wlogp^)=y^ .A-Tr(p^^^^_^^ ^^_^^^

= r.^Tr(^f^-^7o l^i V'"' + 11 ^' + p-

2

,
l C/p" l 1

'^ A + p^ J5 /l + p^J

-Tc/ATrf'^^V ' ^
ly

' "l
'70 ^'^'l,^l,in"iT7'^'^(lT77;

where we have used the cyclicity of the trace and dropped the subscript A^'.

Using the expansion
roo l

D - / d^p^7o (A + pO

one then derives

^Tr(p^-log/) = Tr(^^(logp^ + 1)

= ^(r(log/ + 1)U,

= y;(r(log/ + 1)
= (r(ya(logp^ + 1)) = (r(7slogp^) .

Therefore,

S^..(T:OJ)-S^(O}) = - f'ds(T:o,)(ys(logp^^.,)) .

Jo

The next step is to bound the integrand. Let

n

PA" = E^V^>
7=1

denote the spectral decomposition of p^". A straightforward calculation shows that

n

-co(75(logpv')) = X^ S(;>.j;^^)Cjt
j,k=\

where

Cj,=J,^^((E,BEj}(EkBEjr)
and the function ^^(w ; v] = u\og(u/v) is defined äs in Theorem 5.3.15. Now S is

jointly convex in its two arguments and also homogeneous of first order. Therefore,

^ S(lj ;4)c;i >S[Y^ 9*^V ; E '^^^^M = S((a(B'B) ; (55*)) .

J,k=\ \J,k=\ J,k=\ )



286 Models of Quantum Statistical Mechanics

Finally combination of all these estimates together with lower semi-continuity of
iS" gives

-ißo}(B''ö(B)}> lim / ds S((T^a})(B^B) ](T'^co)(BB'^})/t
^-^o + Jo

= S(co(B*B) ;co(55*))

for all 5 G ^A. But the union of the ^A is a core for ö and hence this inequality
extends by lower semi-continuity to all BED(ö), i.e., the auto-correlation lower
bound is valid. Condition (2) then follows from Theorem 5.3.15.

(2) =^ (1) : If ^ = 0, then co is the unique trace-state on ^. Thus co is a product
State and S/^(a}) = Sj^(cü) achieves its maximum value. If ß ^ 0, then the implication
follows by combination of Propositions 6.2AI and 6.2.35.

Corollary 6.2.37. Let <^ be an interaction of a qiiantum spin System
satisfying

11^11;^= E ^'"P^P E II^WII) <+^
n >0 V''^^ ^^^ /

\X\=n+\

for some /l > 0 and let T* be the associated automorphism groiip (see Theorem

6.2.4).
The follomng conditions are equivalent for each ^ G K:

(1) co satisfies the Gibbs condition with respect to ß^,
(2) co is a (i^,ß)-KMS State,

(3) 0} satisfies the maximum entropy principle,

S^(cD] - ßo3(H^(^]) = sup {5A(coO - ßo3'(H^(\)}}
a;'eC-

for fl// A c //, given in Theorem 6.2.36.

This is an elaboration of Corollary 6.2.19. The restriction ||)||^ < +00 en-

sures that the hypotheses of Theorems 6.2.18 and 6.2.36 are fulfilled (see
Theorem 6.2.4).

Note that if I is a homogeneous lattice, äs defined at the beginning of
Section 6.2.1, then one has a concept of finite ränge interactions. For such
interactions Corollary 6.2.37 establishes the equivalence of the Gibbs condi
tion, the KMS condition and the maximum entropy principle whenever

SUp;^Cl||^WII <00.

6.2.4. Translationally Invariant States

Homogeneity of the quantum spin System was unimportant in the foregoing
discussion of equiUbrium states. Nevertheless many physical Systems exhibit

spatial homogeneity and symmetry and it is worthwhile analyzing such features
in more detail. Throughout this section we assume that L T and examine Z^'-
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invariant states and interactions. The particular choice L = Z^' is not of para-
mount importance and most of the subsequent arguments could be modified to

cover Systems associated with other periodic sublattices of IR^. Some of the

results are also vaHd for appropriate non-invariant interactions or even for

aperiodic lattices. We return to a discussion of these points at the end of the

section. We derive results of two types. First, we establish a global variant of

the maximum entropy principle for Z^'-invariant states and, second, we deduce

some general Statements concerning uniqueness and lack of uniqueness of

equihbrium states.

Let E^ denote the states invariant under the action T of the group Z^' of

space translations of the quantum spin System on the lattice Z^'. If co G E^, it

follows that the local entropy S/^((D) has the invariance properties

S\+a(o^] =^A(CO)

for all a G Z^, and A c Z^. But ^A(CO) is also extensive, i.e., proportional to |A|,
and we aim to examine its mean value äs A-^oo. In order to establish the exis-

tence of the mean it appears necessary to restrict the manner in which A > co.

If fl = (l, . . . , flv) G Z^ and üi > 0, we define A^ äs the parallelepiped with

edges of length / l :

A = {jc; z G Z', 0 < jc/ < fl/, z = l, . . . , v} .

The translates of A^ by vectors na = (nia\, . . . ,n^,av} with n G Z^' form a par-
tition ^a of Z^. Let n'^(a) denote the number of sets of this partition which

have nonvoid intersection with A and let r^(fl) be the union of these sets.

Similarly let n~^ (a) denote the number of sets of ^a which are contained in A,
and rx(fl) the union of these latter sets. The finite subsets A c Z^' are defined to

tend to infinity in the sense of van Hove if

limiM = ,
n^(a)

for every partition ^a and in this case we write A-->oo.

Note that if A(a) denotes the set of points which are contained in A and are

a distance greater than \a ^ = supi<^<y a/ from the boundary of A, then

|A| > |A(fl)| > (X W - (A() - X W)2')|A.| .

Therefore

i>4^>i-f>-5SV2'+i)^
|A| - V <(),

Thus äs A-->oo one has |A(fl)|/|A| -^ 1. A slight elaboration of this argument
shows that the notion of van Hove convergence is equivalent to |A| oo and

IAWI/IAI-I.

Proposition 6.2.38. Let A c Z'h->5'A(co) G [0, |A|log(A^+ 1)] denote the

entropy of the J.^-invariant state CD.
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It follows that the limit

5() = lim
^^(")

A>oo |A|
exists and

e/ N -r ^A.HS(a)] = mf
. ;\ '

.

az; IA^I
The functional co G "' -^ ^(co) G [0, log(N +1)] /^ o^/^e and iipper semi-

continuous vvhen E^ is equipped mth the vveak* topology.

PROOF. The proof relies heavily on the subadditivity and strong subadditivity of

AH^IS'A(CO) established in Proposition 6.2.24.

First, define S by

5(co) = inf %^ .

"sr, |Aa

Next let A~ = A\rx(a), then

|A;| < |r+(a) -rx(a)| = (+(a) -xW)|A.I

Consequently,

^A;H < K(a) -^XW)|Aa|log(7V+ 1) .

But äs Ah^5A(co) is subadditive and /^-invariant one also has

^AM<^rx(a)H+%H
< X (Ä.H + KW - n-^(a))\A,\\og(N + 1) .

Therefore,

^^<M^+f^iM_iVog(^+i)
|A| - |A|

+ UxW /
^^^^ >

Similarly, if A^ = r^(a)\A, subadditivity gives

SA(O}) > 5'r+(a)M-^A+(w) .

Hence

^AH^:^r>)H / n-^(a)
. > ^A^"^^ '

_ l _:v\v:v ioafA^4. n
|A| - |r;tWI V 4Wy ^^ ^

Thus for each g > 0 one may choose a such that

5A.()
IA.I

and it follows that

< S(w) + E

SA((O)
^ /5>)M

|A| -

V inWI
for sufficiently large A. Next we bound the right-hand side.

^M-^WniSr-'
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Let US construct F^ (a) by successively adding translates of A^ in the lexicographic
ordering"^ of the vectors n = (i , . . . , v) which define these translates. Let r denote

the Union of the first n translates. Similarly, if Z? == (mia\ , . . . , m^a^) with m/ > 0, then

Ab can be constructed by successive addition, in lexicographic order, of translates of

Afl. Let A denote the union of the first n of these translates.

Now assume that

Sr,,(cD)-Sr(co}<(S((D)-B)\Aa\

for some n. The strong subadditivity of S\ immediately implies that

5A,, H - S^^(CO) < (S(CO) - s)\Aa\

for all m such that there exists a translation of r+i into A^n+i with the property that

the last translate of A^ in r+i is mapped onto the last translate of A^ in A;+i .
This is

the case if the last translate in A;;,+i is not "too near" the surface of A/,. For the

remaining m subadditivity gives

5A.,,(co)-5Aja;)<|A,|log(7V+l) .

Therefore, if b is large enough, we obtain

5A.() = ^(5A(cü) - S^^(w)) < (S(ca) - e/2)\Ak\
m

which contradicts the definition of iS'(co). Thus,

5rH-Sr(co)>5(co)|A|
for all n. Hence

^rj(a)() = E^^r,,, () - Sr,(co)) > S((o)\r+(a)\ .

n

Combining this with the previous estimates we have

S(cD)+8>^^>S(co)-8
for sufficiently large A. This establishes the first two Statements of the proposition.

The afi[inity of CD H-^ S(o}) follows directly from the concavity and convexity re-

lations given in Proposition 6.2.25.

The upper semi-continuity follows because S is the infimum of the functions

S\^((o}/ |Afl| which are continuous by Proposition 6.2.25.

Remark. Proposition 6.2.28 establishes that S\((D) is strongly subadditive
and has concavity and convexity properties similar to S\(oj). Thus, by an

identical argument one deduces that

e/ N r
'^AH ^A^(co)

S(o}) = hm ,' = sup , ;\
'

A-oo |A| ez; IA^I

defines an affine function over '^' with values in [S(co},S(co)]. Moreover, if co

is a Gibbs state with respect to some interaction O for which the surface

^ This ordering is defined by setting n < m if nj < nij where j = min{z; / / TW,-}.
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energies l^o(A),AcI., are well defined and satisfy ||PF(D(A)||/ |A| ^ 0 äs

|A| -^ 00 then S(co) = S(co). This is a corollary of Proposition 6.2.35. One
has

~S^(CD) - ßo}(H^(^)) > ^A(coO - ßcD\H^(A))
for CD' = co|^2iA ^ ^ "ii^c-

^^^ S\(co') = S/^(co) and hence

^AH-2||FFc,(A)|| <^A(CO)<^A(CO) .

Therefore S(co) = S(o}). Despite this identity on the Gibbs states the mean

entropy and the mean conditional entropy do not coincide on the invariant
States "!{ (see Notes and Remarks).

The new and somewhat surprising feature of the mean entropy
CD 6 '!' \^S(co} is the affine property. This reüects an empirical physical phe-
nomenon. The entropy of a mixed phase is obtained by superposition of the

entropies of the pure phases in the appropriate proportions. In the sequel we

will give a more detailed account of this interpretation.
The affine property also has an interesting corollary for periodic states.
Let co be a state which is invariant under the subgroup

Zl = {ba = (biai,...,b,a,}',a^r} ,

where b G Z^. The states {T*CO; a e A^} are periodic under the same subgroup
and one verifies that

^Ac5)-^A+a(co) .

Hence the mean entropies are equal,

^d)) = S(a)) .

Thus if CD is the Z^-invariant state obtained by averaging o) over A^, i.e.,

(o(A} = |A,|-' ^ c5(T_,(^)) ,

fl6A/;

the affinity of S gives

S((a)=sl |Ai|-' ^ T> = |A,|-' ^ 5(T =5() .

V aeAft / aeAfi

This equality will be of subsequent Utility.
Next we examine the mean energy of an invariant interaction in an invariant

state. This is basically a closed System problem and can be handled under
weaker conditions on the interaction than those used to construct even the
infinitesimal dynamics (see Proposition 6.2.3.).

Proposition 6.2.39. Let ^ be a Z.^' -invariant interaction of a qiiantiim spin
System and siippose that
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i = 5^e2a<,o^
X3(^ \^\

Further let CD be a Z.^-invariant state over ^.

Itfollows that the limit

a)(//a>(A))
//^(co) - hm jA-->oo |A|

exists and

H^((D) = O}(E^) ,

where E^ ^ ^ is defined by

F \-^(X}^*=Ä^W-
Thus 0} G E'^\-^H^(co) is an affine, weak*-continuous

, function satisfying

\H^((o)\ < \m .

PROOF. One has

co(//a.(A))
|A|

- w(E^) = |Ar'ü)( ^ (DW - ^^T.i'a, )
VA- C A A: A /

(O.)
= -|Ar'E E i;,,

-^'^.At',.. ' '

But given e > 0 one may choose a such that

vMM<,^ W '

D(X)>a

where /)(^) is the diameter of X, Hence

CO(//CD(A))
|A|

- o^(E^] <^+(^)wi-
where A(a) now indicates the set of points in A which are at a distance less than a

from the boundary. But we have already remarked that if A ~-> oo, then

|A(üf)|/lA| -^ 0. Hence H<^((D] exists and is equal to (ß(E<^]. It is evident that H<^ is

affine, weak*-continuous, and the bound follows because \\E^\\ < ||O||.

Remark. If one replaces //o(A) by the energy of the open Subsystem,
^o(A) = H^(J^) + ^a)(A), in the above discussion then it appears necessary to

place stronger conditions on <!>. If, for example.
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Y^mx}\\<+<^ ,

X3Q

then one easily deduces that

HmJSM^O
A->cx) |A|

and hence

lim a}(H^(A))= lim o}(H,^(A)} = H^(o})
A > oo A.-^ OG

for each co G E^

Propositions 6.2.38 and 6.2.39 establish the existence of the mean "free-
energy

' ' functional

CD G E^^Fß^((ß) = S((D) - ßH^(co)
for a large class of invariant interactions 0. But in the previous paragraph of
this section the finite-volume equilibrium states were characterized äs the states
which maximize the corresponding finite-volume function F^O,A(<^) =
S\(o}) - ßcD(H^(A}}. Moreover, the maximum value of the function was di-
rectly related to the equilibrium free energy, FA(^<X>),

FAO) = -ß-^ logTr^,(^-^^-(^)) = -ß-^ sup Fß^^^(o3) .

co^E^ii^

Thus formally one expects the states which maximize F^(CD) to correspond to
invariant thermodynamic equihbrium states and the maximum value F($), of
F^(co), to be proportional to the equilibrium free energy per unit volume. The
remainder of this paragraph is devoted to the examination of this tentative
interpretation.

First we examine properties of the "free energy".

Theorem 6.2.40. Let S denote the Banach space off-invariant interactions
$ mth norm

iw = Eä^<+^
^30 1^ l

The thermodynamic free energy

^(0))= lim lAr'logTrsJe-^^C^))
A --^ (X)

exists for a// O G S and has the follomng properties:

(1) F(0)= sup {S(cD) - H^((D)}
CD ^ Eil

where S and H^ denote the mean entropy and mean energy
(2) (D G S K^F(a)) is convex.

(3) ) G 33 i-^F()) is continuous and
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|F(0)-F(^)| < ||<D-^||
forall^,^ e^.

PROOF. For simplicity we only establish that the limit exists for parallelepipeds A^
whose edge lengths üi.i = 1,2,..., v, all tend to infinity. The general convergence is

subsequently obtained by comparison arguments using the matrix inequality

logTr(e^)-logTr(^)|<|M-5|| .

First, it follows from the last Statement of Proposition 6.2.22 that

IAJ-^ logTr^,(e-^-(^)) > |Ar^(5A(co) - co(//o(A))) .

Thus, if

(0)) - lim inf lA^ ~^ logTr^^ (^-^^(A.)) ^
a^oo

then

(0) > S(co) - H^(CD)

for all 0) G E^ . Consequently,

F($) > sup {S(o})-H^(w)} .

O) G 4;'

Next consider a partition of Z'' formed by translates A = A^ + na of the paral-
lelepiped A^. If

A^

A=U^". '

/=!

we define a density matrix p^ on A by

P^ = ((S)l^e-"^^^"^)
(Trs,^(e-^<^(^.)))^ .

These density matrices determine a periodic state co^ over ^, i.e., a state invariant

under Z^. The state co^ defined by

(a,(A) = |A,r' Yl ft).(T,(^))
JC 6 Afl

is then Z^-invariant. But

S(cD,)=S(ü,) = |A,rHcö,(//a,(A,)) + logTr,^(e-^*(^)) ,

where the first equality follows from the discussion preceding Proposition 6.2.39 and

the second by explicit computation. Now it is readily established that

lim lim
a^oo b-^oc

(Oa(H9(\h)) Wa(//*(A.))
lAfcl |A.

= 0

and therefore given e > 0 one may choose OQ such that

S(o},) - H^((0a) > lA^r' logTrg^^ (g-'/^lA")) _ g

for all a > (jQ- Thus
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limsup|A^ "' logTr^^^(e-^'"(^")) < e+ sup {^(co) - //cDH) .

a->oo
"

we^J'

Combination of this estimate with the previously obtained lower bound gives the
existence of F(^) and the Identification of Statement (1).

(2) The convexity of F(^) follows from the affinity of > > //{i)(co). Thus

F(m + (l - A)^) - sup {S(a}) - A//o(w) - (l - l)H^((ß)}
co 6 "1j'

</l sup {S(co) - H^(oj)}
to6'|''

+ (1 -^) sup {S(co)-H^(co)}
W ^J'

-.^F(<D) + (1-;.)F() .

(3) The Bauer maximum prindple, Lemma 4.1.12, estabUshes that each convex

upper semi-continuous function over a convex compact set K attains its maximum at

an extreme point of K. Thus, for each (^ e 93 there must exist an cü^ such that

F(^] =. S(CJO,^) - //(D(CO(I)) .

Therefore

F(O) ^ S((ü(^] - H^(o}^) + //vp_(^(cO(i))
< F(^) + //VP_,I,(COCD) < F(^) + 11^ - 0|| .

Interchanging 0 and T gives

F(^) <F(^) + \\^-^\\
and this establishes the continuity relation.

Remark. The continuity relation can be used to bound F, e.g., if T = 0, then
F(^) = log(A^ + 1) and therefore

'|F(0)-log(7V+l)|<||(D|| .

Next we examine properties of the states which maximize S AD. In the
above proofof continuity of Fwe already remarked that for each <I) G S the set
of maximizing states

AO = {(D- F(^) = S((D) - H^(O})}
is nonempty. Moreover, the discussion of the maximum entropy principle for
open and closed Systems given in the previous paragraph strongly indicates
that these states correspond to Z^-invariant thermodynamic equilibrium states.

Thus, it is natural to ask whether these states statisfy the various equilibrium
criteria which we previously examined, e.g., the Gibbs condition, or the KMS
condition. The first and most general result in this direction is the following.

Proposition 6.2.41. Let ^ be a J.^' -invariant interaction of a qiiantum spin
System satisfying

m iM = i:^<+-
J^fBO l"^l
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(2) The surface energies {^^(A); A C Z^} exist.

(3) liminf^ = 0.
A->oo |A|

Itfollows that each f -invariant state which satisfies the Gibbs condition

mth respect to O maximizes S H^.

Remarks

(1) Assumption (1) assures that co G E^^ \-^ H(^(a}} e [R is defined and

similarly assumption (2) is necessary for the Gibbs condition to be

defined. Thus, the essential new condition is the third. All three

assumptions are easily verified if

^||(D(Jf)||<+^
X^O

and hence this condition could be taken äs the sole hypothesis.
(2) The proposition does not establish the existence of invariant states

satisfying the Gibbs condition. The existence problem will be solved

subsequently under more stringent assumptions on ^ (see Theorem
6.2.42 and the discussion preceding it).

PROOF. Let co denote the Z^'-invariant state which satisfies the Gibbs condition and

{PA}ACZ^' t^^ associated density matrices. Moreover, let COA denote the local Gibbs

state, i.e.,

g-'f^ct(A)
coA(^)=Tr^^(aA^), ^A - ;jr^^z^^ .

Thus, the conditional entropy of col^j with respect to COA is given by

S(^\<^^\ ^A) = -Tr^JpAlogpA -PA^ogfiA)

-5AH-a;(//a>(A))-logTr^(e-^-(^)) .

But the Gibbs condition gives

coA = '^*W|,
and hence it follows from the monotonicity of the conditional entropy, Proposition
6.2.33, that

0>5(H.iJcoA)>5(co|co^^*(^)) .

Moreover

5Hco^*(^))>-2||^,>(A)||
by the discussion preceding Example 6.2.30. Combination of these observations

leads to the bounds
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0 > 5AH - co(//ci,(A)) - logTr^J^-^'^(^)) > -2||^a>(A)|| -

Up to this point Z^-invariance was irrelevant but now if one divides by |A| and takes
the limit A > oo, then assumption (3) and the existence of the mean entropy S(CD),
mean energy //o(co), and free energy F(<^), lead to the relation

S(CO)-H^(CD}-F(^) = Q
,

i.e., co maximizes S H<^.

Next we examine the relationship between invariant KMS states and the
States that maximize S H^.

The KMS condition has an advantage over the Gibbs condition insofar äs

one can deduce the existence of Z^'-invariant KMS states. If the interaction $ is
such that T^ exists, i.e.,

lim \\lf(A) - ^^^^cp(A)^^-/r//o(A)|| ^ 0
A^oo

for all^ G ^,^ G [R, then (i^,ß}-KMS states exist by Proposition 6.2.15. Now
let co be such a state and define cö by

CD(A)=M(CD(I(Ä))) ,

where M is an invariant mean over f
.
It follows immediately that cö is Z^'-

invariant. But it also satisfies the (T^,^)-KMS condition whenever <!> is Z^-
invariant. This follows by observing that T^ and if commute and hence

ö)(^Tf^(5))^M(co(T(^)T|(T(5))))
= M(a)(i:(B)i(Ä))) = Ö)(BA) .

Thus cö is a Z^-invariant (i^,ß)-KMS state.

Every i^-KMS säte co satisfies the Gibbs condition by Proposition 6.2.17.
Hence, if > satisfies the supplementary hypotheses of Proposition 6.2.41, then
co will maximize S //$. We now aim to derive a converse of this Statement.
The proof of the converse depends upon a number of approximation, con-

tinuity, and density arguments. Instead of trying to isolate a minimum number
of implicit properties of > which ensure the validity of these arguments we

specify an explicit space of interactions, the Banach space of Theorem 6.2.4.

Theorem 6.2.42. Let ^ be a f-invariant interaction of a qiiantum spin
System such that

II<I>IL = EII*WII^"'"< +
X3(^

for some /i > 0, and let i^ denote the associated dynamical group of*-auto-
morphisms of the spin algebra ^.

If 0} is a 1.^ -invariant state and ^ G [R, then the following conditions are

equivalent
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(1) coisa (i^,ß)-KMS State.

(2) co satisfies the Gibbs condition with respect to ß^.
(3) CD maximizes S ßH^.

PROOF. First note that i^ exists and UA c r' ^A is a core for its generator by The

orem 6.2.4. Moreover,

ii^iio = E ii'^wii < +~
X30

Hence, W(^(A) exists and

iAr^ii^o(A)ii<iAr5] ^ mx)\\^o .

-^^;.n740

Therefore, the combined hypotheses of Corollary 6.2.19 and Proposition 6.2.41 are

satisfied. Consequently, (1) <^ (2) =^ (3).
It remains to prove (3) => (1). This will be achieved by use of various convexity

properties.
Let B;[ denote the Banach space of Z^-invariant interactions for which

||O||^ < +00. It follows from Theorem 6.2.40 that the free energy

F(^)= lim |ArMogTr^^(e-^*(^))
A-~ 00

exists for each ^ e B;^ and defines a convex continuous function over 5;^. The key
observation is that each state coo) which maximizes S H^ defines a tangent func-
tional to the graph of F at O. Convex analysis can then be fruitfully used in the

examination of the maximizing states.

Recall that if J^ is a convex, continuous, function over a Banach space X, then an

element f^ G X* is said to be a tangent functional to the graph of F at x if

F(x + ^)>F(x) + f,(^)
for all ^eX. Moreover, there is a unique tangent functional to the graph of F at ;>c if,
and only if F is differentiable at x and in this case the tangent functional is the
derivative dFx of F at x. For example, if F is differentiable at x and 0 < /z < l

,

convexity gives

F(x + ^) - F(x) > Ä-' (F(x + h^) - F(x))-^dF,(^)
h=0

and dFx is a tangent functional at x. But if

M^)<F(x + ^)~F(x) ,

then

/.(^) = h-^f.m < h-^F((x + h^] - F(x))-.dF,(^} .

n = 0

Replacing ^ by - ^ in this bound one finds the opposite bound and hence fx = dFx.
Thus, differentiability implies that dFx is the unique tangent functional. The converse

is easily deduced by arguing that nondifferentiability leads to nonuniqueness.
Let US now reexamine the relationship between the free energy F($) and the

maximizing state CD^. One has
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F() + ^) > S(a)^) - //cD+4'(cocp)
= S(CO<.1)) - //(D(CO(D) //xp(cO(D) = F(^) - CO(^(E^)

where E^^ is the interaction energy at the origin,

^Y(X)
z:^ >^XJ/ =
X30
^ \X\

and we have used the maximum entropy principle together with Proposition 6.2.39.

Thus, CO(D defines a tangent functional /^ to the graph of F at 0 through the
relation

/ci>(^) = -co^(E^) .

Now we begin the derivation of the (T^^, 1)-KMS condition for co^ by examination of
those ) for which CO(D is unique, i.e., those <!> for which the graph of F at > is
differentiable. (The (T'^^)-KMS condition for coß<^ and ß e [R\{0} follows by re-

scaling.)
The free energy F is defined by the thermodynamic limit A > oo of the mean free

energies

FA((I.) = |A|-'logTrs^(e-('^))
and each of the functionals 0 ^Bx^^F^(<l>) is convex and continuous by the ar-

guments used to derive similar properties of F. The FA are, however, simply defined
in terms of finite-dimensional matrices and it follows that they are everywhere dif
ferentiable. Therefore, there is a unique tangent functional /A/D to F\ at ^, the
derivative of FA at O, and this is given by

. ,^._ ,,,-|Tr,,(e-^W//>p(A))AoCP) - -iA|
Tr6A(e-^W)

Next for AQ C A and ^ J* G ^AO one can define a Z^-invariant interaction ^
by setting ^(Ao +:c) = T^(^) for all x e Z^ and T^(A') -= 0 if A' is not a translate
of AO. Adopting this definition one sees that the linear functional

A 6 ^AO^COA,(D(^) = -f^,<^('y(A+A^]/2) - if\,<^('^(A-A^)/2i)

^
, ^ Tr^^(.-^-^(A),^(^))

l l ^ Tr^^(.-^'^(A))
AO+.VCA

is both positive and normalized. Hence coA,(i) is a state over ^AO which we identify
with any extension to the complete spin algebra ^. It then follows from weak*

compactness of F^i that A c Z^' i-^ COA, o has weak* -limit points. Therefore, there exist
nets AO,^/A,,(D(^^) which converge for all {^^;^ =^* G ^AÜ,AO C Z'}. But the
linear span of the latter set is norm dense in 5;^ and hence A ^ /A^^O is weak*

convergent. Each limit point /p is, however, a tangent functional to the graph of Fat
<I) because

/o(T) = lim/A,,cD(^)
a

< lim (FA, (O + T) - FA, (0))) - F((D + T) - F(O) .
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Since we are assuming F to have a unique tangent at O, it follows that all the nets

Aa ^-^ /Aa,(i> have the same limit and hence A c Z^ -^ /A^O converges in the weak*

topology. Moreover, combining the identifications of /$ and /A, o), one condudes that

C0(j)(^) ^ 0}^(E^(A+A^]I2) + i^^(E^(A-A^]l2i)
= -M'^(A-^A^]I2] - iM^(A-A^]l2i)
= - lim (/A,(D('F(^+^.)/2) + if\,<^(^(A-A^)/2i))

A ^ cx)

= Hn, IM-, y Tr,,(.-^^(A)z.(^))
Acol^l 2.. TrsJe-''(A))Are Z''

AO+-XCA

for A G ^AO 2.nd all AQ C Z^'. Thus, the unique state CD^ which maximizes S H<^ is

the thermodynamic limit of space averages of the local Gibbs states co^. It is this

identification which allows the deduction of the (T^, 1)-KMS condition.

Let Aß denote a cubic array

AQ = {x] X 6 Z^', a < x/ < fl, / = l
, . . . , v} .

It follows from Theorem 6.2.4 that for each e > 0, Z? e Z+, one may choose ÖQ such

that

||^/r//a,(A.)^^(^)^-.Wo(A.) _ Tf1^(^)11 <
for all jc e A^ and all a > ÜQ. Next remark that for ^, 5 E ^^AO the analytic function

t\-^ F;J;^(0 defined by

/7^.^M_1A|-1 ^ Tr,,^(^-^^'(-^)T,(^)g--^^^(^)T,.(^)e-^^^>W)
^,a>W-|A| 1^ Tr,,(.-^.(A))

AQ +.rCA

satisfies the KMS identity

l\:l(t+'}=p^'^(-t}
But from the previous estimate and the convergence of COA,^ to co^ one condudes that

\\m^F^^'^';,,(t) = w(ATf(B)) .

Therefore, CO(D satisfies the (T^,1)-KMS condition äs a corollary of Proposition
5.3.12 (see the discussion following the proof of this proposition).

It remains to handle the O G 5;. for which the tangent functional to F at <|) is not

unique. This is achieved by an approximation technique based upon the fact that

convex continuous functions are automatically differentiable at a "large" set of

points, and at the exceptional points a general tangent functional can be constructed

by convex combinations of limits of unique functionals. For example, if Fis a convex

function of one real variable it is automatically continuous, differentiable at all but a

countable set of points, and at these points each tangent functional is a convex

combination of the left derivative and the right derivative. The generalization that we

need is contained in the following lemma.

Lemma 6.2.43. Let F be a convex, continuous function over a separable
Banach space X and let f ^ X"" be a tangent functional to the graph of F at

zero.
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It follows that f is contained in the weak*-closed convex hüll of the set of
tangent functionals ^ defined by

^ = {g GX*; there exist x > 0 (in norm} such that

F is differentiable at each x^ and linia dF(xy](x) = g(x)^ x X}.

We omit the proof of this result (see Notes and Remarks).

END OF PROOF OF THEOREM 6.2.42. It follows from Lemma 6.2.43, and the weak*
compactness of KMS states, that it suffices to prove that c^o satisfies the (T^^, 1)-KMS
condition in the special case

CO(E) = lim cücDa
a

where <I)a e ^i and coo^ 6 E^ have the properties

(1) ll^a-^||,-0 ,

(2) S - //(D^ is maximized by a unique state co^^ .

But it follows from this second property and the foregoing analysis that co^^ must
satisfy the(T^", 1)-KMS condition. Moreover, it follows from the first property and
the discussion following Example 6.2.5 that

lim Ulf(^)-T^(^) 11=0

uniformly for t in any bounded interval. Therefore, cocp satisfies the (i"^, 1)-KMS
condition by Proposition 5.3.25.

Finally it remains to prove (3) =^ (1) when ^ = 0, i.e., we must prove that if co

maximizes S, then G; is a trace-state. We argue by negation. If CD is not a trace, co sit
cannot be a trace for sufficiently large A and hence co ^^^cannot maximize S/^, i.e.,

S^(CD)< |A|log(7V+l)

for A sufficiently large. But this implies

S(a}) <log(7V+ 1)
and hence co does not maximize S.

Remark. We have chosen to prove the equivalences of Theorem 6.2.42 under
the assumption $ G 5;^.This can, however, be replaced by the hypotheses of
Theorem 6.2.6 and this is of interest for one- and two-dimensional Systems.

The identifications provided by Theorem 6.2.42 give a new criterion for
invariant equilibrium states, maximum mean entropy at fixed mean energy.
The theorem is slightly unsatisfactory insofar äs the proof of equivalence of the
three criteria is only established under relatively strong assumptions on O, i.e.,
O G 5^ for some A > 0. The Gibbs condition, and the maximum entropy pro
perty, can of course be defined under much weaker hypotheses, e.g., ^ BQ,
and it would be of interest to derive equivalence of these two conditions under
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weaker assumptions on O. This would demand a converse to Proposition
6.2.41 and in particular a proof of existence of /^'-invariant states satisfying the

Gibbs condition which is independent of the existence of dynamical group i^.

Despite these shortcomings the theorem motivates the study of the set of states

which maximize S H^ äs candidates for Z^'-invariant equilibrium states

corresponding to the interaction O.

Theorem 6.2.44. Let ^ denote the Banach space of J.'' -invariant spin inter-

actions O mth norm given by

= vep<+
X30

and define Ä^) C E^ by

^ 1^1

A* = |(w;ft) e E^,S(co)-H^(o}] = sup {S((o') -//o(o;')}| ,
'^ ...l ^ cl^ J^'eEf;

where S and //$ denote the mean entropy and mean energy.
It follows that:

(1) A(D /^ fl nonempty, weak*-compact face ofE^.
(2) A(D is a Simplex mth ^(A,D) C S(E^] and the unique barycentric

decomposition of each co G AO coincides mth the unique decomposi-
tion of (D into extremal I.''' -invariant states.

PROOF

(1) It follows once again from the Bauer maximum principle, Lemma 4.1.12,
and the upper semi-continuity of .S //o that AO is nonempty and in fact

AO must contain an extremal /^'-invariant state, i.e., an co ^(E^)- Weak*

compactness follows by noting that if co G A(D and Wa -^ <y, then

Iim{5(c0a) -//ci)(a))} < {5(co) - //<D(CO)}
a

by upper semi-continuity of 5" //o- Consequently, co G AO-
Similarly if we assume that coo G AO, and

CO(D = }.<J}\ + (l A)C02

with co 1,602 G "1* but coi^AcD, then the affinity oi S H(^ implies the

contradiction

sup {5(co)-//ci)(co)} >/{5(coi)-//(D(coi)} + (l -/){5'(a;2)-//(D(co2)}
coeEl^

= S(o}^) - //(D(cO(D) = sup {S((jo) - H^(a})} .

0) E J'
Thus A(D is a face.
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(2) The Spin algebra is Z^'-asymptotically abelian in the norm sense. Thus E^^ is
a Simplex by Corollary 4.3.1 1. The remaining Statements follow because AO
is a stable face of '|j .

Note that if A(D is composed of one point co, then co is automatically an

extremal Z^-invariant state and it has the düster properties in mean discussed
in Section 4.3.2. Interpreting the elements of A^ to be invariant equilibrium
States, this indicates that if there exists a unique /^'-invariant equilibrium state,
i.e., a unique Z^-invariant thermodynamic phase, this state, or phase, is au

tomatically Z^-ergodic. Therefore if A(D consists of more than one state, the
unique decomposition of each element co G AO into extremal elements corre-

sponds to the Separation of the mixed thermodynamic phases into pure phases,
i.e., Z^'-ergodic states. But the mean entropy S is affine and upper semi-
continuous and therefore it respects the barycentric decomposition of co

, by
Corollary 4.1.18, e.g. if ^i,, G M^(E^^},

CD(A) = j d^l,,((D')(D'(A], ^ G ^

and

S(o,] = j d^i,,(cD'] S(o,'] .

Thus, accepting the foregoing interpretation of mixed phases and pure phases,
one concludes that the mean entropy of a mixture is the mixture of the mean
entropies. A similar conclusion is valid for the mean energy.
We conclude with various observations concerning the set of states A^

which follow by elaboration of the convexity arguments used to prove Theo
rem 6.2.42. Throughout these observations we take ^i to be a Banach space of
invariant interactions which contains the space So of invariant finite ränge
interactions äs a norm dense subspace and moreover we assume that Si C S
where S is the space of Theorem 6.2.44.

Observation 1. There is a one-to-one correspondence between tangent
fiinctionals /$ to the graph ofthefree energy, <I) G 35i ^^ F(^]^ at O and states

CO(D which maximize S - //$. This correspondence is such that

/^(VF) = -C0cl>(^vp), T G Sl .

This was almost estabhshed in the proofof Theorem 6.2.42. In particular we
showed that each state cod) which maximizes S - //CD defines a tangent functional
/(D through the above relation. Moreover, äs So C 25 1 each state is determined
by its values on [E^^]^ G Si}. Therefore, distinct maximizing states lead to
distinct tangent functionals and if there is a unique tangent functional /$, there
is a unique maximizing state co^. But if /$ is not unique, then by Lemma 6.2.43
there exist <!> G 25i such that fy^ is unique, ||(I>a (I)|| > 0, and

/CD(^) = lim/cD^(^) = -limcoa),(^vp) .
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But this implies that co^^ converges in the weak* topology to a state coo which
has the required correspondence with /$.

Observation 2. The set <|) G i for which A^ consists of a single point is

norm dense.

This follows immediately from Observation l and Lemma 6.2.43.

By an extension of the latter lemma one can even show that this set contains

a countable intersection of dense open subsets. The implication of this last
Observation is that the O for which A(D is a singleton forms a "large" set and in

the physical interpretation this implies that the spin System tends to have a pure

thermodynamic phase "almost always". Nevertheless, it may happen for a

fixed 0 that t^ß^ consists of more than one point for all ß in an interval of the

form (ß^, 00 ) (see Section 6.2.6). It is, however, possible to prove the existence
of a dense subset /) C Si, such that for O G D and Lebesgue-almost every

j8 G IR the set A/^o is a singleton.

Observation 3

4" = U ^*
OeSi

where the bar denotes the uniform closure.

If F is a convex continuous function over a Banach space X, then / G Ji"* is
called F-bounded if there is a c G IR such that

F(x)>f(x]^c
for all jc G ^. One can prove that the tangent functionals to Fare norm dense in
the F-bounded functionals.

NOW suppose CD G Fjj ,
then

F(O) > S((D] - //o(co) > -03(E^]
because S > 0 and //o(co) = co('o). Thus the function / G S^ defined by

/(O.) = -a)(o)
is F-bounded (with bound zero). Therefore, by the general result just cited
there must exist <!) G Si and tangent functionals f^^ to the graph of F at ^^
such that

\M^]-f(^)\
_ 0s ll^ll ^~

But by Observation l the tangent functionals y^^ determine states coo., G A^).^.
Moreover, if ^ = ^* G ^j^ and ^A is defined' by ^^(^ + .T) - T^(^), and

^^(7) =0 if F is not a translate of X, then the 33-norm of ^ satisfies

11^^ II- 11^ |. Thus,
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|ft;<i,,(^)-cü(^)| |A(^^)-/(>I'^)|
\\^A\\

and consequently the co$^ converge uniformly to CD.

The foregoing observation implies that each invariant state is dose to an

equilibrium state of some $ G S. The norm approximation gives a strong
control which one can exploit to obtain a stronger Statement of this form.

Observation 4. // coi, . . . , o),, G <^('fi ), then there z^ a <!> G S such that

coi,...,cO;, G AO .

First note that E^^ is a simplex by Corollary 4.3.11. We next argue that the

isomorphism between CD G E^^ and maximal probability measures

/i,^ G MCO ('!') is isometric from the norm topology to the norm topology, i.e.,
||co co'll = ||/,i^ I.L^,\\. To establish this let co co' = co+ - co_ denote the
Jordan decomposition of co co^ given by Proposition 3.2.7. By uniqueness the
co must be Z^'-invariant and hence there exist unique maximal probability
measures /,ij_ with barycenters co/||co||. But co + co_ = co' + GL)+ and hence by
uniqueness /i^ -f- ||co_||/i_ = /.i^^/ + ||co+||/.i^. Therefore,

||co-co'||^||co^|| + ||a;_||
> I|||<^-||A^- - ll^+ll/^+ll
= llAia;-/Wll > 11^ -II

Now let co' = n~^((jü\ + co2 H h co) and take & < n~^
. By Observation 3

one can find <I) G S and co G A^ such that ||a;-co^||<e and hence

Ik^co /wll < ^- B^t this implies that /i^/({co/}) > 0 for each / = l, 2,..., n, and
hence co/ G ^(/^^) for each z = l, 2,..., 77.

Thus although Observation 2 indicates that A(p "often" consists of a single
point Observation 4 proves the existence of interactions > for which AO con-

tains many different Z^'-ergodic states. Despite the interest of these general
observations they shed little light on the structure of {A^CD; ^ G [R} for $ fixed.
The convexity arguments are inherently too weak to obtain details of the phase
structure for a fixed interaction äs the inverse temperature ß varies. For this it
is necessary to develop more analytic methods.

The foregoing results give a reasonably satisfactory description of spatially
invariant equilibrium states. In particular Theorem 6.2.42 establishes under
quite general conditions that the Gibbs and KMS conditions are equivalent to
the principle of maximal mean entropy at fixed mean energy. Equilibrium is a

balance between the disorder characteristic of large entropy and the order
associated with low energy. The main disadvantage of the theory is, however,
the strong invariance assumption. Although many physical Systems exhibit
pronounced features of spatial homogeneity the assumption of strict spatial
invariance appears to be a somewhat unrealistic idealization. It would be of
interest to understand the entropy principle in a broader setting of 'homo-
geneous' Systems. There are several classes of physical models which lack in-
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variance but retain strong spatial uniformity. For example models of magnetic
impurities or models of spin glasses.
A typical impurity model has a translationally invariant interaction > to-

gether with an additional one-body interaction ^ which only contributes at a

subset of randomly chosen points x,^ G Z^' and which represents the presence of

magnetic impurities. The points Xn could be distributed in a homogenous
fashion and ^ could be invariant, i.e., ^({x}) = 'z^.x(^({0})), but if the Xn are

not the points of a regulär sublattice there is no underlying symmetry. One can

introduce an evolution T and the corresponding KMS states and also define the
mean free energy by exploiting subadditivity, homogeneity and boundedness

properties. The problems arise with the states and in particular the mean en-

tropy and energy äs functions over the states.

General spin glass models can also be defined in terms of t\vo translationally
invariant interactions O and ^. One assumes that the interaction energy arises
from O for one class L^ of subsets X c Z^' and from ^ for the complementary
set Lvp, i.e., the energy is given by

//(A) = ^ ^(X) + ^ ^(X) .

XeL^, X&L^j
XC.\ .-VGA

For example, O and could be nearest-neighbor interactions and 1$ a ran

domly chosen subset of the nearest-neighbors. If <I) is an 'attractive' interaction
which tends to align neighboring spins and ^ a 'repulsive' interaction which

energetically favors anti-parallel spins then there are competing forces which
ensure non-translationally invariant equihbrium states. Nevertheless if the set

L<5) has a regulär pattern of distribution the states should be relatively homo-

geneous. Again one can introduce an evolution T and the corresponding KMS
states and define the mean free energy. Difficulties arise, however, in defining
the mean entropy and energy äs functions over the states. The principal pro-
blem in characterizing the KMS states in terms of entropy and energy con-

siderations consists of finding a suitable replacement for the invariant states.

Any concept of homogeneous interaction requires a corresponding concept of

homogeneous state in order to be useful. But there appear to be no viable
alternatives to the invariant theory.
A diifferent class of models which lack invariance arises from theories built

on lattices without periodicity. Although this appears initially to be a more

radical departure from homogeneous theories on Z^' it is not necessarily the
case. Quasicrystals seem to have strong regularity properties which are, how

ever, not consistent with a strictly periodic structure. Therefore it is appealing
to model these phenomena with aperiodic lattices, for example, lattices asso-

ciated with aperiodic tilings of the underlying configuration space. But the
most common lattices of this type do have repetitive symmetry patterns even if

they lack complete periodicity. Therefore one can build the theory to take these

symmetries into account and consider interactions with the corresponding in-
variances. Again the difficulty in fully developing the theory is the identification
of a suitable set of states whose structure adequately reflects the symmetries
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and invariances. This can to a certain extent be achieved (see Notes and Re-

marks) but there is no really adequate counterpart for the compact set of

translationally invariant states.

6.2.5. Uniqueness of KMS States

Spin Systems were originally introduced äs models of paramagnetism and

ferromagnetism. A material is paramagnetic if it assumes a magnetic moment

in the presence of an external magnetic field and ferromagnetic if it is capable
of possessing a magnetic moment in the absence of a field. Ferromagnetism is a
relatively rare quality and the majority of ferromagnets are alloys, or com-

pounds, of iron, nickel, or cobalt. If a ferromagnet is heated, it loses its

spontaneous magnetization at a certain critical temperature 7^, but above TC it
remains paramagnetic. Thus, ferromagnets exhibit a type of phase transition;
above TC there is a unique state of equilibrium whose magnetization is com-

pletely determined by the external field but below TC and in the absence of a

field there are various possible states distinguished by the orientation of the

spontaneous magnetization.
In this and the next subsection we demonstrate that quantum spin Systems

exhibit this type of phase structure. This subsection is devoted to the discussion
of high temperatures and in the next we examine the more interesting, and
more complex, low-temperature phenomena. We only consider interactions <I>
for which the dynamics is given by a strongly continuous one-parameter group
T^^ of *-automorphisms of the spin algebra ^ and we accept the (T^^, jö)-KMS
condition äs a criterion for equihbrium at inverse temperature ß. In Section
6.2.2 we established the existence of (T^^, jS)-KMS states for all jö G [R and our

immediate aim is to prove uniqueness for small ß, i.e., for large temperatures.
If j5 = 0, the KMS condition reduces to the trace condition,

co(AB) = o)(BA)
for all y4,5 G ^I, and co is the unique trace state on ^. The uniqueness of the
trace can be deduced by an explicit calculation which is a model for the sub-

sequent perturbation argument. Let e(/;t,/Y), /^^Ä = 0, l, . . . ,A^ be a set of
matrix units for ^[x] and choose B G ^A where x^A. The trace condition,
local commutativity, and the identity

N

e(i,J,] - (A^+ 1)-^ Y. ^(i^.k,]e(k,J,]
k, -0

give
A^

(D(e(i,J,)B] - (7V H- 1)-' ^ 03(e(k,J,)Be(i,,k,])
k,^0

N

= (N^iy' Y^ di^^j^CD(e(k,,k,]B]
k, = Q

= (N+ir'ö^_^jMß}
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Iteration of this argument yields

(n \
<^\^^(i^nh^\-(^^^r^^i.,j.,

\i=\ j i=\

and (D is uniquely determined.

If ^ 7^ 0, the trace property is replaced by the (T^,)5)-KMS condition and

one finds

co e(i.J.]B] = (N+\r^ Y. {^(^(k.J.]Be(i,,k,])
k, = 0

+ CD(e(k,j\}B(rf~i}e(i,,k,}}}\
!/ = /= iß

^(N-^\r's^..jMB}

+ (N+l)-' f^ 03(e(k,J,]B(i^-i]e(i,,k,]]
k, = Q

Now assume the strictly local elements of ^ are analytic for T^. The second

term on the right-hand side of the last equation can then be expressed äs a

power series in ß, without constant term, and iteration of the resulting equation
allows one to deduce that co is uniquely determined for ß sufficiently small and

for a large class of O. The details are äs follows.

Each B G '^x can be expressed äs a linear combination of matrix units

/7

e(Ix,Jx} = Y[^(^^nJ-^i^
/=!

whereA^ = {xi, . . . ,Xn}Jx = {/jc,, - ,Z:.J, andJ;^ ^ {7^, , ^J .
Thus it suffices

to consider the special choices B e(Ix,Jx]Jx,^x G {0, l, , A^}^, Jf c L.

Now adopting the assumptions of Theorem 6.2.4 one has

(T*-z)(efe,^,)) = ;^^^ ^ C,f({;^.};/,,^0 ,

n>\
'^

where

C^({X,}'J,,k,] = [^(Xn]A'''[^(X,]Ai^.k,^^^^ ,

^0 = W, and Sj ^ Xj^Xj^i u u JTi u{;c} .
But if

\^

A^ ^A(Ix^Jx)e(Ix.Jx)
Ix.Jx

is the decomposition of ^4 G ^x^ the complex coefficients A(Ix^Jx] satisfy

\A(Ix.Jx]\ < \\A\\ .
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Therefore

C^({JG-};4,^.x)- ^ C({Jf,-};/,,^,;/^,J^M/^,J^J ,

fSn.JSn

where

l C^({Xi};i,,k,-Is,:,Js,.) l < 2 n \M^i)\\
i=\

Moreover,

e(k,j\,)e(Ix.Jx)Cf({X,}',i,,k,)= ^ a^ (J^. , J^. X/^. , J^. )
/_yX , J^X

where iS*;^ = {jc} uX u S,;, and there are at most (7V + l)-!-^"! nonzero coefficients
a^^ which satisfy

|*(4;,^5;)l<2"nil<I'(^OII .

/=!

This perturbation expansion can now be combined with the previous identity
for co, evaluated with B = e(Ix,Jx], to obtain a linear equation for the family
{a9(e(/7,/7)); Y c. L}. This equation will be interpreted äs an integral equation
on a suitable Danach space.

Let 3E be the Banach space of bounded complex functions / on the pairs
{Ix^Jx} where Ix^Jx C {0, l, ... ,Nf,X c L, and / (/0, J0) G C. The space
X is equipped with the natural operations of addition and scalar multi-
plication together with the supremum norm. If co denotes the family
{cD(e(Ix,Jx)]]X C L}, where we take e(I0,J0) H, it follows that co G 3E and
||co|| = 1. The foregoing identity and perturbation expansion yield the
equation

co = ö-\- Ko} -\- Lßf^o)

for co where ö,K, and Lß(^ are defined äs follows: ^ G X and

r l ifX = 0

ö(Ix.Jx} = l (N^ir'^t^j'. ifX = {x}
[ 0 otherwise

,

Ä^ is a linear operator with action

(Kf)(Ix^Jx) = (N+ir'ö,^^^j^J(Ix'.Jx'}
ifX^ {xi,...,Xn},X' = {x2,...,^J,/7 > 2, and

(Kf)(Ix.Jx)=^

if \X\ < 2,Lß^ is a linear operator such that
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(Lß^f](ix.Jx] = (N^\r' V E^ v v
z^^ z^ I Z-^ Z^
k^^Q n>\ ^\^-^n 4x/5:c

A'yn5-_i5^0 "

xa^(/5.,J5^)/(4^,J^.) ,

where the coefficients a^ arising from the perturbation expansion are asso-

ciated with a fixed Splitting X = {x} ^X' with X' = X\{x}.
The above integral equation has the form

(l K Lß^)a) = ö
.

Hence co is uniquely determined, and

Q} = ^(K^Lß^Yö
>0

whenever ||^ + Lß^\\ < 1. But \\K\ (N -i- 1)"^ and so uniqueness is ensured if

ll^^oll < (l ll^ll) = N(N + 1)"^- The norm ofLß^ can, however, be bounded

by use of the estimates on Cf and the procedure used in the proof of Theorem
6.2.4.

Proposition 6.2.45. Let O be an interaction such that

i|a.||, = ^e^"(A^+i)'"fsup Y. mx]\\\< + ^

^0 V^^^--, /

for some A > 0.

It follows that there exists a unique (T:^,ß)-KMS state whenever

i/>ii*ib<ß)('.+-''<''""'^"
2/1 N

PROOF. The estimation procedure used to prove Theorem 6.2.4 together with the
definition of Lß<^ gives

\\Lß<,\\<Y,2-'^-^ ^ []][(, +... + ,._, + i)lia)i|_ (7V + 1)2"'VA^ + I)^ ,

n>\ ni,...,n \/=] /

where

||<I.|i=sup ^ 11$W II .

X^L A-9.t

m=+i

But

/; n

[J(i + /i2 + + /-l + 1) < (l + 2 + + /! + 1)" < r"n \e'- JJ e^-^^'
.
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Therefore

.^||<(A^ + l)Vffl)||0||Yl-[^)||Ol|,
whenever (2 |j5|//l)||<I>||;^ < 1. The stated result foUows from the discussion preceding
the theorem after a simple rearrangement.

Proposition 6.2.45 establishes uniqueness of the equilibrium state whenever

\ß\ ll^ll;^ is sufficiently small. We have made no attempt to optimize the esti-
mate on |^| and this can certainly be improved in numerous ways. First, if

^(X) = 0 for \X\ > m more efficient norms can be introduced. Second, for any
given interaction the bounds on the important lowest-order terms in the per-
turbation series for L^$ can be individually calculated and this may sig-
nificantly improve the total bound. Third, it is possible to exploit other matrix

parametrizations, i.e., if A/' = l, each 2x2 matrix is a linear combination of
Pauli matrices and this parametrization can lead to better bounds. Thus Pro

position 6.2.45 should only be taken äs a general qualitative Statement.
For physical applications to magnetic Systems this proposition is delinquent

in one important respect. It does not establish uniqueness for small ß and all
external field strengths. To obtain this result it is necessary to use two addi-
tional techniques. First, one handles the one-body interaction corresponding to

the external field in a separate manner and, second, one must separate out the
lowest eigenstate of this field. To introduce the first of these techniques we must

reexamine the integral equation for co.

Let (I) = (I)(^) +O^ where $^^^ is the one-body part of <!>, i.e.,
<D(^)({JC}) = ^({x}),^^^\X) = 0 if 1^1 ^ l, and ^' is the multiparticle inter
action. We again assume that <!> determines a one-parameter dynamical group
T^^ for which the strictly local elements of ^ are analytic. The one-particle
interaction )^^^ automatically determines a second group T^^ with the prop-

erty that T^^'^(^|_^|) = ^l^.^^ for all x e L, and we further assume that T* and
T^^^^ ^commute. Therefore, t e U^^it = ^fr^^^/^ is a one-parameter group and for
A G ^IA,A cL,

di,(A)
= /T/ E [^'W'^]

\A'nA^0 /

It follows readily that ^' generates a dynamical group T^' and i^' ^f^^-t
Next consider the identity

o,(e(i,,J,)B)=oi(e(k,j-,)Bifß\e(i,,k,)))
+ co(e(k,,j,,)B{,fß T!;.; - ^)Tf;" (e(/ ^,))) .

Now suppose that the matrix units correspond to an eigenfunction basis of
(I>(^)({jc}) and let c/),(z),/ ^ 0, 1,2, . . . ,A^ denote the eigenvalues of ^^^\{x}}
arranged in increasing order repeated according to multiplicity. Then one

has
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T^^'V^r/ k}}- ..-^(^.(^-)-^x(^.)),,f/ k }^iß (^Vx^f^x))^ ^Vx^l^x) '

Therefore

^/^(^.(0-^.(^.))^(^(/^^yj5) = di^j^cD(e(k,, k,]B]

-^CD(e(k,J,]B(^fß~i)e(i,,k,]]
for all B G ^A with jc ^ A. Summing over k^ yields the identity

co(.fej-.)5)^ff^.^(^^(^-^)-^^(^-^)^^
\^.=o /

f ^ l
X <^ d,^j^CD(B) -h ^ co(^(^A)5(Tf^' - i)e(i,,k,]] \

.

l Ä:,=0 J
This family of identities can again be translated into an integral equation for

02 on the Banach space 3E. The major new feature is the Separation of the O^^^-
dependence into the extra factor

,E^'
^-'

Ux = o

7V >

ß((p,(/,)-(^,(^,))

A moment of reflection establishes that if this factor is "small," the kernels of
the integral equation are small in norm and the equation has a unique solution.
But if jß > 0,

f N \~^ 1
l V e^('^-^(^'-)-^;c(^.)) l < i
l ^'^ l 2
\^. = o / ^

except if /jc = 0 and (^^^(ö) < ^jcC^)- Similarly if j5 < 0, the factor is less than 1/2
except if ix N and (px(N) > (p^(N 1). In both the exceptional cases, how-

ever, the factor can take values arbitrarily dose to one. Thus the factor remains

small, i.e., less than 1/2, in all but two situations.
We now concentrate on the case jS > 0 and describe a method of cir-

cumventing the "large" behavior for /jc 0. The case ^ < 0 is handled simi-

larly.
The new idea is to parametrize each A e ^x in terms of the identity

^x ^ ^{x} ai^d matrix units e(Ix,Jx] in which e(ixjx) with i^ 0 =7'^ is ex-

cluded. This is possible because

e(0,0) = l-f^e(M-) .

/= l

Thus one can find a decomposition

A= ^'A(Ix,Jx}e(Ix^Jx) ,

Ix,Jx
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where the prime denotes the exclusion of the (^ = 0 = j^ units, and it is readily
checked that

\A(Ix.Jx)\<2\^^\\A\\ .

Note also that the number of terms in this decomposition is (7V + 1)"'^'.
Now introduce the Banach space 3E' of bounded complex functions on the

pairs of indices {Ix.^x} with the i^ 0 = jx,x G X, possibilities excluded. The
State CD defines an element CD {o}(e(Ix,Jx)}]X c L} of this space and the state
is determined by co and the normalization condition co(1]) = 1. Moreover, if
one takes the perturbation expansion for T*' - ^ in the new identity for co, the
resulting relation is interpretable äs an integral equation on 3E^ This equation
has the form

Q} = ^-\- Kß^(i)0} + Lß^co

l ifX = 0
\-'

^ eßMi,)-v,(i^,)} \ S.^^j^ {fX^{x}
k, = 0 J

0 otherwise
,

and Kß^(\} is a linear operator with action

/ ^ Y'
(Vo/)(/.,Jx) = E ,/^K(^. )-/>.. (^.)) ö,^j_^j(ix'.Jx'}

V^.=^ J
ifX = {xi,...,x,,},X' = {x2,...,Xn},n > 2 and

(Vn/)(/x,^^)-0
if \X\<2. Therefore, if ß > 0, exp {ß((p.,(l) - 9:^(0))} > l and

||^^^(.)|| - supf^^(^/'-^(^)-^-^()) + ^ + E e-ß^^P-^^^-^^-^^-^-^^A
xeL

l

-2

k, = 2

Thus

||^^(D(i) +^/:?CD|| <^+ ll^/itDÜ

and there is a unique solution to the integral equation whenever

\\Lß<,\\<\ .

Now the operator Lß(i> is similar to the operator occurring in the previous
equations and its norm can be estimated by a slight modification of the earlier
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estimates. The new Lß^ differs from the old one in four respects. First ^ is

replaced by O'. Second, an additional factor

(7V+l)j^^^/^(^.(/.)-<p.(^.))^
\^. = 0 /

occurs. Third, the action of Lß^ is slightly modified by the omission of the ix ==

^ ~ jx terms. In particular the perturbation expansion of

efcJ^)(4-z)(efe,Ä,))
contains terms proportional to e(Ix^Jx)e(Is,Js^) and e(0,0) terms may occur

through products e(0, 7)^(7, 0) if^ n S 7^ 0. To eliminate the e(0, 0) we must

use the identity
N

e(0,0)-l- ^e(^,^)
k= l

and hence one term may expand into (A'' + l)'*^"' terms. Fourth, the coefficients
in the expansion are possibly larger by a factor 2''^"' and these last two effects
introduce a combined factor (2(N -\- 1))^^"^ in the term-by-term perturbation
estimate Hl/j^^ll- Thus one obtains

IM<^-2.( + i)V(f)im(,-(f)|i*'
where we have assumed that

\m, = ^ 2"e^''(N + 1)^" sup ^ \\^(X}\\ < A
'^\f-., ^^

for some /l > 0. Therefore, if

/ T\

\4^/l\-lß\m,<(jj(i+2(N-^i}V
one has \\Lß^\\ < ^ and hence 02 is unique.

If ß <0, this argument may be repeated with the i^ = N = jx terms omitted.
The final result is summarized by the following:

Theorem 6.2.46. Let O be an interaction with one-body part O^^\ i.e.,
(D(i)({;c}) - a)({jc}) and ^^^\X] - 0 if\X\i^\. Define Q)' = ^ - O^^^ and
assume

||$'||,= ^2V(7V+l)^sup ^ mx)\\< +cx>
^' ''\r=f;.,

for some /l > 0. Further assume that x^ and T*^ commute.
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Itfollows that there exists a unique (i^ ,ß)-KMS state whenever

^ \ / ^ x^/,^ ^x4 A\ lß\m,<(-^j(l+2(N+l)'^e
Note that no uniform bound on ||<I^^^^({^})|| is needed. Thus, uniqueness

occurs for all strengths and all inhomogeneities of the external field.
The integral equation method establishes more than we have actually stated.

Both integral equations have the form

(ß = Ö-^ Mß^CD
and for the interactions described by Proposition 6.2.45 and Theorem 6.2.46
the unique (T"^', ^)-KMS state co^"^ is determined by

^^'^(e(IxM} = ((^-Mß^^'mx.Jx)CD'

\~^
- '^(M'^,,S)(Ix,J;,) .

n > 0

But if ß^ varies within the appropriate domain of uniqueness, one may
deduce that ß<^ \-^ CDf^'^(e(Ix,Jx)) is continuous, and hence ß^^co^^(A) is
continuous for each ^4 G ^A and A c I. A similar argument for continuity of
T^^ was outlined after Example 6.2.5. In fact, this estimation procedure
estabhshes that if ^(O + jci^iH +;c,jO) is in the region of uniqueness
for some >, Oi, )2, ,<!> and all (x\, JC2, . . . ,;c) in an open subset of R",
then

(jci,...,x,)^co^^'^+''^^'+-+^^^)(^)
extends to a holomorphic function of n variables, for each strictly local A.

Next one may deduce some basic characteristics of paramagnetism. In ap-
plications to magnetic Systems the one-body interaction is usually of the form

0(^)({4) = -/z,I'5
where h^ G IR is the external field strength at x and ^ is the third component
of the atomic angular momentum. This interaction corresponds to the cou-

pling of the atomic magnetic moment and an electromagnetic field in the
direction of the third coordinate axis. With this interpretation the mean

magnetization of the atom at the point x- is given by

M(ß,h,) = CDß'\Ll)
and the considerations of the previous paragraph, coupled with Theorem

6.2.46, estabHsh that h^ e U^-^ M(ß, h^} extends to an entire analytic function.
Now 1.3 has 7V + l distinct eigenvalues / N/2, / = 0, l

, . . . , A^, in suitable units.
If e(ixj'x) are matrix units defined by a corresponding eigenfunction basis, the

identity for co^^ used in the proof of Theorem 6.2.46 implies

co^'^(e(4,4))i<c^.<,Yf:e-'-.-^')) ,
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where Cß $' is a positive constant independent of the external field strength.
Thus if j8 > 0, i.e., the temperature is positive,

and

lim co^^(^fe,O)-0 ifi^^N
hx^+oo

lim cü''*(e(/;/;,))=0 if/^T^O .

hx^ oo

Consequently, äs h^ > +CXD the atom at site x is in the eigenstate of 3 with

eigenvalue N/2 with probability one and äs hx -^ oo the eigenstate with

eigenvalue -N/2 plays the predominant role. Explicitly one has

lim M(ß,hx) = ^
hx-^ 00 2

and this demonstrates that for large external field the atoms align themselves

with the field, i.e., the System is paramagnetic. Therefore, one concludes that in

the high-temperature regime spin Systems are paramagnetic but not ferro-

magnetic.
There are several notable corollaries of uniqueness of the (T^, j5)-KMS state

co^*. First, 60^^ is automatically an extremal (T^, jS)-KMS state, and hence a

factor state by Theorem 5.3.30. But if Z == Z^, the spin algebra is norm

asymptotically abelian with respect to the group Z^ of space translations. Thus

o)^* is strongly clustering (strongly mixing) in space by Example 4.3.24. Next if

O is Z^-invariant uniqueness implies that co^* is Z^-invariant and hence

strongly clustering (strongly mixing) to all Orders by another application of

Example 4.3.24. Next assume that the finite-volume dynamical groups T^'^

converge strongly to T*. Uniqueness of co^* then implies that the finite-volume

Gibbs States co^^ must converge in the weak* topology to co^^ äs A -^ oo. This

follows because each weak*-limit point of 0;^^ is a (T*, jß)-KMS state by
Proposition 6.2.15. Therefore, all weak*-limit points must be equal to CD^^ and

hence the limit must exist.

There is another general class of models for which uniqueness of the equi-
librium state is usual, one-dimensional models with uniformly bounded surface

energies. For these Systems, however, the uniqueness is independent of the

temperature and hence no form of phase transitions can occur. Thus one-

dimensional models with bounded surface energy do not exhibit ferro-

magnetism.

Theorem 6.2.47. Let O be an interaction satisfying

Y,mx]\\<+^
X3X

and assume there exists an increasing sequence A c L such that A ^ cxo .

E ^(^^
X r^^ni^<Z>
Xr^k^ ^ 0

< M
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for some M < +00. Further, let T^ denote the corresponding aiitomorphism
groiip (constructed in Theorem 6.2.6).

Itfollovvs that there is a unique (i^ , ß)-KMS state for all ß ^ U.

PROOF. As this result is not central to any subsequent results we content ourselves
with an outline of the proof which uses the ^*-Version of the theory of perturbed
States described in Section 5.4.1.

First, let WA,,, (=co^J be a weak*-convergent subsequence of the local Gibbs
States with limit co^ Next, let co be an arbitrary extremal (T^^, ß)-KMS state. The idea
is to prove that co = co^ and hence deduce that co is unique. To accomphsh this we
introduce the perturbed states CD^^"'

,
defined in Theorem 5.4.4 but rescaled to ß, with

the perturbations P/ given by

Pn' = W^(M = Y^ ^(^)
.rnA,^0
X n A'-', ^ 0

It follows from Theorems 6.2.6 and 6.2.18 that co satisfies the Gibbs condition and
hence the restriction of co^^"' to ^A^, is equal to co\^, Therefore, co' is the weak* -limit
of co^^"' äs ' ^ 00. Next, we must prove that co^^"' converges to co. Basically this
happens because co and co^^"' differ only by a perturbation across the boundary of A/
and hence äs A/ -^ oo this difference becomes negligible. Unfortunately the proof of
convergence is rather intricate.

The key to the proof is the introduction of the family of functions

p (^. A\
- (p-i<H-Ti^(P,]]Q (A\.,i<H-Ti,,(P]]Q \^n(-^t^) {^ ^^ü}TJ^üj\^)^ ^^co) :

where (^,71^^, L/co,^^^) denotes the representation associated with the i^-invariant
state CO. It follows from Theorem 5.4.4, and its proof, that each F/^ is holomorphic in
the Strip T)^/2; Im z G (0, ß/2} and is strongly continuous and bounded on the closure
X)^/2 of the Strip. The functions F interpolate between co and its perturbations co^^"'

.

For example, one has

Fn(t ',A) = (F:f"n,,7i(^)Fr^"Q,,) ,

and

F(t + iß/2 ,A) = (a^^?(^"), rr^-;.4^)r-^"nr '''"')
when ^ G R and

p-P. ^ ^it(H-n,,(P)}^-itH

is the unitary co-cycle associated with the perturbation of Utjj(t} = exp {itH}. Thus

F(0 ,A) = 0}(A} .

Moreover,

Fn(iß/2 -A) = co''\AmßJ"f = o,ß^^(A]Fn(iß/2'^] .

Next one argues that the functions t e U^ Fn(t^ iß/2 ]A) and t e U^ Fn(t ]A)
are uniformly bounded and equi-continuous, i.e., continuous uniformly in n. The
uniform boundedness hypothesis of the theorem, ||P|| < M, is essential for both
these properties. Consequently, one may choose a subsequence n'' of the sequence n'
such that the limits
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F{z-A)= lim F(z;A} ,
n ^f oo

F(z-^)= lim F.(z;1]) ,
n"^oo

exist for all z e T)^/2 and ^ e ^. In fact, the convergence is uniform for z in compact
subsets of 1)ß/2 and z\-^F(z]A) and zi-^F(z;1l) are holomorphic in T)^/2 and

strongly continuous and bounded on T)^/2-
Next one reinterprets this convergence in operator form. One argues that

II K '^111 -^ 0 for allAe^ and hence

lim \\[r-^"',n^(A)]\\=Q .

n'^ 00

But the convergence of F// to F on R then implies that (rif''")*r7^"" converges
weakly and the limit is automatically an element of the center of 7Cf^(5l)''. Since co is
an extremal (T^,^)-KMS state this center is, however, trivial by Theorem 5.3.30.
Thus (r:f"")T~^''" converges weakly to F(r ;1)1](-: 1). Hence

F(t',A) = o}(A)F(t',1\)
and

F(iß/2',A) = co(A)F(iß/2',^)

by analytic continuation. But from the identification of F and the Gibbs condition

one has

F(iß/2-A)= limFn"(iß/2-A)
n"~'

= lim o/'''"(A)F..(iß/2;^) = (a'(A)F{iß/2 ^) .

fj/f-^OQ

Thus

(co(A)-CD\A))F(iß/2',^) = Q
,

and to conclude that co = CD' li suffices to prove that F(iß/2 ; 11 ) 7^ 0. But if we apply
the Peiels-Bogoliubov inequality

F(iß/2;^) = ||af"||^ > exp{-ßco(P)}
established prior to Example 6.2.30, the desired conclusion follows from the uniform
boundedness hypothesis.

6.2.6. Nonuniqueness of KMS States

Our next topic, the nonuniqueness of KMS states at sufficiently low tem-

perature, is of paramount importance for the explanation of phase transitions
in magnetic materials. Physically, the nonuniqueness implies the existence of
several distinct thermodynamic phases. But at high temperature there is usually
a unique phase, by the results of the previous section, and hence the phase
structure varies with temperature and transitions can occur.

There are at least two phenomena which lead to phase transitions in

paramagnetic materials, ferromagnetism and anti-ferromagnetism. The first of
these has already been mentioned. It is the ability of a material to retain a
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residual magnetism in the absence of an external field. The second is physically
less apparent and is detectable from the behavior of the magnetic susceptibility ,

This is given by ;( = M/H, where M is the overall magnetization and H is the
external field strength. The susceptibility tends to increase äs the temperature
decreases and ferromagnetism is signaled by a divergence of ^ for small // at a

critical temperature T^. In contrast the susceptibility of an anti-ferromagnet
increases to a finite maximum at some TC and then decreases äs the temperature
is lowered, i.e., i has a cusp at TC . Thus, below the critical temperature, anti-

ferromagnets tend to resist external magnetic forces.
The simplest phenomenological explanation of the spontaneous magneti

zation of ferromagnets is given by postulating that the interaction favors the

ahgnment of neighboring atoms. The alignment of the magnetic moments of a

sufficiently large proportion of the individual atoms gives rise to an overall

magnetic moment. Similarly anti-ferromagnetism can be explained by sup-
posing that neighboring atoms prefer to be anti-parallel. Unfortunately, these

explanations are insufficient. For example, we have already deduced that one-

dimensional Systems with uniformly bounded surface energy cannot have

multiple phases. Therefore the cooperative effects of alignment or misalign-
ment of the magnetic moments is not explainable by purely energetic con-

siderations.
One way of understanding this difficulty is through the principle of max

imum entropy. This principle characterizes equihbrium by maximum entropy S
at fixed energy H^, i.e., by maximization of the function S ßH^. Thus, for
positive temperature, ^ > 0, two competing effects occur, maximization of the

entropy versus minimization of the energy. Large entropy is associated with
large disorder but low energy is favored by the orderly alignment, or mis-

alignment, of neighboring atoms with the particular choice dictated by the sign
of the interatomic forces. Thus, the existence of ferromagnetism and anti-

ferromagnetism, and the details of the phase structure, depend upon a delicate

interplay of these two effects.
Detailed theoretical understanding of ferromagnetism and anti-ferromag

netism is based upon the study of specific models within the class of general
spin Systems and it is now necessary to specialize considerably. The simplest
quantum System is the spin-^ Heisenberg model introduced in Example 6.2.2.
We examine the anisotropic Version of this model and establish that for suf

ficiently low temperatures and suitable values of the anisotropy there are at

least two distinct extremal KMS states. The idea behind this analysis is to view
the Heisenberg model äs a 'perturbation' of its classical limit, the Ising model.
The anisotropy plays the role of perturbation parameter.
We emphasize that a great deal of work has been done on particular models

and we make no attempt to survey the subject. We merely try to describe the
two most common phenomena which lead to multiple phases and some

methods used to elucidate them. The classical Ising model provides the basic
insight into these phenomena and plays a key role in understanding the more

complex quantum mechanical models.
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Let L = I.^
.
The spin-^ quantum algebra 91{j^} consists of linear combina-

tions of the Pauli matrices ÖQ(= H), cr^, o^-, 0^ defined in Example 4.2.7 and the

corresponding classical algebra G{^} consists of linear combinations of OQ and

(73. More generally the spin-^ quantum algebra 2lA is generated by polynomials
in the Pauli matrices {öf ; z == 0, l, 2, 3,;c G A} and the classical algebra CA by
polynomials in {öf;/ = 0,3, jc G A}. The anisotropic Heisenberg model with

nearest neighbor interaction and zero external field is given by the interaction

O where

^(X] =0 if |;^| ^ 2

^({x,y})=(^ if \x-y\^\
^({^. y}} - -X^, y}{^(^y. H- ^2^2^ + ^A]

if \x-y\ = \

where |jc| == |jci| 4- -i- \x^\ and j(x^y)^d G [R. An external field can be in-

troduced by the addition of a one-body interaction, e.g.,

^(^\{x})^-h(x)a\ .

The Parameter d measures the anisotropy. The value ^ = l corresponds to

isotropy and ^ = 0 corresponds to the classical Ising interaction

<!>({x,y}) = j(x,y]o^^a^^ G ^{x.y}- Note that 7(jc, j;)ö^cr^ viewed äs an ele-

ment of ^{^^,3;} ^4 has two doubly degenerate eigenvalues 7 (A:, y]. The value

-j(x^ y] occurs if a\ and 0-3 have the same eigenvalue, i.e., the atoms at x and y
are aligned. Thus the model is defined to be ferromagnetic if 7(;c, j^) > 0 since

the aligned state is then the state of lower energy. Similarly the model is defined

to be anti-ferromagnetic if j(x^ J^) < 0 since the non-aligned state is then en-

ergetically favored.
We assume that the real functions j and h are uniformly bounded and then

the Heisenberg interaction O defines a dynamical group of *-automorphisms T*
of the spin algebra ^ by the theory of Section 6.2.1, for example by Theorem
6.2.4. Our aim is to establish the nonuniqueness of (T^,ß)-KMS states for

sufficiently large ß and small anisotropy. First we discuss criteria for non

uniqueness.
The first criterion is the existence of a non-zero spontaneous magnetization.

If /z = 0 and there exists a (T^, jS)-KMS state co with co(ö^) ^ 0 for some x G Z''
then there is more than one (T^, jS)-KMS state. For example, a second such

state is given by a*a; where a* is the adjoint of the *-automorphism a of 21 with
the action

aK) = cT^, ((7^2) = -'^i, (^) = -^
for all jc G Z^. This follows because ai^ = i^a. We refer to a äs the spin re-

fiection symmetry. Note that if there is a (T^, jS)-KMS state co with O3(a\] ^ 0,
or co(ö2) 7^ 0, then a similar argument establishes that there is more than one

(T^, jS)-KMS state even if /z ^^ 0.
The second criterion for nonuniqueness is the existence of long ränge order.

This gives an inconsistency between a-invariance and extremality. Assume that
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co is an a-invariant extremal (T*^, ^)-KMS state. In particular cü(cr^) = 0 for all
X G Z\ But Ti(j3(^)" is a factor by Theorem 5.3.30. Moreover 51 is asymptoti-
cally abelian with respect to the group x G Z^I-^T^ of space translations. Hence
co is strongly clustering in space by Example 4.3.24. In particular

lim (ß((r}(j^^) = lim {a)((r](7^) (j^((f^<j^((j\}\ 0
.

|j;H 00 l vH 00

Thus, if for a given a-invariant (T^, jß)-KMS state one can deduce

iiif ^(^\o\\ > 0
x,yel.'' ^ ^

then co cannot be an extremal (T^,j5)-KMS state. Hence there must exist at

least two distinct extremal KMS states. We will verify this criterion in the
Heisenberg model for suitable values of ß and ö. It corresponds to long ränge
Order in the System.

Theorem 6.2.48. Let ^ denote theferromagnetic Heisenberg interaction with

nearest-neighbor coupling j(x,y) > 0, anisotropy d G (1,1) and zero ex-

ternal field. Assiime v > 2 and

j = inf /(^, j) > 0
.

(x. y]

It follows that there is a ß^ > 0 such that there exist at least two extremal
(T^, ß}-KMS States for all ß > ß^.

Note that this result does not establish nonuniqueness of the KMS states for
the isotropic model, i.e., for the case ö = 1. In fact if v = 2 the criterion of non-
zero spontaneous magnetization, co((r^) ^ 0, fails by symmetry arguments.
This will be discussed in detail later in the section.
We will not give a complete proof of Theorem 6.2.48 except for the special

case (5 = 0, the Ising model. We explain, however, how the ö = 0 result can be
extended to small (5 by a routine perturbation argument which does not depend
upon the detailed form ((r|cr[ + cr^cr^) of the transverse interaction. Finally we
give a brief discussion of the more sophisticated argument used for values of ö
dose to one. The starting point is the following observation.

Observation 1. Let 0 be any interaction such that T^ commutes with the spin
reflection symmetry a. If there exists an a invariant (t*^, ß)-KMS state co \vith

sup CO(P-IP^_^) < 1/4 ,

x,y e Z'

where P^^ = (H 0^3)72, then there exist at least two distinct extremal (T^, ß)-
KMS states.

This is just a rephrasing of the criterion of long ränge order established
before the Statement of the theorem since

co(P-;P^) = 1/4 - (o(a\a^,)
by reflection symmetry.
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Next let a)\ denote a state on the local algebra ^A. Because P-_^ -f P!_ = H
for all z G Z^' one may write

o^^(P\P^L] = CD^ (P\py_ n (P; + Pl)) .

z e A\{xj;}

We will expand the product on the right-hand side and obtain an identity
which is useful for calculating an upper bound. We must first introduce some

terminology and notation.
Let NN(A) denote the set of nearest neighbors in A, i.e., the set of ordered

pairs (x, y] with x, j; A such that |;c ^1 = 1. If ^ C NN(A) is a subset of

NN(A), we say that a set ^ C A is U~ connected if for any two points x,y ^X
there exists a chain {jci = jc, ;c2, . . . ,Jc+i = y] m \ such that (:Cj,x/+i) G U and

(xi+\,Xi] G (7 for z = l, 2, A contour y is a subset of NN(A) with the fol-

lowing properties:

(1) A is not NN(A)\'y-connected.
(2) There exists two nonempty subsets Ai(7) and A2(7) such that AI (7)

and AI (7) are NN(A)\7-connected, Ai(7) n A2(7) = 0, and

AI (7) u A2(7) =- A.

(3) If (jc, y] G 7, then % G AI (7) and y G A2(7).

Hence, if A is NN(A)-connected, there is a one-to-one correspondence be-
tween ordered partitions (Ai, A2) of A into NN(A)-connected subsets AI and

A2, and contours 7 C NN(A) given by

7-{(x,;;)GNN(A);zGAi,3;GA2} .

We will always assume A to be NN(A)-connected.
A configuration c is a function on A with values in {-h,}. Fix a config-

uration c and two points jc, >^ G A such that c(x) +,c(y) = -
Let r(c)

denote the class of all contours 7 = {(^I,:FI ),-.., (:c,j)} with c(jc/) +,c(j/)
^i l, 2, ...,. Let AC be the largest NN(A)-connected subset of A such

that jc G AC and c(z) =^ -}- for all z G A^. Then there exists a unique contour

7(c) = {(^i,ji),...,(^,;^)} G r(c) such that zi,...,x G A^ and x G Ai(7(c))
and y G A2(7(c)). Even though A^ C Ai(7(c)) it can happen that the two sets

are unequal. This is illustrated by the second of the following two figures,
which give examples of how j(c) is defined for two different configurations c on

a two-dimensional lattice.

+ +

-++ + + -

_i_ l in 4- -4-+ - H + +

+ |- ph -fe + -

+ + + + - +

+ +

In these examples, the contour y(c) is the set of nearest neighbors separated by
the indicated curve and ordered such that the point in the x-connected com-

ponent occurs first.
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Using these definitions we now have

n^^- = Enn(-^) = E E n^-^(.)'
c ze A y {c;y(c)=7} zG A

where the sum is over all configurations c with c(x) = + and c(y) . But the

P^ are mutually commuting projections and hence

0 ^ n ^^w ^ n ^c(.) < 1
zG^ ZG r

for all c whenever 7 C ^ C A. Therefore,

E n^c(.)^ E n^^.(.)
{c;y(c) = y} zGA {^ ; r(c) 9 y} zGA

-P';p^ ]][ p^^pL < n ^+^-
(5, 0 G y (s, 0 G y

and we deduce the following bound.

Observation 2. För any region A ö^e /z^

P"+P-- < Y^Py
y

where

py= U n^i
(s, t] G y

and the sum is over all contours y with x G AI (7) and y G A2(7).

Next we use a contour counting argument, commonly called the Peierls

argument, which is fundamental to most of the current proofs of phase tran-

sitions in spin Systems. It gives a quantitative assessment of entropy loss versus

energy gain introduced by an ordering of the System.
Let |y| denote the number of nearest-neighbor pairs in y. In order to bound

the above sum in the state COA we must estimate the number of y with a fixed
value of |y|, at least for large A. For this we use a geometric argument in which
we implicitly assume v > 2. This argument is partially illustrated by the pre-
ceding figures.

To each nearest-neighbor pair (s, t) G y we associate the (v- l)-dimen-
sional hypercube centered at the midpoint of (s, t) and oriented perpendicular
to ^ - ^ These hypercubes form a hypersurface which separates x and y in A.
Now one can construct this surface by successive addition of hypercubes. If
one hypercube is fixed and a face specified for the positioning of an adjacent
hypercube, there are at most three possible orientations. Given a hypercube on

the hypersurface and a face on it there are two possibilities, either it is possible
to attach another hypercube to it lying between a nearest-neighbor pair in A, or

not, according to whether the face hes in the interior of A or on the boundary.
In the first case it follows from the definition of a contour that another hy
percube in the hyperplane is actually attached to the face, but not in the second
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case. Thus, by an exhaustion of possibilities argument, there are at most 3''^'"^

ways of building up the remainder of the surface once the first hypercube is

given.
Now assume that the linear dimension of A is large compared to the dis-

tance between x and y, and let {(x^x\), (jci,X2), . . . , (jc, j)} be a set of nearest

neighbors connecting x and y of minimal cardinality. If 7 is a contour se-

parating x and y, it follows that one of the pairs (x/, jc^+i) is contained in 7,

and if l^j is given we must either have i < \y\/2 or n i < \y\/2, i.e., the

hypersurface corresponding to y must be built up from one of the hypercubes
between x/ and x/+i, where i satisfies the stated conditions. It follows that there

are at most

M3M-'
admissible contours of length 1 7 1. As the minimal length of a contour is 2v one

obtains the following.

Observation 3. If COA is any state such that

COA(P,) < e-^W

for large A andfor some K > log 3, then

^^/-i.-/^
/"-2v

coA(n^^)< ^n^-^e-

Up to this point the state COA on MA has been arbitrary. Now, however, we

assume that COA is a (T^, jS)-KMS state for a group T^ of *-automorphisms of

^A- Then if A contains y and Uy is any unitary element of 91A one has

COA(Py) = CD^(PyUyU;Py)
< CO^(U;Pyr^ß(PyUy)) < \\T^ß(PyUy)\\

by the (T^, jS)-KMS condition. Next suppose the norm limit T of the T^ com-

mutes with a and co is an a-invariant weak* limit point of the COA, in the limit

A ^ 00. Then co is a (T, jS)-KMS state and

Co(P,)<SUp||Tf^(P,f/,)|| .

A

Hence if one can establish suitable bounds,

jiiniir^i'p TrM\ < f^-ß^ß\y\^^P Ir/jßl^y^yJll ^
5

for the local evolutions T^ arising from a given interaction <I> then non-

uniqueness of the (T^, jS)-KMS state follows by combination of Observations l

and 3. This outlines the general tactic and the problem is to make a choice of

Uy appropriate for the interaction.

Let T^'^ denote the local evolution associated with the Heisenberg inter

action and choose

Uy= n '^i-u; .

xeAi(y}
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This choice is such that the Uy implement the spin reflection symmetry a for
^A,(y), i-e-,

a(^) = UyAU;
for all ^ G ^A^(y).Then

Tf^'^(p^t/,) -^-^^^>(^)p,^^^''^^(^)^^^, .

But UyH^(A)Uy differs from //CD (A) only in the interaction between the nearest

neighbor pairs (s, t) G y. Specifically

UyH^(A)Uy = //0(A) ^Hy-Cy
where

.//,^2 ^ a),(.,0, C, = 2 ^ 7(^,0
(^, t] 7 (5,0 e r

and

(D5(^,0=y(^,0{('ö+^3^3) + ^^24}
Therefore

Tf^'^(P^^) =e-/^^<^(A)p^/(^.(A)+^v)^^^-^C, _

Thus one has bounds

ll^^'l^y^y)!! <^"^^1k"^''^^^^^y^^'''^^^^^^''ll
This last expression is the key to obtaining bounds on ||T^'^(PyC/y)|| uniform in
A. It is particularly easy to handle in the case ^ = 0, i.e., for the Ising model.

One has decompositions

//^(A) = FA + dT^ , Hy^Vy^ dTy
where FA and Vy are the Ising contributions to the energies and TA and Ty arise
from the transverse X-Y part of the interaction. Therefore FA and F, are

functions of the commuting variables a^. But Py is the projection onto the
eigenspace with cr^cr^ = l for all (s^t) G y. Hence VyPy = 0 and

r^'AfP IJ\\ - ß-^'^AP JV^-^ßVyTJ -ßCy
- p U ^-ßCyI.ß (^yUy)\^^Q e r^e UyC ryUyC

and one has bounds

ll4'(^yt/r)IUo < e-P^^^ < e'^^yl
.

Combination of these estimates with Observation 3 establishes that for 0 = 0
the a-invariant Gibbs states COA satisfy the bounds

sup co^(Plpy_} < 3^/exp{-/(2jß7-log3)}
x.yeZ'^ / > 2

uniformly in A. Then Observation l implies the existence of at least two dis-
tinct extremal (T, j9)-KMS states for the Ising interaction and all large
ß,ß>ßc-
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The Ising estimates provide the starting point for a perturbation calculation

of bounds for the Heisenberg interaction. Now one has

\\^^\P,U,)\\<e-^^-'\\X^^(ö)\\
with

;^A(^) ^ ^-ß(V^+ÖT^}p^^ß(VA+ÖT^+V,+ÖT,}
In Order to bound X^ we introduce the function F by

F(t) =g-^(l-O^Ag-M^A+^^A)p^gm(^^A+^/)+^(^A+5^v))gAl-0(^A+ f^v)

and note that F(l) = X^(ö) and F(0) = Py where the latter identification again
uses VyPy = 0. Moreover,

(0 = -öß,^ßn.(T^}F(t} + ößF(t) 4vV.(rA + r,;
dF

(L) -Up i-ß(^^_^^^I/^J2^^iJ -rUpr^LJL.ß^^_^^^2^ -r ^y)

where T^ denotes the local Ising interaction, T^(^) e^^^^Ae~^^^^, and T^''^ is the

evolution perturbed by Fy, i.e.,

Tf'^(^)-^^-(^-+ ^'')^^^-(^-^-^^)^
.

But then T^'^' = T^T^ where i'^A] = e^^^^Ae'^^''^
.
In particular, if yi G '^[^.^y]

then x](A] =A unless ;c, or y, is in AI (7), or AI (7). Thus T^'/(rA + r.) =

'^/^X^A) -^Tßt^y where the r^^,y are localized around the contour y and satisfy
bounds \\Tßt^^y\\ < aj\y\e^^J^. Then

F(t)=F((^]-dß r^^{[4(i_,)(rA),F(.)]-F(.)r^(i_,),,} .

J 0

This integral equation can be iterated to give a perturbation expansion of

X!^(d') =F(1) in terms of Py = F(0). Convergence of the series can then be

established through term by term estimates following the arguments used to

prove Theorem 6.2.4. The estimates are uniform in A because of the locali-

zation properties of the Ising evolution and because the evolutes T^^(rA) only
occur in commutators with elements localized on or around the contour 7. The

calculation is outlined äs follows.

The -th iterate of the integral equation for F(t) is an n-fold integral, over a

set 0 < ^1 < /2 < . .
< ^ < l, multiplied by a factor (öß^. The integrand

contains 2" terms each of which is formed by a mixture of commutators of

'^/^(i-r,)(^A) with F(0) =Py and products with r^(i-/.),y Now Tß^^y is localized

around -y in a set with at most (2^ -h l ) 1^1 points, the points in 7 and their nearest

neighbors. Moreover, T^(7A) is a sum of two-body interactions translated

under the Ising evolution and hence a sum of (2^'*'^ + l)-body interactions.

Therefore the commutators of 1^(7^) with Py has at most (2^"^^ -h 1)|7| terms

localized in a set with at most |7| + 2^"^^ + l points. The number of terms in a

commutator with Tßt^y has the same bound but is locahzed in a set with a

possible (2^+^ 4- 1)|7| points. Now one estimates the total number of terms in

the th-integrand by the counting argument used to prove Theorem 6.2.4.
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Effectively one has a (2^'+^ H- l)-body interaction and a local element with
Support in a set of (2^+^ + l)h/| points. Therefore the number of terms is
majorized by (2'"^-(|7| + n))" < n\ exp{2''+-(|7| + 77)}. But each term will have a

norm bounded by ß'yg2/?(^, +...+?) x];ierefore one obtains norm bounds

||^,^(<5)|| < l + ^(|.5|/?)" f dt,... /''"' dt 2"(2*'+2(|y| + ))a/'e2/'('.+...+0
^ 7o Jo

< l + ^(öl^le/'^)^'^ < e^""^-\-'\(\-b\d\e^l^J]-^
n> l

for a suitable Z? > 0 independent of dj and ß. The last estimate is valid for
\8\< b-^e~^~f^J. Consequently,

sup (D^(P\py_) < 3(l-/?|(5|e2^^')~^^/exp{-/(2jS7-2^'+2-log3)}< 1/4
xj' E Z''

/ > 2

uniformly in A, for all sufficiently large ß,ß> ß^, and ö satisfying \ö\ <
^-ig-2^7\ Hence under these conditions the anisotropic Heisenberg ferro-
magnet has at least two distinct extremal (T^,^)-KMS states.

Therefore we have proved Theorem 6.2.48 for all (5 in a jö-dependent in-
terval, ö G {-öß.öß}, and all large ß. This calculation, which is extremely,
crude, has the unfortunate feature that ^^ -^ 0 äs ^ ^ oo. On the other hand it
does have the fortunate feature that it does not depend on the details of the
transverse part of the interaction. In the foregoing calculation TA could be
replaced by any Hamiltonian H^(A.) coming from an interaction ^ satisfying
the assumptions of Theorem 6.2.4. The estimates only depend on the local
structure of the interaction and not its detailed form. In order to prove the füll
Statement of Theorem 6.2.48 one needs much more refined combinatorial ar-

guments which take into account the details of the action of the Jf-7 part 7^ of
the Heisenberg Hamiltonian.

One method of improving the Peierls argument in the quantum framework
is to adapt ideas of functional integration and to reformulate the v-dimensional
quantum problem äs a (v + l)-dimensional classical problem. First we in-
troduce an orthonormal basis of the local vector space A which is in one-to-
one correspondence with the set of configurations on A. It is convenient to
label the vectors by subsets X C A and use Dirac notation \X) . Specifically \X}
is a simultaneous eigenfunction of the matrices {(73 ; jc G A} with eigenvalue
+ l for the matrices {0^3; x e X} and -l for the matrices {<T3; x G A\X}; the
scalar product is denoted by (X\Y)(= öxj) and the matrix elements of
^ G ^A by (Jr|yi|7). Second, we reintroduce the spin raising and lowering
operators cr^ = (er] i(rl)/2 of Example 6.2.13. One has (cr^" = 0 and

[4,^5] = T2^i, [crl^cr^_]=^l ,

with the er corresponding to different x,y e A mutually commuting. It then
follows that (Tll 0) = 0 for all X G A and

i^)-(n< 10)
xex
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Third, remark that the X-Y contribution to the Hamiltonian //$(A) of the

anisotropic Heisenberg model is given by (5TA where

T-A^- E 7(^,>')K<T[ + <T^2'^D = -2 E J(^^y}<^^- + ^-<}
x,y e A x,y G A

It follows immediately that

(X\T^\Y}=Q
unless X and Y differ by one point x being replaced by a nearest neighbor y ,

in

which case the matrix element takes the value 2j(x,x''). Fourth, recall the

Trotter product formula

^-/^//.(A)_ lim (e-^^^^''(I-ßöT^/n)V .

n-^CG \ /

This expression can then be used with the aid of the orthonormal basis to

evaluate matrix elements or traces. For example,

T,^^(^-/^//.(A)^)_ lim ^ {X,\A\X2}(X2\e-ß^-^^\X2}{X2\(I~ßöT^/n]\X,}
''~^'^x,^^nc^

. . . (Xn\e-ß^^'^^\Xn}(Xn\(I - ßöT^/n}\X,)

for each ^ e ^IA- But if ^4 = ^^(X) Ylxex^3 ^^^^ 1^) ^^ ^^ eigenfunction of

both A and FA. Let E/^(X) denote the eigenvalue corresponding to FA. Then

TT,,^(e-ß^-^^^c7,(X))=\im^^(X,\a,(X)\^^^^
X^t

'f{(X,\(I - ßdTf,/n)\X,^,}

where we identify Xn+\ =X\. In this representation the integer / E [l,] is in-

terpreted äs the time and Xt the classical configuration at time t. Thus the

quantum configurations are viewed äs a subset of the classical configurations in

a subset A x [!, + 1] on a (v+ l)-dimensional lattice. Each quantum con

figuration is a sequence F {Xt\ ^ = l, 2, . . . ,
+ 1} of classical configurations

with Jr+i =X\. As the discrete time variable t changes the classical config
uration Xt evolves with the evolution governed by the value of the product in

the representation. But there are a limited number of possibilities. Either

Xt = Xt^i and the factor in the product is one, or Xt and Xt+i differ by one

point X being replaced by a nearest neighbor x' and then the factor in the

product is 2ßöj(x,x')/n. Thus the configurations of spins can be thought of äs

evolving in time with the possibility at each step of a spin and one of its nearest

neighbors flipping over. Alternatively, if one adopts the particle picture, with

the configuration X corresponding to particles occupying the sites x e X, then

at each instant the configuration either remains unchanged or evolves by a

particle jumping to a nearest neighbor site. Since we are examining the ferro-

magnetic model the weighting factor 2ßöj(x,x^)/n associated with the Jump
from X to x' is positive whenever ^ > 0. In this case the quantum Gibbs state
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defines a sequence of probability measures P
n over the (v + l)-dimensional

classical configurations F. If n(Y) denotes the number of jumps in the path
associated with F and j(Y) the product of the j(x,x') along the path then the
probability of the configuration F is given by

P,(F) = e-f^^^(^^f^(2ßdY^^^j(Y)l(Y.e-ß^^(^^'^ (2ßd/nY^^^j(Y))
where

^A(F) = Y. ^A(^r) .

^r er

Note that the probabiHty of a path of length 77, i.e., a path with n quantum
Jumps has a weighting factor 3'^. So small values of d mean long paths are

unlikely. This is the perturbation characteristic of the calculation.
The probabilities for the Heisenberg model can now be estimated by com-

bining the earlier considerations for the Ising model with an analysis of paths
followed by the classical configurations. We will not give any further details of
this analysis (see Notes and Remarks) which involves a variety of combina-
torial counting arguments following the well-trodden path of random walks.

Finally, however, we note that the conclusions for (5 > 0 can be extended to
(5 < 0 by symmetry. Let LQ and L\ denote the sublattices defined by

lo = {jc; jc G 1\ \x\ = 0 mod 2}

Zi = {x]x e 1\ \x\ = l mod 2}
and Q the *-automorphism of ^ such that aQ(cr|) = -cr|, aQ(ö2) = -cr^ and
^'^((rl) = (r\ ^Qi X e LQ and O(.Q((T^) = cr^ for X G LI and / = 1,2, 3. Then if co is
a KMS State for the Heisenberg interaction with ö >Q then co o a'^ is a KMS
State for the interaction with -ö and vice versa.

One can also use analogous symmetry arguments to deduce a nonunique-
ness Statement for the anti-ferromagnet from the ferromagnetic result. Let ao
and a l be the *-automorphisms of ^ which correspond to spin reversal of
atoms at points of LQ and L\, respectively. The assumption of nearest-neighbor
interaction ^ in the ferromagnetic Ising model immediately gives

ao(0({x,j;})) = -^({x^y}} = ai()({z,y})) ,

i.e., ao and oc\ map the ferromagnetic interaction into the anti-ferromagnetic
interaction. Consequently, in the absence of an external field there is an iso-
morphism between the sets of KMS states for the two models. This conclusion
must be modified, however, in the presence of an external magnetic field be-
cause ao(/z(^)ö^) = h(x)(f^ with the plus sign if jc G LI and the minus sign if
X G IQ, i-e., the sublattice spin reversal transforms a uniform external field into
a staggered field. Indeed, one can show that the Ising anti-ferromagnet has at
least two phases for low temperatures and a uniform, but weak, nonzero ex

ternal field. This is not to be expected for the ferromagnet. Then the in-
troduction of a uniform external field should remove the spontaneous
magnetization and the long ränge order.
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The nonuniqueness result for the anti-ferromagnet with a translationally
invariant nearest-neighbor interaction and a uniform external field can be

proved by a chain of arguments similar to those used for Theorem 6.2.48. The

previous proof was based upon the observation that extremality of the (T^, ß}-
KMS State and invariance under the spin reversal symmetry are contradictory.
The anti-ferromagnetic result is deduced from an inconsistency between ex

tremality and translation invariance.

Observation l is replaced by the following.

Observation l'. If ^ is a translationally invariant interaction and co a

translationally invariant (i^^ß]-KMS state which satisfies

sup ü)(/^Pi) < i
, sup cü(PiP^) < l

,

x^LQ,y^L\ x^LQ,y^L\

then there are two distinct extremal (i^^ß)-KMS states.

PROOF. It suffices to prove that co is not an extremal (T^, ^)-KMS state. Assume the

contrary, then o) is strongly clustering in space and hence

l > lim 4co(^P^) - lim ((l + tr^)(t + a^)) = (M+ 1)^
\x-y\^oo \x-y\-^oo \ /

AceLo) >'-^i x^LQ,y&L\

^)where M = co(o^)- Using P^_ and P^ in place of P\_ and P+ one also finds

l >(M-1)^ .

But these two inequalities are inconsistent. Hence co cannot be extremal.

Next we must adapt the definition of configurations and contours etc., to the

anti-ferromagnetic case. Let ;c G A n LO and y ^ A r^ L\. We now examine

configurations c such that c(x) = c(y) + (or c(jc) = c(y) ). The definition

of a contour remains unchanged but the class of contours r(c) is taken äs the

set of 7 = {(^1, 3^1), . . . , (xn^yn)} with c(xf) = c(yi}. Since c(x) = c(y), and

X e LQ and y e LI, we argue äs before that there must exist a contour y(c)
which separates x and y but the set A^ C \x(y(c}) is now the largest NN(A)-
connected set such that x G A^, c(z) -{- for z G A^ n LQ, c(z) = for

z G AC n Z/i. Thus one obtains:

Observation 2'. For any region A one has

n^i<E^^'
y

\\^here

^r= n ^c(s]P'c(t]
(s,t}ey

(and c(s) = c(t) by definition)

The enumeration of the contours y remains the same and Observation 3 is

replaced by the following:
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Observation 3'
. If x ^ LQ^ y ^ LI and co\ is a state on ^A such that

COA(P.) < e-^\'\

for large A andfor some K > log 3, then

oo

coA(PiPi) < X] n^-'e-^^ < +00 .

/ == 2v

Finally, if COA is a (T^,/?)-KMS state, one has the bound

COA(P.,) < \\^fß(P,U,)\\
It remains to make an appropriate choice of Uy. To explain this choice let us

reconsider the ferromagnetic case from a slightly different angle.
Let \X} denote the orthonormal basis of the local vector space A i-ised

above. Then the X are in one-to-one correspondence with configurations cx of
spins and the effect of the ferromagnetic Uy is such that

U,\X} = \X*} (*)
where cx^ is the unique configuration with r(c;^*) = r(cx)\y, i.e., the spin
reflection removes the contour y. But the \X} are eigenfunctions of the Ising
part FA of the Hamiltonian and the calculation following Observation 3 can be
rephrased äs

T^ß(PyUy) = P,U,e-ß(^^(^^-^-(^'^^ (**)
where E/^(X) is the eigenvalue of FA.

This indicates how to proceed in the anti-ferromagnetic case. One chooses
any unitary Uy with the property (*) but with the anti-ferromagnetic definition
of r(c). It then follows that (**) remains vahd and one argues almost äs

before.
The translation-invariant, nearest-neighbor anti-ferromagnetic Ising inter-

action with external field has

<1.(W) = -ha^
for all X e Z^

^({x,y})=jalay,
with 7 > 0 if |x - yl = l and ^(X) = 0 in all other cases. Therefore,

E^(X)-E^(X*) > 2(7 -H)M
and

\\r^(p u}\\ < e-^~ß(j-\^\^\y\\\i-ß\^rjUy)\\ ^ e

for ^ > 0. Let co be any limit point of the local Gibbs states COA for this
interaction. Either co is not Z^'-invariant and there is automatically more than
one KMS state or it is translationally invariant and by combination of the
foregoing estimates the conditions of Observation V are valid for ß sufficiently
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large. Therefore we can conclude that the Ising anti-ferromagnet has at least

two distinct extremal KMS states for sufficiently large ß if the external field

satisfies \h\ <j. But this conclusion can then be extended to the anisotropic
Heisenberg model by the perturbation calculation outlined in the ferromag-
netic case.

Theorem 6.2.49. Let O denote the translationally invariant anti-ferromag-
netic Heisenberg interaction mth nearest-neighbor couplingj, anisotropy 6 and

uniform external field h. Assume v > 2.

Itfollows that there is a ß^ > Q andfor each ß > ß^, aöß > 0 such that there

exist at least two extremal (i^^ß)-KMS states for all ß > ßc <^nd

öe {-öß.öß}.

The value of öß obtained by the crude perturbation calculation tends to zero

exponentially fast äs ß ^ oo. The refined calculation based on the path esti-

mates is better. One can establish bounds with öß O(ß~^^^]. It is not known

whether the model exhibits anti-ferromagnetism for all ^ G (1, 1) but there

are several indications that this is the case, e.g., the classical Heisenberg model
and numerical calculations.

The phase structure for the Heisenberg model appears to be somewhat

different \i d = l, i.e., in the isotropic case. In two dimensions it is possible to

rule out the possibility of spontaneous magnetization for the ferromagnetic
model, or spontaneous magnetization of the sublattices in the anti-ferromag-
netic model. Although this does not entirely exclude the possibility of non-

uniqueness for the corresponding (T^, jS)-KMS states it does rule out the most

likely mechanism. Instead of establishing this result directly we derive a more

general Statement on the absence of spontaneous symmetry breaking based on

the general criterion in Theorem 5.3.33A. The properties of the Heisenberg
model will then follow äs a corollary.

Theorem 6.2.50 (Fröhlich-Pfister). Let G be a compact, connected Lie

group, g K^ V(g) a unitary representation of G on C^"^^ ~ 9)^^-^ which de-

termines an action g G GH-> Ad(F(ör)) yx(9] ^^ ^^^^ ^{x} ^^d hence the

action y(g] = xei^yx(9] ^^ ^^^ ^P^^ algebra ^ over j}
.
Let ^ be a two-body

interaction which is invariant under the action of G,

y(g](^(X))^<^(X]

for all g ^G and all two-point sets X. Further suppose that

m{x,y})\\ < C(\x-y\ + ir'
for some C >0.

Ifi^ denotes the evolution associated mth O and if CD is a (i^^ß)-KMS
State for some ß ^ R then

(D o y(g) = (D

for all g ^ G, i.e., there is no spontaneous breaking of symmetry.
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Remark. One can demonstrate by example that the conditions in this theorem
are in many senses optimal (see Notes and Remarks).

PROOF. Fix g ^ G. By Theorem 5.3.33A it suffices to find a sequence UL e 2.1,
L= 1,2..., such that

y(g}(A) = lim^ULAUl
for all ^ G ^ and, in addition,

SUp||^cI>(^i)|| <(X)
L> l

where ^(D denotes the generator of T^^. The first attempt to construct such a sequence
would be

UL = ^^,^^,V(g)

where A^ = {(x\,X2) G Z-; x/ <L}. This fulfils the first requirement but not the
second, since the lattice is two-dimensional (in one-dimension the second require
ment would also be fulfilled). To overcome this problem we 'switch off the action of
g slowly across the boundary of A^ in the following manner.

Choose a one-parameter group t -^ g^ of G such that g^ = g and that the length of
the path t -^ g^ over 0 < ^ < ^ is at most ntQ. This is possible since we may assume

that g^^ V(g) is faithful and then G is a closed connected subgroup of U(N + l).
Now define

t/L = (8).reA2, V(gx)

where g^ = g for x G AL and g^ g^f^ for ;c == (;ci,;c2) G A2i\Ai with

/c-2L-max{|.Ti|,|x2|}. Then

\\d.,(U,]\\<Y,\\^(X]U,-U,^(X]\\= Y. \\Ul^({x,y})U,~^({x,y}]\\ .

^ C z- (.X, y) 6 Z-

To estimate this sum it is convenient to use the metric

X- y =max{|.Ti ->'i|, .^2- 3^2!}

on Z". Then, using the invariance of <E)({.T, y}] under y(g], the terms with \x\ < L and
\y <L vanish. Similarly the terms with |.T| > 2L and y\ > 2L are zero. For the
remaining terms we use

\\Ul<I>({x,y})U, ~ <D({^,>'})|| = ||F'(0,) r(ö,)<l>({.T, v})F(<7.v) ^(3,) - O({^, v})||
= II K* (0,) r(ö)<I>({-r,>'})F(a.) V(9y)

' V^(gy) r(gy)<l>({x,y})y{g,) F(g,)ll
<2||Ffe)-F(3v)ll l|1>({.Y,y})||
<2n\\x\-\y\\ ||<D({-r,j.})|| .

Therefore

||<5o(t/i)|| < Y^ 2n\\x\-\y\\-\\<^({x,y})\\
L < \x\ < 2L

or L<\ v\ < 2L
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Hence

11^0(^/1)11 < X^ 2n\\x\-\y\\C(\x-y\ + ir'<^
(^.y]^^~

since the sum is over two dimensions. Thus Theorem 6.2.50 follows from Theorem

5.3.33A.

This theorem has several implications for the Heisenberg model.

First, remark that the group 5(9(3) of rotations acts äs a continuous group
of *-automorphisms of the spin-^ quantum algebra ^ by rotation of the spin
vectors cr^. The action 7 on a local algebra ^2lA is deterrained by unitaries

exp{z J^.^^^fl.cr^} with a G R^. But the interaction of the two-body Heisenberg
model, 6({z, j}) = j(x,y]o^.(jy, is invariant under the simultaneous rotation

of the Spin vectors a^ and cr^', i.e., O is invariant under y. Hence if there is no
external field and no many-body interactions one deduces that each (t^,ß)-
KMS State co of the one-, or two-, dimensional model is y-invariant. In par-
ticular co(cr^) = 0 for alljc. But if co/^ is a (T^, jß)-KMS state of the ferromagnetic
model with external field (I)^^^({jc}) = h(x)(j\ then the energetically favored

configurations are those with spins positively aligned parallel to the third axis.

Thus one expects 60^(0^) > 0. Then at sufficiently low temperature any (T*,jS)-
KMS State obtained in the limit \\h\\^ > 0 should exhibit a residual magnet-
ism, i.e., one should have

lim lim lA^r^ V co;,(cr^) > 0
.|,.,U_Ol->ool ^Z..^

But any such limit state is a (T^,^)-KMS state for the limiting dynamics, i.e.,
the interaction with h (},\^y Theorem 5.3.25. Thus Theorem 6.2.50 demon-

strates that spontaneous magnetization cannot occur for the isotropic Hei

senberg model in one, or two, dimensions whenever

sup^ x-y\^\j(x,y]\ <oo
.

X
y

Alternatively, if one considers the anisotropic model ^({x,y}] = j(^,y]'
{d(o\G\ + 020-^) + 0^0-3} then the interaction is invariant under the subgroup
of rotations of the spins around the third axis. Hence if co/, now corresponds to

a (T*, j8)-KMS state with external field in the first direction

l,l,o.l^l^^l''^5^""('^) = '

and there can be no residual magnetization in the first direction in either one or

two space dimensions.

One can also prove the absence of spontaneous magnetization by use of the

Bogoliubov inequality mentioned in the Notes and Remarks to Section 5.3.1 äs

an early form of a correlation inequality.

Lemma 6.2.51 (Bogoliubov Inequality). Lei co be a (i:^ß]-KMS state over

the C"" -algebra 2l and let d denote the generator of i.
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Itfollows that

-iß(ß(AA' +A'-A)co([C,d(C]]) > 2|a;([C,/l*])|-

forallA e'^andC eD(ö}.

PROOF. Let

l r^
(A,B)^=- / ^lco(^*Ta(^))

ßjQ
denote the sesquilinear form on the analytic elements ^l^ introduced prior to The
orem 5.3.17. The Cauchy-Schwarz inequality gives

\(A,B)^\~<(A,A}^(B,B)^ .

EiiiifB = ö(C)

(A,B)^=- f dX-^co(A^,a(C))
P Jo l äA

= (iß]-\co(A'iiß(C]) - co(A^C]}
= (ißr^o,([c,A^-]]

by the (T,^)-KMS condition.

Alternatively, if U(o(t] exp{zY//f,j} is the unitary group which implements T in the
representation (,,^, TT,,;, Q.,,,],

(A,B]^ = (7i,,(^)0.(^//,,)-'(l -^-^^^'0^o.(5)a.) -

Therefore, the inequality (l e~''^)/x < (l +e~^)/2 gives

(A,A)^ < (n,,(A)ü,, (^-^e'^^-)7ia,(A)Ü,)/2
= {aj(A'A) + co(^*T,/K^))}/2 = co({A\A})/2 .

Combining this estimate with the previous evaluation and the Cauchy-Schwarz
inequality for (A,B)^, one finds

r'K[c,^*])|-^|(^,5L|-
<cü({A-'^,A})(B,B)^/2
-(/^)-^co(K,^})co([C,r])/2

or

-ißo4{A-^,A}}o3([C,ö(C')]) > 2co([C,^*])|-
for T-analytic A and C. The füll result follows by continuity because ^I^ is norm dense
in ^l and it is also a core for ö.

We next demonstrate how the Bogoliiibov inequality can be iised to

reproduce the earlier conclusion on the absence of spontaneous magneti-
zation for the two-dimensional anisotropic Heisenberg model.

Assume there is an external magnetic field ^({x}} = -h(x}(f\, in the di-
rection of the first axis, and set \\h\\ = siip^^^.- I^WI- Further assume there is
a two-body interaction.

({x, y}) = -j(x, y){<5(cr{< + <r^cT>') + o^<,^}
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and set

= sup ^
:f Z^

^ ^2

^-y\^W.y]\
'

yef

We aim to show that there is no spontaneous magnetization whenever

lUII < =-

Let Afl denote the lattice of pairs (pi-, pi) where pi 2nni/ai and the HI are

integers such that fl//2 < / < fl//2. Introduce the Fourier transforms, a/, by

af = ^ e-'>x = (^ro*,
X^^a

where px = p\x\ + /72-^2. Thus

< = IA.I-' ^ e'>^af .

peA

Next define the mean magnetization Ma(h] by

M,(/z) = |A,r^ Y. ^(^i) = iA.r'^(^?)Z^
jce Afl

and introduce

M(/z) = lim sup IM (Ä) l .

We will bound M(h] by choosing A = d2^C = d^^ in the Bogoliubov in-

equality. This choice is motivated by the observation that

|Ar>([a3'',a-''])P=4M(Ä)2 .

Moreover, one has

|A,-^5]co(afa-'' + a2-X)/2=l -

/?eA

The idea for determining the bound is to find a volume-independent positive
continuous function E such that

-ißa)([dl5(d-'')]) < \A,\E(p) .

The Bogoliubov inequality then implies the bounds

1= \A,r^^co(a^,a-^ + d-''a^)/2
peA

> |Aa "E
pe^a

j iH[a^,.a-/])\

2 ^2.

2

\ßco(laP,,S(a-'')])j
> 4M,(Ä)2|A,r' ^(p)-'.

P^^a

Thus, taking the limit a ^ oo and rearranging gives

M(hY < 4(2n} -2
\Pi\<
\P2\<

d^pE(p]-
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To find an appropriate E one has to calculate a;([(7^, ^(0-3'^)]) and this gives

-ißcD([dld(d-p]]] = ^ß Y, 7(^,j^)(i-cosX^-y))^K< + ^M)
x,y e Aß

+ ^-S E E J(^^ y}^(<^\^l + ^l<^2} +^ßY. h(x)o,(<r\] .

-r e Afl _y 6 A^ .X E A

Hence

\im&u^-iß\^,^^(J,([äl^(a-'']])<m\\}\\p-+m\\h\\
a>oo

Combination of these results yields the bound

4(271)-^ (^^^^^d^p(m\\j\\p^+m\\h\\r
\P2\<^

M(hY <

An alternative weaker bound can be obtained by integrating over the
smaller region \p\\^ + \P2\~ ^ TI^- This, however, allows the introduction of
radial coordinates and hence one obtains

M(h]^< \4(2n)-^ r^/';^(8|j8|||7||/+4|/J|||/;||)-'l
L Jo J

= [(8|;ß||U||7r)-'log(l+2rr2||y||)/||Ä||)]''.
Hence M(h) -^ 0 äs \\h\\ -^ 0 and there is no residual magnetization in the
direction of the first axis or, by symmetry, in the plane defined by the first two
axes. A similar argument establishes that the A^-7model has no spontaneous
magnetization in one or two dimensions.
A slight modification of the proof rules out the possibility of spontaneous

magnetization of a sublattice for the general Heisenberg antiferromagnet. One

replaces A = a^ by A = a^^^ and considers the generalized magnetization

M,(h] = |A, -' ^ co(cr{)e--iPxuj^u^je
xe^a

Despite these results one should perhaps emphasize that the bound on M(h)
is rather weak. One has M(h) ^ \ log ||/z||p ^"

äs \\h\\ > 0 and all derivatives of
this bound diverge at the origin. Thus, the argument does not rule out singular
behavior of the derivatives of the magnetization,

The above argument can in certain cases be inverted and used to prove the
existence of multiple phases. The estimate

-i(o([a^,,ö(a-P)])<ap^+b
corresponds physically to a bound on the energy of excitations around equi-
librium. The behavior of this energy at zero momentum, i.e., at /> = 0, was the
critical feature that ruled out ferromagnetism. The basic idea for exploiting
infrared bounds to obtain the opposite conclusion can be outlined äs follows.

Suppose that co is a Z^'-invariant (T*,^)-KMS state for some interaction <I>
and some ß ^ U. Next, introduce the functions FA by
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FA(X) = (D(Ä^^,(Ä)}, Ae^
,

where Ä =A - co(y4)1l .
As FA is a function of positive type of the lattice Z^' it is

automatically the Fourier transform of a measure fi^ ?

FA(X)^ l d^,(p]e^P^ .

J\p\<-K

If co is not strongly clustering in space, FA will have a nonzero asymptote, for
some ^ G ^, and this will be reflected by the presence of a Dirac point measure

(5 at ;? = 0. Thus, to deduce that co is not extremal (T*^, j5)-KMS it suffices to

find an A for which this point measure occurs. Next, we remark that HA should
be related to the dynamical propagator, or Green's function, of the Hamilto-
nian determining the excitations around the equilibrium state. The variable p
corresponds to a lattice momentum and the energy of excitations should be

given by a positive function E of p. For p ^^ general dynamical reasoning
indicates that /x^(/?) ~ (ßE(p]]~^ .

The factor ß enters because the inverse

temperature determines the scale of energy. Thus, one expects

dtiAp)=c^d(p) + d^(ßE(p])-^d^'p
for c^ > 0 and J^ > 0. But one has the simple identity

(o(A*Ä)^F^(0)
= l df^Ap} = c^+^ [ d^pE(pr'

J\p\ <n P J\p\ < 71

Now suppose

/ d^'pE(p]-^ < H-oo .

J\P\<71
In this case one must have c^ > 0 for sufficiently large ß because the second
term in this identity for co(/l*J^) tends to zero äs ^ > co. Thus, the crux of this

argument is an estimate of the form

^A(p)<ßE(pr'
for some ^ G M and an E such that E~^ is integrable.

Let US examine the application of this technique to the anisotropic Hei-

senberg model with translationally invariant ferromagnetic interaction. One

expects a spontaneous magnetization at low temperature. Hence, any spin
reversal Symmetrie KMS state co should not be extremal and the above argu
ment should apply to

F,3W=co(ff<T^) .

But the Heisenberg model is a lattice analogue of a continuous System with

two-body interactions (see Notes and Remarks to Section 6.2.1). Thus for this
model one expects the low momentum relation E(p) cp^. Now E(p}~^ is

integrable at the origin for all v > 3 and hence this intuitive argument indicates
the presence of a phase transition in all dimensions greater than or equal to three.
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Although this method of infrared bounds is seductively simple in outline, it
is nonetheless difficult to apply. The necessary estimates on JLI^ are not easily
derived. Some results have been obtained through bounds on the finite-volume
Gibbs States (DA which are uniform in A. In particular, the method has been

successfully used to prove nonuniqueness of (T^, ß)-KMS states for a variety of
classical models, for the isotropic Heisenberg antiferromagnet, and the X-Y
model for spin greater than one, i.e., A/' + l > 3 and v > 3.
We conclude this subsection with a few comments on multiplicity of ex-

tremal KMS states. The only model for which much information is known is
the two-dimensional translationally invariant Ising model. In this model it is
known that there is one, and only one, extremal (T^, j5)-KMS state for all

positive ß if the external field is nonzero or for small positive ß if there is no
external üeld. Furthermore in the absence of a field there are exactly two

extremal (T^^, jS)-KMS states for ß > ß^ where ß^ is the maximum value of ß for
which uniqueness occurs. These two states are clearly translationally invariant.
In three or more dimensions the Situation for the Ising model is known to be

more complicated. There is still a unique phase at high temperature or in the

presence of an external field but at low temperatures there can be an infinite
number of phases which are not necessarily Z^'-invariant. This can be partially
understood in terms of juxtaposition in the third direction of the two two-

dimensional pure phases. Similar easily understood effects occur already for
the ground states of the one-dimensional Ising model, äs we shall see in the
next section.

6.2.7. Ground States

Ground states, or zero-temperature states, were introduced and partially
analyzed in Chapter 5, see Definition 5.3.18 and Proposition 5.3.19. These
states can be described in various ways, but physically they correspond to the

positive energy states associated with a given dynamical group T. Ground states

are sometimes referred to äs (T, +oo)-KMS states, a notation which is partially
justified by Proposition 5.3.23. This proposition establishes that the zero-

temperature limits of KMS states are ground states. Nevertheless, the set of T

ground states has afiine properties dififerent from the set of (T,^)-KMS states.

The set Ä^oo of ground states is always a face in E^i^ but it is a simplex if and

only if (^,co) is R-abelian for all co G K^, see Corollary 5.3.40. The set Kß of
KMS states at finite ßisa simplex, but it is a face in E^ if, and only if, ncoC^} is
abelian for all CD G Kß (see Remark 3 after Theorem 5.3.32). In particular, spin
Systems provide some striking examples of the differences between ground
states and finite-temperature equilibrium states.

Consider the one-dimensional quantum spin Systems with translationally
invariant nearest-neighbor ferromagnetic Ising interaction <I). This model has a

unique (T"^, ^)-KMS state cDß for all ß e U and all values of the external field,
by Theorem 6.2.47. These states are automatically /-invariant. For a nonzero
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external field the same remains true for the T^ ground states. If the field is in the

positive direction, the ground state is determined by the configuration in which

all atomic spins are positively oriented. If the field is in the negative direction,
all spins are negatively oriented. But if the external field is zero, a drastic
difference occurs. First, there are two extremal Z-invariant T^ ground states,
the states with all atoms positively, or negatively, oriented. Second, there are

an infinite number of nontranslationally invariant ground states. A typical
such State cox is determined by positive orientation of all atoms to the left of

jc G Z and negative orientation ofthose on the right.^ Thus, the multipHcity and

invariance properties of the T*^ ground states and the (i^,ß)-KMS states, even

with ß very large, can be quite different. Furthermore, the states C0;c,jc G Z, are

all extremal T* ground states which are mutually unitarily equivalent. Ex-

tremality follows from purity, and the equivalence arises because one state is

transformed into the other by reversal of a finite number of atomic spins (cf.
Corollary 5.3.40). But for j? G IR, extremal (T^, jS)-KMS states are either equal
or disjoint, by Theorem 5.3.30, and hence the equivalence is another distinctive

feature of zero temperature. Finally, an explicit calculation shows that the

finite-temperature KMS states cDß of the Ising model converge in the weak*

topology äs ß -^ oo but the limit state CD is not extremal even among the Z-

invariant ground states. It is the average of the spin up and the spin down

ground states. Thus, purity properties do not necessarily survive the zero-

temperature limit.

Despite the differences illustrated by the Ising interaction there are many
similarities between ground states and KMS states, in particular with respect
to stability. In Section 5.4 we established various forms of stability for both

types of state and we conclude this discussion of spin Systems by showing
that the ground states can be characterized by stability properties analogous
to the maximum entropy principles of Sections 6.2.3 and 6.2.4. This type
of principle was expressed äs maximality of a functional S ßH^ or,

equivalently, a functional ß~^S-H^. Thus, the zero-temperature, jö = 4-00,
analogue corresponds to maximization of //CD, i.e., minimization of the

energy functional //$. We begin with a zero temperature version of Theorem
6.2.36.

Theorem 6.2.52. Let O be an interaction ofa quantum spin System andi^ the

corresponding local automorphism group. Assume that:

(1) T^ converges strongly to an automorphism group T, i.e.,

lim ||Tf(^)-T,(^)||=0
A->00

for allAe^i and t G (R.

(2) The surface energies W^(I^) are \vell-defined elements of ^ for all

ACL.

^ It is not immediately evident that the co.x are ground states but this is an easy consequence of

the result we are about to derive, Theorem 6.2.52. See Example 6.2.56.
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(3) Ö^U^A
ACL

is a core for the generator 8 of i,

The following conditions are eqiävalent for a state CD.

(1) CO(ÄD(A)) - inf CD'(H^(A))
co'ec-

for all A c I, where H^(A) = //o(A) + ^^(A) is the conditional

energy and

C^ = {co'; co' e 21, 'lat,. = kJ
(2) CD is a i: groiind state, i.e.,

-icD(A'' d(A)) > 0

for all A eD(ö).

(3) cD(ff^(A)} < CD(T(ff^(A)}}
for all \ C L and all positive maps T : ^ ^ M vi'ith the property that
T(A) =A^oi Ae ^^c.

Remark. The remark prior to Theorem 6.2.4 is again relevant; an interaction
<!>' can always be chosen such that 3^' = d(= d^) and the W^'(\) are well
defined. Thus Assumption (2) is partially redundant. Moreover, the results of
Section 6.2.1 give various explicit conditions on <|) such that the assumptions of
the theorem are valid, e.g.,

ii*iL = E^'V^p E II*W II) <+~
^0 V-^^^,,^;, /

for some /l > 0.

PROOF. We will prove (1) ^ (3) - (2) =^ (1).
(1) ^ (3) : If r : ^r ^ ^ is a positive map with the property T(A] =A for

A e ^A^- then co' = co o T is a state in the class C^^ and hence (3) follows from (1).
(3) => (2) : This is proved in a similar fashion to the implication (1) =^ (2) of

Theorem 6.2.36.

If A = A* G ^IA, then condition (1) implies that

co(e''-^Äp(A)e-'^^) > co(H^(A))
and by diflferentiation at z^ == 0 one deduces that

co(ö(A)) = 0
.

Since D is a core for (5, the state co must be i-invariant.
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Now reconsider the operator 7^; ^i-^5I introduced prior to Theorem 5.3.15,

yB(A)=B''AB-{B''B,A}/2 .

It follows from the argument prior to Theorem 5.3.15 that t\-^Tt = exp{tyß} is a

semigroup of positive maps. Furthermore, ifB e ^A then 75(^) = 0 for^ e ^A^ and

hence Tt(A) = A. Condition (3) then implies that

co(r,(^ci>(A))) > co(fi^W)
for all ^ > 0. Therefore

ü;(7ß(Äa,(A))) > 0
.

But the T-invariance of co implies, äs in the proof of Theorem 6.2.36, that

-;w(5*5(5)) = co(ys(ff^(A)))
and hence

-ico(B*ö(B)) > 0
.

Since Z> is a core for ö, it follows that co is a T ground state.

(2) =^ (1): As there is no analogue of the Gibbs condition for ground states this

proof is quite different to the proof of the corresponding implication in Theorem

6.2.36.

We first need a result on extensions of normal states to semi-bounded

selfadjoint elements affiliated with a von Neumann algebra. The following
lemma is formulated for positive operators but it extends readily to semi-

bounded operators.

Lemma 6.2.53. Let W. be a von Neumann algebra on a Hubert space 9), A a

positive, selfadjoint operator affiliated mth 50l, co a normal state on 9Jl, and

{^n}n>i ^ sequence of vectors in such that

ö^-E^^-.' EII^"|' = I

77 > l n>\

The following conditions are equivalent:

(1) sup{a;(J5); B G äR+, 5 < ^} < + cx),

(2) ^ eD(A^I'^]for allnand

5]M^/^^J|^<-foo .

n>\

If these conditions are fulfilled, then

sup{co(5); Bem+,B<A} = Y. \\^"~^n\\^ '

n>\

Remark. Recall from Theorem 2.4.21 that if co is a normal state on 9J1, the

existence of a sequence {^n}n>\ ^^^^ ^^^ assumed properties is automatic.
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PROOF. Define

K^ - sup{cü(5); B e 9Ji+, B<A} ,

^2-5:lMV2^^Jl^
n>\

whenever, the right-hand sides exist and define K\ and K2 to be +00 otherwise.
Let /,j be the sequence of functions over [R+ given by

,. , .
( X ifO<x<n,^"W-|, ,f ^>^

and define Af, by A^ = /(^)-
It follows from Lemma 2.5.8 that fn(A) e 931 for n = 1,2, . . . ,

and by spectral
theory it follows that the quadratic forms defined by A,, converge monotonically to
the form a defined by A, i.e., if (^ G

(f A]^a(]-l^^'''^'^'''^^ if^eö(^'/2)
,(^, A^) ^ a(^) - ^ +00 if^^D(A^r-) .

Therefore

lim V(4,^^,)- E(^'^'^^-'^'^'^^-)"^^4l r^i
whenever the ^/^ e D(A^^-). (See the discussion of quadratic forms prior to Lemma

5.2.13.) Hence

K2<Ki .

But conversely if 5 6 931+ and 5 < ^ in the sense of quadratic forms, then

w(B) = ^(^,, 54) < X](^*-) = ^^2
/c > l k>\

Hence

^1 < A:2 .

This resiilt indicates a canonical way of extending normal states to semi-
bounded operators affiliated with a von Neumann algebra.

Definition 6.2.54. Adopt the assumption and notation of Lemma 6.2.53. The
extension of the normal state co to the semi-bounded operator A affiliated with
9Ji is defined by

(o(A) = sup{a)(5); B G 9JI+, B < A} .

Hence if o}(A) < +00 one has

a;(^) = ^|M'/^^||- ,

n>\

where {^n}n>\ ^^^ ^^^ representatives of co.

Next we need a result which implies that states in C^ are quasi-equivalent.



Quantum Spin Systems 343

Lemma 6.2.55. Let ^be a C*-algebra of the form

^-M(^^o ,

where M is the füll complex n x n matrix algebra and 2Io is an arbitrary C*-

algebra. Let (D\ and 0)2 be states on M such that

<^lko ^^2^0 .

It follows that (D\ and 0)2 are quasi-equivalent.

PROOF. The proof relies upon a technique similar to that used to deduce Proposi
tion 2.4.27.

Let (/, TT/, Q/) be the cyclic representations assodated with o)/, z 1,2 and define

(,7r,n)by

S=-Ö12) 71^7110712, Q = Qi0n2-

Assume, ad absurdum, that 7i\ and 712 are not quasi-equivalent. It follows readily
from Theorem 2.4.26 that one of the representations, which we may take to be TI\ ,

contains a representation which is disjoint from 712. If P is the smallest projection in

Ti\(^]" r\ Ti\(^]' containing the projection onto this subrepresentation, it follows
that the projection P00 on S = Öi2 commutes with 7r(3I)'. Hence,
P00 e 7z;(^)''n7c(^)'. The von Neumann density theorem, Corollary 2.4.15, now

implies that there exists a net A^^^ such that

n(A^] ^ P 0 0

in the strong topology. But this means that

711 (A) ^ P, 712(^)^0 ,

and hence

C0i(^) -> (Ql,Pni) ^ 0, W2(^a) ^ 0
.

The inequality follows since P G 7ri (^]" n n\ (^)', P ^ 0, and QI is cyclic for TI\ .
But

if {^/7}i</^y< are matrix units of M,
n

A^^^ E(A] = "^Eii AEii
i = \

defines a projection from 51 onto 5Io = M^ u 51. (For a similar argument see the

proof of Proposition 2.6.9.) As 711 (^a) and 7C2(^a) converge to the elements P and 0
of the Centers of 711 and 712, it follows that

n

lim Tii(E(A^]] = lim V 7r/(^yi)7i/(^a)7r/(^iy)
"^ j^\
( " ^

- ( ^ ni(Ejj] \ lim7r/(^) - \imTii(A^) = Ö^P .

\7= l /

But äs E(AO^) e ^0, we have

coi(E(A,)} = CD2(E(A,)) .

Taking the limit over a leads to the contradiction
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(a,,pn,) = o
.

Therefore 7i\ and 712 are quasi-equivalent.

ENDOF PROOFOF THEOREM 6.2.52. It remains to establish (2) ^ (1). Assume that

O) is a ground state and let CD also denote its normal extension to 5PIoj = T^(o(^T The

generator H^j of the canonical unitary group Uco which implements T on j and
leaves Q^J invariant is positive and HO, is affiliated with 9}?^,^ by Proposition 5.3.19.

Now if i/^ G D(H,,) and A G D(ö), then 7i,,(^)i// G D(H,,). Therefore,

ilH^o - 7r.(ÄD(A)), 7i,,(A)]il^ = (7i,M^}) - 7i,(ö(A)))il,
= Q

for A G ^IA and i// G /)(//,o). Thus if U^(t) = Qxp{it(H,, - 7r^(ÄD(A)))}, one has

U^(t)n,(A}U^(t}-^i^

= 7i,,(A)i^ + / / dsU^(s)[H, - 7r,,(Äi,(A)), 7l,,(^)]^AW"^A
Jo

= 7Coj(^)'A

for all ^ G ^A and i// G /)(//ro). Consequently, Uj^(t) G 7r,,(^lA)'. But if follows from
the Trotter product formula,

t/A(0 - lmjU,,(t/n)Qxp{-itn,,,(H,^(A))/n}Y
that ^AW e 7r,,(^l)^ Thus, ^yA ^ Tr^l^U)' n Tü^X^lf and //,, - 7r,,(ÄD(A)) is

affiliated with 7ioj(^A)' n 7ioj(3I)". But Lemma 2.6.8 and the argument used in the

proof of Proposition 2.6.9 imply that

TIoX^A/ ^^03W-7Ü,,(^AO'' ,

i.e., H,, - 7r,o(ÄD(A)) is affiliated with Tr^X^UO"- Now if d G C'^, it follows from

Lemma 6.2.55 that co' extends to a normal state of "JR^j and d(R,,,} may be defined.
But

^^L^^iUO" ^ ^ ^>.('^^^}"

by continuity and hence

co(H, - Äo(A)) - CD' (H,, - //ci>(A)) (*)

by the monotonic definition of CD on H^o 7if,j(ÄD(A)). Thus,

CL)'(//,, - ÄD(A)) - -co(//ci>(A)) < + 00
.

Consequently, the second characterization of CL)'(//(,J) provided by Lemma 6.2.53

implies that

to'(Äi,(A)) = co'(H,] ~ co'(H,,, - ÄD(A)) .

Finally the positivity of H^o yields

0 = co(H,,) = inf CD\H,,) . (**)
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Hence, by combination of (*) and (**) one obtains

co(Äa,(A)) - o,(H^] - CD(H^ - ^a,(A))
- inf {CD'(H^] - O}'(H^ - ^a>(A))} - inf CD'(H^(A)) '

w' 6 C'f a/ eC^

EXAMPLE 6.2.56. Let us consider the application of Theorem 6.2.52 to the one-

dimensional model with nearest-neighbor ferromagnetic Ising interaction, i.e., an

interaction which energetically favours the alignment of spins.
Since the interaction is classical, it can be argued that a state is a ground state if

and only if its restriction to the classical subalgebra is a ground state in the classical
sense (see Notes and Remarks). It is also evident that these states are characterized
by verifying condition (1) of Theorem 6.2.52 for intervals A = [a,b] c Z. But since
the only interaction is between nearest neighbors the values of co'(Äp([a,^])) for a

given state CD' on the classical algebra are governed by the orientations of the spins at

the sites {a l
, a, a + l

, . . . ,
Z? l

, Z?, Z? + 1}, i.e., the only spins external to [a, b]
which enter into the minimization problem are those at the neighboring sites a - l
and b + 1. Now there are two cases to consider, zero external magnetic field and
nonzero magnetic field.

First, assume there is a nonzero external field, then the energy contribution of the
field is minimized by aligning the spins with the field. Thus, for b - a sufficiently
large, co'(Jff(^([a,b])) is minimized by aligning all the spins, at the sites

{, fl + l, . . . ,
Z? l, Z?}, with the field. Consequently, there is a unique ground state.

This state has all the spins parallel to the external field and consequently is trans-

lationally invariant.

Second, consider the case of zero magnetic field. Now the effects of the external

Spins a - l and b + l are of greater importance in the minimization problem. There
are two basic possibilities:

(1) the Spins at a - l and Z? + l are parallel and o}'(ff^([a^ Z?])) is minimized by
arranging all the spins in [a 1,Z7 + 1] to have the same orientation;

(2) the spins ai a- l and b + l have opposite orientation and o}'(H^([a, b])) is
minimized by arranging all spins in [a l

, jc] and all spins in [jc + l
,
Z? + 1] to

be parallel for any x E [a, Z?], i.e., only the pair of spins at the neighboring
sites X and ;c + l are anti-parallel.

Thus the external ground states on the classical algebra now fall into two classes:

(1) One class consists of two translationally invariant states with all spins
parallel, either positively or negatively oriented.

(2) The second class consists of an infinite number of states in which the
translation symmetry is broken. Each state has the spins to the left of a

given site with one orientation and the spins to the right with the opposite
orientation.

The translationally invariant states describe the two possible modes of sponta-
neous magnetization. The nontranslationally invariant states illustrate a form of
phase Separation; one side of the System has a positive spontaneous magnetization
whilst the second has a negative magnetization.

Some properties of these states were discussed at the beginning of the section.
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The Ising model without external field is equivalent to a special case of the X-Y

model discussed in Examples 6.2.14A and 6.2.14B. Recall that the local X-Y

Hamiltonian is given by

H^(l-n,n]) = -jl 2 ((l +7X0-;+' +(1 -y)^X+') + 21 ^1 A
\^x = n X n j

and the Ising model corresponds to |y| = l and /l = 0. Due to the genuine quantum
nature of the Jf-7 model one would expect the multiplicity of the ground states to be

smaller than for the Ising model and this is indeed the case. The number of irre-

ducible ground state representations, up to unitary equivalence, is äs follows.

(a) l if |/l| > l, orif7 = 0,|/l| < 1.

In this case there is a unique ground state which is then automatically translation

invariant. If m > l the external field is dominant and it forces the spins to align
along the third axis. If 7 = 0 rotation around the third axis is a symmetry for the

System and this symmetry is not broken by the ground state.

(ß) 2 if|A|<l,y7^0, and(A,7)/(0,l).
In this case the external field is weak and rotation around the third axis is no

longer a symmetry. The refiection (r] -^ -crj, tr^ -^ -ff'^.o^] -^ <T], i.e., rotation by TT

around the third axis, is, however, still a symmetry. (This is the automorphism
0(1, 0) of Example 6.2.14A.) There are only two extremal ground states in this case

and they are transformed into each other by the symmetry.
(y) 4 if(l,y) = (0,l).
This is the Ising model without external field discussed above. Two of the four

representations correspond to the two translationally invariant ground states in class

(1) above whilst the other two correspond to the two classes of non-translationally
invariant states in class (2). Each of the extremal ground states in each of the two

latter classes can be obtained from one of the others by translation composed with
certain inner automorphisms defined by a local unitary. Since the state and the

transformed state only diflfer at a finite number of sites the associated representations
are unitarily equivalent.

If cp is an extremal ground state for the Jf-7 model, define locally perturbed states

by

(pß(A) = (p(B'^AB)/cp(B^B)

for all A,B ^^^ with (p(B*B) > 0. Then the state has the return to equihbrium
property,

lim (pB('^t(^)) ^ ^(^)
/ ^ 00

for all A,B ^ Ul^, if and only if the parameters (y, 1) are in the region in which the

ground state is unique, i.e., if and only if (a) is satisfied.

Recall that all these one-dimensional models with short ränge interaction have a

unique (T, j5)-KMS state for finite ß by Theorem 6.2.47. Using the twisted asymptotic
abelianness property described in Example 6.2.14B, which is valid in cases (a) and

(ß), together with extremality one can establish that all these finite temperature states

have the property of return to equilibrium.

We conclude with a discussion of Z^'-invariant interactions and /^'-invariant

ground states. Our aim is to characterize the latter by a minimum energy per
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unit volume criterion, i.e., to derive an analogue of the equivalence (1) <^ (3)
in Theorem 6.2.42.

First, recall that the mean energy H^ of each Z^-invariant interaction O was

defined äs an affine, weak*-continuous functional over the Z^'-invariant states

"!', in Proposition 6.2.39, under the mild assumption that

m = ^^^<^<^^
A'90

One has

//.(co) = ^ co(g'W)

;.30 W

and hence |//(i)(co)| < ||O|| for all co G E^ .
Let 33 again denote the Danach space

of Z^-invariant interactions equipped with the foregoing norm and define the

functional ^e^^ //((D) G [-||O||, ||O||] by

//((D) - inf //$(co) .

e 4^

It follows immediately that O G H-> //(O) is concave. But

//((D)= inf {//xp(a;)+//a)-^(co)}
O) e E^J

< inf {H^(co)^ ||(D-'||}-//(^) + ||)-^|| .

coeE^

Hence, by interchange of O and ^ one obtains

\H(^)-H(^}\ <||0-T||,
and in particular H is continuous. The energy function H is the zero-tem-

perature analogue of the thermodynamic free energy discussed in Theorem

6.2.40. This is made more precise by the following proposition which is not

essential for the sequel.

Proposition 6.2.57. Let 23 denote the Banach space of f-invariant inter

actions with norm

^m^)\\
;.BO 1^1

11^11 = E^7^<+--

Let O H-> F(^) denote the thermodynamic free energy

F(<D)= lim l
A ---> oo

and O 1-^ H(^) the mean energy

F(0)= lim |A"Mog Tr^Je-^^^^))
A ---> oo

-^^--kj;:^
^ X3Q

It follows that
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//(O)) = lim (-ß-^F(ß^))
ß ^ OG

for all ^ eB.

PROOF. From Theorem 6.2.40

F(ß^)= sup {S(co) - ßH^(co)} .

co e 4"

Now for each ß > 0, choose an coß such that the supremum is attained. This is
possible because iS" - ßH(^ is upper semi-continuous. Now choose a sequence jß,, such
that -ß~^F(ßj^^) converges and a subsequence n' such that coß^, converges in the
weak* topology to a state co.

By continuity of //$ one has
lim H^(coß ,} = H(^(co} .

n' > oo
"

But

-ß-,^F(ß,^)~H,,(wß^,)\ = ß',^S(wß^,) < ß~,^\og(N+l) ,

and hence

lim -ß-^F(ß<i>) = H^(w) .

> 00

But äs the mean entropy S is positive

-ß-^F(ß^)<H^(co')
for all co' e E^ .

This implies that

lim -ß~^F(ß^^) = inf H<^(co) = H(^) .

tj-^cG we^f

Thus, all limit points of -ß~^F(ß^) are equal to H(^) äs ß ^ OG. Hence the limit
exists and is equal to H(^).

The zero-temperature analogue of Theorem 6.2.42 is derived by the same

arguments used to prove (3) => (1) in this theorem coupled with the previous
stability result, Theorem 6.2.52.

Theorem 6.2.58. Let ^ be a f-invariant interaction such that

m, = Y,mx)\\e^\^\< +^
X 30

for some /l > 0 and let T^ denote the associated dynamical group.
If 0} is a f-invariant state the follomng are equivalent:

(1) co is ßT^ groiind state.

(2) co minimizes H(^.

PROOF. (1) => (2): Let co be a Z^-invariant T^ ground state. Theorem 6.2.52 implies
that

CO(^CD(A)) < co'(Äo(A))



Quantum Spin Systems 349

for all c/y e O'^. Now let a G E^^ and define co' by

oJ = (j|,i^ 0 oj .1^^. .

co(Äi>(A)) < oy(Äi>(A)) .

But äs //CD (A) = //(I) (A) + ?f"ci){A) and fT(//ci)(A)) -: oy(//ci)(A)), this gives

oX//(i,(A)) < ö-(//ci,(A)) +oy(^ci>(A)) - c/j(J'Fci)(A))
<a(//o(A))+2p^ci>(A)||.

Now we already observed in the proof of Theorem 6.2.42 that ||?'f''(D(A)||/|A| ^ 0 äs

A -> oo. Hence, dividing both sides of the last relation by |A| and taking the limit

A > oo yields

//ci)(oj) < //O(CT) .

Thus

//ci,(cü) - inf //ci)((j)=//(0) .

a e ,;

(2) =^ (1): The proof of this implication is a repetition of the convexity argument
used to prove (3) =^ (1) in Theorem 6.2.42. One simply replaces the free energy F(^)
by the mean energy -//(>).

The foregoing theorems give general characterizations of ground states and

invariant ground states but in particular models one can give a much more

detailed and precise description. In Example 6.2.56 we described all ground
states of the one-dimensional ferromagnetic Ising and Jf-F models and we end

this discussion of spin Systems with some comments on the translationally
invariant ground states of the one-dimensional ferromagnetic Heisenberg
model. If there is a nonzero external magnetic field, it follows from Theorem

6.2.52, by the argument used for the Ising model in Example 6.2.56, that there

is a unique ground state and this state is translationally invariant. If, on the

other liand, there is no external field, then there exists a continuum of invariant

ground states. Bach of these states is a product state in which all the spins are

parallel but there is a continuum of possible orientations. Let us briefly de-

scribe one of these states and the corresponding dynamics.
We consider the state co determined by the configuration in which all spins

are down and we begin by describing the associated representation (^^j, TÜ^J, ^oj)
but, for notational simplicity, we drop the symbol TT^,;, i.e., we identify n(,j(A}
and A. Since all spins are down the cyclic vector Q^j is a simultaneous eigen-
function of all the cr^, .x G Z, with eigenvalue 1. Next reintroduce the spin
raising and lowering operators cf^ = (er] (T\)/2 of Example 6.2.13. One has

[4,<^3]-T24, K,<rL] = a-^
and the a corresponding to different x, j G Z mutually commute. It follows

readily that (f^_^,o = 0, for all z G Z, and the vectors \X} deüned by \0} = ü,
and
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W- n<
\x^X

form an orthonormal basis of ^. This basis was used earlier in the proof of
Theorem 6.2.48. Thus if ^^ denotes the subspace spanned by the vectors

{\X)]X C Z,\X\ =n} one has

. - © öL'^
n>0

The vector Q^o describes the configuration with all spins down and the vectors

in ^^^ correspond to configurations in which exactly n spins are up. Note that
the representation (^, TT^J, Q^) is analogous to the Fock representation of the
CCR and CAR algebras described in Chapter 5 with the spin raising and

lowering operators repladng the particle creation and annihilation operators,
the n-spin subspaces ^^ replacing the n-particle subspaces, and the raised

spins analogous to the particles. Analysis of the Heisenberg dynamics exploits
this analogy and interprets the raised spins äs some form of quasi-particle.
These quasi-particles are usually referred to äs spin waves or spin excitations,

The dynamical group T corresponding to the Heisenberg dynamics is re-

presented on ^ by

A^it(A]=e^'^-Ae-^^^- ,

where the selfadjoint Hamiltonian /4j is defined äs the direct sum

// = //w

of bounded selfadjoint Hamiltonians H^' whose action on 9)^^ is given by

E'Hl^^\X} = -jY{a^-<f^^-^)\X).

(The infinite sum causes no difficulty since the a at different points commute

and (ö^ . (T^+i - 1])|0) - 0. Moreover, //i"^ > 0 for / > 0 because ^ - (f - a^+^
has eigenvalues 0 and 4.) The action o^H^^ is particularly simple. One has

/4^)|x)^[/4^<]|0)
--2J+^-2(r; + (r;-^)|0)
--2J(|x+l)-2|x) + |x-l)) ,

i.e., H^^ acts üke a multiple of a double difference operator. Hence, the evo-

lution of the one spin vectors, i.e., the elements of ^^\ is a lattice analogue of
the free evolution of point particles discussed on Fock space in Chapter 5. In

particular if / G ^^(Z) and

^+(/)= E/w<'
,TeZ

one calculates by Fourier transformation that
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where

e''^"'<T+(/)|0) = X" a+(/)|0) = cT+(/,)|0)

f,(x)= Y,G,(x-y)f(y]
yel

and

/ITT

Gt(x]=^r dOe^^^^^-^'^^^

Thus the one-spin evolution is a free motion with lattice momentum ö G [0, 2n]
and a corresponding energy 4J(1 - cosö). Comparison with Example 6.2.14
shows that this is essentially the evolution of the Ä'-Fmodel with an additional

energy 4y contributed by the Ising interaction. The evolution of the multispin
States is more complex but can be thought of äs a free evolution stemming from
the X-Y contribution to the Hamiltonian together with a spin interaction

arising from the Ising contribution. Adopting this point of view one defines a

free multispin evolution ? G IR f-^ t/^P by setting

f/<T+(/(')) . . . C7+(/W)|0) = a+(/(") . . . <T+(/("))|0) ,

where t \-^ f^ is the one-spin evolution introduced above and Uf is extended

by linearity. One then exploits scattering theory methods to obtain properties
of the Heisenberg evolution Ut Qxp{itH(,o} by reference to the free evolution

Uf. Both groups describe the total evolution of complexes of spin excitations

together with the relative motion of these excitations. The Ising contribution to

//co appears äs an interaction between the various excitations. This interaction
leads to a variety of phenomena, binding of two or more spin excitations,
scattering of bound or unbound complexes, etc. We will not enter into more

details of the mathematical description of these problems but remark that the

physical picture of spin excitations, or spin waves, has been fruitful both

conceptually and analytically. For example, the realization that H(^ describes
an Overall free motion of a System of interacting spin waves indicates that H(o
has absolutely continuous spectrum, on the orthogonal complement of O^;.
This has indeed been verified (see Notes and Remarks) and consequently

lim (iA,e^'''>)-((p,Qc.)(ßa.,(p)
\t\-^oo

for all (p, i^ G öc^. Alternatively stated,

lim o}(AT:t(B]) = (D(A)o}(B)
\t\-^oo

for all A and B in the spin algebra, i.e., the ground state CD is strongly mixing in
the sense of Chapter 4.

Despite a great deal of analysis of the translationally invariant ground states

of the Heisenberg model, little attention has apparently been paid to the ex-

amination of nontranslationally invariant states and even a proof of existence
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or absence of such states appears to be lacking. If one considers the state co

determined by the configuration in which all spins to the left of 0 G Z are down
and the 0 spin and all spins to the right of 0 are up, then this state is not a

ground state of the Heisenberg dynamics but is a ground state for the dynamics
obtained by removing the interaction between the Oth spin and the Ist spin.
Since this interaction is given by a bounded element of the spin algebra, one

can use the perturbation techniques developed in Chapter 5, e.g., Corollary
5.4.2, to deduce that the füll Heisenberg dynamics is covariantly implemented
in the representation (,^,7üaj,Ocü), i.e., there is a selfadjoint operator HO, such
that

7i,,(i,(A}} = e^^^-n,,(Ä)e-^^^- ,

where T denotes the Heisenberg group. Since H^o is constructed äs a bounded

perturbation of the positive ground-state Hamiltonian of the decoupled Sys
tems one deduces that Hf^ is lower semi-bounded. In fact H^o may be explicitly
computed. The state co has the form ^^EZ^PX where cp^ = (p__ for ;c < 0 and

(Px = 9+ for X >Q, The corresponding representation space is the incomplete
tensor product

r^-^.xez(C-,Q,0 .

NOW the nearest neighbor operator D - (f - (f^^ has eigenvalues 0 and 4 on

C" (g) C" and the operator is in fact 4P_ where P_ is the orthogonal projection
onto the antisymmetric subspace of C^ 0 C^. Thus the formal Hamiltonian,
i.e., the sum of the translates of the l - (f^.cf''^^, converges on the set of vectors

differing from the reference vector <^x^x at only a finite number of sites. (On
the reference vector itself, except at the kink jc = 0, -l, one obtains zero.) This

space is a core for H.o^ Thus H^j expressed in this form is positive. But H^o does
not have zero äs an eigenvalue because the corresponding vector would have to

minimize each single term of the interaction and thus be permutation invariant.
But zero is the infimum of the spectrum of //^j. To deduce this consider product
vectors coinciding with Q_ on the left of a finite set of 7V consecutive points,
with O+ to the right of the set and rotating through an angle n/N between

neighboring points of the set. The contribution to the energy of two neigh-
boring points is proportional to sin^(7i;/7V). Hence the total energy is propor
tional to Nsirr(7i/N} which tends to zero äs A^ ^ oo. This argument indicates
that there may not be any non-translationally invariant ground states for the
one-dimensional Heisenberg ferromagnet.



6.3. Continuous Quantum Systems. II

Quantum spin Systems give a relatively simple explanation of the most im-

portant magnetic phenomena. In Section 6.2.2 we demonstrated that the Ising
model exhibits ferromagnetic behavior if the interparticle forces favor spin
alignment and antiferromagnetic behavior if it is energetically more favorable
to have anti-parallel neighboring spins. If one reinterprets this model in the

lattice gas language described at the beginning of Section 6.2.1, one obtains a

rudimentary description of liquid-gas and solid-liquid phase transitions. In this

language a positively oriented spin corresponds to a lattice point occupied by a

particle and a negatively oriented spin corresponds to an unoccupied site.

Thus, the ferromagnetic phenomenon, the favoring of large blocks of parallel
spins, can be interpreted äs the formation of large blocks of occupied sites,
"liquid droplets," interspersed between large blocks of empty sites, "gaseous
regions." On the other hand, anti-ferromagnetism corresponds to the forma
tion of a periodic structure in which one sublattice is occupied by particles and
the other sublattice is empty. Thus, one obtains a primitive version of crys-
talline structure. Note that the ferromagnetic case corresponds to an attractive
interaction between neighboring particles while the anti-ferromagnetic case

corresponds to repulsive forces.
It is widely beheved that a more reaHstic and detailed description of the

solid-liquid-gas transitions should be obtainable from analysis of continuous
models with interparticle interactions which are partly attractive and partly
repulsive. Unfortunately, there are few rigorous results to substantiate this
belief. Typical interatomic, or intermolecular, forces are attractive at large
distances and repulsive at short distances. Thus, it is plausible to suppose that
at low densities, for which the interparticle spacing is on average large, the
attractive forces would give rise to the formation of hquid droplets in the
manner observed for the lattice gas. Alternatively, at high densities for which
the interparticle spacing is small one could well expect the interparticle re-

pulsion to force the formation of a periodic, or crystalline, structure. Un

fortunately, one is far from a quantitative justification of these simple
quahtative ideas. In fact, the only transition phenomenon which has been

rigorously derived for nonrelativistic continuous particle Systems of the type we
consider is the Bose-Einstein condensation of the noninteracting Böse gas. This

was described in detail in Chapter 5, Section 5. It is an effect of quantum
statistics and not of particle interaction. It is believed that this type of con-
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densation will still prevail in interacting Systems and that it is directly related to

another important physical effect, superfluidity. Unfortunately even the ex-

istence of Bose-Einstein condensation in interacting Systems has resisted proof.
Thus, the rigorous theory of equilibrium states of continuous Systems is much
less complete than the corresponding theory for spin Systems. Nevertheless,
some results are known about existence of equilibrium states at high tem-

peratures and low densities. The purpose of this section is to partially review
these results and some of the new methods which have been used to obtain
them.

In Section 5.2 we studied the equilibrium states of quantum Systems of

noninteracting point particles in R^. The description of the Fermi gas was

particularly simple because the time development is given by a strongly con

tinuous one-parameter group of *-automorphisms T of the CAR algebra and
the Gibbs equilibrium states coincide with the (T,^)-KMS states where

ß G [Ru{it 00} is the inverse temperature. These states are readily computable,
see Examples 5.3.2 and 5.3.20, and one finds that there is a unique equilibrium
State for each ß. The Situation for the noninteracting Böse gas was much more

complex because the time development is given by a discontinuous group of

*-automorphisms T of the CCR algebra. To make global Statements about the
set of equilibrium states (see Example 5.3.2), it was necessary to impose some

extra continuity conditions. Within this framework, however, the equilibrium
states once more correspond to the (T, jß)-KMS states. Moreover, no KMS
State occurs for ß < 0, there is a unique KMS state for ß = 0, and non-

uniqueness arises if ß > Q. This nonuniqueness corresponds to the Bose-Ein
stein condensation.

The Situation for interacting quantum Systems is certainly much more

complex. First, no global Statement of the time development äs a group of

*-automorphisms of an appropriate C*-algebra has been obtained and, second,
there are plausible physical reasons for believing that such a development, if it

existed, would be discontinuous in the norm topology. The problem is that a

norm-continuous time development would imply that every state of the System
evolves continuously throughout time. Nevertheless, one can easily envisage
states for which discontinuous phenomena occur after a finite time, e.g., states

for which an arbitrarily large local density or an arbitrarily large local accu-

mulation of energy occurs. Thus, in this respect the noninteracting Fermi gas
appears to be atypical.

These problems with the time development can be partially circumvented by
using the thermodynamic limit procedures employed in Theorems 5.2.24 and
5.2.32 and the associated remarks. The idea is to examine the limits of the
finite-volume Gibbs states and the associated time-dependent Green's func-
tions. If 60A denotes the Gibbs state of a noninteracting gas in the bounded set

A, 0) an infinite-volume limit, T^ the local time development, and T the corre

sponding thermodynamic limit, then we established that the Green's functions

co(ÄQ^t,(A,) -ijA)) = lim COA(^O<(^I) -^f (A))
A > 00

"
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exist for all AQ,. . . ,A ^^ and t\,. . . ,tn ^^. Now if one considers interacting
particles, then it is possible to examine the thermodynamic Green's functions

and to obtain some Information about equilibrium phenomena and the time

development of states near equilibrium. We will discuss these questions in more

detail in Section 6.3.3. Prior to this however we discuss the general definition of

the interacting System and its equilibrium states. We also introduce and analyze
various functional integration techniques which are of great use for the analysis
of these states.

6.3.1. The Local Hamiltonians

We first discuss the existence of dynamics and the Gibbs equilibrium states for

Systems of interacting particles confined to a bounded open subset A of the

configuration space R^. Since the discussions of the Fermi gas and the Böse gas

are very similar, we treat the two cases simultaneously. For simplicity we

consider identical spinless particles although there is no difficulty in principle in

considering several species of particle or particles with spin but with spin-
independent interactions.

Let L^(^Y denote the subspaces of Z^(A") formed by the totally Symmetrie
(plus sign) and totally anti-symmetric (minus sign) functions of n variables

X G A. These Hubert spaces describe the quantum states of n point particles
obeying Böse statistics (plus sign) or Fermi statistics (minus sign). The asso-

ciated Fock spaces

5(A) = 0l2(A)'^
n>Q

describe the states of an arbitrary number of particles (for more details see

Section 5.2.1 and in particular Example 5.2.1). Next let ^(A) denote the CCR

algebra (plus sign) and the CAR algebra (minus sign) over the one-particle
space Z/^(A). The action of these algebras on 5_^(A) is described and discussed

in Section 5.2.

The time evolution T^ of a System of noninteracting particles is a one-

Parameter group of *-automorphisms of ^(A) implemented by a unitary
group

t^Qxp{itdr(TJ^^)},
where TJ^^ is a selfadjoint extension of the Laplacian -V^ on CQ(A). One can

consider a wide variety of T)^^ corresponding to different boundary conditions,
i.e., corresponding to different dynamical behavior of the particles at the

boundary 9A of A, but for simplicity we restrict our attention to the classical

boundary conditions described in Example 5.2.26. In particular we now use

T^ l to denote the selfadjoint extension of V- corresponding to the conditions

d\l//dn = ffil/ where a G C^(9A) and we assume that the boundary 9A of A is

piecewise differentiable. Moreover, we also assume that er is non-negative and
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this ensures that T^ ^ > 0. This last result is an easy consequence of the
quadratic form characterization of r^^| given in Example 5.2.26, i.e., for

Aez)(r(;))
(^,T(>)= l dx\V^(x)\^+ l dxa(x)\^l>(x)\^

JA JöA

>0
.

Finally, we let T^^^ denote the selfadjoint extension of V^ corresponding to
the Dirichlet boundary condition i/^ = 0 on 9A. For this latter extension it is
not necessary to assume smoothness of 9A.

Next define, T^^A by

r,,A = jr(r^;^)
and let

T-^A = T-S
>0

be the decomposition of T^^A corresponding to the direct sum decomposition of

g^(A) into the 77-particle subspaces L^(A)^, i.e., T^^]^ is the restriction of T^^/^ to

l2(A)^. Alternatively stated, T^^^^ is the restriction to I"(A)^ of the closure of
the operator.

(rf^^i 0 n (g) (g) n) + (D (g) r^l^ (g) - (8) n) + + (n (g) n 0 0 r^|j)
acting on L^(A.Y. Thus, r["| is the non-negative selfadjoint operator associated
with the positive closed quadratic form defined by

.()
- /-) l o(^)

V,A
~ ^0,A ~^ ^(7,A '

where

fi('/') = [ dx,...dxY^ |(V,,(xi, . . . ,x)p ,
-'A"

,= 1

4"i('/') = ^ [dx,... f dXi... [dx (T(^,)I'A(^1> . . - ,^)P ,

^=1 JA JöA JA

and D(r"\} consists of the (l/ G ^^(A) ^ for which each derivative lies in Z^(A)^.
The fact that ^^"]^ is a positive form is evident from the assumption er > 0 but it
requires some work to prove that it is closed. In the case l, this is a

Standard result of partial differential equations that we already mentioned in
Example 5.2.26. The argument for general n is very similar and we omit the
details.

Next, we wish to introduce particle interactions by the addition of an op
erator corresponding to the potential energy. Thus we try to define a selfadjoint
Hamiltonian.

ff
ff, A

= ^ff,A + ^A
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and then the evolution of an observable A E M(A) is defined by

Tf(^) = e^^ff^A^e~^tffa,^
_

We will only consider interactions coming from potentials and hence the

number of particles is conserved. Thus, the total Hamiltonian has a decom-

position

^^.A = e<i
>o

in terms of -particle Hamiltonians //^"| on L^(A)^. These latter operators
have the form

rr()
_ j^(n} , r An]

^t7,A - ^f7,A + ^A '

where the interaction operator UJ^^ is an operator of multiplication,

(t/i"V)(^i,...,^)-^^"H^i,...,^)^(^b..-,^)
by a real function whose values U^"\xi,. . . ,Xn) correspond to the potential
energy of n particles at the points jci,jc2, . . . ,jc. Note that for t/^"^ to preserve
the symmetry, or anti-symmetry, properties of the elements in L^(^Y^ it is

necessary that it is a totally Symmetrie function i.e.,

^(")(xi,...,x,)-t/(")(^,(i),...,x,(,))
for all jc/ e K" and all permutations TT of {l, 2, . . . , TI}.

In Order to be more precise in this formulation one must consider several

different details. It is necessary that //^^A is selfadjoint and for this one must

specify the interaction U^"^ and the meaning of the sum T^"\ + U^^^ in such a

way that //;"| is selfadjoint. One must also clarify the meaning of the infinite

direct sum of the selfadjoint //^"l- This latter point is, however, straightfor-
ward.

Let {//^"^}^j> j
be an infinite sequence of selfadjoint operators with domains

{)(//("))}>! in the Hubert spaces {^"^}>i. We define the infinite direct sum

H^@ //()
n>l

by

/)(//) = 1.A = {^()} >,;,/.() D(//W), 53 ||//("V'">||'<+oo|
l >i J

and

//lA = {//("V*"' l
l J n>l

for il/ = {jA^"^}> l ^ ^W- It follows that H is selfadjoint. To deduce this, first

remark that H is obviously a densely defined Symmetrie operator. But the

graph of H is closed by the Standard argument that proves that the infinite
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direct sum of Hubert spaces is complete. Thus, H is closed. Finally, the ränge
of 11] - // is equal to for each A G C\R because R(n - //('^)) = ^"^ for each
;?, i.e.,

R(1^-H)= @R(^^-H^''^) = 0^"^- .

n>\ // > l

This establishes the selfadjointness of the direct sum. Hence, the initial problem
of existence of dynamics is reduced to the discussion of selfadjointness of the n-

particle Hamiltonians ^^''|.
There is a wide variety of methods for defining Hamiltonians of the type

under consideration and studying their selfadjointness, e.g., quadratic-form
techniques, pointwise positivity arguments, perturbation theory, and func-
tional integration. Each method has its own peculiar advantages and the ap-
propriateness of any given technique is governed by the properties of the
interaction in question and the specific problem under consideration. In the
remainder of this section we discuss various aspects of the selfadjointness
problem for the //^'^| by use of form techniques and perturbation theory. In the
subsequent description of equihbrium states, it is however more appropriate to
define the Hamiltonian by an implicit functional integration technique. Under
suitable restrictions on the interaction these methods all lead to the same

Hamiltonian and one can then pass from one method to the other. This will be
discussed in the next section but first it is necessary to be more specific con-

cerning the interaction.
The most commonly studied interactions are those that arise from trans-

lationally invariant two-body potentials. A two body potentiell i^ a real function
> over R^' x [R^ whose values <!)(x\,X2) represent the potential energy of in
teraction between a particle at the point x\ and a second particle at the point X2.
Thus, the total interaction energy of n particles at the points xi,.T2, . . . ,;c is
given by

f/(")(xi,...,^,)- E ^(^-^y).
l <i<j<n

Note that the symmetry of U^^^^ is reflected by the symmetry property

^(Xi.Xj) =^(xj,Xi)
of ). The Potential is said to be translationally invariant if <I>(x/, Xj] is a function
of the interparticle position xt -xj. Thus a translationally invariant two-body
Potential is a real Symmetrie function O over U^' and the associated interaction
energy U^"'^ is given by

t/W(x,,...,X)= ^ ^(Xi-Xj).
\<i<J<n

The total interaction energy is then formally given by

U^=- dx^ / dx2^(xi -X2}a*(xi}a''(x2)a(x2)a(xi) ,^ JA JA
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where we use the notation of Example 5.2.1. Similarly, one can define a

(translationally invariant) k-body potential äs a real-valued totally Symmetrie
function O^^^ over (R^)^ (invariant under simultaneous translations of all k

variables in R^') and then

rr()/,., .,
\
_ >P Y^ (^(^^(x- X- )U \X\^ . . . ^Xn) / ^ / ^

^ V-^/n 5-^/A-;
A: = l l <n </2 <-<ik<n

The sequence O = {^^^^}^^> i
is the analogue of the interactions introduced for

quantum spin Systems.
Note that there is a converse to the above construction, If one is given a

sequence U = {^^"^},j>i of real totally Symmetrie functions U^"'^ over (U^')"
representing the interaction energies, then one may introduce Ä:-body potentials
by recursion, e.g.,

^(^\x) = U^^\x} ,

0(2) (;Ci, X2) = t/(')(%l, X2} - U^^\X,) - U^^\X2) ,

etc.

A typical translationally invariant two-body potential which occurs in

atomic and molecular physics is the Lennard-Jones potential

^(^^=Rf^-7^'
where 0,6 > 0. The positive term a/\x\^^ predominates when two atoms are

dose, i.e., when \x\ is small, and this corresponds to a repulsive force arising
from the interaction of the atomic nuclei. The negative term b/\x\^ pre
dominates at large interatomic spacing and this corresponds to an attractive

force originating in the electrostatic interaction of the charged subatomic

particles which build the atom. This attraction at large distances is called the

van der Waal's force. The principle features of this potential which we abstract

in the following are that it is lower semi-bounded and locally integrable away
from the origin.

The lower-semi-boundedness property is of importance because it allows the

application of quadratic form techniques in the definition of the local Ha-

miltonians //^"|. There are however important physical potentials which do not

have this property. The Coulomb potential between two particles with charges
Ci, Cj, at the points jc/, Xj, G (R^ is given by

%(x,--x,)=r-^
|A/

and this can be arbitrarily negative if the charges are of the opposite sign.
Nevertheless, effects of this kind can be handled by perturbation techniques.
First, however, let us consider the lower-semi-bounded case.

Throughout the sequel it is of importance to recall that there is a one-to-one

correspondence between positive selfadjoint operators T on the Hubert space
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and positive, densely defined, closed, quadratic forms t. This correspondence
is given by

^(^) = ||r'/2^f
with D(t) =Z)(r^/^). Furthermore, by the addition of a constant multiple of
the identity H this correspondence may be extended to a correspondence be-
tween lower-semi-bounded T, and lower-semi-bounded t, i.e., if T > -cH, then
the correspondence is given by

t(^] = \\(T+c^Y'^m^-cm'
withZ)(/) =/)((r-hc1])^/") and one has t> -c.

We define a lower-semi-bounded interaction energy to be a real-valued totally
Symmetrie function U^""^ of n variables in (R^ satisfying the two conditions.

(1) f/("H^b ^^n) >-Cn for some c^ > 0 and all xi, . . . ,x G R\
(2) t/(") G L\^^(W\Sn) where iS is a closed set of Lebesgue measure zero.

If the constant c can be chosen to be zero, we call U^''^ a positive interaction
Note that the second condition means

/J^i...^^|t/(^)(xi,...,z,)|<+^
JK

for each compact subset K c IR^^ViS. The set S
n
allows possible singularities in

the interaction potential. For example, the interaction energy arising from the
Lennard - Jones potential satisfies these conditions with

S^ {(jci , . . . ,x); jc/ G [R^ and jc/ = jc/ for some / ^ j} .

The requirement that Sn should have Lebesgue measure zero excludes particles
with hard cores. As the inclusion of hard cores entails additional discussion of
the boundary conditions imposed upon the cores we have made the restriction
on Sn to avoid irrelevant details. In fact, the discussion of hard-core particles is
easier in some respects than the discussion of point particles because the hard
core prevents a large number of particles collapsing into a small volume.

Next we associate to each lower-semi-bounded interaction energy U ^"^ and
each A c R^ a selfadjoint interaction operator L^^"^ by use of the quadratic-
form techniques described above and in Section 5.2.3. First, define the quad
ratic form

U^^\^}= l dx,,..dXnU^''\X,,,..,Xn)\^l^(x,,...,Xn)\^
JA"

where the domain D(u\^) of the form consists of all ij/ G ^"(A)^ for which the

integral is finite. This form is lower semi-bounded, w^^ ><:, and closed. But
it is also densely defined since D(u^^^) contains all bounded functions with
compact Support in ([R^"\5')nA". Thus, there exists a lower-semi-bounded

selfadjoint operator f/|"^ > -cj such thatD(w^"^) = Z)((t/^"^ +cj)^/^) and

4^^W-ll(< + -J)^/Vf--
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We refer to U^^^^ äs the interaction operator .
It is the operator of multiplication

by t/^"^ on L^(A)^. Now we can define a total Hamiltonian by summing
quadratic forms.

First, note that the sum of two lower-semi-bounded closed quadratic forms

is automatically lower semi-bounded and closed. Thus, if v^\ denotes the po
sitive closed quadratic form associated with the noninteracting Hamiltonian

T^^\, then the sum

^(n] _^(n] , (n]
'^a,^ v,A ^ "A

is lower semi-bounded and closed. But it is also densely defined because its

domain contains the once continuously differentiable functions with compact
Support in ([R^"\iS')nA'^. Thus, h"^\ also determines a lower-semi-bounded

selfadjoint operator W^\ > c1l in the canonical fashion. This Hamiltonian

operator H^^\ is called the form sum of T^"^ and [/^"^ and we write

L/W
_

T(") _L r/^")
^(T,A ^ff,A + ^A

The form sum differs in general from the operator sum. In the case at hand

it could well occur that D(T^"l) n Z)(t/^"^) is empty and hence the operator
sum would have no nonzero vector in its domain of definition. To ensure that

the operator sum is densely defined it is necessary to place more stringent
restrictions on U^^\ Then it is often possible to prove equality of the two types
of sum. For example, if U^"'> e L^(A.Y and f/^") > 0, one can establish that

r["| -f U^^^ is essentially selfadjoint on C(A'^) n Z)(r^,A) and hence the form

sum and the (closure of the) operator sum coincide. (See Notes and Remarks.)
In Section 3.1.4 we considered relatively bounded perturbations of gen-

erators of semigroups and in the present context we specialize to perturbations
of a selfadjoint operator. Let 5 be a selfadjoint operator and P a closed

Symmetrie operator on the Hubert space , then P is defined to be relatively
bounded with respect to S, or S-bounded, if D(S) c D(P} and

\\Pi^\\<am^b\\Si^\\
for all \l/ e D(S) and for some a, Z? > 0. The relative bound of P with respect to

S is the infimum over all b for which a bound of this type is valid. It is now an

easy consequence of Theorem 3.1.32 that 5 + P is selfadjoint whenever the

relative bound is less than one, i.e., the above inequality is vaUd with b < l.

Moreover, if S > 0, then S + P is lower semi-bounded. This follows from the

perturbation series definition of the resolvent of 5' + P,

(^ + P + al)-^-(5 + al)-^^(-P(^ + al)-^)"
>o

for a > 0, and the relative bound which gives

||P(5-f a1l)~^|| <Z7 + fl/a .

Thus, one has convergence of the perturbation series for all sufiiciently large a.
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Now let US consider interaction operators Uf^'' of multiplication by real
functions U^'^^ on L-(A) ^^, If t/|"^ is relatively bounded with respect to TQ^'^V, i.e.,

\\u^^\^\\ < alliAIK^IlrgiAll,
then by choosing i/^ to be a constant one deduces that t/^''^ G L-(A)'_]_. Similarly,
if Uj('^ is bounded with respect to one of the other classical kinetic energy
operators 7;"]^, it is certainly square integrable in compact subsets of the in-
terior of A". Thus, some form of square integrability is necessary for the L^|"^ to

be relatively bounded by the T^^\, but no sufficient conditions appear to be
known. It is possible, for translationally invariant two-body interactions in low
dimensions, that square integrability is both necessary and sufficient for re

lative boundedness with respect to the Neumann operator. This is indicated by
the following.

Proposition 6.3.1. Let U/^, where A C IR^', be an operator ofmultiplication by
a real function U on L^(A), i.e., (Uj\il/)(x} = U(x)ili(x).

If v < 3 then the following conditions are equivalent:

(1) ueL^(^).
(2) U/, is T^Q^l-botmded.
(3) t/A is TQ l -bounded with relative boiind zero.

PROOF. Condition (3) obviously implies (2) and this latter implies (1) by the pre-
ceding discussion. Thus, it remains to prove that (1) => (3).

If l// e C^(A), then

||t/AiA||<||^||. supl^WI.
,TeA

Next let {jA/}/>i denote a complete orthonormal family of eigenfunctions of T^^
with corresponding eigenvalues {fi/}/>i. One has

'AW = E7TioA"(4'i + i)'A)
^.>l/ + a

for each a > 0. Therefore,

'^.c^:hAwP<Eäii(4A+i)'/'iP
;it(e/+r

by the Cauchy-Schwarz inequality. Thus

l|t/AlM|<C||[/A||,(||l/'|| + |i<'],AII),
where

c-supfvI'^'-Wl""'^oi ^up l ^ ^^A\f^,(8,+a)-
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This inequality immediately extends to all of D(TQJ^) by closure. Thus,

D(TQ^\) ^ D(U^), if Ca < + cxD, and the proof is complete if one can show that

Q > 0 äs a -^ CXD.

This last point is particularly easy for special choices of A, e.g., parallelepipeds,
spheres, etc., because the ij/f and e/ can be explicitly computed. To handle the general
case we remark that

Er^=r^^'5^-''>o,A(.,.;,
f^(/ + a)- 7o

where p(^^\(x,y]ß] denotes the kernel of the semigroup ß i-^ expl-^r^^}. But it is

known^ that there exist positive constants c^ and c'f^ such that

0 < po,A(x,x;js) <4"r"+tf
for all jc A and hence one estimates that c ^ 0 äs a ^ oo.

This result does not immediately extend to all classical boundary conditions,

e.g., for Dirichlet boundary conditions it is possible for U to have a singularity
on the boundary 9A of A. Nevertheless the same argument shows that

U G ^^(A) is sufficient for ^A to be r[^]^-bounded with relative bound zero.

Now let US return to the discussion of /i-particle Hamiltonians.

One can now define more general interaction Hamiltonians by combination

of the two foregoing techniques. If U^ is a 7"^'^^ relatively bounded interaction

with relative bound less than one and if V^ is a lower-semi-bounded inter

action defined by form methods, then one can introduce a selfadjoint total

Hamiltonian

L7('0
_

/ 7-('0 , T j(n] \ \ TAn]^a,A - (VA + ^A ^ + ^A

by first taking the operator sum of T^'^^ and U^^^^ and subsequently the form

sum with F|"- .
For this it is important that T^J^\ -\- U^^' is lower semi-bounded

and D(T^'\ + U^^^) = D(T^'\]. This last property ensures that the form sum is

densely defined.

It is possible to introduce more general Hamiltonians by use of additional

techniques such äs relatively bounded forms, etc., but for brevity we restrict

ourselves to the above class.

Selfadjointness of each H
/. ensures that the total Hamiltonian^(7,A
" -

'^ ^.A//.,A-@^'"^
/z>0

is selfadjoint and this is sufficient to define the time development of each

observable A G ^(A). It is not however sufficient for defining the local Gibbs

equilibrium state. For this it is necessary that exp{-j5(//(7,A /IA^A)} is of

trace-class^ for a sufficiently large set of values of j5 > 0 and /x G [R. Hence it is

^For more details on this and related semigroups see Section 6.3.2, in particular Theorem 6.3.8,
and the references cited in the corresponding Notes and Remarks.

'^Here we have reintroduced the number operator N/^ on Fock space. Since A^A is a direct sum of

multiples l of the identity l on Z.^(A)'_J_ the sum Ha,\ IJ.N\ is automatically selfadjoint.
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at least necessary that //^^A i.iN\ is, lower semi-bounded. But this does not
follow from our present assumptions on the interaction. Although each H^'^\ is
bounded below, the direct sum could fall to be semi-bounded if the bounds c^H
on H^^\ are not suificiently uniform. In a physically stable System one expects
the energy per particle to be bounded below since if no such bound existed, the
System would collapse into a bound state with large negative energy. Thus one

expects

^i1 > -Bn^
(7, /

for some ^ > 0, or, equivalently,

H,,A > -BN^ .

Since the kinetic energy T^^A is positive, this stability condition would be en-

sured if the interaction satisfied the conditions

U^"\x,,...,xn}>-Bn
for all 77 = 1,2, . . . ,

and all x/ E U\ Interactions with this property are called
stable interactions.

The simplest type of stable interactions arise from positive potentials but
there also many interactions with partially negative potentials which are

nevertheless stable.

EXAMPLE 6.3.2. Assume the interaction [/^"^ is defined by a translationally in
variant two-body interaction potential >, i,e.,

[/(")(X1,...,^)^ ^ ^(Xi-Xj],
l <i<j<n

and that > is bounded below. Furthermore, assume there exist numbers 0 < öi < 2
and positive decreasing functions <I>i and O2, on (0,ai) and (fl2,oo), respectively,
such that

/'öl rOO

/ dt^^(ty-^ = +00, / dt^2(tY-^ < +00
.

70 Ja2

If

(D(.T) > a)](W) forW<ai
and

)(.T) > -^2(\A} foi-|x| > 2 ,

then t/^"^ is stable. In fact, more is true. The interaction is siiperstable in the sense
that if A is a cube of sufficiently large volume |A| and .TI , . . . ,Xn G A, then

9

U(^^\x,,...,Xn)>C^-Bn
where 5, C > 0. (See Notes and Remarks.)

One important interaction (for several species of particles) which is not
stable is the Coulomb interaction. Consider a System of particles with charges
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Ci = 1 and for simplicity assume it is neutral, i.e., the total Charge
e\ + e2-\ h ^,z is zero. Then the Coulomb interaction

r/Wfv-, ., \ - V" ^' ^^
U 1,^1, ... ,^n) / ^ Iv

_ v l
l</<y<J-^' ^J\

is not Stahle. Nevertheless, quantum statistics can ensure that the total

Hamiltonian is stable. This is the case, for example, if all the negatively
charged particles satisfy Fermi statistics. (See Notes and Remarks.) In

classical statistical mechanics the Situation is somewhat different and stabi-

lity is essentially a necessary and sufficient condition for the existence of the

Gibbs formalism.

EXAMPLE 6.3.3. Let f/^") be the interaction energy arising from a translationally
invariant two-body potential O which is upper semi-continuous. The following
conditions are equivalent:

(1) (D is stable.

(2) Z ;'^i ^y ^1 <I>(^/ - ^j] > 0 for all n > l and all ;ci , . . . , jc 6 IR'
.

(3) The classical partition function

SA = l -i-Y.-^ l ^^^ ' "^^" exp{-^[/(")(xi, . . . ,xn}}
>] JA"

converges for all z > 0, j5 > 0, and all bounded regions A.

Stability of the interaction is sufficient for the existence of the local Gibbs

States äs a consequence of the results of Section 5.2 and the following minimax

principle.

Proposition 6.3.4. Let t be a densely defined, closed, lo\ver-semi-bounded

quadraticform and let T be the associated selfadjoint operator. Further, let D

be a core of t andfor every finite-dimensional subspace M C D define

X(M] ^ sup t(\lj]
,AeM,||iA|hl

andfor every integer m < l define

).,n ^ inf /l(M) .

dimMm

It follo\vs that Xni ^ oo äs m ^ oo if and only if the spectrum ofT consists

of discrete eigenvalues offinite multiplicity and each eigenvahie is isolated in

the Spectrum of T, In this case the eigenvalues are given in increasing order,
repeated according to multiplicity, by the A,.

This is a basically Standard result in operator theory whose proof we omit

(see Notes and Remarks). It does have many interesting applications. For

example, if t\ and t^ are two forms of the kind considered in the proposition
and )i.\^ and /l^^ the corresponding numbers defined by the minimax principle.
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then t i > t2 implies that X^^ > 1^^ and in particular if /l^^ ^ oo, then 1^^ -^ oo.

NOW if TI and T2 are the selfadjoint operators associated with ti and ti, the
condition t\ > t^ corresponds to TI > T2 and to prove that T\ has purely dis-
crete spectrum with finite multiplicity it suffices to prove the same property for
T2. In fact, more is tme. If exp{-^r2} is of trace-class for some ß > Q, then

Qxp{-ßTi} is of trace-class and

Tr(^-^^0 = ^ e-ß^->'' < Y, ^"^''" = Tr(^-^^^) .

m > l m>\

Now utilizing the minimax principle together with Propositions 5.2.22 and

5.2.27 and the fact that exp{-jS T^^^} is trace-class for all /? > 0 one obtains the

following result.

Proposition 6.3.5. Let

<l-(7^S + f^r) + <'
be a selfadjoint Hamiltonian constriicted from a T^\ -bounded interaction

U^ ,
with relative boiind less than one, and a lower-semi-boiinded interaction

F|"\ Assume that U^^^^ + F^'^^ is stähle, i.e., for all n > l and Xi G R'

finite multiplicity and

U(^^\x,,,,.,Xn]-^V^^^\x,,...,Xn]>-Bn.
r(n]
^(T,AIt follows that the spectrum of H^\ consists of discrete eigenvalues with

A,(<i) > i,(r(5)-5
for m = 1,2..., where {lf,i(X)}^^^^^ denotes the eigenvalues ofX in increasing
Order and repeated according to multiplicity.

In particular exp{ß(Hff^^ i-iN\)} is of trace-class for all ß > 0 and all

/( G [R for Fermi statistics, and all /.i < B for Böse statistics.

6.3.2. The Wiener Integral

The Wiener integral, äs we shall use it, is a technical tool to prove the existence
of thermodynamic limit fimctions, but it has its origin in attempts to imderstand
Brownian motion. Brownian motion is the thermal motion of very small
particles immersed in a heat bath. If p(x, t) is the density of particles at the
point X G IR^' at time /, it is well known that p is governed by the diffusion
eqiiation

9p ^2
ä7

= ^^

(in suitable units). If the initial density distribution x -^ p(x^ 0) is given (and is
sufficiently tempered äs \x\ -^ oo), this equation has a uniqiie solution for all
/ > 0 given by
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p(x,t) = j dy p(x,y',t)p(y,Q) ,

where

;7(^,y;0-(47rO-^'/VI'^->'l'/^^ .

We use the convention p(x, y] 0) = ö(x y], where d is the Dirac measure. It

follows that if a Brownian particle Starts at a point y at time /o, then

p(x, y] t - tQ}dx
is the probabiHty that the particle will be in the volume element dx near .Y at

time t > tQ. The philosophy behind the Wiener integral is that the particle in

moving from y to :^ must have followed a continuous trajectory, and therefore
there should be a probability measure jj,^~y^ on the set Q.x,y of continuous

trajectories starting at y at time ^ and ending at x at time r, such that //^"J'^
applied to some subset K of Q.X y gives the probability that the particle has

followed one of the trajectories in K. In the following paragraphs we will show
that modulo the problem of giving Q.X, y (or a related set) a reasonable Borel

structure such a measure exists.

By translation invariance it is enough to consider ^ = 0 and with sub-

sequent applications in mind we set t = ß. For technical reasons we will assume
that the orbits are functions from [0, j8] into [R^ where U^' is the one-point
compactification of [R^'. At the outset we put no continuity restrictions on the

trajectories, i.e., we take

Q^ = X ^" = (^''f'^^
0<t<ß

äs our space of trajectories, or paths. (A posteriori the Wiener measures will be

supported on "nice " subsets of Q^, see Theorem 6.3.6.) Equip Q^ with the

product topology, i.e., the topology of pointwise convergence, then ^ß is a

compact Hausdorff space by the Tychonoff theorem. Obviously, Q^ is so large
a space that not all Borel sets are Baire. We shall define yU'f äs a Baire measure

on Q^, and hence by the discussion at the beginning of Section 4.1.2, it is

enough to define ^LI'^ äs a Radon measure.

We first define ^|; ^,
on a special *-subalgebra Cfin(O/?) of the C*-algebra

C(^ß) of continuous functions on Q^. This algebra^ consists of functions of
the form

Cü6%^ q)((D) =F(o}(ti},o}(t2),...,a}(t,n))
where 0 < ^i < 6 < < ^^ < ^ are fixed real numbers, and F: (Ü'')'" i-^ C is a

continuous function. Thus (p is a continuous function on Q.ß by the definition
of the product topology. In evaluating ^^^y((p) it is useful to notice that if

Ki,K2, . . . , A:, are Borel subsets of U\ then

^The siiflfix fin is an abbreviation for finite. This nomenclature is apposite since each function

(p ^ Cfm(^ß) depends only on a finite number of points (jo(ti) on the paths.
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r r

dy l -"l p(x,xi;t\)p(x\,X2]t2-ti)
JK,n JKi

' p(Xm-\,Xm] tm - tm-\] p(Xm, y] ß - ti)dxi . . . dx^

is the probability that a Brownian particle starting at x at time ^ = 0 is in the set

KI at time ti for all / = l, 2, . . . ,
m and is in the volume element dy around y at

time ß, The following definition of f-i^^y((p) is therefore perfectly natural.
r r

Mfv(^)=/ / ^(^i,...,^m)j^(^, ^i; ^i)j^(^i,^2; ^2-^1)
jr Jr

p(x,n-l,XrJ^] t^ - tjn-\] p(Xm, y] ß - t^}dxi dx^ -

Now i^i^^y((p) is independent of the particular representation used for cp because

if, for example, F does not depend on Xk one can use the semigroup property of
the Solutions to the diffusion equation,

JR^'
p(xk-\,Xk] tk - tk-\)p(xk,Xk+\] 4+1 - tk]dxk

= p(xk-\,Xk+\] 4'+i - tk-\) ,

to integrate out the variable Xk^ Thus yuf^ is a well-defined linear functional on

C'fin(^^)- Using the semigroup property just mentioned on all the variables

^1, ... ^Xm one immediately derives the estimate

I<,(<P)I < p(x,y;ß)\\F\\^ = P(x.y. ||<p|L ,

i.e., 1.1^^ y is bounded with norm less than or equal to p(x, y, ß). But the Stone-
Weierstrass theorem implies that Cfin(n/?) is a norm-dense subalgebra of

C(O^), and hence ^f extends by continuity to a Radon measure on C(Q^).
Since ÜA^f ,^|| < p(x,y]ß) and l^i^^y(^) = p(^->y'^ ß) it follows from Proposition
2.3.11 that yLi^^ is a positive Radon measure. Finally, by the Riesz re

presentation theorem, there exists a regulär Borel measure, also denoted by
/.(^

y
on Q^, such that

^^X-p) = / <?'(">)^<j
jQfl

(co)

for all (j) G C(Q^). The measure //f
^

is called the conditional Wiener measure on

^<^-
The qualification conditional in the definition of i^i^

^
stems from the spe-

cification that a path starting at x at time 0 shall end in y at time ß. Alter-

natively one could place no restriction on the path at time ß, i.e., one could
consider the compact space

0^ X ^' ^(t^'f^^^ ,

r>o

and if cp e C(Q) is a function of the form

q)(cD)=F(cD(t^],CD(t2),...,o:>(tm]] ,

where F : (IR^)'" f^ C is continuous and 0 < /^i < 6 < < ^m, one may de-
fine
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Mx(<P) = / " / F(x\,...,Xm)p(x,OC\\ti]p(x\,X2\t2-ti)
Jr 7r

p(Xm-\,Xn,]tn, - tm-\)dXidX2 - dx^

This time ^x extends by continuity to a Radon probability measure on C(Q),
and the associated regulär Borel measure is called a Wiener measure. If ^ is a

Borel subset, //;^.(^) is the probability that a particle starting at x at time zero

shall follow one of the trajectories in K. If /i.^ is restricted to C(^ß) in the
obvious way, one clearly has the connection

^x(9) = / l^ly(9}dy
JR^'

for all (p e C(Q.ß). This corresponds to the fact that a path starting at x at time
zero has to end up somewhere at time ß.

It is well known in the elementary theory for Brownian motion that if a

particle is at the point x at the time zero, then its mean distance from x at time
^ > 0 is proportional to ^^/^. This indicates that the Wiener measures should be

supported on continuous paths, and even paths which are Holder continuous
of Order less than |. Recall that a mapping co : [0, CXD) i> IR^' is said to be Holder
continuous of order a,0 < a < l, if for all w > 0 there exists an M > 0 such
that

o}(s) - o}(t}\ <M\s-t'', Q<s,t<m .

Let Q!^ be the set of such paths in Q and Q^ the set of such paths in Q^. The

following theorem states that the Wiener measure really can be viewed äs a

measure on continuous trajectories.

Theorem 6.3.6 For 0 < a < l the set Q!^ ofHolder continuous paths of order
a is a Borel subset ofQ. and Q^ is a Borel subset ofQ.ß.

//"O < a < ^, then ^^(0.^) = l for all x e R\ If^< oc < l, then /i^(Q^) = 0

for allx e IR^. Furthermore, IJL^ is supported by the paths co such that co(0) = x.

//"O < a <i, then

^I^M} = p(^^y'^ß}

for allx.y e R' and ß > 0, and ?/| < a < l, then A^f J^) = 0. Furthermore,
ß ....

...
. ,-.

^y p

x,yILL^ is supported by the paths co(0) x and co(ß] y.

PROOF. See Notes and Remarks.

The main reason for introducing the Wiener measure, from a statistical
mechanics point of view, is that one can derive an integral formula for the

semigroup

ß^ exp{-jS(-V2 + ^)} ,
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where V" is the selfadjoint Laplacian operator on Z.-([R^') and [/ is a siiffi-

ciently well behaved real function. This formula is usually referred to äs the

Feynman-Kac formula and it is a consequence of the Trotter product formula
of Corollary 3.1.31. It is very convenient in making estimates on the kernel of
the semigroup.

Theorem 6.3.7 Let t/, V be operators of multiplication by real fiinctions on

L"([R^'). Assiime that U is relatively bounded by the selfadjoint Laplacian
operators HQ = V^, mth relative bound b < l, and that V ^ L\^^(R^') is
bounded belovv. If

H = (HQ^U) + F

then^

(e-^^i^}(x)= /^Ai,(co)exp(- / dt[U(o3(t]) ^ V(com]i^(co(ß}}
JQ l Jo J

= [ dy f J/((\,Hexp{- / dt[U(cß(t})^V(cD(t))]]i^(y} .

jr J^ß '' l Jo J

PROOF. We begin by proving the first Statement of the theorem with U and V

replaced by real bounded continuous functions and then we make a series of ap-
proximation arguments to obtain the general case. The second Statement then fol-
lows because

^(.,((p) = / dyi.il^,((p)
Jr

and /if
^,

is supported by trajectories co such that o}(ß) = y.
Let H = HQ + W where /^ is a real bounded continuous function. Consequently,

the Trotter product formula

e-l>",^ = lim (e-/'e-/'>')"V
m * cxo

is valid, Corollary 3.1.31. But by successive use of

e-f^^^/"\p(x)= l dypUy-^cp(y]
Jw \ mj

and

(e-^^^/'W-ß-^^^WA,^(;,)

^Strictly speaking the expression

rßf dt[U(co(t)) + y(co(t))]
Jo

does not make sense for a general co e üß. Since, however, the Wiener measures are supported by
Holder continuous paths, the expression can be defined for almost every co E O/j and the integrals
in the formulas should be interpreted äs integrals over H where 0 < a < ^
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one obtains

((e-ß^^h^^e-ß^'-T^|J](x]=| dx,--^ [ d^^p(x^x^-^]
J J \ ^J

( ß\ f ß\ l ^ß^(^j}\,^ ^
X plx,n,x^-i]-\ "'p{x2,xi',-]exp4 "2^ ^r^^^^v mj \ mj ^ ^.^j

m j
r ( R J^ f //?A\ l

=y^^rf^,(c.)exp|-|;;r(^a)(^^jj UH^)) .

Now by passing to a subsequence one may assume that the left-hand side converges
almost everywhere to Qxp{ßH}il/. Moreover, if co is a continuous path

o ni / / R '\ \ rß
lim ^V^fcof^))- / dtW((D(t')].
m-oomfr-f V \^JJ Jo

But for each x almost all (with respect to ^^) paths are continuous by Theorem 6.3.6

and hence

f R J!L /Rj\ l ( rß
lim Qxp{-^yw(f^]}il^(cD(ß))=Qxp\-
m-.oo ^1 m^^ V'^/J l 7o

dt W(cD(t)) ^l^(co(ß))
JQ

pointwise almost everywhere on Q". Furthermore,

/ c//.exp|-^X^fF(^)U(co(^))
-'0' (^ j-\ V''^/ J

<g/'nioo l dn^((ü)\ijt((a(ß])\

= el^\m\(e-^"^\^\)(x)

= e^\\^H^Tißr'^ l dy e-(^-y^"l^^\il>(y)\
/ f , \ '/2

< e''ll"'ll~(47r/?)-"/2( / c/>' e-'---'')-/^/'^

= el^\m-2-^l^m<+oo
for all jc. Therefore,

lim /c//z,Hexp|-^fFf^U,A(W)
'"^007 1^ mj^ V'"/J

= y"rf/i,(a;)exp|-^ fF(ß)(0)|^(a;(ß))
by the Lebesgue-dominated convergence theorem and the proof is finished for the

special case of a bounded continuous interaction.
Next we remove the continuity assumption.
Suppose 1^ e L([R^') and that W

n
is a sequence of continuous functions such that

Wn(^]\ < ll^lloo a^^ ^n(x] -> W(x) pointwise almost everywhere. Then W,, -^ ^ in

the strong operator topology by the Lebesgue-dominated convergence theorem.

Thus, //o + ^ is the graph limit of the sequence of operators HQ + Wn and it follows
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from Theorem 3.1.28 that the Q-semigroups ß > Q^-^ Qxp{-ß(HQ -\- W^)} converge
strongly to ^ > 0 ^ exp{ß(//o -\- W}}. Hence by passing to a subsequence one may
assume that (exp{-^(//o + ^n)}'A)W converges pointwise almost everywhere to

(exp{-^(//o + W)}il/)(x). But by the previous argument the Feynman-Kac formula
is valid for the HQ 4- Wn and, äs Wn(x) -^ W(x) pointwise almost everywhere it fol-
lows for almost all oj e Q.^ that Wn(cjo(t)) -^ W(co(t)) pointwise almost everywhere in
t. Therefore, since the Wn and W are uniformly bounded, one may apply the previous
argument based on the Lebesgue-dominated convergence theorem to deduce that

lim /^Ai,Hexp|-/ dt Wn(cD(t))}il,(co(ß))
"^^Jü ' l JO J

= /^/^Hexpj- / dt W(co(t)}]i^(aj(ß)})
J^ l JO J

and the proof is complete for W eL'^(U").
Now each //o-bounded U is locally square integrable because for each A c !R^ one

may find a i// 6 Cg^([R'') such that i//(x) = l for .T G A and hence

( [ dx\U(x)A ~<\\Ui^\\<a\\
V^A /

\+b\\H,il

Therefore one may introduce a double sequence of approximants U^^ m G I^(R^) by

Un^ m(x) = mm(U(x),n) if U(x) > 0
,

= max(t/(x), -m) if U(x) < 0
.

It immediately follows that || [/,, i// - ?7i/^|| -^ 0 for all il/ eC^(U'). But Cg(lR') is a
core of HQ and hence by the relative boundedness of t/ it is a core for HQ -^ U -{- W
where W G L([R'). Consequently HQ + U,,, m + W converges in the graph limit to

HQ -\- U -\- W and the convergence of the corresponding semigroups follows from
Theorem 3.1.28. But the Feynman-Kac formula is valid for the potentials Un^m + W
and the right-hand side of this formula converges to the appropriate expression with
U -\- W by the previous arguments concerning the continuous paths in Q.^. Here one

uses the Lebesgue-dominated convergence theorem to control the limit n ^ oo and
the monotone convergence theorem to control the limit m ^ oo.

Thus by the previous argument one has the desired result for U -\- W.
Now since V G ^/^^([R'') and K is lower semi-bounded, there exists a sequence

Wn G 1*^(5^'') such that W,, is monotonically increasing and Wn(x) > V(x) almost
everywhere. But it then follows from Lemmas 5.2.13 and 5.2.25 that the Q-semi-
groups ß > O^^Qxp{-ß(HQ + U + Wfi)} converge strongly to the Q-semigroup
ß > Q\-^Qxp{-ß(HQ + U) 4- K)}. Thus the general Feynman-Kac formula follows
by repetition of the previous arguments.

So far, we have developed the theory of the Wiener measure and the
Feynman-Kac formula only for the infinite-volume Laplacian V~. In order
to apply the theory to finite-volume Gibbs states and their thermodynamic
limits, one has to develop the corresponding concepts for the finite volume
Laplacians T^\- The theory for T^ ^^

follows from the theory for T^ '^ and the
tensor product structure. Thus we concentrate on T^ ^.

Consider the diffusion equation
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^ - V^, ^ > 0, X G A
,

with boundary condition

^(^,0 ^C7(x)p(x,t), t>Q, xedA

(which is interpreted äs p(x, ^) := 0 in the case a = oo) and with initial condition

p(x,Q)=f(x}

where, for example, / G ^^(A). This equation has the unique solution

p(x,0 = (e-'^-^/m ^ l p.^^(x,y'J]f(y]dy ,

J^

The function p^^^ is the kernel of the semigroup ?i-^exp{?r^ j^} and it is

usually called the Green function for the problem. It has the following prop-
erties

(1) Positivity conservation:

Pa^^(x,y]t] >0

for ^ > 0, jc, ;; G A.

(2) Semigroup property:

/ pa,\(^,y]t]pa^\(y,z]s]dy = pa^\(x,z]t-]-s) .

JA

(3) Contraction property:

/ P^.^(^^y\t]dy< l
J\

for ;c G A, / > 0, with equality if and only if d == 0 (Neumann
boundary conditions).

(4) Monotonicity in boundary conditions:
If ö-i(jc) < 0*2 (jc) for all jc G (9A, then

P<y^,^(^^y^t] > p^,^(x,y]t)
for all JC, y G A, ^ > 0.

Now once again let

p(x,j;0 = (47rO-"/VI^--''l>
be the Green's function for the whole space and define the compensating Green

function z^^ A by
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^(T,A (x, y]t) = p(x, y]t)- p^^ A(X, y ; 0
for jc, j; G A, / > 0. This difference z^-^ A describes how the free diffusion process
is affected by the introduction of boundary conditions. One would expect
Z^^A(JC, y]t) to be small when x and y are far from the boundary 9A and this is
corroborated by the following result.

Theorem 6.3.8. For each ß > 0 there exist constants C,c' ,c" > 0 such that

kA(^,y;OI < Cp(x,y',t/c']Q^p[-c"d(y,d\]~/4t]
for all x,y A, 0 < t < ß, vvhere d(y, 9A) is the distance from y to 9A.
Fiirthermore, the constants C, c' and c" can be chosen to be independent of the

fiinction er > 0, and they are independent ö/A in the sense that ifR > 0, then
there exist constants /l>0, C>0,c>0 such that for every bounded convex

domain A C [R^, whose boundary ÖA is a C^-surface of mean curvatiire less
than \IR, the folloK^ng ineqiiality holds

,y;0| < C^^V-^'/'exp{-(c(J(;c,^A)- + J(y,ÖA)')/4^} .Fff,A(-^

PROOF. We will only prove this result in the simple case of Dirichlet boundary
conditions, i.e., er = oo. In this case, if y G A is fixed, x, /^^ZQO, A^^, JF;0 =^(^Tt) is

nothing but the solution of the diffusion equation

^-V-z, jcGA,/>0,
dt

with initial condition

z(x,0) = 0, .T G A

and boundary condition

z(x, t] = p(x, y- 1), xedA,t>0 .

Hence, by the maximum principle,

0 < z(x,t) < sup p(x',y]i:) < sup (47iT)~'/'e-^^^>''^^)'/^^
.

0<T<r 0<T<?
x' &0/\

But the function

T^(47ÜT)-^'/'e-^'/^^
is increasing with T when 0 < T < d^/2v and hence

0 < z^,A(;c,j;;0 < (47iO"^'/'e-^^-^''^^^'/''
for 0 < ^ < d~/2v. If, however, t > d~/2v, we can use the positivity of /?CO,A to

conclude that

0 < Zoo,ACT,j^;0 < p(x,y]t)
< (4ntr"^'< (^ntr''-e-^(y^^^^"'^^e'''^-

.
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Hence, in all cases

0 < z^,f,(x,y;t] < e^/2(47rr)-''/2e-''(^'^^)V* .

The last estimate in the theorem now follows because

Zoo,^(x,y\t)=z^^^(y,x]t) forall^,7eA .

One can construct functional measures corresponding to the transition

probabilities pa^\ in almost exactly the same manner äs the Wiener measures

were constructed from p.
The trajectory space will be

ÜA.,= X Ä=(Ä)M-
0<T<j3

where A is the closure of A. Again QA,JS is compact in the product topology.
One next defines a positive Radon measure /^J'^'^ on C(Q./^^ß) by first defining it
on functions (p of the form

(p(co)-F(co(^l),Co(^2),...,Co(^m)) ,

where F : (Ä)'" i-^ C is continuous and 0 < ^i < ^2 < < ^/ < ^ by

/^'t^(^)-^ / l F(x,,...,Xm]p,^^(x,Xl',t,]
JA JA

X /'(7,A(^l,^2 ;^2 - ^l) " Pa,\(Xm-\,Xm',tn, - ^^_i)
X Pa,\(Xm ,y\ß- tm)dx\ . . . dXm -

The Riesz theorem then assures the existence of a unique regulär Borel measure

)Uj;^'^ on QA,^ such that

^^:\^y^(9] = l ^H^/^:;^'
JD.^.B

co)
l \ / ' A , _y ^

A,/?

It follows from the monotonicity of p^^ A in ö" (property (4)) and the defi-
nition of /ij'^'^ that the functional measures are monotonic in the boundary
conditions, i.e.,

0 < ö"! < (T2 < +CO

implies that

^oc.^A,/!(5) < ;,-^^A,^(5) < ^'/'''(Ä) < /l;^'^(5)
for all Borel sets B C.Q./^^ß.

One can prove the analogue of Theorem 6.3.6 for the measures /^J;^'^, i.e.,
these measures are supported by the set of Holder continuous paths of order a

if 0 < a < ^ and the set of Holder continuous paths of order a has measure zero

ifi<a< 1.

We next discuss the physical interpretation of the various boundary con

ditions and how they influence the functional measures. Dirichlet boundary
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conditions, a = oc, give rise to Solutions p of the diffusion equation with

p(x, /) = 0 for X in the boundary 9A. In the context of Brownian motion this
means that a particle which hits the boundary is immediately absorbed or

annihilated. This interpretation will be corroborated in a precise mathematical

way in Corollary 6.3.10. In the context of heat flow, Dirichlet boundary con

ditions mean that the medium outside A is at temperature zero and absorbs all
heat reaching the boundary. Therefore, 0- = cx) corresponds to completely ab-

sorptive boundary conditions, This is also reflected in the fact that the solution

p(jc, t) tends to zero, uniformly in jc, äs ^ ^ oo.

Neumann boundary conditions, er = 0, give rise to Solutions p of the dif
fusion equation with dp/dn = 0 at the boundary (9A. In the context of
Brownian motion this can be interpreted äs stating that any particle which hits
the boundary is reflected into A again, with the result that the gradient of the

particle density normal to the boundary is zero. For heat flow this corresponds
to a completely reflecting boundary condition. The intermediary cases

0 < (T < co correspond to semi-reflecting, semi-absorbing boundary condi

tions, i.e., more and more particles are absorbed at the boundary with in-

creasing er.

In the context of quantum mechanics, Dirichlet boundary conditions have a

completely difl'erent interpretation, while the interpretation of Neumann

boundary conditions is the same. The diflusion equation is replaced by the

Schrödinger equation

f =-^*

on I/^(A), with the appropriate boundary condition, and this equation de-
scribes the motion of a noninteracting quantum-mechanical particle confined
to A. If \lj(x, 0) = f(x) the equation has the unique solution

^(x,0 = (e-'<V)W
and if ||/|| = \\\l/\\ = l, the measure x G Ai-^ |i/^(jc, ^)|"^jc describes the prob-
ability that the particle is in the volume element dx, located at the point x, at

time t. In particular, the eigenfunctions of T^ \ describe the stationary stable

States of the particle, i.e., \il/(x,t)\^ = \f(x)\^. But for Dirichlet boundary
conditions these latter states attribute a relatively small probability of flnding
the particle near the boundary of A, while the total probability of Unding the

particle somewhere in A remains constant, i.e., the boundary is repulsive. If on
the other hand one has Neumann boundary conditions, then there is no effect
of exclusion near the boundaries. In fact, the state corresponding to the lowest

eigenvalue (lowest energy) has a constant eigenfunction and there is equi-
probability for flnding the particle near any given point, i.e., the boundaries are

perfectly elastic. This interpretation is corroborated by examination of the

boundary conditions d\l//dn = (Ji/^. The parameter a is related to the elasticity
of the boundaries with positive values corresponding to repulsion and negative
values corresponding to attraction. For example, if er is sufliciently negative.
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then T^ j^ has eigenfunctions with negative eigenvalues (negative energies)
which describe bound states in which the particle is dose to the boundary with

large probability.
If these interpretations of the boundary condition are correct, then they

really are conditions at the boundary, i.e., a Brownian particle moving inside A
without hitting 9A should not "feel" the effect of the boundary conditions. The

following theorem gives a precise mathematical Statement of this fact.
Define a function ÄA on QA,^ by

^ ^ fl if co(0 GAforalUG [0,jS]
aA(co) = <

l 0 otherwise
.

Since the Wiener measure ^uf
^
and the finite-volume Wiener measures /ij'^'^

are all supported by continuous trajectories, it follows that the function A is
measurable with respect to these measures (although not a Borel function). We
emphasize that aA is different from a^.

Theorem 6.3.9. The identity

/aAH^/x^'^'^M^ /aA(a;y//,^
JB JB

is validfor all Borel sets B C^/^j

PROOF. Consider first the case B = ^A,/?. Let K^ c A be a sequence of compact sets

such that Kn is contained in the interior of K^+i for n = 1,2, ...
and U^ ^ ^

Define functions OLK- ^ß "-^ {0, 1} by

a^fco)^/! ^f coWe/: foralUG[0,^]
"^ ^ \0 otherwise.

If co is a continuous trajectory which does not touch ÖA, then CD ([Q,ß]) is a

compact subset of A, and hence contained in some ÄT .
It follows that

lim a/-^(co) = c(.\((jo)
nCG

for 1^^. y- and ;uj'()'^-almost all co G ^A,^- In view of the Lebesgue-dominated con-

vergence theorem it is therefore sufficient to show that

/ a^(coy//^'^'/^(a;):= / a^(a;y^f^,H
^^A,/? '

J^ß

for all compact ÄT c A. Let d be the distance between K and ÖA; d > Q by com-

pactness. Let n > l and

4=;^, . = 0,1,...,+1.

Define

an(co) ^ <^ l if o}(tk) G ^ for all Ä: - 0, l, ... ,71 + l
0 otherwise.

Then lima(a;) = (^K(O)) for almost all co, with respect to the functional measures.

We compute
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/ a,(co)^<';^'^(co) = / dxi---dxnllp,^^(xM^Xk-^
Jü^,p "' JK" /L-^O V ^+^

= dx\---dXnY\\ p\ ^k+\ , ^k ; -JK^ /=oV V

ß

+ 1

ß

2a,^\^k+\, Xk]
n +

f / ß \
= l dxi---dXn\\^p(:)Ck-^\,Xk]^^-A + Rn

= / a.H^A^f ,H+^ ,

JO/;

where XQ = x, x+i = y, and we must show that lim Rn = ^

But Rn is a sum of 2""^' l terms of the form

/ dx^---d^nQ ,

.//:"

where Q is a product of k+\ factors Z^^^A and n- k factors p, and
k ^ {0, 1,2, ... ,n}. Taking moduli of the factors in Q, extending to R'' all integrals
which do not involve z^^^A-factors and using the semigroup property of p, this term

will be majorized by an integral containing ^+1 factors Z^^A! and at most k -^2
factors p. By the first inequality in Theorem 6.3.8 the Z^.A! factors are dominated by
expressions of the form

r^ ( ß \ ^ d-(n^\]Cp[xi^,,xr^ ,,/, ,Jexp<^-c^^
c'(n + \])-^\ 4ß

Hence using the estimate

P(^,y;t) <c'-^'/-p(x,y;-^^
which is valid for 0 < c' < l, extending the integrals to all of IR'', using the semi

group property of p, and counting terms one obtains

l. . -".(-^ ?) ^..^^m:^ [---{- ^}l"
= .--,(,,.)([,.C.-..e.p(-.ä^}]"'-,).^^0,

This ends the proof in the case 5 = QA,/?-
IfB c HA, ß is an arbitrary Borel set, there is a sequence of functions in C^^n(^A,ß)

converging to the characteristic function of B, and it is sufficient to prove

/ c/)(co)c^A(co)^MJ:^'^(a;) - / c/^HaAH^/^f. ,,(co)
jQAj; " J>ß

for (p G Cfinl^A,^)- But (p has the form

(p(a}) =F(cü(ti),...,a}(t:)) ,
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where F : (IR')"' t^ C is continuous, and 0 < ^i < ^2 < ^m < ß- It follows from the

first part of the proof that

/ (^(co)aA(co)JA^;'^'^(co)
J^^,ß

= l dx,...dx,nF(x,,...,Xm] [ aA(a)i )W^J'^;^> (coi )
JA"- J^A,,,

X / aA(a;2y/^:;V''K)"- / aAK, + iy/iJ^y-^'"(co,,+i)
^^^,l2-<\ ' " '^^^,ß-'m

= l dxi...dx,F(xi,...,x^) l cf.^((Di)d^'^^^^((üi)
JA.'" Jüt^

X l a.^(o}2]dll'^-^^^ ((D2) '"l OCA(o},+i)d^l-'^'(cDm+\}
J^A,,2-'\ ' " ^^^,ß-'n,

= l (p(co)cc^(a))d^l (CD) .

JÜß

One implication of Theorem 6.3.9 is that the Wiener measure /^^^^'^ cor-

responding to Dirichlet boundary conditions is obtained from the free measure

/z^ by multiplication with the characteristic function aA of A. This confirms

the physical interpretation of Dirichlet boundary conditions äs completely
absorbtive.

Corollary 6.3.10. For every Borel subset B C QA,^ ß^^ all x^ j G A one has

/i^V'^'^W = / ^^((üW. ,H = /ilX5n{a;; aA((ü) = 1}) .

JB

PROOF. Because of Theorem 6.3.9., it is enough to show that the set^ of trajectories
inside A which touch d\ for some t G [0,j?] has /ij'^'^ measure zero. But in the

proof of Theorem 6.3.8 we demonstrated that ZQO, A(^5 JK 5 0 ^ ^^^ all jc, >^ G A ,
^ > 0

and hence

0< j9oo,A(^,y;0 < P(^^y'^t] .

Using the definitions of Wiener measures this leads to the estimate

l^:y'''^(B] < nl,^(B}
for all measurable sets B C QA,^?- Hence, it is enough to show that

/^.f,,W = o
.

This is a well-known general property of the Wiener process which can roughly be

expressed by stating that if a point lies near a smooth (v l)-dimensional surface,
then it is very improbable that a trajectory starting at the point will not cross the

surface in the near future (see Notes and Remarks).

EXAMPLE 6.3.1 1
.

If A is a parallelepiped, the Green's functions corresponding to

Dirichlet and Neumann boundary conditions can be explicitly calculated. It suffices

to consider the case v l since the Green's functions in higher dimensions are simply
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products of the functions in one dimension. Now for x^y ^ (Z/2,Z>/2) and t > 0
one has

PO, A (^, 7 ; 0 = X] P(^^ y^2nL- /)
n = cxD

oo

+ ^ p(x,(2n + l)L-y;t) ,

n -00

00 00

Poo^^(x,y-t)= Y^ p(x,y + 2nL-t}- ^ p(x,(2n ^ 1}L - y- t) .

n = 00 -00

This again illustrates the nature of the boundary conditions.
It is often technically convenient when A is a parallelepiped to work with periodic

boundary conditions, i.e.,

p(L/2, t) = p(-L/2, t) , ^ (L/2, 0 = g (-i/2, t) .

The corresponding Green's function is then given by
00

pptT,\(x,y] t) = ^ p(x,y + nL]t] .

n = oo

If we define e : R h-^ [- L/2, L/2] by

X - 2nL if (2 -^L < x < (2n + ^)L
8(x) =

l /Oi^ _L. l^r
_

v ifOT^J__(2n + 1)L - jc if (272 + ^)L < X < (2/7 + |)L

7z = 0,l,2,...

and';O/i H-^ ^[-1/2, 1/2],^ by

[8'(com=8(oj(t)) ,

then the relation between the Green's functions /?O,A ^^^ P is reflected in the fol-
lowing relations between the functional measures:

^?'.v'^w- E A<.(^'"'w)
z 6 -1(7)

for all Borel subsets B C n[_^/2,i/2],^. A similar relation can be derived for periodic
boundary conditions.

To conclude this section we state the finite-volume version of the Feynman-
Kac formula which will be needed in the sequel and show that it immediately
implies a monotonicity property used in Chapter 5.

Theorem 6.3.12. Let U, V be operators ofmultiplication by realfunctions on

r(i)
'fr,A'L^([R^). Assume that U is T^l-bounded \vith relative bound less than one and

that V G Iioc([^') is bounded below. If

.^(1) _ /j(^ö-,A ~ V^ö-,A^i'i-(^ri+^)+^
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and jS > 0, it follows that Qxp{ßH^ ^} is an integral operator on Lr(^) with

kernel

e-ß^l'\(^^y)= l d^l^^^ß(co]^^p[- l dt(U(co(t]]-^V(o,m\
.

JüA,ß l JO )

In the case of Dirichlet conditions, er = oo, this kernel has the simpler re-

presentation
:r(l)e-ß"l '!A(X,>;)- / ^A/,\(co)aA(a))exp(- / dt(U(cD(t]] ^ V(o^m] .

J^ß l ^0 J

But iJi^^y is positive and the integrand is monotonic in A. Therefore, one has

the following.

Corollary 6.3.13. Under the hypotheses of Theorem 6.3.12 itfollows that the

mapping

A ^,-/><.(,, ^)
is positive and monotone increasing.

This property was used in the noninteracting case to prove Proposition
5.2.31.

One can also use the Feynman-Kac technique to obtain an integral relation

for the kernels of -particle semigroups exp{-j8//^"]^} but the symmetry, or

anti-symmetry, of the wave functions arising from quantum statistics causes

some additional combinatorial complications. This will be examined in more

detail in the next section.

6.3.3. The Thermodynamic Limit. I.

The Reduced Density Matrices

In Section 6.3.1 we defined a class of selfadjoint interacting Hamiltonians //^^A
on Fock space and subsequently showed that if the interaction is stable, then

Qxp{ß(Hff^^ /^/VA)} is of trace-class for jS > 0 and /x sufficiently negative.
Therefore, one may introduce the finite-volume Gibbs states CO^'A?

^,,..^. Tre,(^)(e-^(^-.^-^^U)
^.,A(^)- T,.^^^^^(^-/..-^.)) '

where ^ G 9I (A). In this section we begin the study of the thermodynamic
limits

o/^'^(A} ^ lim cof'^(^) .

A>oo '

Since jS, /i, and a are usually held fixed, we will often omit the suffices. Thus,
we write CÜA CO^'A?^ = o}^'^, etc. The analysis of these limits is based upon



382 Models of Quantum Statistical Mechanics

examination of a family of functions p^ on R^''^ x [R^'", m = 1,2,..., which are

defined such that

o)!,(a\fi)-"a\fm]a(g,n]'--a(gi))

= l dx\... dXm dyi . ,, dy,n g\(y\) -"Qm (ym]fl (^\] '" fm (^m]

X P^(y\^''^ym\ ^l,...,^m)

These functions are called the rediiced density matrices. It is of course not clear
a priori that the p^^ exist äs functions but this will subsequently be established
for a variety of interactions and values of ß and /L Formally one may write

~p^(y\,. . .,ym ;^i, . . . ,^m) = coA^(^i) " al^^(xm]a^^(yni] 'a,o^(yi))
and we will show the thermodynamic limit of the states exists by first proving
that the p^ have an infinite volume limit for sufficiently small values of the

activity z = exp{jß/i}. The strategy of the proof is to find a convenient func-
tional integral representation of the pj^ in terms of a sequence of functions p/^
which are analogues of correlation functions of classical Statistical mechanics.
The pj^ are functions over trajectories joining the points jc, y, occurring in the

p^, and correspond physically to the probability densities for finding the dif-
ferent trajectories.

The second crucial observation is that the pj^ can be interpreted äs the
solution of an inhomogeneous linear integral equation of the type already
encountered in the discussion of spin Systems in Section 6.2.5. Therefore, one

may derive an analogue of Proposition 6.2.45 which in the present context

corresponds to a uniqueness Statement for the thermodynamic limit of the p^,
and hence the py^, at small activity.

The existence of the thermodynamic limit for the Gibbs states (D\ of a

System of fermions follows immediately from the existence property for the p^,
In the case of bosons it is also possible to relate the two properties by use of the
theory of analytic states discussed in Section 5.2.3. The p^ directly determine
the derivatives of the functions t^-^cD^(W(tf)) and to relate the two limits it
sufiices to obtain suitable a priori bounds on the p^ which control the growth
of p\(y\, . . . , ym ; -^1, ,-^m) with m. At small activities these bounds follow
from the integral equations but for positive interactions they may be directly
deduced from the functional integration representation of the py^, Thus, in the
latter case one may obtain some tentative global information on the Gibbs
states CO. We leave the discussion of the limits of the states COA to the next

subsection and now concentrate on the p^.
Although the above strategy for establishing the thermodynamic limit may

seem strangely indirect, it is quite natural to introduce and study the reduced
density matrices p^ since it may be argued that their values are directly related
to physically measurable correlation effects. One then sees that the Wiener
integral plays a purely technical role in this context and it seems worthwhile to

pursue a more pure operator-theoretic approach. In fact the seemingly most

significant information openly exhibited by the Wiener integral is the pointwise
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positivity of the semigroup kernels. This, for example, implies pointwise po-

sitivity for the p/^ with Böse statistics. This type of positivity is less accessible

from the pure operator approach but apparently has many important con-

sequences.
We now enter into more detail of the program outHned above. First, we

introduce some notation. We denote m-tuples (^i, . . . .ocm] of points in A by jc^,
and m-tuples (coi, . . . , (D^) of paths in QA,^ by of^, The symbol p^ ^i^^ be used

alternatively to denote the operator

(Tr5^(A)(e-^--'^-)))-'e-^'.--'^^)
and the integral kernel of this operator. The m-particle part of this operator and
the associated kernel will be denoted by p^ m- Thus, we have the decomposition

00

PA= © PA,/
w = 0

corresponding to the decomposition
00

5(A) = e L\^]l
m = Q

of Fock space. The operator p^ is called the density matrix for the problem.
The reduced density matrices p^^ may now be defined by

^(m^n)\^
P^.m^2^ ^ Tr(pA,,+J ,

= o
"

where Tr is the partial trace over n particles. This is unambiguously defined
because of the symmetry of PA,^+ in the m H- particles. The integral kernels of

PA, W will ^Iso be denoted by p^^^ or simply p^. One can then prove the relation

^A^(^i) ' al,^(^m]ao,^(ym] 'ao,^(y\)] = Pf^(y^\ ^'")

mentioned earlier.

We are principally interested in deriving integral representations of p^ and

PA in the case of Böse or Fermi statistics, but this involves combinatorial

Problems which can be avoided in the case of Boltzmann statistics, so we first
consider this latter case. The appropriate Hubert space (5(^)? density matrix

PA, and partition function ZA for Boltzmann statistics are

^(^] = @L\^r ,

w>0

where L^(A.)" is the -fold tensor product of L^(A) without any symmetriza-
tion,

7-1 n^ ^^-K^r R{Tj(^^
PA = ZA'© -exp{-;Si -/.!)}

>0 ^'

2^=Y. -^Tr,,(^)<exp{-^(;/J'i-/i1)}) .

n>0

and

> 0
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Let co"^ = (coi , . . . , (ßjn) and o;'" = (coi , . . . , cbm] be two families of trajectories in

QA,^ with starting points x"^ and u"^ and end points y"^ and i;", respectively.
Define the interaction U((D^) of the family co"" by

rß

f/K)= / J?t/(")(60i(0,...,co^(/))
Jo

and similarly t/(co'",co'^) is the interaction of the family co'"uco". With these

notations, the Feynman-Kac formula, Theorem 6.3.7, can be written äs

exp(-;ß//^"/"')(z'"M,y'"t>)

L̂
A" + '",/J

exp{-C/ffl)}J^:;,:)/^ cy") ,

J

where we use the notation

j/44s,^'"."(<^")- fn^^^^;^,;^
\^=i / \/-=i /

We now take the partial trace over the last n particles. This amounts to putting
w'^ = v^^ in the expression above, and then integrating over w/ in A for
/ = l, 2, . . . ,

77. We then substitute the result into the definition of p/^ and de-

compose the integration over the w + trajectories of^ and cb^ in two Steps.
The second Step is an integration over the m open trajectories in co"" of an

intermediate functional p/^(of^] of these trajectories. The function p/^(of^] is
obtained in the first step by integrating over the closed trajectories in af and
then summing over n. The result is

P^(^,y"}- l Pi,((a"']d^il^^^!(of] ,

JD.^mn

where

p^K) = ^Ä^E A / Jo;i...Ja).z- + "exp{-[/(co^",(ö)} ,;fr?^ ^'J^^n.B>0 '"^^^^'^.ß

Z = exp{jÖ^} is the activity, and

dcb,= l d^::^^^(cok)du .

JA

This is the desired integral representation of p^ ^^ the case of Boltzmann
statistics. The partition function ZA can be represented äs

ZA= V^/ ^ö;i...Jco,exp{-t/(co'^)} .

Vn'^'-^^A

In analogy with classical statistical mechanics we call PA ^he correlation fiinc-
tionals.

We next turn to the case of Böse and Fermi statistics. The density matrix is
now given by
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PA = ZÄ;,P. © exp{-jS(//(;i - /.nl)} ,

7Z>0

where Pg is the projection onto the even or odd subspace of L-(A)" according to

whether e = -fl or = -1. The partial trace formulas for the reduced density
matrices now become

00 ^m+n r ^^N

p^(x^;;-) ^Z^-/,^^ / du"^s^e-^^^^^(x'^V,n(yV)) ,

n=0
^' ^

n

where TT is a permutation of m H- 72 variables, and

00 _ r , ^

^A.^ = E^/^""E^"^'''''"'^(""'^("")) '

n = Q
^' ^

7l

where TT is a permutation of n variables. The 7i-sum is over the füll Symmetrie
group in both expressions, and e^ = -f l for bosons, but e^ is the signature of
the permutation n for fermions.
We proceed äs previously by putting the Feynman-Kac formula for the

kernel of Qxp{ßHl^\} into the above formula for the reduced density ma
trices. Now, however, complications arise from the permutations n of the

endpoints y'^u" of the m -i- n trajectories in the path space integration. The

path starting at a point Xk does not necessarily go to the point y^ along COA- äs

previously. Instead one may go to one of the integration points w/, then to

another one uj, etc., and finally end up in a point j/ which might diifer from yk.
This has the effect that several elementary trajectories, by which we mean

trajectories with time interval ß, may be inserted between Xk and the corre-

sponding yi to build a composite trajectory with time interval jkß for some

positive integer jk. Similarly, the elementary trajectories that are not used to

build composite trajectories connecting some Xk with some yi combine together
to form composite closed loops with time intervals which are integer multiples
of ß. We rearrange the sum defining p^^, which is a sum over n and over the

permutations of m -h /i elements, so äs to separate the integrations over the

composite open trajectories and over the composite closed loops. We will omit
the ensuing combinatorial ajgument, and only cite the end result.

Theorem 6.3.14. The m-particle reduced density matrices of an interacting
Böse or Fermi gas enclosed in afinite region A with boundary conditions a can

be written äs follo\vs:
m ( QG /> ^

PA(^^ J^^) - E^^n E^'"' / ^^.^(^^ ^A(^^^) '

TT /=! U = l -^ J

where of^ = (coi, . . . ,CO;) is a family of m composite trajectories with time

intervals j\ß^ 72)6, - . . Jmß^ respectively. The first sum runs over all permu
tations ofthe m points y\^ . . . ^y^n and e^ = l for bosons, but s^ is the signature
of n for fermions. Also, B\ for bosons and e = l for fermions, The cor-

relation functional p^(of^] is defined by the formula
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00 n i-

p^K) -Z^-;, ^- / Jcöi ... Jco,z^+^exp{-t/K,a;'^)} ,

n = Q^''^

where o)'^ = (o^i, . . . , co) is a family of n composite closed hops, q and r are

the number of elementary trajectories that constitute of^ and of
^ respectively,

ZA, is the appropriate partition function, and z exp{jß/i} the activity,
Moreover, (/(co^",(:o") is the integralfrom 0 io ß of the potential energy of the
q + r points on the m + n trajectories co''^ co" at time t modulo ß. Finally, the
integrals da) are defined by

00 ;- l /.

^^-E ^ d^^::^^^^ß(co]du
j=\ 7 JA

and the partition function is given by

^A.^-E
n = Q

/ (^cüi ...Jcof"exp{-t/(co")} .

EXAMPLE 6.3.15. The formulas in Theorem 6.3.14 can be simplified in the case of
Dirichlet boundary conditions, er = oo. This simplication occurs because the finite-
volume Wiener measure with Dirichlet boundary conditions is obtained from the
infinite-volume measure by multiplication with the characteristic function A of A,
see Corollary 6.3.10. Thus, in this case it is convenient to define p^ slightly differently
than above. The formulas then become

m ( 00 /.

PA(^"'; /") = y: " n E '^''"' / ^</.(v,)(') I*/'A('") '

/ = 1 ,-. - 1 J

where

PA(CO'"J =)-ZA,r^E ^/^^i---^^^''"AK",'Oexp{-^(co',c5")}
,

/7>0 "--^

p7-i r

dw=^^ d^l^/^^,(w)du ,

i=] J ^

00 1 r

ZA,^ == E ~T / ^^^ ...ö?coz''aA(cü)exp{-^(ä;")} ,

n^Q^ ' -^

df.L[ y
is the infinite-volume Wiener measure, and

/ m ~\
_

/ l if all the trajectories coi , . . . , co^^, coi , . . . , co, remain inside A,O^AV'^ 1
^ ) l ,-. ,1lO otherwise.

In the case of Boltzmann statistics the formulas become

pA(^'";j'"') = /^A'.f,,K>A('") ,

where
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n=Z^^ Y^ ^ [ düi...d(b,z'"^"y.^(of\ ö}")Qxp{-U(o}"\ 0)")}
^0

^^ J
PAI<^^

= o

and

dcb= diil^^^(o^]du ,

ZA - J] ^ / J(^] ...Joj,(XAK')exp{-^(oy)} .

In these cases the measures defining the reduced density matrices p/^ from the cor-

relation functions p^ contain no Information about the detailed properties of the

System, i.e., properties of the interaction t/, the chemical potential /i, and the region
A. All this information is contained in the functionals p^.

EXAMPLE 6.3.16. In the case of the ideal Böse or Fermi gas, U = (^, and with

Dirichlet boundary conditions, er oo, the expression for the partition function

obtained in Example 6.3.15 takes the form

f ^^^ BJ~ ^-^J f C
ZA, ,

= exp< V] r^ / / d^-^/^((I))dx aA(a))
[/^ 7 AJ

and hence the infinite-volume limit of the pressure

^= lim ^^rrylog ZA^^
A ^ 00 p\/\\

exists and can be computed äs

'' = A^^l;^//""<"'" <"'

^.-M|:9^//"--"4sÄ-5P-
Since both the finite- and infinite-volume states are quasi-free (see Propositions
5.2.28 and 5.2.29), we have the following expansion of the Pj\(x'":y'") reduced

density matrices in terms of the p^(x'^y} reduced density matrices:

pAC^'";/")-=E^^'n^A(^y;^(vy)) .

7=1

Here the sum extends over all ??i\ permutations of { ji , 3^2, , ym} and the two-point
reduced density matrix is given by

~p^(x-,y) = f^s^'-^z^ /J/if,H^-AH
7=1 -^

Thus for Böse statistics A t-> p/^ is a positive monotonically increasing function.

Moreover the infinite-volume reduced density matrices p(x'";y'") exist for both sta

tistics and

p(x"';y'") = Y^^-llp(xf,n(yj)) ,
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where

p(j; y) = lim p^(x ; y) = (4nß) '/' V -y:^exp<^ -sJ-^zJ ^\ (x-yY
A^ 00

'^^^^^ ' -^^ ~ ^ '"^^ ^ y v/2 --^ \ 4jß

To illustrate the Utility of the integral representation for the reduced density
matrices we first prove that for a Böse gas with positive interaction potentials
these matrices are bounded by the corresponding matrices without interaction.
This form of a priori estimate is particularly useful for linking the existence of
the thermodynamic limits of the states and the reduced density matrices.

Note that if the interaction potentials are positive then

U(m + n}^^m^ /) > U^^^\x'^} + f/(")(/) .

This follows by remarking that the difference between the two expressions is
the interaction energy between the particles at the points x and the particles at
the points y, i.e., it is a sum of positive potentials.

Theorem 6.3.17. Consider an interacting Böse gas for which all the poten
tials O^^^ are positive and<^^^^ G L\^^(K'^). Let p^^ and p^^ j^ denote thefinite
volume reduced density matrices with interaction U and without interaction.

It follows that

0 < P.%(^^^^) < P^.,A(^^;y") < PS,A(^^/^)
for all x^, /" G A"\ all ß > 0, ^ < 0 and (j > 0.

PROOF. It follows from the integral representation in Theorem 6.3. 14 and the choice
of Böse statistics that each term in the representation is positive. Thus, PQ ^>0 and
for the first upper bound it suffices to prove

0 < P.^A^) < P.,AK)
But

00 l /.

'."[AKO = Z-\ ^ -y / dw,...dünZ^^^^xp{-U(co-, ä")}
n = o"'-'^

and because we assume the potentials to be positive one has

exp{-^(co"^, cö")} < Qxp{-U(co"')}Qxp{-U(ä)")} .

Therefore

00 l /.

p^^^(w"')<^exp{-U(co'")}Z-\ ^ - / Jräi ...rfcöz^exp{-(7(ö")}
r, = 0^- -J7=0 '^'

-z^exp{-t/(co'")} < z^
.

But the same computation for U = 0 gives

<AP,AK)=^
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and this completes the proof of the upper bound. Finally, the Green's functions are

monotonically decreasing functions of the boundary condition function a and hence

5. Athe largest value for p^ ^ occurs for the smallest value of 0-, i.e., the Neumann

condition a 0.

If one considers Dirichlet boundary conditions, then one may utilize the

monotonicity in A of the noninteracting reduced density matrices (see example
6.3.16) to obtain a bound which is uniform in A and is even valid for /i = 0.

Corollary 6.3.18. Adopt the general assumptions of Theorem 6.3.17 but mth

Dirichlet boundary conditions.

Itfollows that

0 < f>l(^;f) < P^C^"-;/-) < lim pl(^-,}^) ,
A -H' 00

\vhere p^(= p^ ^) denotes the Dirichlet reduced density matrices and ß > Q

and /l < 0 Consequently,

m

0 < P^CX-; j"-) < z- ;^ n p(^' - ^(y'^^ '

n i=l

where

P(X - (27r)"' l d^pe^P^'e-^P^l - ze-
.^-ßp-\-^

Thus, for positive interactions and arbitrary A the Dirichlet reduced density
matrices are positive bounded functions.

Next we discuss the reduced density matrices for small values of the activity.
In Order to proceed it is necessary to impose conditions on the interactions [/A.
In fact, äs pointed out in Section 6.3.1, we need a stability condition

U^ > -BN^

(or possibly a weaker condition on the total Hamiltonian) in order that the

finite-volume partition function should exist. Moreover, the path space ex-

pressions we have derived for the reduced density matrices will certainly di-

verge without some condition of this sort. Typically, this condition implies the

estimate

U(o)^, co'^) > -(m + n)Bß
and hence

0 < exp{-f/(co'", co")} < e^^ ('" + ")
.

Thus exp{ [/(co'", co")} is integrable, and this certainly ensures that all the

path space formulas we have considered in this section converge when the

activity z is sufRciently small, i.e., zQxp{Bß} < 1.

Next, for simplicity, we assume that [/A is defined by a translationally in

variant two-body Potential, i.e..
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C/W(^,,...,x,)= ^ ^(xi - Xj) .

l <i<j<m

We place several auxiliary conditions on ^. First, we impose a continuity
condition which is needed for technical reasons in subsequent proofs but which
would probably prove to be redundant by a finer analysis

(A) X 1-^ <I)(:c) is an even real function which is continuous except possibly
at the origin.

The next condition is the stabiUty condition which ensures the existence of
finite-volume Gibbs states.

(B) The interaction is stable, i.e., there exists a constant 5 > 0 such that

y^ (D(jc/ - jc/) > -mB
/ _j \ < j /

l <i <j <m

for any finite family {jci,x2, . . . ,x/} of points in [R^'.

Finally, in order that the thermodynamic limit shall exist, we need a con

dition of decrease of <I) at infinity.

(C) There exists a constant c > 0 such that O is integrable for \x > c, i.e.,

dx\^(x)\ < +00
.J\A > c

Now with all these conditions on ^, and with Dirichlet boundary condi
tions, it is possible to establish the existence of the thermodynamic limit for
small activity by the indirect method discussed at the beginning of the section.

Theorem 6.3.19 (Ginibre). Lei (^ be a t\vo-body potential satisfying condi
tions (A), (B), and (C). Then there exists a Banach space ^ of sequences of
fiinctions of m = 1,2,... trajectories (elementary trajectories for Boltzmann
statistics, composite trajectories for quantum statistics), bounded linear op-
erators K^, K on ^, vectors CA, C in S such that K^, K, CA, C depend linearly
on the activity z, and a constant R > 0 such that the follomng are satisfied.

(i) For all complex z with \z\ <R one has \\K\\\ < l, and hence the
equation

PA = CA + ^A PA

has a unique solution p^ in ^, This solution is given by

pf, = ^K^U
n>Q

and hence is a norm-analyticfunction ofzfor \z < R. In the case that
0 <z < R, the solution is given by
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.-IV- l

n>Q
'

fäcö,
P.ICO'") = z- ^ -

n>Q

Jcoi dä) z^^''^^(cD^\ co") exp{-^ co^^)}

in the case of Böse or Fermi statistics, and by

p^(co'") = Z;^ ^ l [dcb, . . . Ja;,z^^+'^aA o;")
>o ^'^

X exp{-U'(cLi'", co'^)}

//7 ?//e cfl^^ of Boltzmann statistics, mth the appropriate definitions of
da) in each case (see Example 6.3.15).

(ii) For all complex z mth \z\ < R^ one has \\K\\ < l, and hence the

equation

p = t: + Kp

has the unique solution

p = E^"^
rt >0

in (f. This solution p depends norm-analytically on z for \z\ < R,

(iii) When the boundary of A recedes to infinity, PA(^'") converges to

p(co'"). 77?^ convergence is uniform in z for \z\ <R'<R and uniform
in of^ when all the m trajectories in co'" remain in a fixed bounded

region.

We will not give the rather complicated technical details of the proof of this

theorem (see Notes and Remarks), but remark simply that one obtains the

equation

P^ = ^^ + Kf^p^

by an expansion about the case t/A = 0. A very similar expansion about the

case /?O = 0 was used in the proof of Proposition 6.2.45. In fact in the present
context the expansion is really about the case exp{-^/7A} = l- Typically, one

sets

e-/"* = l + f^(x]

and obtains results when the fß have appropriate small bounds.
One may now define the reduced density matrices pj^(^^]y^] from the

correlation functions PA äs in Example 6.3.15, and one may use exactly the

same formulas to define p from p. Theorem 6.3.19 has the immediate

corollary.
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Corollary 6.3.20. The rediiced density matrices Pj\,(^^^]y^^) cind p(x"^]y"^)
are bounded continuous functions of x^^ y"^ and analytic functions of z for
\z < R. Moreover, p(x^^] y^) is translationally invariant. When A -^ oo in the
sense that the boiindary recedes to infinity, p^(x^^',y^} tends to p(x^]y^^]
uniformly in z for z\ < R' < R and uniformly in (x^, y") \vhen all the points in

y.m^ ym Yemain in a fixed bounded region. Finally, there exists C G (0, 1) such
that

|PA(^'"; j^")l < (N/0(i - A/RY' P^\^"; j^")
for all \z\ < R^ where p^ denotes the reduced density matrices of the non-

interacting Böse System at activity C- Moreover, for Böse and Boltzmann
statistics one has

~p^(x'"-y'")>Q .

By the same methods used to prove convergence of the reduced density
matrices, one can also show that truncations of these matrices have good
clustering properties in space. Recall that the matrices are related to the state co

by the expression

PA(^I, . . . ,^m ; yi, . . . , Jm) = co(fl^ (yi) . . . al^(y^]ao,(x,n) - . flco(^i)) ,

where the right-hand side should be interpreted in the distributional sense. If
we form the truncated expectation of co äs in Section 5.2.3, all truncations with
an unequal number of a*^(y) and aa^(x) disappear because of gauge invariance.
It is therefore natural to define truncated expectation values of p such that

p(x]y} = pj^(x-y} ,

p(x\ , X2 ; yi , 3^2) = PT(^I , ^2 ; Ji , yi) + PT(^\ ; yi )Pr fe; yi)
-^PT(XI ;y2)prfe;7i) ,

etc., where 8=1 for bosons and g = l for fermions. Here s has to be set equal
to zero for Boltzmann statistics. The düster property then takes the form.

Theorem 6.3.21. Let ^ be a translational-invariant two-body interaction
satisfying (A), (B), and (C), and let \z\ < R^ where R is defined in Theorem
6.3.19. Then the infinite-volume truncated reduced density matrices pj are

absolutely integrable functions of the difference of their arguments, i.e.,

l dx\... dxm dyi... dy^i-i \ PT(^'^] y'^]\< + o^

So far we have not discussed the influence of boundary conditions on the
thermodynamic limit, but only worked with the tractable Dirichlet conditions.
Combining the path space representation of the reduced density matrices,
derived in Theorem 6.3.14, with the fact that the influence of the boundary on

the path space measures disappears when the boundary recedes to infinity,
Theorem 6.3.8, one would expect the infinite-volume small activity reduced
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density matrices to exist for all classical boundary conditions and to be equal to

those obtained with Dirichlet boundary conditions. This result, although fea-

sible, has not been proven. Some tentative results have, however, been obtained

for the pressure. If

Z.,^(ß,^l) ^ Tr(e-'^-^-'^^^))
is the partition function, then the local pressure is defined by

P,,A(;ß, ^) = (^A|)-'logZ,A(jS, /.) .

NOW if ö"! > (72, then

ff
ff], A ^ ffff2, A

in the sense of quadratic forms. Thus, it follows from the minimax theorem

that

Zoo,A(jS, f^} < Z,,A()S,Ai) < ZO,A(^, A^)
for (T > 0. Thus, to show that the thermodynamic limit exists for all positive
boundary conditions but that it is independent of the particular choice it
suffices to show

hm |A|-'log^ = 0
A -^ 00 ^0

,
A

and either

POO- lim (jS|A|)-MogZoo,A
A -^ oo

exists or

PO= hm (jS|A|)-MogZo,A
A * 00

exists. The latter questions of existence have been handled by operator-theo-
retic methods in a relatively satisfactory manner.

For the Dirichlet boundary conditions it suffices to assume that the inter-
action is stable and

U(^+^\x^y^] < U^^^(x'^)-i-U^^\y'^} .

when the distance between the sets x^^ and j/" is larger than some fixed value R.

This condition corresponds to potentials which are attractive at distances

greater than R. It can in fact be relaxed to deal with positive interactions which
decrease sufficiently fast at infinity. The Utility of the condition is that it implies

-^00, A ^ -^00, AiuA2 ^ -^00, AI^OO, A2

whenever AI uAI C A and the distance between AI and AI is greater than R.

This and similar inequalities discussed below are all straightforward applica-
tions of the minimax theorems. The existence of PQO then follows for transla-
tion invariant interactions by the same type of argument äs in Proposition
6.2.38.
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The case of Neumann boundary conditions is quite different. If there is no
interaction, one finds that the partition function satisfies

2'o, A, uA2 ^ -^0, AI 2o, A2 (*)
for all AI and AI such that AI n AI = 0. These inequalities are in the opposite
sense to the corresponding ones with Dirichlet conditions. Thus if one hopes
that they should remain valid in the presence of an interaction then it appears
necesary to impose conditions on U^^^ which are in the opposite sense to the
above. The Situation is particularly simple with positive potentials because one

then has

C/(^^ + ^)(;c", j;'") > U^^^x'^) +^('")(j;'")
for all sets x'^ and y" and this once more allows the deduction of the sub-
multiplicative property (*). Then the existence of PO can again be established
for translationally invariant interactions by arguments of the type used to

prove Proposition 6.2.38. But the restriction to positive potentials makes the
Neumann case much less satisfactory than the Dirichlet case.

Now let US consider the comparison of ZQ, A and ZQO, A- There have been two
basic methods used for this purpose and they both have severe drawbacks. The
first method is operator-theoretic and has the advantage that it works for all
forms of statistics, Böse, Fermi, or Boltzmann, and for many-body interac
tions. Nevertheless, it has two severe disadvantages. It works only for positive
decreasing interactions and for parallelepipeds. Basically, one proves that if A/,
is a cube of side length L, then

Po,A._.(j5,A^-8v/a2) < Poo,A,(^,Ai) < /^o,A.(^,AO .

Subsequently, one uses the existence of Po(jß, /O ^^^ i^s continuity in jj, to
obtain the existence of POO(J^, /^) and the identity POO = ^o- Hard cores can be

incorporated into these results if Dirichlet conditions are used on the bound-
aries of the hard cores. This is accomplished by approximating the cores by an

increasing sequence of positive bounded potentials and then using Lemma
5.2.13 and a dominated convergence argument to prove the above inequalities
between PQ and PQO-

The second method for comparing ZQ, A and Z^^ A uses functional integra-
tion and has the advantage that for particles with hard cores one may in-

corporate an interparticle attraction, if it is mediated by a suitable two-body
Potential. If there is no hard core, then the corresponding estimates have only
been carried through for positive translationally invariant two-body potentials
<|) of finite ränge, i.e., ^(X) =0 for |v^| > ^ for some Ä > 0. This second
method has other disadvantages. It requires that the surface of A is smooth and
it only works for Böse or Boltzmann statistics. Basically, the idea of this
method is to write down the functional integral representation of ZQ, A and then
split the functional integrals into two parts, the integral over trajectories which
touch the surface 9A of A and trajectories which do not touch the surface. The
latter trajectories give the total contribution to the Dirichlet partition function
and hence if U is positive one readily obtains
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1 00 ßßj /> />

P,^^(ß^^]-P^^^(ß^^]< Y. dx 4^,%^'^-^(co)[l-aA(co)]
p|A|/rt J J\ Jü^jß

But

/ ^t^x, X
'J^^,j|

4i^;:^'^'^(a))[l - (^^((b)]^z^^^(x, x-Jß] - ZQ^^(X, x-j'ß)

<ZOO,A(X: X'j'ß) + \ZQ^/,(X, X]jß)\ ,

where z^^ \ is the compensating Green's function introduced prior to Theorem

6.3.8. Now combining the estimates on IZ^^^A! given by this latter theorem

together with some regularity assumptions on the surface of A one again de-

duces that PO
,
A ^oo

,
A ^ 0 (for references and further details on these

methods see Notes and Remarks).

6.3.4. The Thermodynamic Limit. 11.

States and Green's Functions

In the previous subsection we studied the thermodynamic limit p of the re-

duced density matrices p^ associated with a Gibbs state co^'^. In this subsec

tion we exploit some of the information concerning convergence of the p^ to

obtain results on convergence of the states, viewed äs states on the CAR or

CCR algebra.
The CAR case is simple. One has

cof;^(*(/i)...fl*(/X^^)...fl(^i))
= dxi... dXm dyi... dy^ g\(yi} " - gm(ym)f\ (^\)"' fm(Xm)p\(y^ \^]

and

ik/)ii = iK(/)ii = 11/11

for / G L^(IR^). Thus, if the pj^ converge uniformly on compacts, then the states

converge. But this is the case, for example, in the small activity region by
Corollary 6.3.20.

The CCR case is more diflScult. One can obtain convergence of the states

from convergence of the reduced density matrices if all the states involved are

analytic states in the sense of Section 5.2.3 and if the corresponding reduced

density matrices are suitably bounded. There is one example which is parti-
cularly amenable to this kind of treatment, the Böse gas with positive poten-
tials. We will consider states co on the CCR algebra ^ over U^L^(A) which are

obtained äs limit points of the Gibbs states COA with Dirichlet boundary con-

ditions. The bounds for the reduced density matrices, 0 < p^ < p^ obtained in

Corollary 6.3.18 will play an important role. Other boundary conditions could

also be handled by appealing to similar bounds in Theorem 6.3.17.
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These bounds imply that the limit points co are locally normal states over the
quasi-local algebra (^, |J^^+(A)). In fact, all the states co describe a finite
number of particles per unit volume. To see this we first remark that

a;AJ/)a^,(/)) ^ j dxdy ~p^(x'^ y)f(x)f(y}

< l dxdy~pl(x'^y]\f(x]\\f(y]\
j

< l dxdyp(x-y]\f(x]\\f(y)\ ,

where p(x]y) is the reduced density matrix of the infinite-volume Gibbs states
co^ of the ideal gas (see Example 6.3.16). In particular, the left-hand side is well
defined. Thus, we can define the number functional for COA restricted to any
+(AO) with AO C A,

A^AO(<^A) = sup^cüA(a;^(/)a^^(/)) ,

5 /eg

where the supremum is over all finite orthonormal subsets of L-(Ao). There-
fore, calculating with the above bounds

O<A^AO(COA)= / dxpl(x',x)< j dxp(x-x) = N^,(CD^) .

JAo ^AO
Now we can estimate the number functional of co restricted to ^+(Ao). In
Section 5.2.3 we pointed out that the number functional is lower semi-con-
tinuous and hence

0<^AoH= A^Ao limco^
v a

< limyVA(tt;Aj < A^A^K) .

a

This shows that the number of particles in AQ in each such state co is finite and
hence we have established the last Statement of the following theorem for
positive interactions.

Theorem 6.3.22. Consider an interacting Böse gas for which all the k-body
Potentials ^^^^ are positive and ^^^"^ G ^/^^([R''). Let COA denote the finite vo

lume Gibbs states for some ^ > 0,/i < 0, and Dirichlet boiindary conditions.
Further let {COA} be a subnet such that the limits

(D(A) = limcoA^(^)
a

existforallA GUA^+(^)-
It follovvs that co defines an entire analytic state over the CCR algebra

^ = {^^^^(\)and
lim coA,(a)^,,^^ (g\]'-- ^OM, (On]] - o}(^co(g\] ' ^o^(gn))
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for allg\," ' ,gn ^L^(W] mth compact support and all n > l. The stäte CD has

finite local particle density and hence is locally normal.

Remark. The assumption that the potentials are positive can be relaxed
somewhat by the introduction of a suitable notion of superstabihty (see Ex-

ample 6.3.2). Assume the interaction t/^'"^ is defined by a translationally in

variant, real, even, two-body interaction potential ^ e IjQ^,([R^),

t/('")(xi,...,xj= ^ ^(Xi-Xj] .

l <ij<m

Suppose that U^^'^ is superstable in the sense that

t/(^)(^) > C ^ n(X,r)^-Bm

fJG

for X = (x\^ . . . , jc,) where 5 > 0, C > 0 and n(X^ r) is the number of points of
X contained in the half-open cube centred at r. Assume also that O is strongly
regulär, i.e., there exists a positive decreasing function \l/ on (0, CXD) such that

dtil/(t)t"-^^-^ <oo
JQ

for some ^ > 1/2 and

(D(x) > -lAd^l)
for all jc G [R\ If v < 3, or if O is positive, one can prove an estimate

coA(exp{ö!A^;^}) < c(diam(X),a)
for any a > 0, any bounded region A and all X c \ where NX is the local
number operator for X. From this one can deduce the conclusions of Theorem
6.3.22. One can also deduce the modularity of the limiting states äs in Theorem
6.3.31. (See Notes and Remarks.)
A principal ingredient in the proof is the following straightforward result of

real analysis.

Lemma 6.3.23. Let {f^} be a net of n > l times continuously differentiable
functionsfrom IR into C, and assume that f^ converges pointmse to a function
f. Assume that the derivatives of f^ up to order n are bounded on compacts,
uniformly in a, i.e.,

sup sup |/j'")(0|< + cx)

a / e [ -A', k]

for m = l
, 2, . . . , 77, and all Ä: > 0. Itfollo\vs thatfis n l times continuously

differentiable, and

f(m] . f(ni]
Ja. J

for w = 0, l,. ..,/! l, where the convergence is uniform on compacts.
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PROOF. If n = l
,

it suffices to establish uniformity on compact intervals / for the

convergence of /^ to /. Let e > 0. Choose points t\, . . . , t^ e / and an /z > 0 such that

\^[t,-h,ti + h]=I
/-l

and

//sup|/;(OI<e/4.
re/

But for \s\ <h one has

\Mti + s] - fß(ti + s]\ < \Mt,^s] - Ut,]\ + \Mt,] - fß(t,]\
^\fß(ti]-fß(ti^s)\
</zsup|/;(oi + /^sup|/;(oi

t^I tel

+ \Mti)~fß(ti)\
<8/2^\Mt^)-fß(t,)\ .

Consequently,

!/,(?, +s)- f(t, + ^)| < e/2 + \f,(ti) - f(t^)\
and uniform convergence on / follows from pointwise convergence.
Now the proof proceeds by induction and it suffices to consider the case n = 2

because higher cases are obtained by replacing / by one of its derivatives.
Given t e (R choose M > 0 such that

\/:!(t+h)\<M
for all a and all \h\ < 1. By Taylor's theorem

Mt + h)=f,(t)+f^(t)h + R(t + h) ,

where

\R(t + h)\ <Mh'/2
and hence

\m-fi'M\<\Mt + h)-fß(t + h)\/\h\ + \Mt}-fß(t)\/\h +M\h

for \h\ < l. It follows that f^(t) has a limit äs a ^ oo. But another application of

Taylor's theorem gives

\(Mt + h)-f,^(t))/\h\-f^(t)\<Mh/2
Thus / is differentiable, and

/;(o - /'W
The uniform convergence on compacts follows from the pointwise convergence by
the same reasoning äs in the case 72 = l.

The proof of Theorem 6.3.22 follows from boimds of Corollary 6.3.18 and
the entire analyticity of the infinite-volume Gibbs state co^ of the non-inter-

acting Böse gas,
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(''(^(/))=exp|-cü"(c&o(/)2)/2|
^ expj - (/, (l +ze''^')(1 - ze''^V/)/4|

(see Proposition 5.2.29).

PROOF OF THEOREM 6.3.22. First, choose g G ^^(A). Next, note that the states COA

and co^ are all gauge invariant and hence

A(<l>a,.(ffr) = 0 = Co''(<I>o(3r)
when n is odd. If, however, n = 2m is even

A(<I'..(3)'"') = <o^((a:,(g)+a^Mf"')/2--WA V

= COA (3)^"' + <(g)''"-',(3) + - )/2-

But in the last expansion COA vanishes on all terms which contain an unequal number
of creation operators a*^^(g) and annihilation operators acoA(^)- This is again a

consequence of gauge invariance, i.e., conservation of particle number. Thus, by use

of the commutation relations

^<^M<,(9} = <,(9}a^,(9} + Ibll' ,

one obtains a representation
m

a>A(<I'.(ö)'"') = ^q'A(3)V(9)*)
k = Q

= C^ / rf/rf/ p^(/; /) n g(x<}9(^} ,

k=0 ^ /=!

where the coefficients are positive polynomials in ||öf||^. (We have used p^ to denote
the reduced density matrices corresponding to COA-) But by Corollary 6.3.18

0<p5^(^;/)<p(/;/) ,

where p^ are the reduced density matrices associated with the infinite-volume non-

interacting equilibrium state co^. Thus since Q' > 0 one has

0 < co^(^,,,(gf'") < E c;r / dx^dy" P(^; /) H \9(^'^\ l^ö^l
^ = 0 -^ /=!

= c." (<!> (l^lf").
The last evaluation follows from the gauge invariance of co^ and the definition of the
f~<m^k

Next introduce the family of functions /; IRt>- C

Mt) = cü^^(W(tg)) .

These functions converge pointwise to the function /; [R f-^ C defined by

/(O = w(W(tg}) .

Furthermore, they satisfy the hypotheses of Lemma 6.3.23 for all n. For example
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l/WW l' = /"'coA.(<l>,Jg)"'fF(//))|-
<|tOA.(*.,(0)"")l<(1'co(lffl)"")

Hence / e C(IR) and /i"'' ^ /<"'' uniformly on compacts. But if FO; IR ^ C is
defined by

F,(t) = w(W(t\g\)) ,

then FO is entire analytic and

|/W(0)| = lim|/W(0)| < co(<5>,A\9\)"') = 1^^(0)1
Thus, / is an entire analytic function. Therefore,

t^o}(W(tg))
is an entire analytic function for all g ^ L~(M.^} with compact support and hence co is
an entire analytic state.

Next from convergence of the derivatives one has

A.(^a...(^)") - rvi"Ho) -^ rv^'^Ho) = cD(^o.(gT}
The more general Statement of the theorem with n different functions g\, . . . .g^ is
obtained in a similar manner by examining derivatives of a function

/oc(^i , . . . , ^) = a}/^^(W(t\g\ + t2g2 + 4- ^ö')) of several variables. We omit the
details.

There is a partial converse of Theorem 6.3.22.

Corollary 6.3.24. Adopt the assumptions of Theorem 6.3.22 but fiirther as-

siime that the rediiced density matrices p^ associated with the Gibbs states COA
are pointmse convergent. It follows that the states are weakly* convergent.

PROOF. It follows from the bounds

0<PA(^'";y")<P(^";y")
and the Lebesgue-dominated convergence theorem that coA(O^^^(öf) '") converges for
all g ^ L^(R^') with compact support. Moreover, the estimates

0<oM(^,,,(gf"')<o,\(S>,A\d\)-'")
imply that one can define numbers

<^(w(g)} = Efe!|fAii?i'"A('i'.(3)''")
m = 0 ^ '

*^

for each such g. It is then readily verified that these numbers uniquely determine an

entire analytic state CD over the CCR algebra and COA ^ <^-

Remark. We have shown that the local particle density of the interacting
state co is bounded by the corresponding density of the noninteracting state

(D^. It is not surprising that such a bound exists since for ß.i^i fixed the in-
troduction of a positive interaction, i.e., an interparticle repulsion, shoiüd
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reduce the density. In fact, the bound is just one implication of the bounds
0 < p^ < p^ on the reduced density with and without interaction. This follows
because

N^(o})= [ dxp^(x',x)< l dxp\x]x]=N^(cD^] .

J^ JA

But the noninteracting Gibbs states co^ can be extended to all powers of the
number operator and the inequalities

0 < / J/ P^(/;/) < / dx^ ~P\:^\of]
JA^ JA^

correspond to bounds

0 < (ü(N^(N^ -\)---(N^-k+\])< co(N^(Nf, -l}---(N^-k+l)) .

Finally, a combinatorial calculation establishes that there are positive
coefficients^^ S^ such that

m

p'"^^S^'p(p-l)-.-(p-k+l)
k=\

for all p [R. Therefore

0 < o)(N^] = ^S'^CD(N^(N^ _ 1) . . . (A^^ _ A: + 1))
k=i

m

< Y^ S'^(o^(N^(Nf, -l)...(N^-k+l}) = CO{N:.o/'A^w^
A>

k=l

Theorem 6.3.22 states properties of the thermodynamic limit with ß > Q
and yu < 0 fixed. It is also possible to consider the thermodynamic limit with

/? > 0 and the overall particle density fixed. Recall that this latter form of limit
was essential for the discussion of Bose-Einstein condensation of the ideal
Böse gas in Section 5.2.5. The basic difRculty for the ideal gas with Dirichlet
boundary conditions was that the formalism was only defined for
z = Qxp{ßf^} < l and for z fixed in this ränge the local particle densities

p^(ß,z] were uniformly bounded, whenever v > 3, by the density of the infinite
ideal gas at z = l, i.e.,

P^(ß.^] < Pc(ß) = (2nr f d^p(e^P' - 1)-

(This was discussed prior to Theorem 5.2.30). Now it follows from the bound

A^A(<^) <A^A(<^^) that the density of the interacting gas is also uniformly
bounded by Pc(ß) if z < 1. This seeming paradox was resolved for the ideal gas
by remarking that if p^(ß,z) > Pc(ß], one must have ZA > l for each finite A

^^The S'^ are known äs Stirling numbers of the second kind. Their positivity follows from the
recurrence relation 5'^""^^ = S'^_^ + kSl\ = l and S'" = 1.
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and in the thermodynamic limit at fixed density this leads to a ränge of choices

ZA such that ZA ^ l
.
The discussion of the interacting System at fixed density is

less tractable and it is not evident that the corresponding ZA would converge to

a critical finite value. Nevertheless, the above method of bounds could be used
to discuss properties of any Hmit for which ZA ^ l

.

One may also obtain results for the small activity region for interactions
which are not necessarily positive.

Theorem 6.3.25. Consider an interacting Böse gas satisfying all the as-

sumptions of Theorem 6.3.19. For 0 < z < R, it follows that the limits of the
local Gibbs states o}\(= <^^'A) ^^^^f,

0}(A} = lim a)\(A)
A^co

for all A G UA ^+(^}^ ^^^ determine a unique state over the CCR algebra.
This State is entire analytic, locally normal, and

lim COA(<I),{/I) . . . <D,(/)) = (<!>(/,) <D4/))
A^ CXD

for ///!,..., fn G L^(W] with compact support,

PROOF. The proof is almost identical to the proofs of Theorem 6.3.22 and Corollary
6.3.24. It relies on bounds on coA(^ajA(^)") which are obtained äs follows. First, by
gauge invariance these quantities are zero if n is odd. But if = 2m,

A (<!>., (9)"") = X^C>A^(.7/a,(3f )
A- = 0

with Cf > 0, and for g e L^(^g) one has

) = l d^ l J/p^(/;/)n ^^(J/)
^Aj- A^, i=\

<(z/Q(\-z/RY^j dJ^j J/ //(/;/) n |g(x,)|bb.-)l ,

J^, ^^, z- l

where we have used the bounds of Corollary 6.3.20. Now, since we are using Di-

richlet boundary conditions, A -^ p^^()C]y] is a pointwise increasing function, Ex-

ample 6.3.16, and hence we may replace p^^^ by its thermodynamic limit p^'^\ Thus,

A (g)*aco. (<?)*) < (z/C)(l -z/Ä)-'coO-H<o,c(lff|)Vc(bl)') ,

where co^'^ is the Gibbs state of the noninteracting Böse gas at activity C- Therefore,

0 < coA(<D,(g)2"') < (z/C)(l -z/Ä)-'a;.f(4.o,c(|3|)-"')
and the proof now proceeds äs previously.

Under slightly more stringent conditions on the interaction it is also possible
to prove convergence of the time-dependent Green functions

GA(^O, - - - ,^; ^1, . . . , ^;0 =^ A(^O T;^(^I) '^^(^)) :

(D^(a^(g]^a^^(g)^
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where

T^M) = g^'^(^A-/iA^A)^g-/?(//A-/iA^A)

but this is substantially more difficult to prove.

Theorem 6.3.26. Consider a Böse or Fermi gas interacting through a t\vo-

body Potential O w/z/c/7 satisfies the requirements

(A) O is even (^(x) = O(x)) and continuous for :^ ^ 0,
(B) the interaction is stable,
(C) OGlHr)nL-(r).

Assume Dirichlet boundary conditions and define local Green's functions

GA(^-;r) - Z;^iTr.^^(A)(^i^-(^-^^>)^^
X A^e-^^^-^^^^^

. . . ^(C".-^ViXA^^^^^-(/J+G-u)/:A)^
where

ZA = Tr5^(A) (e-^^^ ) ^ ^A = /^oo, A - A^A^A -

//ere y4'" = (y4i, . . . ,y4,) denotes an m-tuple of operators mth

AI = A(fi) or fl*(y/) in the Fermi case

^(fi) in the Böse case
,

and C" = (Ci 5 5 Cw) denotes an m-tuple of complex numbers mth C^ G X)

where

D = {r; ReCi < ReC2 < - < ReC. < ReCi + ^} -

Itfollowsfor sujficiently small values ofthe activity z exp{^^i} that there

exist functions G(.4'";C'") analytic for C" G T) a^zöf continuous for C G X
^wc/z that

G(A"^- r") = lim GA(/("'; T") ,
A>00

where the convergence is uniform on compacts in X).

We will not attempt to prove this result although some of the necessary
estimates will be derived in the subsequent discussion of quantum gases (see
also Notes and Remarks).

Although the Green's functions

G^(A,B',t] = o,^(Ae^^^-Be-^^^-]
converge in the small activity region one would not expect this result in general.
For example, if phase transitions occur, one would expect the GA to have
several distinct limit points each giving information about the distinct phases.
In fact, the bounds

\G^(A,B-t]\< \\A\\\\B\\
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imply that there always exist subnets A such that the limits

G(A,B]t) = \\mG/^^(A,B]t]

exist for all observables A, B, and all t e U. This is a consequence of Tycho-
noffs theorem. Thus, it is of interest to have an interpretation of the functions
G. Clearly, the values

a;(^)-G(^J;0)
determine a state co over the observable algebra and ideally one would like to

have an automorphism group T of ^, or of 71(^(^1)", such that

G(A,B',t) = w(Ar,(B)} .

It is however too optimistic to expect to find this structure under all circum-
stances. Nevertheless, one can derive weaker forms of this result. But before
doing this we single out some relevant properties of the G\(A,B; t) which are

mostly preserved in the limits.
The definition

G^(A,B-t}=w^(Ai^(B)) .

immediately implies that

(1) A ^ G^(A,B] t) is linear,
(2) B^G/^(A,B]t) is linear,
(3) t -^ G\(A,B] t) is continuous,
(4) GA(^,C5;0) - CDf,(ACB) - GA(^C,5;0),
(5) GA(1J;0)-coA(l) = L

If {^/}|<-.<-,j C ^ and {^/}i</<^ C [R are finite sequences, one has

n

Y,G^(A],AJtJ-t,]
',/=!

n

= Y^ (Uo,M^co,(Ai)^cn^,U,,^(tj)7l^^(Aj)^^J
^7=1

CÜA^U^,(ti}na,,(A^)ü,
i=\

and hence

(6) E GA(^*,^,-;O-^/)>O.
^7=1

From the fact that COA is a T^- KMS state at value ß one also has

(7) There exists a ß eU such that

r dtf(t]G^(A,B',t)^ r dtf(t^iß)G^(B,A',-t]
Joo Joo
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for all A,B,e^ and all / with /e ^. (See Proposition 5.3.12.) Of these

properties, (1), (2), (4), (5), and (6) are clearly preserved under weak limits. This
is not necessarily the case of the continuity property of condition (3) but it
would follow if one had bounds on the derivatives \dG/^(A,B] t)/dt\ which are

uniform both in A and t. This would also imply uniformity in t of the con-

vergence G\(A^B] t) -^ G(A^B] t) and hence the weak KMS condition (7) would
follow in the limit. We will discuss these bounds later, after first investigating
the general structure of a function G satisfying (l)-(7).

Theorem 6.3.27. Lei ^ be a C*-algebra with identity H, and let

G;Mx^x[Ri-^CZ?^ a function such that

(1) A ^ G(A,B] t) ts linear for all B in ^ and t in [R,
(2) B ^ G(A,B] t) is linear for all Ae^ and t G R,
(3) t \-^ G(A,B\ t) is continuous for all A,B e^i,
(4) G(A,CB]Q) = G(AC,B',Q) for fl//^,5,C, e 91,
(5) G(1J;0)-1,
(6) E"j= l ^(^;,^y; 0 - ^/) > 0 fa^ allfinite sequences {^/}i <,<, C ^,

ßöfOJi<,<cDR.

Itfollows that

A^o}(A) = G(^,A',Q)
is a State on 2l. Let (^,710;, ^o)) be the corresponding cyclic representation.
There exists a Hilbert space ft containing ^, and a strongly continuous

unitary representation U ofR on S{ such that

(i) ft = V.eff?^(0co
(ii) G(A,B] t) = (7r^(^*)Qa;, U(t)nco(B)Üa,)

for all A^Bj 9l, ^ G IR. Furthermore, properties (i) and (ii) determine (5^, U)
up to unitary equivalence in the sense that if (^ ^ U'} is another pair satisfying
(i) and (ii), then there exists a unitary operator W : S{ ^-^ S{' such that

^k = is.

and

U(t] = W''U'(t)W
for all t G IR.

PROOF. Condition (6) applied on the trivial sequences {^4} and {0} implies that

G(yl*,^;0)>0
and hence (4) implies

co(^*^) = G(1,^*^;0) - G(^*,^;0) > 0
.

Since co(1! ) =^ G(1] ,
H ; 0) = l

,
it follows äs a corollary of Proposition 2.3.11 that co is a

State. Let ((y,7reü,Qöj) be the associated representation of 9l.
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Condition (6), applied to the sequences {c\A*,C2B} and {^,0}, where ci,C2 G C,
implies that the matrix

/ G(A, ^*;0) G(A, ß-t)
(G(B-\A^--t) G(B\B-0}

is positive. It follows that

G(5*,yi*;-0 = G(A,B-t)
and

\G(A,B',t)\' < o}(AA*)oj(B*B) = ||7i,^(^*)Q,,f \\n,,(B)^4~ .

Hence the function G defines a one-parameter family of bounded sesquilinear forms
on 7if^(^)Q(,j X 7ioj(^l)Qw The closures of these forms define a one-parameter family
t\-^Xt of bounded operators on ^^, i.e.,

G(A,B-t) = (7ü^(yi*)Q,Jr, n,,(B)Ü,,)
and the bound on G implies

11^/11 < l

The definition of co implies

^0- l

and condition (6) has äs a consequence that

X^(^,,^,^._,iA,.)>o
u=^

for all finite sequences{i/^^}j< .^^^
in ^.

Now let R be the vector space of all mappings cp from U into ^ such that the set

[t] t e [R, (p(t) ^ 0} is finite, and convert A into a pre-Hilbert space by defining

(91^92} =^((P\(t)^^s-t92(s)}
s, t

This is really a positive semi-definite inner product by the inequality derived in the
last Paragraph. In analogy with the procedure employed in the beginning of Sub-
section 2.3.3, the GNS construction, we define

3-{c/)GR;((p,(p)=0}

and 5\ äs the Hubert space completion of R/3 in the induced inner product. If

l// G f,j is identified with the element (p e ^ defined by

, .

^

r lA if ? - 0,
^^^ ^ ~ \ 0 otherwise,

it follows that

{(p,(p) = (\lf,\lj]
and this identifies ,^ äs a subspace of 5\.

If / G [R, define a map Ü(t) of ^ by
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(Ü(t}cp}(s) = cp(s-t) .

Then Ü(t)Ü(-t] = Ü(-t]Ü(t] -^ l, and

((Pi , Ü(t]q>^} = ^((pi (s],X,,_, cp,(u - t]]
s, u

= Y.^9i (s' + 0,^'+i-(.'+0^2(0)
s', u'

= Y^(9i(s^t),X,_,(p2(u)) = (Ü(-t)(p^,(p2) .

Sjll

It follows that U(t) lifts to a unitary operator U(t) on R, and t^-^ U(t) becomes a

homomorphism of !R into the unitary group on R. This homomorphism is weakly
continuous since t\-^X( is weakly continuous by assumption (3), and

(^1, ^w^2> - y^(9i w,^-. ^2(" - 0)Z/^
s, u

= Yl((p\(s)^^i^+t-s(p2M}
s, u

Hence ^ t> 6^^ is a strongly continuous unitary representation of [R (weak and strong
continuity are equivalent by Corollary 3.1.8).

The identification of ^^ äs a subspace of 5^ immediately implies

(i) ft = V ^'Ö
teU

and, furthermore,

G(A,B',t) = (7la,(A'')üa,,X,7lo,(B)Q,,) = ((P^,(P2) ,

where (pi,(p2 ^ ^ ^TQ defined by

,, ^,N /^a>(^*)n. if^ - 0
,

^^^^~\0 if^T^O

and

,, (,^|^cn(B}^co ifs=t,
^2^'^-|o if.;^ r

.

But then (p2 = Ü(t)(p^, where

,(,^^|^<^(B}^^ if5 = 0,
^3(^'-\0 if.T^O.

Hence

G(A,B-t) = ((p,,Ü(t)(p2) = (7r^(^*)0, /7(07r,Wa.) ,

where the last step uses the identification of ^ äs a subspace of 5l.
It remains to prove that (R, U) is unique up to unitary equivalence. Let (5l', U')

be another pair satisfying (i) and (ii), and define a map ^ : 5l i^ 5l' by

W l ^ U(ti)7ia,(Ai}m^ = ^ U'(ti)7i^(Ai)üa, .

^ / / /

This map is well defined and isometric because
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(U'(t]7i^(A]^^, U'(s)Ti,,(B]^^) = (7c^(^)a u' (s - t)n^(B)ü,)
= G(A\B-s-t]
= (U(t}n,,(A)Ü^,U(s}n,,(B}Q,)

and W extends by closure to an isometry on 5\. But W is onto since

V U'(t)f)^ = ft'
t^R

and one has that

^iö. = ^ö.

One then verifies äs in the proof of Theorem 2.3.16 that

U(t] = W'^U\t)W .

Theroem 6.3.28. Let "^ be a C'-algebra with identity H, and let
G:^x'5Kx lRi-^CZ?e a function satisfying assiimptions (l)-(6) of Theorem
6.3.27 together \vith the foUo\\nng weak KMS condition:

(7) There exists a ß U such that

/oo noo

dtf(t]G(A,B-t]= / dtf(t + iß)G(B,A--t]
OO Joo

for allA.B^^ and auf with / G ^
.

Let (^,^, 7Cf,j,Q(o, 9*?, U] be the representatives associated with G by Theo
rem 6.3,21,

It follows that Ooj is separating for 7if^(^]" , Furthermore, the positive
selfadjoint operator U(iß) is a form extension of the modular operator A
associated mth the pair (7if^(^l)'',Ocü), i-^-

||(7(//?)'/Vll = l|A'/-.A||
/oA-a//i/^eD(A'/-).

Warning. Even if Ä = ,, i.e., if t/ is a unitary group on f)^, such that

G(A,B-t] = (Q,7i{^)[/(r)7r(5)Q)
it does not follow that U(iß] and A are equal. A counterexample can be
constructed äs follows: Let 301 1 and 9Jl2 be von Neumann algebras on a Hubert

space with a common separating and cyclic vector Q such that 901 1^9012
(such pairs are common in relativistic quantum field theory, see Notes and

Remarks), and let AI and A2 be the associated modiilar operators. If ^ G 9Jli,
we have

||A;/2^Q|| = ||^*Q|| = ||Af^Q||
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and äs SRi is a core for A/ it follows that A2 is a form extension of AI. But
A2 7^ AI by the following reasoning: If A2 = AI and J\,J2 are the modular
conjugations associated with 9[)li and yjl2^ then J^l^-l'^ is an extension of JiA^

^

and hence Ji J\. But then we have

9Ki = JiSn^Ji ^Ji^^Ji = J2^l2J2 = 9J12

and this contradicts ^i^^2- But in this case

G(A,B-t] = (Q, ^A~'''%Q)
with ^ = ^[Ri satisfies the axioms (l)-(7), and one has the identifications

,- = , Q,, - Q, ^(0 - A-^'/^
.

PROOF. The first part of the theorem is proved exactly äs in Example 5.3.13.
Next let

U(t] = j dE(p]e-^P^

be the spectral decomposition of U. Then assumption (7) implies that

J d(AÜ^,E(p)AQ^)f(p) = J d(A^Q^,E(p)A^Q,)f(p)eßP

for A G nco(^)" and one concludes that

\\AQ^f = (^Q.^Qa.) = J d(A^Q^,E(p}A^^,,)eß^ = \\U(iß}^^^A^^4^ ,

i.e.,

||A'/2^*nlp = ||t/(;;ß)'/2^*Qf .

The last conclusion of the theorem now follows because naj(^)"^cü is a core for A^/^.

We next examine criteria for the limit Green's functions to satisfy properties
(l)-(7) of the proceeding theorems. As we remarked it is only the continuity in
t, property (3), which poses a problem. We will work in a semi-abstract setting
which is devised to cover typical models in statistical mechanics. Subsequently
we discuss some applications.

Let (^, {^IA}) be a quasi-local C*-algebra, and assume that each ^A acts äs

an irreducible algebra on some Hubert space ^. We say that a family
^A ^ ^A of*-algebras is an isotonic family if

(1) each (A is an irreducible subalgebra of ^(^) containing the identity,
(2) if AI CA2, thenC^A, ^^^^
In Order to define Gibbs states we introduce a family of Hamiltonians //A-

Each //A is a lower-semi-bounded^^ selfadjoint operator on ^, with the

property that

ZA-Tr^J^-/^^A)<^_^
^' Note that we have now implicitly assumed that the chemical potential term liN/^ is in-

corporated in //A and hence lower semi-boundedness corresponds to stability.
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for all ^ > 0. The family of Gibbs states COA associated with the System are then
introduced by

coA(^)=Tr,(e-^^M)/ZA
where A e ^^. The finite-volume Green's functions GA are defined by

GA(^, B-t}=i:T^^(e-f^^^Ae^^^^Be^^^^}/Z^ ,

where A,B e^^ and t G U. Note that each pointwise limit point of COA (re-
spectively GA) äs A -^ oo can be extended by continuity to a state (respectively
Green's function) on ^ = U^ ^A, and by a slight abuse of language we refer to

such limits äs weak* limits of COA (respectively, GA). (See the discussion in the

beginning of Section 6.2.2.)
In the following we will encounter commutator expressions of the form

[H/^,A] and the additional assumptions we now introduce are designed to en-

sure that these expressions have a well-defined meaning for a large enough set

of ^. We assume

(H) There exists an isotonic family DA ^ ^A such that

(1) if ^ G X)A, then AD(H^} C Z)(//A);
(2) the closures of the operators

[H^,A]e-ß^-
exist and are of trace-class for all ^ G DA and all jö > 0;

(3) a;A([//A,^]*[^A,4) < Q < + 00
,

where CA is independent of A and the bound is valid for all A G DA
and all A.

Note that condition (1) implies that the operator of condition (2) is defined
on D(H\). In condition (3) the definition of COA is extended to unbounded

operators for which the appropriate operators are of trace-class.

Proposition 6.3.29. Let {GA} denote the Green's functions associated with
the family of Hamiltonians {H\}, and let G be any weak* -limit point of the

GA- Assume that there exists an isotonic family {DA} of^-algebras satisfying
(H), and assume that 7rco(UA^A) i^ weakly dense in Tico(^)" where

co(A] = G(^,'ll;0) is the state associated with G.

It follows that G satisfies:

(1),(2) A,B^G(A,B] t) is bilinear for all t G R;
(3) t ^ G(A,B; t) is continuous for all A, B e"^;
(4) G(A, CB-, 0) - G(AC,B', 0) for all A,B,C e ^;
(5) G(1J;0)-1;
(6) E/,y= l G(AlAji tj - /,-) > 0 for all finite sequences {^/}i <,<, C ^,

^^{^/}i</<. CR;
(7) S^^ dtf(t)G(A,B- 0 = /!:, dtf(t + iß}G(B,A'^ -t) for all A^Be^

and all / G ^.
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Before proving the proposition we state an immediate corollary.

Corollary 6.3.30. Lei {COA} denote the Gibbs states associated with the fa-
mily of Hamiltonians {H\} and let CD denote a limit point of the COA in the
weak* topology. Assume there exists an isotonic family {T)A} of*-algebras
satisfying (H), such that 7i(ü([J/^ I^A) ^-^ weakly dense in 7i(^(^]" .

It follows that co is a modular state over ^, i.e., the cyclic vector Q^;
associated mth co and 71^) is separating for 7Caj(^)''.

PROOF OF COROLLARY 6.3.30. Assume that co lim COA,, and let Ay be a subnet of

Aa such that GA.^, converges to some function G. The state associated with G is then

just co, and G satisfies properties (l)-(7) of Theorems 6.3.27 and 6.3.28. The corollary
is now a consequence of Theorem 6.3.28.

PROOF OF PROPOSITION 6.3.29. Properties (1), (2), (4), (5), and (6) are obvious

consequences of the corresponding properties for GA.
Next let GA be a net converging to G.

OBSERVATION 1. If ^ e ^ and 5 e UA ^^ then G^^(A,B',t] -^ G(A,B:t] uni-

formly for t in compacts.

PROOF. Assume that ^ e 31 and 5 e UA -^A- The conditions (H) imply that

G\(A,B\t] is differentiable in t and

-^G^(A,B,t] "H'~\iH. Rn^-''"'A|2= \cOf,(Ae''"'^[iH/B])e
dt

= co^(e-""^Ae""^[iH^,B])f
< w/,(AA')w^([H^,BnH^,B]) < \\AfCB .

Observation l is now a consequence of pointwise convergence and Lemma 6.3.23.

Observation l implies that

t>^G(A,B-t)

is Continuous for /l e 9l and 5 e UA ^A- Now if 5 is a general element in 21, choose a

sequence B in UA ^A such that

7i(5)Q ^ T(5)n .

It follows that

ft)((5-5)*(5-5))-^0
and we have

\G(A,B;ti)-G(A,B;t2)\
< |G(^,S-5;f,)| + |G(^,5;A) - G(A,B;t2)\
+ \G(A,B-B;t2)\

< 2co{AA*y'^co({B-B)'(B-B)y'^ + \G(A,B;tt) - G(A,B;t2)\
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for all .4 G ^ and ^i ,
6 G (R. The continuity of

t^ G(A,B-t)
for general A,B ^^ immediately follows. This completes the proof of (3).

If / G ^ C 5^, then / G 5^, and it follows from Observation l and the KMS
property of GA^ that

/oo /co

dtf(t)G(A,B-t]= / dtf(t + iß)G(B,A--t)
-00 J -OG

for ^,^ G UA ^A- As Ti^^dJA '^A) is weakly dense in 7ia;(^l), TCoXUA ^A) is strongly*-
dense by Theorem 2.4.1 1, and hence ifA.B G ^ are given there exist sequences A^.Bn
in U^ DA such that

(ß((An-AY(An-A))-^Q ,

co((An-A)(An-AY)^Q ,

Oj((Bn-BY(Bn-B))^(^ ,

co((Bn-B)(Bn-B)-^)^0 .

It then follows from estimates of the type

|G(C,AOI' <co(CC)a}(D'^D)
that

G(A,,Bn-t)-^G(A,B-t)
uniformly in t. Hence

/OC rOC

dtf(t)G(A,B-t)= / dtf(t + iß)G(B,A--t]
00 J00

for all ^,5, G *!H. This finishes the proof of property (7) and of the proposition.

Remark. If, under the assumptions of Proposition 6.3.29, A is a net such that

GA^ converges pointwise to G, and if, furthermore, 5^ = ^^ where 5^ is defined
in Theorem 6.3.27, i.e., there exists a unitary group U on ^ such that

G(A,B-t] = (^^,no,(Ä}U(t}n^(B)ü,,) ,

then the limits

G(A,Bi,...,B,n',ti,...,tnr)

- limTr^^^ (^-/^^A.^^//,//A^^^/(^2-^,)//A.^2 ^^^-''^'"^^^J/ZA^
a

exist for all ^4 1, 5l, ... ,5, G ^, and one has

G(A^B{, . . . ,5,; ^1, . . . , tfn)
= (ü^,7i,,(A)U(t^)no,(B^)U(t2 - ti)n,,(B2) "7i,,(B,,)U(-t,n}^^) .

To establish these Statements choose a subnet A/ of A such that all the
limits G(A,BI, . . . ,5,; ^i, . . . , ^w) exist for all m. By an extension of Theorem
6.3.27 one can show that there exists a Hubert space A D )^^, a representation
Tif^ of ^ and a unitary group Ü on ^ such that
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G(^,5i,...,5^;^i,...,^^0
- (Q^,,,n^(Ä)Ü(ti)7L^(Bi)Ü(t2 - ti]n^(B2) "n^(B^]Ü(-t,n)^^] .

If P is the orthogonal projection from ft onto ^, one deduces that

U(t] = PÜ(t]P
and since U is unitary Ü must commute with P. Since

n^(B] = Pn^(B]P
and Qto is cyclic for (TT, 17) it follows that A = ^^ and hence

G(A,B\,...,B,n]t\,.. .,tm]
= (Q^,7l,,(^)t/(A)7reo(5l)^(^2-^l)7Ca>(52)--7l,,(5,)^(-^,0^c.)

This shows that all weak*-limit points of the net are equal, and hence the net

itself converges.
We end this section with some applications of the formalism developed on

the previous pages to various specific models.

6.3.4.1. Quantum Spin Systems with Long-Range Interactions. We adopt the
notation and assumptions from Section 6.2.1 for spin Systems, and put
DA = ^A for all finite subsets A c L. Let ^ be an interaction such that

^||cD(^)||<+oo
X^x

for each x ^L.li follows from Proposition 6.2.3 that the derivation

d(A) = lim i[H^(\],A]
A> oo

exists for all ^ G UA ^A, where

H^(\) = ^ (D(jr) .

XC A

The finite-volume Gibbs states are

,^^ Trg,(e-'"^*(^)^)"^^^^=T|:M^
for ^ ^A. In this case the commutators

[^a)(A),^]
are bounded in norm äs A ^ CXD since the limit exists, and assumption (H) is

trivially satisfied. In particular, Proposition 6.3.29 and Corollary 6.3.30 apply,
and each weak*-limit point CD of the net{coA} is faithful on na)(&]"

In Theorem 6.2.4 it was proved that if the interaction O satisfies

^e^''(sup ^|<1)W||) <+^
^0 v-^,fe, ;
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for some A > 0, then the closure of the derivation ö generates a group of

automorphisms of ^ = U^ ^IA. There exist some interactions > which do not

satisfy this condition, but nevertheless the weak* limits co^ -^ CD exist, and ö^
generates a group of automorphisms of 7^to(^)^^ (See Notes and Remarks to

Section 6.2.1)

6.3.4.2. Böse Gas with Repulsive Interactions. In Section 6.3.4 we obtained
some information about the Böse gas with repulsive interactions by a method
of a priori estimates on the reduced density matrices. This information can be

complemented in certain cases by the exploitation of commutator estimates.

Theorem 6.3.31. Let ^ = UA^-(A) be the CCR algebra over UA^"(A),
and consider thefinite-voliime Dirichlet boiindary condition Gibbs states COA at

temperatiire ß > 0 and chemical potential /i < 0 for a Böse gas interacting
through a two-body potential ^ satisfying:

(1) <I) is positive, i,e.,

)(x) > 0

for all xe r

(2) 77?^ estimate

[ d^'x(l^ x^)^+Xx)|-<+oo
/

is validfor some 8 > 0.

Let CD be any weak*-limit point of CD\ äs A ^ oo.

It follows that

(i) co is locally normal,
(ii) co is a modular state, i.e., Q^co is separating for Ti(j^(^]" ,

It has already been proved for more general repulsive interactions that co is

locally normal, see Theorem 6.3.22. In the Remark following that theorem it
was established that co satisfies local number estimates of the form

(ß(N'J^) <-foo

for all m > 0 and all finite regions A. The strategy behind the proof of the

present theorem is to combine these estimates with estimates on

||[roo,A,4^ll , ll[^ci>,4^ll
for suitable .4 G ^_ (A) in terms of

II^A-AII
for suitable m > 0. One can then verify the conditions (H) used in Proposition
6.3.29.
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We prove the commutator estimates in a series of lemmas. These lemmas are

stated both for Böse and Fermi gases with later applications to low density
gases in mind, see Section 6.3.4.3. We work on Fock space and \l/ always
denotes a vector in Fock space which is contained in D(N'J!^) where A and m

Vary from lemma to lemma.

Lemma 6.3.32. Iff^L"(\), and <D e L^(^'}, then

\\[U^,a(f]m< |^||2lK/)(A^A-A'- 1)^11
<ll^ll2ll/ll2l|A^XA^A-A'-^ll ,

\vhere

m = Q for fermions

^^ = ^ for bosons

and

A- A'- {jcG [R';;c-;^-z,>;G A,zG A'} .

PROOF. Using the action of annihilation operators and of ^D,

(a(/)iA)^"H;ci, . . . ,x,0 - (^1 + l)'/' l ^x 7W'A^"^^^(^,^i, . . . ,^)

(U^^^Jt\x,,. . . ,^) = ^ cD(x, -^,.)^(")(^i, . . . ,z,)
l <i<j<n

-^^5^a)(x/-^y)^A^"H^i,...,^.) ,

ij^J

one calculates'^

ll[C/$,(/)]iAf =E("+') [dx,---dx j dx dyf(x)f(y) Y,^(x - x>)\
n>0 -^ -^ \_i=\ J

r n l

X \Y,^(y-yi)U("+^\x,x,,...,x^^^^^^ .

Ly=i J

We now sum the right-hand side over a complete orthonormal basis of L-(A') which

is chosen to contain O/||O||9. This gives the inequality

\\[u^,a(fm\'< 110)11? 5] ( + i)/rf^E/ ,dx^---dx
,iro J ''J -^ ::::"'

X f(x)f(x-Xi+Xj) ^'"+^^(x,X^,...,X,:)ll^^"-^^^(x-X,+Xj,Xl,...,X) .

'~At this point it is convenient to think in terms of the expression

U^=- dx dy^(x - y)a''(x)a''(y)a(y)a(x)
where a(x) and a*(;c) are defined in Example 5.2.1.
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Applying the Cauchy-Schwarz inequality one then finds

||[t/*,a(/)],A||- < ml^Yl /..^_v dx,---dx\(a(f)^^)^"\x^,...,x)\-
>0 /,7 -^ ^.6A-A'

= ||I.||^||]V^_^-a(/),A||-
= ml\\a(f)(N^_^.-im^ .

Finally, for fermions one has

*(/)(/) < ml 1
,

and for bosons

*(/)(/) < II/II2 ^A

Lemma 6.3.33. /// e I-(A) and O e L-(A') with 0 e A', then

||[t/*,*(/)]^|| < ||'ll2ll/ll2l|A^A-A"AII for fermions
< ll>ll2ll/ll2ll(A^A-A' + 1)'^X-A"AII /Or bosons.

PROOF. First note that the Fock space ^^.^([R'') decomposes äs

J?(A-A005((A-AT) ,

where (A - A')"" denotes the complement of A A' and 0 denotes the symmetrized
or anti-symmetrized tensor product according to the choice of statistics. As all op-
erators occurring in the Statement of the lemma act on 5(^ "~ ^] it is enough to

prove the inequalities on this space.
Since [U<^,a(f]] annihilates the zero- and one-particle spaces,

[U^,a(f]](N^_^-^)-^
is uniquely defined äs an operator on ^^(^ A'). By Lemma 6.3.32 one has

ll[t/<I>,(/)](^A-A'-ir'll < Il/ll2llll2
in the fermion case. Since A C A - A^ we have A^A < ^A-A' and

||[f/<t,a(/)](^A_^.-1)-'/V;i;^,|| < ||/||2||<D||,
for bosons. Taking adjoints and using the fact that [L/(D,a*(/)] maps the /i-particle
space into the n -\- 1-particle space we obtain

\\lU^,a'(f)]N-[^.\\ < II/IMIOII,
for fermions and

||[t/*,a*(/)]yV^-!^,(WA-A'+l)'^'ll < Il/ll2ll<l'll2
for bosons. These inequalities are equivalent to those stated in the lemma.

Next for bosons we consider the field operators

<!)(/) =2-'/2(a(/) +*(/))
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and Weyl operators

W(f} - e^'^(^)

äs in Section 5.2.1.

Lemma 6.3.34. If f e L^(A) and ^ G L^(/i'} with 0 G A', then

\[U^.W(fm\<\m,\\fUao^
where ÜQ and a\ are positive constants independent o//, ^, and ij/.

PROOF. One has

r(/)*[/7vp, W(f}] = W(fYU^W(f) - U^

= i [ dsW(sfY[U^,^(f)]W(sf) .

JQ

Therefore

\\[U^.W(f)]i^\\ < l ds\\[U^,^(f]]W(sfm .

Jo

We now use ^(/) = (a(f) + fl*(/))/\/2 and Lemmas 6.3.32 and 6.3.33 to obtain

\\[u^.w(fm<V2\\^Uf\\, C ds\\(N^_^.+^f^w(sfm .

JQ

But if g e L^(A), one has

^(^)*A^A-A'^(^) - A^A-A' = i[ ds W(sgY[N^-^>,^(g)]W(sg)
JQ

= [ dsW(sgY^(ig)]W(sg)
Jo

f^
= / ds{^(ig)-lm(-sg,ig)^

JQ

= ^(ig) + \\g\\ly2 ,

where the next to last step used Proposition 5.2.4. Therefore,

f^(^/r(AfA-A' + l)'^'M^(^/) = (A'A-A' + ^1'(;/) +.^11/11^ 1/2 + l)'^'
and thus

\\iu^,iv(fm

< v^mi^ 11/11, f'ds (N^_f,.+s<S>(if)+s^\\f\\ly2 + ^f^
JQ ^ /

Now, we use the commutation relation

[N^-^',^(g}] = -i^(ig)
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valid for g G L-^(^) together with the bounds

^(g)-<2(N^ + m9\\l ,

(D(^)<V2(7VA + !)'/- M, < 2^/^(AAA_A^+t)^/-||^||,
to estimate (A^A_A' ^ s(^(if) +5-||/||2l]/2 + H)^ in terms of (A^A_A' +1)^ Inserting
this estimate in the last estimate for ]\[U^, ^(/)]'AII the lemma follows.

Lemma 6.3.35. Let i// e g^(L-(lR'')) be such that for every A G U'' one has

ijj G D(N'J^) and

ii(^A+irvii<(iAi + i)%,.
ivhere m = l for fermions, m =^ for bosons, and c,//^,^ is independent of A.
Flirther let f G L^(Af) for some A/ arid take ^ such that

1= f d''x(l^\x-Y^^\^(x}\" <^oc

for some e > 0.

It follows that

\\[U^,a#(fM\<d(c,^,,-\f,s)
where a^ denotes either a or * and d is a constant. Further, for bosons,

||[t/T, w(fm\ < ^(c,A,,; A/; )lll^||LII/ll2(o + l \\f\\2)
where ao and a\ are constants.

PROOF. Partition IR'' into a cubic lattice with unit cells A/, and defme ^/ = x\,^-
One has

\\[U^,a*(f)m<Y^\\[U^a*(f)m
i

<Ell/il2ll't'.-|l2ll(A^A/-A,+')"'l/'ll
/

<I]ll/ll2ll^/ll2C^.4|A/-A, +!)"
/

where the second step is an application of Lemmas 6.3.32 and 6.3.33. Next note that

l A/ -A/1 + 1 is equal to a constant df and

II. > /ii'p/iii ,

where

2^v+e
üi = inf (l + x\-Y

X e A/

Thus

Eii'*''ii2 ^ iii^LZr'^'
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Combining these estimates one has

ii[^T,*(/)]'Aii <c^,.4"'(E^r'^'Wii2imiia
v ^ /

The second Statement of the lemma follows from Lemmas 6.3.32 and 6.3.33 by an

identical argument.

Next we turn to estimates involving the kinetic energy operator

T = dr(-v^} .

Lemma 6.3.36. // / G ^^(A) is tmce continuously differentiable, one has

||[r,a(/)],AII<l|vVll2lK'AII ,

\\[T.a^(fm\<\\^^f\\2\\(N^ + '^Tn ,

\\^here

m = 0 for fermions^

m - for bosons.

PROOF. One has

([T,a(f]]^l>)^''\x,,. . . ,x) = - jdx /WV>("+')(^,^i, . . . ,^n)

= -(a(VV)'A)<"'(^i,.--,^.)
and hence

[r,a(/)j = -a(VV) .

The first estimate in the lemma follows immediately, and the second is proved from

the first äs in Lemma 6.3.34.

Lemma 6.3.37. Lei f G ^^(A) be tmce continuously differentiable. It follows
that

II[^,^(/WII < l|V/||^||iAII+2||VVll2ll(A^A + l)'/Vll .

PROOF. One argues äs in the proof of Lemma 6.3.34 that

\\[T.w(fm\< l ds\mf),T\w(sfm
Jo

= r ds\\^(iv^f)w(sfm
Jo

= / ds\\{^(iV^f)+sRe(f,V^f)1}^\\
Jo

= / c/5||{0(/VV)+^l|V/||^1}./'|| ,

JO
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where the next to last Step uses Proposition 5.2.4. One then uses

(I.(/VV)'<2||VVll2(A^A + 1) ,

etc.

PROOF OF THEOREM 6.3.31. The limit state is locally normally by Theorem 6.3.22,
and by the subsequent Remark one has local number estimates

COA((7VAo+ir) < C.(|Ao|+ir
whenever AQ C A where c, is a constant independent of AQ and A. We will apply
Proposition 6.3.29 and take DA äs the linear span of all W(f) where / is twice
continuously differentiable and has compact support inside A. We have

^A = ^oo,A + ^O - /^A^A

Suppose that/is twice continuously differentiable and has support inside some open
region AQ. Then

[rco,A, m/)] = [T, w(f]]
for all A D AO, and hence

A([7'oo,A,r(/)r[ro,,A,r(/)]) < 6,(/)a;A((7VA+1))<6|(/)c,(|Ao|+1)
where b\(f) is independent of A. Similarly from Lemma 6.3.35 one has

A([WD,r(/)j*[Wt,fF(/)]) < ^(cf ;Ao;)-|||<l'|||j||/||;(ao+fl,||/|l2)' ,

where we used

A((/VA + I)^) < C3(|Ao| + l)' .

Finally one has

[^^,W(f)\ = W(f){<l>(if)+ {\\f\\ll}
by the reasoning used in the proof of Lemma 6.3.34, and hence

\N^,w(f}nN^,w(f]] = (^(if]+\\\f\\i\rmf)+mi\]
< Ö2(/)(yVA + i)

and

o)([N^,W(f]]*[N^,W(f)\) < 62(/)ci(|Ao +1) .

Combining the estimates of the commutators of TQO.A, ^CD, and A^A with W(f) we

conclude that

COA([//A, ^(/)1*[^A, W(f)]] < b(f] < +(X)
,

where b(f) is independent of A. Hence, condition (H) is satisfied. Since co is locally
normal it follows that Tia^(\Jj^ X^A) is weakly dense in 7rcü(|JA ^(^))'^ ^^^ Corollary
6.3.30 implies that co is a modular state.

6.3.4.3. Dilute Böse and Fermi Gases. Theorem 6.3.26 stated convergence of
Dirichlet boundary condition Green's functions in the small activity region,
and because of uniformity of the convergence the limit Green's functions are
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continuous in time, and one may apply this theorem directly to conclude that

the limit state is a modular state without verifying conditions (H). It is however

interesting to note that condition (H) is actually used in the proof of the

uniformity in Theorem 6.3.26, i.e., one first uses low-activity expansions to

establish pointwise convergence of the Green's functions G/^(A"^',C^} for

C^ G T), and then uses estimates on the derivatives of GA with respect to

Ci, . . . ,Cm? to prove that the convergence is uniform on compacts. These esti

mates are of the form (H), where T)A is taken to be polynomials in a(f} and

fl*(/) with / twice continuously diiferentiable functions in L^(A.) in the fermion

case. This assures that the commutation with the kinetic energy part of //A is a

bounded operator, and the bounds on the commutator with the potential en

ergy part are established by rather straightforward, but long, estimates in

which the condition O 6 L^ plays an essential part. For bosons one may take

DA to be the linear combinations of W(f) where feL^(A.) is twice con

tinuously differentiable.



6.4. Conclusion

Throughout this volume we have tried to demonstrate the Utility of operator
algebras and their states in the analysis of quantum statistical mechanics. The
most detailed and interesting justification of these techniques is provided by the
theory of quantum spin Systems discussed in the first half of this chapter. A
large class of these models, including all the basic examples such äs the Hei-
senberg and Ising models, can be described by C*-dynamical Systems (^, T) and
States of these Systems correspond to the physical states described by the
model. A global viewpoint of this type is essential if one desires understanding
of such basic questions äs the nature of thermodynamic phases, mixture
properties of the phases, etc., and this is perhaps the greatest single advantage
of the algebraic methods. Traditionally, equilibrium states had been described
by a variety of methods, e.g., implicit or exphcit thermodynamic limits of the
Gibbs ensembles, the principle of maximum entropy, etc., but in all these
methods the affine properties of the states were unclear. Phase transitions were

partially understood in terms of nondifferentiability of the thermodynamic
functions, or through lack of clustering of the states, but no framework really
existed for the definition and characterization of pure phases and mixed pha
ses. The realization that the equilibrium states could in fact be identified äs

states over the appropriate C*-dynamical Systems immediately provided this
framework. The equilibrium states at each fixed temperature were seen to form
a convex set with the extremal points corresponding to pure phases and the
mixed states to mixtures of phases. This immediately motivated much of the
analysis of decomposition theory, invariant states, periodic states, almost-
periodic states, etc., described in Chapter 4. This point of view was initially
somewhat speculative but the theory of spin Systems provides a clear vindi-
cation of its validity; all the traditional definitions of equilibrium states coin-
cide and they are indeed described by convex subsets of the state space of the
spin algebra ^. The global analysis then reveals many properties which were

hitherto unclear, e.g., the links between purity and clustering, factoriality, and
mixing. Many of these properties are consequences of some form of asymptotic
abehanness.

The second striking feature in the algebraic description of equilibrium
phenomena is the role played by the KMS condition. Starting from the Gibbs
ensemble it is evident that this condition is satisfied but it is completely unclear
that this condition alone should characterize equilibrium. Nevertheless, this is
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the case for a large class of quantum spin Systems, and also for the ideal Fermi

gas. This rather surprising result is both of practical and conceptual Utility. For
example we argued in Section 6.2.5 that under a variety of circumstances there

exists a unique KMS state for the inünite spin System. But since the thermo-

dynamic limits of Gibbs states are automatically KMS states, this immediately
gives a strong uniqueness Statement for the thermodynamic limit, e.g., this limit

must be independent of boundary conditions. Moreover, uniqueness implies
that the equilibrium state is a factor state and one can immediately deduce

spatial clustering properties. On the other hand, we have seen in Chapter 5 that

the KMS condition has a variety of characterizations which emphasize dif-

ferent physical features such äs stability under perturbations and ergodicity in

the form of asymptotic abehanness. This clarifies to a large extent the nature of

the equilibrium states even if it does not provide any profound explanation for

their definition. Since the spin Systems are described by C*-dynamical Systems,
one can define the time development of arbitrary states and in principle one

could tackle the problems of approach to equilibrium but work in this direc-

tion seems difficult and much remains to be done.

Finally, the description of continuous Systems is notably incomplete. But

this is a feature of all methods which have been applied to their analysis and it

is doubtful that any complete understanding of these models will be obtained

in the near future.



Notes and Remarks

Sections 6.1 and 6.2.1

The study of spin Systems äs models of magnetism predates the füll develop-
ment of quantum mechanics. The earliest model of this type was suggested by
Lenz [Len 1] in 1920 äs a possible microscopic explanation for the phenomenon
of magnetization. Lenz argued that atoms in a crystal appeared to have a

number of preferred orientations and that the potential energy of an atom with
respect to its neighbor should favor their alignment and hence give rise to a

spontaneous magnetization. Lenz emphasized the simplest case in which an

atom has two possible orientations, the spin-:^ model of Example 6.2.1. The
eigenfunctions of 0-3 with eigenvalue -f l are traditionally taken to represent the
positive magnetization, spin up, and the eigenfunctions with eigenvalue -l then
correspond to negative magnetization, or spin down. The potential energy, or

interaction, suggested by Lenz takes the form -Jö-gcr^' for "neighboring"
points x,y ^ L where / > 0. Thus, the energy is negative if, and only if, the
atoms at x and y have the same orientation, i.e., the spins are parallel.

In 1925 Ising, a Student of Lenz, carried out an exact calculation of the
partition function, Tr(e~^^), for the one-dimensional I = Z Lenz model [Isi 1],
in his doctoral dissertation. Ising inferred from his calculations that the one-

dimensional model failed to exhibit an ordered ferromagnetic state at any
temperature but he also argued incorrectly that the same Situation would
prevail in higher dimensions and backed this argument with various approx-
imate calculations.

Since 1925 the Lenz model has almost universally been referred to äs the
Ising model (see Example 6.2.2). A füll history of this model to 1966 has been
given by Brush [Bru 1].

Ising's negative conclusions appear to have been accepted by other authors
and in 1928 Heisenberg [Hei 1] proposed a more complex interatomic spin-spin
coupling, Ja^ a-^, äs the root of ferromagnetism (see Example 6.2.2). While
the Lenz-Ising model is basically a classical model, i.e., the Hamiltonian is a

function of the mutually commuting third components {0-3}.^^^ of the atomic
spin, the more sophisticated Heisenberg model is inherently quantum me-

chanical and in this sense is the prototype of quantum spin Systems äs we

describe them. Nevertheless, the Heisenberg interaction is not necessary for the
understanding of ferromagnetism because in 1935 Peierls [Pei 1] proved that
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the Lenz-Ising model exhibits a spontaneous magnetization in two or more

dimensions, i.e., with L = J^ and v > 2. (For a further discussion see the Notes

and Remarks to Section 6.2.6)
Spin Systems on regulär lattices also provide a model of crystalline structure.

It was a long-standing notion that crystals were formed in a repeating pattern
best described by a periodic structure. This tenet of symmetry then imposed a

number of restraints on the possible crystalline forms, e.g., rotational sym-
metries of order greater than five are impossible for periodic patterns in two or

three dimensions (see, for example, [[Sen 1]], Chapter 1). But the 1984 ex-

periments of Schectman, Blech, Gratias and Cahn [Sehe 1] revealed a metallic

phase of an aluminium-manganese alloy with a six-fold symmetry, the first

example of a nonperiodic crystalline structure. These experiments radically
aifected ideas about crystals, their structure and definition. For example, the

definition of a crystal äs proposed by a 1992 Commission of the International

Union of Crystallography is 'a solid with an essentially discrete diffraction

diagram with the symmetry of the crystal that implied by the diffraction pat
tern'. Thus the traditional definition of a crystal has been replaced by its

Fourier transform. The theoretical description has also had to be broadened

with a movement away from periodic lattices to aperiodic ones.

The lattice gas interpretation of the spin-^ System is given exphcitly äs fol-

lows. The eigenfunctions i/^^ of er 3
with eigenvalue + 1 correspond to states

with a particle at x and the eigenfunctions i/^_ with eigenvalue -l represent
States without a particle at x. The spin raising and lowering operators

al^(a\^w\}l2, a, = (a\-ia\]/2 ,

then act äs particle creation and annihilation operators, e.g.,

:(cr^ + 1)=0 = ((T^-1)a: ,

(a^+1)a, = 0-a,(ff^-1) ,

and hence

<T^(x'A+) = -(ßx'A+), ffsK'/'-) = +K'/'-) -

The operator % = a^a^ measures the number (zero or one) of particles at x and

''A = ^X
jceA

is the number operator for the Subsystem A.

Now let Q be a simultaneous eigenfunction of each a\,x ^ /^, with eigen
value -1. It follows that fljc^ 0 for all jc G A and the vectors \X} defined by
10) = Q and

i^)-n<i0)
x^X

form an orthonormal basis of 9)^. Thus, a general vector ^ G A ^^s a de-

composition
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v^ r

with ^(X) eC and

^ = ^ ^(X)\X}
^CA

^ E i^wi'
^CA

This construction is also possible with A replaced by L and in the case L Z^'
one obtains a discrete form of the Fock spaces used to describe continuous
Systems in Chapter 5, i.e., a vector ^ G /v is a function over the finite subsets
X c Z' such that

\\^f= ^ |T(X)P<+oo .

XcZ''

Note that the creation and annihilation operators satisfy mixed commutation,
and anti-commutation, relations, e.g.,

[a,,<]=0, ifx^y

but

K,^*x}-i .

Nevertheless, Example 6.2.14 shows that this model is in a certain sense

equivalent to a Fermi lattice gas.
In the lattice gas interpretation the phenomenon of magnetization corre-

sponds to a form of liquid-gas phase Separation. The regions with the spins up
correspond to regions occupied by particles (the liquid phase) and the com-

plementary region with spins down corresponds to zero particles (the gas
phase).

The Heisenberg Hamiltonian has an interesting interpretation in the lattice
gas language. For simplicity assume that L Z and that the interaction is only
between nearest neighbors. The total Hamiltonian can be divided into several
parts. First there is the l^-7contribution

H,=- ^ J((T'{af^+CT-5(7fl)/2

= - ^ J(a'^a^+i +fl^fl*^J .

X = n

Therefore, on the one-particle space

(//,T)({j}) ^ -J(V^^)({y}) - 2J^({y}) ,

where V" is the discrete form of the Laplacian

(V'-^)({y}) = ^({y + 1}) - 2^({y}) + ^({y - 1}) .

Thus, H\ is analogous to the Hamiltonian of the ideal gas and the X-Ymodd is
interpretable äs a noninteracting lattice gas. On the other hand the Ising
contribution to the Hamiltonian,
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rjr \ ^
7-_x _.JC+1 /'^//2 = - 2^ 7(73(73 l L ,

:c= A/

has a pari 7/2 ?

//^ = -2J V a>;+ifl;c+iöx

which corresponds to the potential energy arising from a two-body interaction

between neighboring particles,

(//^ ^)(7) :^ ( -/ Y. ^->MV^^)
v ^-j^ey /

Thus, the Heisenberg model represents a lattice Version of a particle System
with two-body interactions.

Most of the early work on spin Systems centered on spin-^ Systems with

interaction solely between neighboring atoms. The study of higher spin and

long-range interactions intensified in the 1950s and 1960s. The general alge-
braic formalism that we use was introduced by Robinson [Rob 9] in 1967 but it

is basically an extension to quantum Systems of a framework given for classical

Systems by Gallavotti, Miracle-Sole, and Ruelle [Gal 2] [Rue 1l]. The remark

after Proposition 6.2.3 is due to Araki [Ära 13].
The first exact results on time evolution were derived by Streater [Str 2], for

the Heisenberg model, and Robinson [Rob 7] for a general class of spin Sys

tems. In particular, this latter reference contained a version of Theorem 6.2.4 in

which it was assumed that O(J^) vanishes for \X\ sufficiently large. The ex

tension to the case \^\^ < +00 was subsequently pointed out by Ruelle (see
[[Rue 1]]). These results were not stated explicitly in terms of unbounded de-

rivations but, in fact, motivated the development of integration theory for

derivations, and the consequent deduction of results such äs Theorem 6.2.6.

The first Statement in this theorem was established by Kishimoto [Kis 1] and

the second by Bratteli and Kishimoto [Bra 1l].
If O is a classical interaction the various ^(X), O(7),... commute and

Theorem 6.2.4 can be easily extended to O satisfying

||0||o =sup5: ||0(^)||<+oo
xeLXBx

because of the estimate

ii^"(^)ii = Y. H m^i},[---m^.,},m
^inA7^0 ^nA7^0

<2"|A|(||a)||c
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for A e^\. Bratteli and Kishimoto [Bra 1l] have given a generalization to >
which is "almost classical." If ||O||Q < +00 and

||[//c,(A),//ci>(AO]||<M
for all A, A' c Z, then the first criterion of Proposition 6.2.3 can be verified and
hence the dynamics is once again given by a strongly continuous one-para-
meter group T^.

Another class of interactions was considered by Matsui [Mat 4] [Mat 5] in
1993. We first discuss these interactions in the spin4 case, i.e., A^= 1. To
understand the following formalism note that each element in the local algebra
^A can be uniquely expressed by a sum

^ C^,rtT3W^i(n
X,YCA

where Cxj are scalars, cr/(Jf) = Hxexf^] and (T/(0) = H. This is an easy con-

seqiience of the Pauli spin relations of Example 6.2.14A, or the representation
of the matrices in Example 4.2.7. Matsui proves that if the formal Hamiltonian
is

//=^T,(Ä)
X e Z^'

where

/z = Vc^,r<T3(^)^i(7)

and

Z^
X, Y

^|C;,,r||^u7|-<oo
X,Y

then a resolvent estimate in terms of 'oscillation norms' shows that the closure
of the corresponding derivation on y^ ^A is a generator. The correspondence
with our interaction O is given by

^(X)= Y^ Q,ßT,(<T3(^)(T,(5))
x,A,B

where the sum is over all x G Z^' and A,B c Z'' such that (A ^x}^(B -^x) =X.
Thus one derives the estimate

z *'

X3Q

||owil|x| = ^|Qß|Mu5|2

For general N one can expand the (A^ + 1) x (A^+ l ) -matrices in powers
U"^V",m,n = 0, l, . . . ,

A^ where U and F are the matrices

U =

/l

0

0

Vo

0
.

CD
.

0
.

0
.

0

0

'. co^-^
0

0 \ /o
0

0
,

v =

0

0

co^/ Vl

1
.

0
.

0
.

0
.

.
0

.
0

.
0

.
0

o\
0

1

o/
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and co = exp{27rzy(A/^+ 1)} to obtain similar results. Alternatively one can

expand h in terms of positive elements "^(X] 6 ^x äs // = ^^ ^(X] and then

deduce that the closure of the associated derivation on the spin algebra is a

generator if

Y,\\^(x)\\\x\^<^
X

The connection to our formalism is now

Eo(x) = Vi^m^-x))

(see [Mat 6], Theorem 2.9).
The commutator estimates of Proposition 6.2.9 and Corollary 6.2.10 are due

to Lieb and Robinson [Lie 1}. Their application to the construction of the

dynamics T^, Theorem 6.2.11, was subsequently given by Robinson [Rob 1l].
Despite the early development of the Ising model and the Heisenberg model

the pure Jf-F model was not studied until 1950 when Nambu pSFam 1] gave a

partial analysis. In 1961, Lieb, Schulz, and Mattis [Lie 2] established a pre-
liminary form of the equivalence between the one-dimensional model and the
Fermi lattice gas given in Example 6.2.14 and used this to calculate various
facets of the model. The transformations used to establish this equivalence date
back to the work of Jordan and Wigner [Jor 1] in 1928. The operator T äs well

äs the other results on the dynamics of the X-Y model in Examples 6.2.14A
and 6.2.14B are due to Araki in 1984 [Ära 3l]. Earlier work in this direction

was done by Emch and Radin [Emc 2] and Abraham, Barouch, Gallavotti and
Martin-Löf [Abra 1] [Abra 2] in 1971-72 and by Araki and Barouch in 1983

[Ära 32]. The return to equilibrium of the locally perturbed X-Y model is
discussed by Hume and Robinson [Hum 1].

Throughout Section 6.2.1 we analyzed the time development of quantum
spin Systems äs a norm limit of the local dynamics. There exist some long-range
interactions for which this norm limit cannot be established, but where
nevertheless one can prove that the appropriate limits exist in certain re-

presentations and define automorphism groups of the weak closure of the spin
algebra in these representations. Some such Systems were studied by Pulvirenti
and Tirozzi in 1973 [Pul 1]. They considered a spin-j System on Z^'. In terms of
the spin raising and lowering operators a* and a^ introduced earlier in the
Notes and Remarks, the finite-volume Hamiltonians are deüned by

//(A) ^Y.^(^- y^<^y + E J(X}a*(X}a(X] ,

^.>'eA jfCA
x^y

where

a*W=n.:, a(X} = l[a,.
xex xex

Here K is a real function on Z^ satisfying
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^|^W|<+oo
x^Q

and / is a translationally invariant real function on the finite subsets of /^'

satisfying
^\J(X)\<+oo .

X3 0

One can now show that the local Gibbs states COA,

TrgJ.:^-!^^)'"^^^^-
Trg,(e-WA))

converge in the weak* topology to a state co if the inverse temperature ß and the

activity exp{-jßJ(0)} are small enough. In the region of convergence one can

derive estimates of the form

K[//(A),4^")*[/f(A),^]("^))| < ^X+1)K'^+1)!^7"
for ^ G UA^A^ where KA and CA are constants independent of A and the

[//(A), ^](-) are defined inductively by [//(A), A]^^^ = A, [//(A), A]^""^
= [//(A), [H(\),A]^''~^^] for /2 - 1,2, ....

One next shows that^^ G D(ö") for all

77, where ö is the closure of the derivation defined on UA ^A in the usual way
from the interaction >. If //co is the Symmetrie operator defined on 7rco(D((5))Qcü
by

iH^7i^(B)Q^ = n^(ö(B}}Q^ ,

it follows from the estimates above that 7ico(UA^A)^co consists of analytic
elements for //^o- Hence, the closure H^o of //^j is selfadjoint, and

^t(ncoW} - e^'^-n^(^fe-^^^- = n^(^y^
by Proposition 3.2.58. In this case t -^ i^ßt is just the modular automorphism
group associated with the pair (7i(^(^Y ,Q.a}}^ and it follows from the Remark
after Corollary 6.3.30 that

lim COA(T;^(^I) t^l^^O) = ^(^., (^i) ' ' ^JA))
A> oo

for all y4i, . . . ,^ G ^, ^1, . . . , ^;^ G [R. In the last expression we identified co with
its normal extension to na^C^Y and ^ with 7ico(^).

Section 6.2.2

The Gibbs ansatz for the equilibrium state of a closed finite System was given
by Willard Gibbs in the late nineteenth Century. Nevertheless, it is only since
the mid-1960s that criteria such äs the Gibbs condition of Definition 6.2.16
have been proposed äs characteristic for the equilibrium of open Systems, i.e.,
the finite Subsystems of an infinite System. The first form of this definition was

proposed independently by Dobrushin [Dob 1], [Dob 2] and by Lanford and
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Ruelle [Lan 2]. These authors considered classical spin-^ Systems. The general
form of Definition 6.2.16 was introduced by Araki and Ion [Ära 24] who also

proved a version of Theorem 6.2.18.

The Dobrushin-Lanford-Ruelle version of the Gibbs condition is usually
phrased in a measure theoretic manner which is quite different in appearance to

the general definition. To illustrate this let us adopt the lattice gas notation

given in the notes to Section 6.2.1. The classical C*-algebra GA of observables

associated with A c L is taken to be the algebra generated by the identity and

the number operators HX a'^a^. This algebra is *-isomorphic to the algebra of

complex continuous functions over the finite subsets JT c A, e.g., the operator

/=E/wfn''.)fn(i-^)
7CA \yey / \zA\7

is a multiplication operator, f\X} = f(X)\X) for all X c A. A classical in-

teraction 0 is then an operator of this type,

^\X)^^(X)\X) ,

where the real function ^(X) represents the energy of the particles at the points
xex.

Now the Gibbs state COA is determined by its values on the monomials

^(^} = Yl:ceX^^^^^

CD^(n(X}) = V fi^(XuY) ,Z^
rc A

rnA'=ß

where

t^^(X) =
g-Z.c^4'(S)

2^^^,-I.,.0(.)
-

Note that ^^ is a probabiHty measure on the C*-algebra (i^A because this al

gebra is *-isomorphic to the complex continuous functions over the finite

subsets ^ C A, e.g.,

^^^(f) = E /W/^AW -

XC/i

Moreover COA is determined by ^^, and vice versa. This is just an explicit
Version of the representation theory of abehan C*-algebras given in Chapter 2.

But the //^ satisfy the equations

MjJTuy) = e-^W-'(^l^);.^(7) ,

where

H(X) = Y^ 0(5)
Scx

is the energy of the particles at the points of X and
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W(X\Y} = ^ ^(S)
5n AV0. Sr^ J ^<Z)

ScX^

is the energy of interaction of these particles with particles at the points of Y.

Thus, if one formally takes the limit A -^ oc, then {.i^ is replaced by a prob-
ability measure /,f on the C*-algebra ( generated by the UACI ^^ which satisfies
the Dobrushin-Lanford-Ruelle equations

^(XuY) = e-^^^^-^^^^\^^^i(Y} .

Each such measure /i determines a state co over ( by

oj(A) = ^A(X}^i(X) .

XCL

It is readily checked that co satisfies the Gibbs condition in the sense of Defi
nition 6.2.16 and the Dobrushin-Lanford-Ruelle integral equations are just a

reformulation of the Gibbs condition.
Both Dobrushin and Lanford-Ruelle proved special versions of Theorem

6.2.18 in the classical spin-^ case. The first quantum Version was given by Araki
and Ion [Ära 24] for one-dimensional Systems and multidimensional Systems at

high temperature. The general version was subsequently established by Araki
[Ära 25].

Sections 6.2.3 and 6.2.4

The notions of entropy and conditional entropy have had fruitful applications
in a variety of subjects, coding and information theory, ergodic theory, sta-

tistical mechanics, etc. This universahty is understandable because these
quantities determine the asymptotic behavior of the multinomial coeificients
and the multinomial distribution. Thus, they play a fundamental role in any
application of basic statistics.

Let "Cn^^...^n, denote the multinomial coefficients

"c -

"

^"^-"" -l!. --,! '

where n\^n2^ h /^m These coefficients express the number of ways
one can divide n objects into m subsets of /7i,2, . . . ,m objects, respectively. If
n is large it is of interest to examine the number of partitions into m subsets
with proportions p\ = n\/n, . . . , />, = nt^/n, Thus, one examines

Pn(p] =

(p\n)\---(pmn)\
with p\ -^ P2^ h pm = l- But these coefficients are easily estimated by use

of the Stirling-type bounds

^2^ /7'^e-''^i/(^-''+^) < nl< V2^n''e-''e^^^~''
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given by Robbins [Robb 1]. If R and S are defined by
-(,-i)/2frf"' .^-l/2R,:(p) = (2nnr^"'-'^/M[l, Pi)

^(p^ = -Y.p' '8 P'
i=l

one finds

R..( r,\f>"S(P')
= 0 -], n^oo

R(p)e"^(p)
_ ^

Pn(p]

Alternatively

\n-^ logP,(;7)-^(;7)|=0(/7-Mog)
äs 77 > 00. Thus, the predominant asymptotic feature of the P is an ex-

ponential increase, expfn^'}, where 5 is the entropy associated with the parti-
tion p\,...,pn,.

Next consider n independent repetitions of a trial with m possible outcomes
and corresponding probabilities ^1,^25 5^w The probabihty that the zth
event occurs with frequency /?/,/= 1,2, ...,m is given by the multinomial
distribution

Pn(p\q]="Cp,n ;,?r"'---e"
Therefore, the previous estimates allow one to deduce that

Rn(pY^^P\^^
Pn(p\q]

- l = o|i

äs > 00, where

m

S(p\q] = - ^(Pi log Pi - A- log qt)
i=\

is the conditional entropy of the frequencies {;?/} with respect to the prob-
abihties {g/}. But S(p\q] <(^ with equality if, and only if, pi = qt for
i l, 2, . . . ,

7?2. Thus, äs /7 -^ 00 each of the individual probabihties pn(p \ q]
tends to zero äs 77" ^'"~^^/^. But if the pi and ^/ are not equal, then there is an

exponential decrease exp{77*S'(;? |^)} governed by the conditional entropy
S(p \ q). Therefore, the only results which effectively occur are those for which
the frequencies closely approximate the probabilities. Note that this sub-
stantially reduces the effective number of results below the theoretical max-

imum of 77z'' exp{/7 log m}. The effective number is measured by the sum of
the Pn(p] in a neighborhood of /?/ = ^/. Thus, one obtains from the above
estimates that

- log (effective number) = iS'(^) 4- oi -log -

But if one compares this with the identity
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- log(total number) = log m ,

one sees that the entropy S(q} replaces log m äs a measure of the number of
effective outcomes of each trial.

These estimates explain to a certain extent the quantitative origins of the

entropy. To understand its qualitative features it is useful to examine the no-

tion of uncertainty, or unpredictability. Each trial has a certain quality of

unpredictability which varies with the probabilities. For example, coin tossing
with two equally probable outcomes is much more predictable, or certain, than

spinning a roulette wheel for which there are 36, or 37, possible results. This
indicates that if one restricts one's attention to trials with equal probabiHties
q^ = . . = q^^^ m~\ then the uncertainty F is a positive increasing function of

m, i.e.,

0 <F(mi) <F(m2)
for m\ <m2- But each trial with m1,^2 equally probable outcomes can be
considered äs the composition of two independent trials with m{ and m2 out

comes and it is natural to assume that the total uncertainty is the sum of the
uncertainties of the subtrials, i.e.,

F(m\m2) ^ F(m\) ^F(m2)
But the only functions which satisfy these two simple properties for all positive
integers mi and mi are given by

F(m) c log m ,

where c > 0. Thus, up to a factor which determines the choice of units, the

uncertainty appears to be measured by the logarithm of the number of possible
outcomes. This is clearly not the case for trials with unequal probabilities. For

example, if one outcome has probability dose to one, and all other prob
abilities are small, then there is almost no uncertainty. The result is predictable
because there is only one effective outcome. But in the preceding paragraphs
we argued that the entropy measures the effective number of outcomes. Thus,
combination of these arguments justifies, to a certain extent, the interpretation
of the entropy äs a measure of uncertainty. This interpretation appears to date
back to Boltzmann's observation, in 1894, that the entropy is related to

"missing information" inasmuch äs it is related to the number of alternatives
which remain possible to a physical System after all the observable information

concerning it has been recorded. Thus, any principle of maximum entropy is an

expression of maximum uncertainty, or minimal information, or maximal
disorder.

As the entropy is of such basic Statistical significance it occurs in a wide

variety of contexts and it is impossible to describe all such applications in these
notes. It is the fundamental concept in information theory and has been of

great importance in ergodic theory where a Version of mean entropy serves

äs an isomorphy invariant, the Kolmogorov-Sinai invariant, for dynamical
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Systems. Details of these and other applications can be found in the books by
Billingsley [[Bil 1]], Jacobs [[Jac 1]], Ornstein [[Orn 1]], Shannon and Weaver

[[Sha 1]], and Yaglom and Yaglom [[Yag 1]].
The quantum-mechanical, or noncommutative, definition of entropy
Tr(p log p) was introduced by von Neumann [[Neu 2]] in the early 1930s but

there appeared to be no systematic investigation of its basic properties, e.g.,

subadditivity, concavity, quasi-convexity, until the mid-1960s. Nevertheless,
most of these elementary properties appear scattered through the literature.

The least known appears to be the quasi-convexity but a proof of this was

given in 1947 by Jost [Jos 1]. A survey of these early developments has been

given by Huber [Hub 1] who attributes the basic inequality of Lemma 6.2.21 to

Delbrück and Moliere in 1936.

Strong subadditivity, Proposition 6.2.24, appears to be the only significant
property of A.\-^S\(co) which was not established prior to the 1960s. In 1967

Robinson and Ruelle [Rob 10] pointed out that this property could be derived

for classical spin Systems from the Kolmogorov-Sinai theory of the entropy of

dynamical Systems. They also conjectured that it was valid in general. Despite
attempts by many authors this conjecture remained unverified for 6 years until

Lieb and Ruskai [Lie 3] gave a proof based upon a result of Lieb [Lie 4]. This

result States that the map

Ai-^ -Tr(exp{L+^})

from the positive n x n matrices to the reals is convex for each selfadjoint L.

Prior to this partial results had been obtained by Baumann and Jost [Bau 1]
and Araki and Lieb [Ära 26].

Another proof of strong subadditivity which uses somewhat more sophis-
ticated notions is based on the monotonicity of the relative entropy under

Schwarz mappings. This latter property was established by Uhlmann [Uhl 1].
A füll exposition of this second proof is given in the book of Ohya and Petz

[[Ohy 1]] which also contains an exhaustive discussion of most features of the

quantum entropy and related concepts.
The systematic analysis of the entropy and mean entropy äs functionals over

the States of C*-algebras began with the papers of Robinson and Ruelle [Rob
10] and Lanford and Robinson [Lan 5]. The first of these dealt with the abelian

algebras of classical statistical mechanics and the second extended the form-

alism to quantum statistical mechanics. The main emphasis of both papers was

on invariant states. Their aim was to prepare the ground for a discussion of the

free energy, invariant equilibrium states, and the maximum entropy principle
of Section 6.2.4. The thermodynamic free energy F was constructed by Gal-

lavotti and Miracle-Sole [Gal 2] for classical spin Systems and these authors

also described the connection between invariant limits of local Gibbs states and

tangent planes to the graph of F. In particular, they proved a version of

Theorem 6.2.40 and versions of Observations l and 2 at the end of Section

6.2.4. Ruelle [Rue 1 1] then used the entropy results and the results of Gallavotti

and Miracle-Sole to prove property (1) of Theorem 6.2.40. Subsequently,
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Robinson [Rob 9] extended the whole discussion to quantum spin Systems and
proved Theorem 6.2.40 in the form stated.

The identity of the mean entropy and the mean conditional entropy for
Gibbs States, mentioned after Proposition 6.2.38, was estabhshed by van Enter
[Ent 1]. The fact that they do not coincide on the invariant states follows from
[Tem 1] (see, also [[Tem 1]], Chapter 8, Sections 5, 6 and 7).

The next Step in this development occurred when Robinson [Rob 7] con-

structed the dynamics of a large class of quantum spin Systems äs a group of
*-automorphisms T^ and proved that if ^ ßHc^ is maximized by a unique
State, then this state satisfies the (i^,ß)-KMS condition. The extension of this
result to all 0 for which T^ exists was subsequently derived by Lanford and
Robinson [Lan 6] using results of convex analysis. In particular these authors
proved Lemma 6.2A3, the imphcation (3) =^ (1) in Theorem 6.2.42, Ob-
servations l and 2 at the end of Section 6.2.4, and a Version of Observation 3 in
which the weak* topology replaces the uniform topology. The weak*-version of
Observation 3 was derived by proving that tangent functionals to a convex

continuous functional F are weak* dense in the F-bounded functionals. Several
years later in 1975 Israel [Isr 1] pointed out that the work of Bishop and Phelps
[Bis 2] on convex sets implied that this result was true in the uniform topology.
Israel also proved Observation 4 and various other interesting results con-

cerning uniqueness and nonuniqueness of invariant equilibrium states. Theo
rem 6.2.42 was finally completed by Araki [Ära 25] in 1974 with a proof that
(2) =^ (3) and hence, by Corollary 6.2.19, that (1) =^ (3), i.e., the converse of the
Lanford-Robinson result.
An alternative discussion of lattice gases, and in particular the convexity

arguments used in the last part of Section 6.2.4, is contained in the book by
Israel [[Isr 1]].

Despite the order of the text, analysis of general, i.e., noninvariant, equili
brium states and principles of maximum entropy did not make much headway
until the 1970s. The key Steps in this analysis were made by Araki and Sewell,
both independently and in collaboration. Araki [Ära 27], [Ära 28], [Ära 30]
introduced the relative entropy, Definition 6.2.29, and derived most of its basic
properties. In particular, Propositions 6.2.32 and 6.2.33 and Corollary 6.2.34
are given in these papers. (Our definition of the conditional entropy differs
slightly from that of Araki. One has S((p\il/) = ^Araki(V^I^)-)
An independent proof of the monotonicity property of Proposition 6.2.33

was subsequently given by Pusz and Woronowicz [Pus 2] by arguments based
on their theory of the functional calculus of sesquilinear forms [Pus 3].

Kosaki [Kos 1] derived an interesting variational expression for the relative
entropy, based on some of the ideas of [Pus 2], which can be used to estabhsh
the monotonicity together with other basic properties. This line of reasoning is
described in [[Ohy 1]], Chapter 5. The review of Wehrl [Weh 1] relates various
properties of entropy and relative entropy.

There remain many aspects of non-commutative entropy which we have not

described, e.g., the attempts to extend the Kolmogorov-Sinai invariant from
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measure theoretic dynamical Systems to von Neumann algebras. There are at

least three different definitions of dynamical entropy in the non-commutative

setting, that of Connes, Narnhofer, St0rmer and Thirring [Con 5], that of

Alicki and Fannes [Ali 1] and that of Voiculescu [Yoi 1] [Yoi 2] [Voi 3]. The

book by Ohya and Petz [[Ohy 1]] contains more information on these topics
and a good bibliography.

Sewell [Sew 2], [Sew 3], introduced the principle of local thermodynamic
stability for classical Systems, i.e., the principle of maximum conditional en

tropy described in Proposition 6.2.35 and Theorem 6.2.36, and proved that it

was equivalent to the Gibbs condition. Subsequently, Araki and Sewell [Ära
22] extended the notion of local thermodynamic stability to quantum lattice

Systems, proved that KMS states satisfy this principle, and also proved that the

converse is true for invariant states. Finally Sewell [Sew 1] derived the converse

without invariance. The key to his proof is the autocorrelation lower bound

discussed in Chapter 5.

Attempts to analyze homogeneous Systems without invariance, e.g., im-

purity models, spin glasses, aperiodic Systems, from the present perspective can

be found in [Rue 9] [Roo 1] [Ent 2] [Gee 1] and references cited therein.

Section 6.2.5

Both results of this section have a relatively long history.
Integral equations of the same basic type that we use for uniqueness at high

temperature were first derived by Mayer and by Kirkwood and Salzburg for

correlation functions of classical statistical mechanics. They are often referred

to äs Kirkwood-Salzburg equations. These equations, variants due to Mayer
and Montroll, and various related developments of the 1945-1955 period are

discussed in the book by Hill [[Hil 1]].
Originally the integral equations were used to study finite-volume equili-

brium states. The first application of these techniques to infinite Systems oc-

curred in a little known paper of Bogoliubov and Khatset [Bog 3] published in

1949. Basically these authors established the uniqueness of the thermodynamic
limit for classical continuous Systems at high temperature and low density in

the Gibbs canonical ensemble. Much later, in 1963, and quite independently,
Ruelle [Rue 6] derived similar results in the grand canonical ensemble.

Moreover, Ruelle [Rue 7] developed a technique which leads to spatial düster

properties of the high-temperature states. This is an aspect that we have

practically omitted from our general discussion. We mentioned that if L = Z^',
uniqueness of the KMS state co^ implies extremality and hence strong clus-

tering of the form

lim {o}^(AT,(B)} - (D^(A)co^(T,(B))} = 0
I^HOO

for all A, B e^. But Ruelle's methods allow the deduction of more precise
results, e.g., if ^,5 G 91{o} ^nd <^ is a finite-range interaction then
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|co^(^T,(5)) - co^(^)a;^(T,(5))| < ^"^^"l-^

for some Co- (The details for quantum spin Systems were given by Greenberg
[Gre 2].) Ruelle's work was generalized and extended by various authors, Gi-
nibre, Gallavotti and Miracle-Sole, Greenberg, etc. Most of these general-
izations are discussed in Ruelle's book [[Rue 1]], the exception being
Greenberg's work on quantum spin Systems [Gre 1], [Gre 2] which occurred
after publication of this book. The popularity of these methods led Bogoliubov
and Khatset to extend and republish their work and it now exists in a more

accessible English language version [Bog. 4].
In spin language the high-temperature-low-density regime corresponds to

high temperature and weak external field. The extension of the uniqueness
results to high temperatures and all external fields was given for classical spin
Systems by Dobrushin [Dob 3] and by Gallavotti, Miracle-Sole, and Robinson
[Gal 3]. The latter authors subsequently extended this result to a class of
quantum spin Systems [Gal 4] using a method of Ginibre [Gin 1] but their work
was quickly superseded by that of Greenberg [Gre 1].

The crucial fact that the Kirkwood-Salzburg type equations used by
Greenberg could be derived from the KMS condition was first pointed out by
Lanford [Lan 7]. Thus, Greenberg's results on uniqueness of the thermo-
dynamic limit immediately translated into Statements of uniqueness of KMS
States at high temperature.

All these investigations of spin Systems were restricted to the simplest case,
spin-j, and the present extension to general spin, Theorem 6.2.46, uses a

slightly different technique.
The first proof of uniqueness of equilibrium states for one-dimensional

Systems was contained in the thesis of Ising [Isi 1]. The simplest method to
obtain this result is by a method of Kramers and Wannier [Kra 1] and
Montroll [Mon 1]. The basis of this method is the observation that the parti-
tion function of a chain of n spins with nearest-neighbor interaction J and
external field /z,

r ,.-1

Zn(J,h}= X! X^ exp<^ -^Jö-/ö-/+i -/Z
o-,=l ö- = l t i=i

can be written in the form

Z,.(J,h)=Y: ^ e-"^/\M"-%e-^"r-,
i = \ J=\

where M is the hermitian 2x2 matrix defined by

^M++ M+_\
_

fe--^-'^ e-^
^- '

M__, M__; -\ e^ e-^^^^

Thus, Zn is easily computed in terms of the eigenvalues and eigenfunctions of
M, e.g..
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lim n~^ log Zn(J,h] = Amax(^,/^) ,

/2 > OO

where /Imaxl-^, h) is the largest eigenvalue of M. Similarly, one may compute the

unique Gibbs state of the model by adroit use of M. The matrix M is called the
transfer matrix.

Ruelle has extended this method to dassical spin Systems with long-range
and multispin interactions [Rue 8]. This generalization uses a number of new

techniques, e.g., the Perron-Frobenius theorem, and partially relies upon
earlier ideas of van Hove [Hov 2]. Subsequently Araki [Ära 15] gave a non-

commutative extension applicable to quantum spin Systems with finite-range
interactions and hence derived a special case of Theorem 6.2.47. The first proof
of the general result was also by Araki [Ara29] and relied upon properties of
the relative entropy. The proof we have indicated is due to Kishimoto [Kis 5].

It should be emphasized that uniqueness of the equilibrium state for one-

dimensional Systems is only valid for 'short-range' interactions. Dyson [Dys4]
proved that the Ising model with a very long-range ferromagnetic interaction
does exhibit a phase transition at low temperatures. Fröhlich and Spencer
[Frö 9] Subsequently improved Dyson's conclusion by showing that a ferro

magnetic interaction 7 (x) = l/\x\ suffices for a spontaneous magnetization at

low temperatures.
Finally the transfer matrix method has been of great importance for the

analysis of exactly soluble models, and in particular a version called the corner

transfer matrix [[Bax 1]]. The method has also been used to prove the

'equivalence' of certain two-dimensional dassical Systems and appropriate one-

dimensional quantum Systems and thereby obtain useful information about the
dassical System. For example, Araki and Evans [Ära 35] analyze the Ising
model by this method in the spirit of the current text.

Section 6.2.6

Much of the theoretical understanding of phase transitions has been based

upon properties of the ferromagnetic Ising model in two dimensions.
In 1936 Peierls [Fei 1] proved the existence of a nonzero spontaneous

magnetization m for the two-dimensional model, with nearest-neighbor cou-

plingy < 0, at all sufficiently low temperatures. The proof of Theorem 6.2.48 is
based upon Peierls' argument.

Five years later Kramers and Wannier [Kra 1] proved that if the two-

dimensional model has a unique critical (inverse) temperature ß^, i.e., if there is
a unique ß^ such that m = 0 ^or ß < ß^ and m ^ 0 for jS > ß^, then ß^ is de-
termined by the equation

sinh27^, = l
. (*)

This result was obtained by exploitation of a symmetry between high and low

temperatures which allows one to relate high- and low-temperature expansions
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of the partition function for the model. Relations of this type are now com-

monly called duality relations.

Kramers and Wannier also developed the transfer matrix method, described
in the Notes and Remarks to the previous section, for the one- and two-

dimensional Ising models and used it to calculate the partition function of the
one-dimensional model. In 1943 Onsager [Ons 1] extended this method and
calculated among other things, the partition function of a two-dimensional

cylindrical array with vanishing external field. Onsager's results corroborated
the earlier Undings of Peierls and Kramers and Wannier. For example, the
mean energy per atom of the infinite two-dimensional System is a continuous
function of the temperature T = ß~^ and is differentiable except at the Kramers-
Wannier critical value TC. At this value the derivative diverges äs log \T TC

Subsequently, in 1948, Onsager announced the value

m=[l - cosech^ 2ßj] 1/8

for the spontaneous magnetization m below TC but he never published a

proof of this claim (see [Ons 2]). A proof was given by Yang [Yan 1] 4 years
later.

In 1952 Lee and Yang [Lee Yl] devised an alternative method of partially
analyzing the ferromagnetic Ising model, in an arbitrary number of dimen-
sions. Their method consists of isolating the zeros of the partition function ZA
for the finite-dimensional System. (These zeros potentially lead to singularities
of the free energy FA = |A|~MogZA in the thermodynamic limit and hence
herald transition phenomena.) In particular, they discovered the remarkable
fact that the zeros of ZA, viewed äs a function of the parameter Qxp{ßh} where
h is the external field, lie on the unit circle. They could conclude that the

thermodynamic free energy is differentiable in h except at /z = 0.
It appears that the success of the Onsager-Yang calculations for the two-

dimensional Ising model diverted attention from the general analytic techni-

ques of Peierls and Kramers and Wannier and these methods were not re-

analyzed until the post-1964 period. In 1964 the Peierls argument was revived
and reformulated by both Dobrushin [Dob 4] and Griffiths [Gri 1]. Grifiiths
claimed the original Peierls argument was incomplete but this was disputed by
Peierls [Pei 2]. An early discussion of Peierls' argument was given by Wannier

[[Wan 1]]. After the work of Dobrushin and Griffiths many extensions and

generalizations of the Peierls method subsequently appeared. (For reviews up
to 1972 see [Gri 2], [GriS].) In particular Dobrushin [Dob 4] showed how the

argument could be applied to anti-ferromagnetic Systems, Theorem 6.2.49.

Moreover, in 1968, Robinson [Rob 12] realized how the arguments for the
classical Ising model could be extended by perturbation theory to the quan-
tum-mechanical anisotropic model. The proof of the weak version of Theorem
6.2.48 is based on Robinson's original argument. Subsequently, Ginibre [Gin 2]
reformulated various quantum models äs perturbations of classical models by
the path method sketched at the end of the proof of Theorem 6.2.48 and

thereby improved and extended Robinson's conclusions. Kennedy [Ken 1]
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finally optimized Ginibre's arguments for the anisotropic Heisenberg model
and established the füll Statement of Theorem 6.2.48.

Hohenberg [Höh 1] was the first to realize that Bogoliubov's inequality
[Bog 2] could be used to rule out critical phenomena. In particular, he proved
the absence of Bose-Einstein condensation for one- and two-dimensional
continuous Systems. Theorem 6.2.51, the lattice analogue of this result, was

subsequently given by Mermin and Wagner [Mer 1] but the absence of a

spontaneous magnetization for the Isotropie Heisenberg model in two di-
mensions was already folklore. A heuristic, and apochryphal, argument which

Supports this result and also indicates the importance of the isotropy, in at least
two directions, is discussed by Griffiths in [Gri3].

The origin of the Bogoliubov inequality given in Lemma 6.2.50 has been
described in the Notes and Remarks to Section 5.3.

The absence of continuous symmetry breaking described in Theorem 6.2.50
was established by Fröhhch and Pfister in 1981 [Frö 6] [Pro 7] although their
method was based on uniform estimates on the relative entropy of suitable
local perturbations of the KMS states, in the spirit of the proof of Theorem
6.2.47. But to obtain these estimates they essentially had to estimate ||^$(^L)||
äs in the proof we have given. Our proof is based on the 1984 result of Fannes,
Vanheuverzwijn and Verbeure [Fan 4]. It should be emphasized that the ab
sence of spontaneous breaking of symmetries in one-, and two-, dimensional
models with short ränge interactions does not exclude the existence of phase
transitions in such Systems. Examples of such transitions in the classical case

have been given by Dyson [Dys 3] and by Shlosman [Shl 1]. Note also that the
estimate on the ränge on ||<I>({^, 3^})|| in Theorem 6.2.50 is the best possible in
the sense that there exist two-dimensional Systems with a continuous symmetry
group G and two-body interactions ^ with ||<I>({jc, j^})|| ~ C\x y\~'^~^^, where
> 0 is arbitrarily small, for which spontaneous symmetry breaking can occur

[Kun 1] [Frö 8] [Bon 1] [Ito, K.l].
Theorem 5.3.33A can also be used to estabHsh the absence of discrete

symmetry breaking for some one-dimensional models with interaction of so

long ränge that Theorem 6.2.47 does not apply [Fan 4].
The method of infrared bounds was introduced by Fröhlich, Simon, and

Spencer [Frö 1] who successfully applied it to a number of classical models,
including the multidimensional Ising model. The crucial bounds are obtained
by a method of Gaussian domination previously devised by Glimm, Jaife, and

Spencer [Gü 8] to handle phase transitions in constructive field theory. If /z is a

real functional over Z^ (dyh)(x) = h(x -\- y) h(x') ,
and

<T3(h) = Y,^lh(x) ,

X

then the Gaussian domination bounds for the Ising model are

coA ( exp ( ^3 ( E ^^-M l l < expj (2^y)~' E I^Wl' l
V v \y;n.n. /// ^ ^ J
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where COA is the local Gibbs state and the y sum is over nearest neighbors. The
derivation of these bounds uses the Kramers-Wannier transfer matrix method.
It follows from them that

a>^(a(h)a(-^h)) < (ßjT^ Y.\^(x)\^ '

X

where

-A/z(jc) = 2vh(x) - Y, (^(^ + >^) + ^(^ - 3^))
j^^;n. n.

and this can be used to bound coA(ö-3Ö-'3). In particular, one finds that the Ising
model displays a nonzero spontaneous magnetization whenever

r / ^' ^

2(2ßj]>(27Lr / ^^'^^(1-cos^,)
7u-,-i<7r \7:rf/|A-,-|<7r

This gives a bound on the critical temperature which is within 10% of the
correct value for the two-dimensional model.

Apphcations of the infrared bound technique to quantum spin Systems have
been given by Dyson, Lieb, and Simon [Dys 2], and Fröhlich and Lieb [Frö 2].
These developments have been reviewed by Lieb [Lieb 5]. In particular, these
authors derive the results on the X-Y model mentioned near the end of the
section and similar results for the anti-ferromagnetic Heisenberg model.
An interesting connection between the isotropic Heisenberg model and re-

sistance in electrical networks was pointed out by Powers in 1976 [Pow 6] [Pow
7] [Pow 8]. He established a connection between the existence of long ränge
Order and the resistance properties of the graph of an associated electrical
network.

The multiplicity properties of equilibrium states of the /"-invariant two-

dimensional ferromagnetic Ising model follow from the work of Ruelle,
Messager and Miracle-Sole, Aizenman and Higuchi [Aiz 2] [Hig 1]. Ruelle [Rue
9] proved uniqueness for nonzero external field, or for small ß, and Messager
and Miracle-Sole proved that there are only two /--invariant extremal (T,^)-
KMS States in the regime for which the spontaneous magnetization is nonzero.
In fact, Ruelle proved there is a unique state satisfying the Dobrushin-Lan-
ford-Ruelle equations described in the Notes and Remarks to Section 6.2.2.
But these equations are equivalent to the Gibbs condition for classical inter-
actions and hence one deduces uniqueness for the KMS states. Messager and
Miracle-Sole [Mes 1] proved that the tangent functionals to the free energy are

uniquely determined on the classical interactions defined by even polynomials
of the (73, e.g., on interactions 0 of the form

)({^i,...,x2,})-(r5'...(r5^", and a)({^i, . . . ,z2,+i}) - 0
.

It follows from the results of Section 6.2.3 that all the /--invariant (T, ^ö)-
KMS states coincide on the classical subalgebra generated by even poly
nomials of the 0-3. The desired result follows from a simple argument which
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uses the fact that the Z^-invariant (T, jß)-KMS states form a simplex. An al
ternative derivation of this result has been given by Lebowitz [Leb 1]. Ai-

zenman [Aiz 2] and Higuchi [Hig 1] established independently of each other
that all (T, ß)-KMS states of the Z^-invariant, two-dimensional Ising ferro-

magnet are Z^-invariant.
Messager and Miracle-Sole's results exploit the duality techniques in-

troduced by Kramers and Wannier. At very low temperatures more detailed
Information has been obtained on the phase structure of general classical
models by combining duality arguments and the Lee-Yang method of zeros. A

comprehensive review of these developments is contained in the monograph of

Gruber, Hintermann, and Merlini [[Gru 1]].
There is one important general technique in the theory of phase transitions

for classical ferromagnets which we have not touched upon in the text. This is
the method of correlation inequalities. This method originated with GriiRths
observation [Gri 4] that a ferromagnetic spin System with a positive external
field should have a positive magnetization in equilibrium and this magnetiza-
tion should increase if the interparticle coupling, or the external field, is in-
creased. Quantitatively these observations are expressed by the inequalities

COA(^5)>0 ,

^A(^3^3) - o}^(ff'l)o}^(a^} > 0
,

for the local Gibbs stäte COA. Griffiths' results were quickly generahzed by Kelly
and Sherman [Kell 1] who established the foregoing inequalities remain valid
even if 0^, 0-3 are replaced by products

(^x= n ^3. 0^7= n ^3
xex yeY

Ginibre has given an easy proof of these basic inequalities [Gin 3]. Subse-

quently many authors derived extensions, or generalizations, e.g., Fortuin,
Ginibre and Kasteleyn [For 1], Lebowitz [Leb 2], [Leb 3], etc. These inequal
ities have had numerous applications, e.g., to prove the existence of the ther-

modynamic limits of Gibbs states [Gri 4], to establish uniqueness of equilibrium
states [Rue 8], to deduce the existence of phase transitions in one-dimensional

Systems with long-range interaction [Dys 3], to obtain bounds on critical

temperatures [Gri 5], to establish rigorous inequalities on parameters de-

termining critical behavior [Bück 1], and to bound high-order correlation
functions by low-order correlation functions [Leb 3]. As an explicit example of
this last type of application we remark that Lebowitz has proved that the
Gibbs State COA of an Ising ferromagnet satisfies

o^\(nxny) - COAK)<^A(%) ^ 5Z X^ o)^(n^ny) ~ o^h.(n^}^^(ny] ,

jcejr^er

where n.^ is the number operator in the lattice gas interpretation, i.e.,
n^ = ala^-=^ (ö-^ + 1])/2 and
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;^ = JJ T
xex

Unfortunately, the Griffiths type of correlation inequality has only been
derived for classical models and little information is known for genuine
quantum Systems (see Ginibre's review [Gin 4]).

There are a variety of other general methods which have been used to
elucidate the behavior of models of quantum Statistical mechanics, e.g., mean
field theory and quantum fluctuation theory. The thermostatic part of mean
field theory is described in [Rag 1] and the dynamical part in [Duf 1]. The
theory of normal fluctuations can be found in [God 1] [God 2] and the theory
of abnormal or critical fluctuations in [Bri 1].

Section 6.2.7

This section is based upon the paper of BratteH, Kishimoto, and Robinson
[Bra 15]. But the implication (2) =^ (1) of Theorem 6.2.58 had already been
given by Ruelle [Rue 10]. The condition (3) in the theorem is due to Ai-

zenmann, Davies and Lieb [Aiz 3] [Aiz 4], see also the appendix in [Köm 1].
The conditions that T is positive and T(A) =A for ^ G ^A'^ automatically
imply that r(^A) C ^A, T(AB} = T(A)B for ^ G ^A, ^ e ^A^^ and T is com-

pletely positive.
The detailed structure of the ground states of the X-Y model described in

Example 6.2.56 was derived by Araki and Matsui in 1985 [Ära 33] [Ära 34]
[Mat 1]. The return to equilibrium for finite temperature states was established
in 1 984 by Araki [Ära 3l].

The ground states of the XXZ model with Hamiltonian

H = V(l - (T] crf ^
- ö((r[ ^{+1 + trj cr^^)}/ ^

.xez

where 0 < ^ < l have been studied by Matsui [Mat 2] and by Gottstein and
Werner [Got 1]. In addition to the two translation invariant ground states

corresponding to the spins up and down, respectively, there are two families of

non-translationally invariant ground states called kinks which interpolate be-
tween the spin up and spin down states. The extremal kinks in each of the
families are all unitarily equivalent.

The detailed justification for the classical analysis of the ground states of the
Ising model given in Example 6.2.56, and the connection between the condition
given in Theorem 6.2.52 and the classical condition is äs follows. Assume

^{-c} ~ Md for each jc G L and hence ^ ~ (8);c6iM/- Let Q :^ C"^ be the sub-

algebra of diagonal matrices in M^ and ( ~ (8),TiQ ^(^^^L^d) the corre

sponding maximal abelian subalgebra in ^, the classical spin algebra. The
interaction O is defined to be classical if ^(X) G x^Cd for each X ^L and
O = X^ei^i/ is called the classical configuration space. If Ud is the unitary group
in Cd there is an obvious action of the compact product group X^^i^d on ^
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whose fixed point subalgebra is exactly ^ and this is clearly a symmetry group
for the classical interactions. This symmetry is never broken for finite tem-

perature equilibrium states, i.e., the KMS states of the quantum model are

diagonal states, and the probability measures on Q one obtains from the re-

striction to G are equilibrium states in the classical sense, i.e., the DLR

equations are fulfilled. This follows from the Gibbs condition of Theorem
6.2.18. On the other hand for ground states this symmetry may be broken. This

phenomenon can be illustrated already in the matrix case. If, for example, the
Hamiltonian has a doubly degenerate lowest eigenvalue the set of ground states

is affinely isomorphic to the 3-ball by Example 4.2.7, but there are only two

extremal classical ground states. Nevertheless it can be shown, and it is evident
in the matrix case, that a state co on 21 is a ground state in the sense of Theorem
6.2.52 if, and only if, co|ß- is a ground state in the classical sense. This means

that 0), viewed äs a measure on Q, is supported on the set of ground state

configurations, i.e., the set of configurations that has minimal energy with

respect to changing the configuration at a finite number of lattice sites. Another
characterization is in terms of the projection g^ ^&A ^^ onto those local

configurations in Z^ which have extensions to global ground state configura
tions; a state co G "21 is a ground state if and only if o}(gA) = l for all finite
subsets A C L. Thus the set of ground states is the closed face in E<$i generated
by the classical ground states, where a ground state is called classical if it is
invariant under the action of the symmetry group Xx^L^d on 91, and thus it is

uniquely determined by its restriction to the classical subalgebra. Nevertheless,
one may have pure quantum ground states which are not unitarily equivalent
to any ground state coming from a classical configuration. A simple example of
this is given by the trivial interaction, but there may be more interesting ones

like the Ising anti-ferromagnet on a triangulär lattice [Got 2].
Analysis of the invariant ground states of the one-dimensional Heisenberg

model was initiated by Bethe [Bet 1] in 1931. The most extensive rigorous
results have been derived by Thomas and Babbitt and Thomas [Tho 1], [Bab 1],
[Bab 2]. They describe the spectral properties ofHa^ in great detail. It should be

emphasized that our brief discussion in terms of the Separation of the Z-7 and

Ising contributions is meant to be purely illustrative. Other descriptions of the
model äs a lattice Fermi gas (see Example 6.2.14) with two-body interaction or

a lattice Böse gas with an additional hard-core interaction (see, for example,
[Gin 1]) have also been used extensively.

The X-Ymodoi, or the Ising model, in Example 6.2.56 show that there may
be a great multiplicity of ground states, even translationally invariant ground
states, in situations for which there is a unique (T, jS)-KMS state for each finite
ß. Thus one cannot expect to find many general situations where there is a

unique ground state. Matsui [Mat 3] proved for a class of translationally in
variant interactions with an external field ^"^xez^^ ^^^^ there exists a A o

such that there is a unique translationally invariant ground state provided
^ > AO- The class of interactions include the Heisenberg model with formal
Hamiltonian
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// = -A ^ a\ + ^ (a\(T\(Tl + ci2cr\(J2 + a-^(T]^(j^^]
X e Z' .X, y E Z'

|x->;l = l

where ai < 0 and 02^3 < 0. The proof uses a representation of translationally
invariant ground states äs finite temperature states of a classical spin System
developed by Kirkwood and Thomas [Kir 1].

Finally we comment on a method of constructing translationally invariant

pure states on one-dimensional quantum lattice Systems which has been used to

analyze the ground states of certain interactions. Let ^ = (8)^^M^-|_i be the

C*-algebra of a quantum lattice System over Z, fix a /: G f\l and let

V : C^'h^C^'(8)C^+^

be an isometry. Define a completely positive map E : M/,- (8)MAr+it-^M/: by
E(y4) = VAV. Let p be a state on Mj^ and assume that (p, V) satisfies the

compatibility condition

p(^(BI)]^p(B]
for all B eMk. Define EA : Mk ^ M/, by E^ (B} = E(B ^ A) for A G MA^+I .

Then
one can define a translationally invariant state co on ^ by the requirement

60(^1 0 .42 (8) ... ^ A,n) = P(EX, O E^,,^_, o
. . .

o E^j (4)) .

States constructed in this manner are called finitely correlated states by
Fannes, Nachtergaele and Werner [Fan 5] [Fan 6]. In the second reference it is
established that if co is a finitely correlated state then the following conditions

are equivalent:

(1) co is pure,

(2) no proper subalgebra of Mk containing Ik is invariant under all

E^,^ GM;v+i,
(3) E/ has trivial peripheral spectrum, i.e., the only eigenvector of

E/ :5h->r(5(g)/)F
with eigenvalue of modulus one is Ik.

Using this construction Fannes, Nachtergaele and Werner [Fan 7] have es

tablished that the set of all translationally invariant pure states is weakly*
dense in the set of all translationally invariant states. Thus the conclusion in

Example 4.3.26 that the extremal translationally invariant states is weakly*
dense in the set of all translationally invariant states on a quantum spin System
can be considerably strengthened in the one-dimensional case.

Results on phase diagrams for genuine quantum statistical mechanical
models are relatively sparse compared to the results for classical models [[Sim
2]] [[Sin 1]]. Some results have been obtained äs quantum perturbations of
classical models on the diagonal algebra. These results rely on the Pirogov-
Sinai theory [[Sin 1]] of classical ground states to obtain the complete phase
diagram of the quantum perturbation at small temperatures [Bor 1] [Dat 1].



Notes and Remarks 447

The method is based on the assumption that the classical System has a finite
number of pure classical ground states which are then perforce periodic. The
models assume that the quantum Hamiltonian has the form H H^^^> -i- dV

where H^^^ is (formally) in the diagonal algebra and V is the quantum per-
turbation. The conclusions are drawn by a Variation of Ginibre's method [Gin
2] [Ken 1] described in Section 6.2.5. One uses the Trotter formula

1^"
= limfe-/^^'"'/(1-^F/))"

?2 ^ 00 \ /
e ^

to expand the perturbed density matrix e ^^ around the unperturbed one

g-^//(o) ^^.^ expression introduces transitions between classical contours at

various times and leads to a representation in terms of 'quantum contours' on

[0,^] X f. In the case considered in [Gin 2] [Ken 1] the quantum contours

could be controlled by Standard arguments whilst in the more general Situation
encountered in [Dat 1] a quantum version the Pirogov-Sinai theory is required.
In [Bor 1] one does not, however, consider these quantum contours but uses a

map of the v-dimensional quantum System into a (v -f l)-dimensional block

lattice, where the classical Pirogov-Sinai theory is applicable. This map is
somewhat analogous to the maps used in [Ära 35] and [Kle 1].

Section 6.3

The earliest rigorous results on the statistical mechanics of interacting quantum
Systems were obtained by Ruelle [Rue 12] and Fisher [Fis 1]. Both these papers
dealt with properties of the thermodynamic functions, i.e., the pressure, free

energy, etc., and the first results concerning the equilibrium states of such

Systems were given by Fisher [Fis 2] and Ginibre [Gin 5]. In particular, Fisher

emphasized the importance of convexity, and differentiability, of the thermo

dynamic functions in terms of the interaction potentials for the discussion of

phase-separation properties. These ideas were subsequently developed in the
context of spin Systems into the theory of tangent functionals and invariant
Gibbs states described in Section 6.2.4. On the other hand, Ginibre introduced
the techniques of functional integration. He showed that the quantum-me-
chanical reduced density matrices could be represented äs integrals of func
tionals which resembled the correlation functionals of classical Systems and
exploited methods of classical statistical mechanics to obtain a variety of high-
temperature, low-activity results. These techniques, which are described in
Sections 6.3.2 and 6.3.3, have subsequently played a fundamental role both in

quantum statistical mechanics and in constructive field theory. In fact, our

Statement in the introduction, to the effect that the ideal Böse gas is the only
model of continuous quantum Systems in which phase transitions have been

rigorously established, is a slight exaggeration. In constructive field theory
phase transitions have been rigorously derived for the Euclidean ^(0)2 the-
ories. To define these theories consider the CCR algebra ^+(t)), where the one-

particle space 1^ consists of the distributions g ^ ^'(U~] such that
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= j d^-p\g(p]\\p^ + m^Y^ <+<^ .

Here g is the Fourier transform of g and m is a positive constant, i.e., l) is the

completion of L-(R-) in the norm

\\g\\^^(cj^(-V^- + m^Y'9]"-
Let I),. denote the subspace of I) consisting of real distribiitions, i.e., of 0^ such

that g = g, where g((p] = g(cp] for cp e ^(U~) and let CD denote the Fock va-

cuum State, i.e..

o4W(g))=&xp[-\\g\\^/4} ,

where W is the Weyl operator. Note that W(f) and W(g) commute if /, ^ G l),,
and one easily verifies from the decomposition 1^ = ^,. -|- il)^. and Lemma 4.3.15

that {W(f)]f e l)f.} generates a maximal abelian von Neumann algebra 9J1 on
Fock space. Let >(/) be the associated field operators (defined in Proposition
5.2.3.) The restriction of > to f),. is called the free Euchdean Markov field of

mass m in dimension 2. Let 9JI = C(g) be the Gelfand representation of 9Jl, and
let //o be the regulär Borel measure on Q defined by the Fock vacuum state. /iß
is called the free measure.

To introduce interacting Euclidean field theories, one perturbs the measure

jLiQ. Define an operator-valued distribution ^* from a* by

j d^-pA^(p)f(p]=a\^if) ,

where /i = (V" -^ nr) '^ and / is the inverse Fourier transform of /. In terms

of yi*(/?) and its adjoint A(p] the Euclidean field is given by the expression

> = (In)-^ j d^-pe~^'"^[A'(p] + A(- p]]n(p)-^ ,

where jj.(p) = (p~ + m^)^^^. Note that if / and g are real, A and ^* satisfy the
commutation relations

[A(f],A^(g]]=^ j d^~xf(x)g(x] .

One defines Wick powers of the field by

:<I.W: =(271)- /n(At(A-)-'^^,Oe-"''"+"'+''"'
J /l

X ^"C,-^*(;7i) - . A^(pj)A(-pj^,) . . ^A(-pn]
7 = 0

as a quadratic form on finite-particle vectors with smooth components. This

corresponds to placing all creation operators to the left and all annihilation

operators to the right in the expression for the "operator power" ^(x)'\ If P is

a polynomial of the form
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2m

P(x} = ^a.x^
r = 0

with a2m > 0 and fif is a sufficiently nice function, one defines

U(g) = j d^xg(x):P(^(x)):

]ajd^xg(x):<l>'-(x}: .

) J

2m

E'
r = 0

Formally one defines the interacting Gibbs measure by

/to(e-''^"V)
M/) =

/Zo(e-/'^(")
but U(l) does not make sense äs a function on ß, and one has to introduce
finite-volume Gibbs measures

... /^O...A(^-^^'^->/)
^^'"^^^ /^o..,AM^('^0

where A^o,(7,A is the measure defined äs //Q with V^ replaced by r[^^, the La-

placian in A with the classical boundary conditions given by a (see Example
5.2.26) and x\ is the characteristic function of A. One may also use //OJ.A /^o?
i.e., the so-called free-boundary conditions, or a measure A^O,/?,A corresponding
to periodic boundary conditions in this definition. It was estabhshed by
Guerra, Rosen, and Simon [Guer 1], [Guer 2] that the infinite-volume pressure

Hm -^log/.o,.,A(^'''^'^^)
A-.R2 |A|

exists and is independent of the boundary conditions.
Phase transitions in these models were first exhibited by Glimm, Jaffe, and

Spencer [Gli 6], [GH 7]. Specifically, they considered the polynomial

P,^,(x) = ^^'~f^\hx .

Then, with Dirichlet boundary conditions, the Hmits of the momenta of the
fields

,^,., ^,.,, ,. f^,,^Ae-"^'^^^<^(fi)---^(fn)}
M W,)- -<!>(/)) =^lim^, ,^^^,(e-.(..))

exist for /l, ...,/ G ^r(ö^^). However, if A: is sufficiently large one can show
that

lim co,,,((D(/)) ^ lim co,,,(a)(/))
n > U + h > 0

for positive /, i.e., for h = 0 one has pure phases which are not invariant under
the symmetry C[) ^^ <I). This is established by an argument similar to the
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Peierls argument of Section 6.2.6. The local nature of the interaction makes
these models very similar to lattice models, and one can use all the machinery
from the latter models, i.e., correlation inequalities, etc., to prove results aboiit
the former. A review of the resiilting developments can be found in [Frö 3]. The
greatest physical interest of these models comes not from statistical mechanics,
but from the fact that they are closely related to quantum field models in one

space dimension (see [Giier 1]).

Section 6.3.1

It shoiild be emphasized that the time evolutions

Tf(^)z=e''^^-A^^-/^//.,A
generated by the local Hamiltonians

Ha, A = T'fT, A + ?^A

never can be expected to leave the C*-algebras ^(A) invariant if ^ ^ 0. A

rigorous result in this direction was proved by Fannes and Verbeure [Fan 3].
They consider the CCR algebra ^l+(f)) over f) = C, i.e., the C*-algebra of

ordinary quantum mechanics in one dimension. The Schrödinger representa-
tion, Example 5.2.16, realizes this algebra on L-([R) äs

(r(^)iA)W = e'--iAW ,

(W(is)ilj)(x)=ilj(x-s]
for ^ G [R. Next define

P
J

ß--

1 dW(is]
i äs

l dW(s)
i ds

=
1^

.=0 ' d^

.^0^'
and a Hamiltonian

HX=P~^^ V(Q] ,

where K is a real, bounded function and A G [R. Define a one-parameter group
a^ of ^(L-(R)) by

üL](A)=e'^^-^Ae-^^'^-' .

One verifies

a?(FF()) = W(is') ,

oi%W(s))=e'-''''W(s(l-2it)) ,

i.e., ?i-^ a deflnes a one-parameter group of *-automorphisms of 2I+(C), which
is not strongly continuotis becatise of Theorem 5.2.8 (1). Fannes and Verbeure
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prove, however, that if A 7^ 0 and V is either nonconstant and almost periodic
(i.e., F(ö) e ^l+(C)\C1]) or F G In L^ and F / 0, then a;- does not map

51+ (C) into itself for ^ 7^ 0.

The fact that the local automorphism groups do not leave the local C*-

algebras globally invariant does not lead to any problems since the local Gibbs

States coA are normal in the Fock representation, and therefore have unique
normal extensions to ^(A)'^ == ^(g.^(A)). Expressions hke

fflA(^i)...T;^(^,))

for AI, . . . ^Afi G M(A) should therefore be interpreted äs

Tr^^(A)(e-^^Ag'-/,//A^j^/(/2-/,)//A^2 -Ane-^^"^^)
Trj^v(A)M^'0

etc.

The hterature on pertiirbations of the infinite-volume Laplacian -V^ by
multiphcative operators U is extensive (see, for example, [[Kat 1]], [[Ree 2]].
[[Sim 1]]). There does not, however, appear to be any readily available de-

scription of the corresponding problem for finite-volume Laplacians with

classical boundary conditions although several results can be easily transcribed

from the infinite-volume case. For example, the equality of T^f^ + [/^"^ and

^!"A + ^^"^ for U^"^ G L^(^T and U^"^ > 0 follows from an inequahty of Kato

by the same argument used for V" (see Section X.4 in [[Ree 2]] for a de-

scription of this technique). Similarly Proposition 6.3.1 is a Version of Kato's

theorem of 1951 [Kat 2]. The estimates of the kernel of the semigroup used in

the proof are discussed in detail in Section 6.3.2.

Stable interactions are discussed in detail in [[Rue 1]], and the Statements in

Examples 6.3.2 and 6.3.3 are proved there. Example 6.3.2 is originally due to

Dobrushin [Dob 5] and 6.3.3 was proved by Ruelle in [Rue 13]. In fact, he

proved that if the condition

Y^^<^(x,-xj)>()

is not satisfied, then one can find configurations of n particles in a bounded

region A with a potential energy less than or equal to Cn- for infinitely many
n, where C > 0, which establishes catastrophic behavior of the classical System.
Furthermore, it is possible to approximate these configurations by quantum
configurations cp^^ G ^"(A)'^ such that

(cp,,,U^cp)<-Cn^
and

,

^
,

r C?i for bosons
(^;p^oo,A^J < <

l C'07^+-/^' for fermions
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for infinitely many n. This shows that if the classical stability condition

^A>-^A^A
is violated for an upper semi-continuous two-body interaction then the
quantum stability condition

H^^^>-BN^
is also always violated for bosons, and, if v > 3, also for fermions. This could
lead one to believe that the two notions of stability are equivalent, but in the
important physical case of the Coulomb interaction of different species of
particles they are not. This was pointed out by Dyson and Lenard in 1967-1968
[Dys 4]. Consider, for simplicity, n particles in IR^ with the mass \ and charges
ey = it 1,7 == l, . . . ,

77. The Hamiltonian of the System is given by

"n-t.-^]+ E -^f J '
f J Y- T-

7=1 \<i<j<n ' }\

The particles may be fermions and/or bosons, of different species or not. In
general it is possible to prove the lower bound

Hn > -Bn^f^
,

where B is an absolute constant [Dys 4] and if all the particles are bosons or

satisfy Boltzmann statistics, and the total Charge is zero, it is also possible to
find a unit vector \jj^^ such that

(^,H^)<An^l^
,

where A is an absolute constant [Dys 5]. Thus, in this case the System is not
stable in any sense. One can show, however, that if all the n particles are

fermions belonging io q > l different species, i.e., if one can partition the
arguments jcj, . . . ,jc,j in the wave functions into q subsets such that the wave

functions are totally antisymmetric under permutations within each subset,
then the System is stable

Hn>-Bq-'\
,

where B is an absolute constant [Dys 4]. This is one of the most striking effects
of the Pauli exclusion principle. It is even possible to prove stabihty of a

Coulomb System of fermions of ^ different species, but all with negative Charge,
interacting with particles of positive Charge, and arbitrary statistics. If the total
number of particles is n it is again possible to establish

Hn > -Bq-l^n
where B is an absolute constant [Dys 4], (for the best constants and relativistic
cases see [[Lie 1]], [Lie 7], [Lie 8], [Lie 9]) for a simplified proof. It is not only the
Pauli exclusion principle which is important for this result, but also the fact
that charges interacting via the Coulomb potential tend to screen each other so

that all interactions beyond the nearest-neighbor distance can be ignored. The
starting point is a classical lemma proved by Onsager in 1939 [Ons 3]. If
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Rj = min |;c/ Xj

is the distance of a Charge ej at xj from its nearest neighbor among n charges e/

at Xi, then Onsager's lemma states that

n

Z-^ \Xi - Xf
> -r^^^^j

All the results on stability of infinitely extended Coulomb Systems transfer in

a straightforward manner to bounded Systems with Dirichlet boundary con-

ditions.
The minimax principle in Proposition 6.3.4 is a Standard result which is

proved in different versions in [[Kat 1]] and [[Rue 1]]. It was originally proved
by Weyl in the beginning of the twentieth Century.

Section 6.3.2

The Wiener measure was introduced by Wiener [Wie 1] in 1923. He was par-

tially motivated by the work of Einstein and Smoluchowski on Brownian

motion. This phenomenon is the earliest observed effect of microscopic particle
structure and was first elucidated by Brown in the early nineteenth Century

following a trip of exploration to Austraha. (It is probably the first physical
theory with an Australasian infiuence.) The monograph by Nelson [[Nel 1]]
contains a very readable account of the history and development of the various

theories of the phenomenon.
The construction of the Wiener integral that we have given is due to Nelson

[Nel 2] (see also [[Ree 2]]). There is a large textbook literature on the Wiener

integral from a probabilistic viewpoint. In particular the book of Ito and

McKean [[Itol]] contains a great deal of information about regularity prop-
erties of the Wiener measure, including a proof of Theorem 6.3.6.

The idea of the Feynman-Kac formula, Theorem 6.3.7, dates back to

Feynman's unpublished Princeton thesis in 1942 (see [Fey 1]). He considered

the Schrödinger equation rather than the diffusion equation. If HQ = V^ is

the free Laplacian on L^([R^), one has

|2

f^-itHö ^)W = (4nitr'^ ^^ J> exp{^^^}^(j)
ifij/ is sufficiently smooth, e.g., for i/^ 6 5^ (IR^). If F is a multiplication operator
which is //o-bounded with relative bound less than one, one can use Trotter's

theorem to prove that

(^-/r(//o+n^)(^^)

= lim ( ) / / d''xi'"d''xnQXp{iSn(xQ,xi,...,Xn,t)}il/(xn) ,

n-^oo\ n ) 7^v 7^v
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where

N Y^^ [l /|jc/-;c/_i|V
^

. ,^,(XO,ZI,...,X,,O-E- 4 ,/j -^(^^0
/ = l

'^^ ^
\ ^ / '^^ /

Feynman's idea was to rewrite the last limit äs an integral over paths starting at
^0,

(^-/^(//o+F)^)(^^^ ^ / Jco exp{z^,(co)}iA(a;(0) ,

where

^'()-/KS)'^^-/^(-(^^^
is the action of the path CD. In this way Feynman viewed the Schrödinger
dynamics äs a "sum over histories" of the particle's motion. Unfortunately, it
can be proved rigorously that there does not exist a measure dco on the path
space Q/ such that this formula makes sense, see, for example [Cam 1].
Nevertheless, one can construct Feynman "integrals" äs linear functionals over
suitable function spaces, and this has been used to prove that classical me-
chanics is the ^ ^ 0 limit of quantum mechanics in a suitable sense, i.e., in this
limit the Feynman "measure" is "supported" on the path of least action, which
is just the classical path. The reader is referred to the monograph of Albeverio
and H0egh-Krohn [[Alb 1]] for a review of these developments.

The idea of continuing the Feynman formula to imaginary time so that
Wiener measure can be used to establish a rigorous Version of the Feynman
formula appeared in Kac's 1951 paper [Kac 1].

Theorem 6.3.7 is a generalization of a version of the Feynman-Kac formula
given by Reed and Simon ([[Ree 2]], Theorem X 68).

The properties of the finite-volume Green's functions established in Theo
rem 6.3.8 and the preceding remarks were established by Itö, Sato and Ueno,
and Arima [Ito 1], [Sät 1], [Ari 1]. We have largely followed the 1973 paper of
Angelescu and Nenciu [Ang 1] in the treatment of the finite-volume Wiener
measures. In particular, these authors proved Theorem 6.3.9. The formulas for
the Dirichlet boundary condition Wiener measures in Corollary 6.3.10 were
used earlier by Ginibre [Gin 5] in his early work on the reduced density ma-
trices in quantum statistical mechanics and by Novikov [Nov 1] in his dis-
cussion of the independence of the pressure from the boundary conditions.
Example 6.3.11 is due to Novikov.
A comprehensive review of Wiener integral techniques in quantum statis

tical mechanics prior to 1970 has been given by Ginibre [Gin 6] and the
property of Wiener measures used in the proof of Corollary 6.3.10 can be
found in this article.
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Section 6.3.3

The representation of the reduced density matrices in terms of Wiener integrals
was first given by Ginibre [Gin 5] in 1965. In particular, Ginibre derived the

combinatorial formulas of Theorem 6.3.14, or really Example 6.3.15 since he

dealt exclusively with Dirichlet boundary conditions. Similar combinatorics

had previously been considered in the context of perturbation theory (see, for

example, the article by Bloch [Blo 1]). This representation is discussed at length
in Ginibre's review article [Gin 6] and a good short review of these matters can

be found in [Gin 7].
The estimates for the finite-volume reduced density matrices with positive

interactions, Theorem 6.3.17 and Corollary 6.3.18, were proved by Bratteli and

Robinson in [Bra 17]. The low-density expansions used in proving Theorem

6.3.19 and Theorem 6.3.21 were developed by Ginibre using earlier low-density
expansions derived by Ruelle (see [[Rue 1]]) for classical Systems. The bounds

on the reduced density matrices given in Corollary 6.3.20 were not expHcitly
stated by Ginibre but they are an easy consequence of his bounds for the

associated correlation functionals. These bounds are of the form

l''<-'l^ljJlTJl'-i'R\ß\zVf^ \z
TT l l

_

-l

and for bosons or Boltzmann statistics Pf^(of^) > 0. These latter bounds have

been generalized and systematized in the classical setting by Ruelle [Rue 16],
following earlier ideas of Dobrushin. Ruelle proves that if the interactions are

superstable, then the classical correlation functions satisfy bounds

Q<P^(x,,...,Xm}<C .

The method for establishing the infinite-volume limit of the pressure with

repulsive (Dirichlet) boundary conditions discussed near the end of the section

was developed by Fisher [Fis 1] and [Rue 12]. The method for deahng with

elastic (Neumann) boundary conditions is due to Robinson [Rob 13]. It is

elaborated in the monograph [[Rob 1]] and in particular the pressure is shown

to be independent of the boundary conditions whenever the interaction po-
tentials are positive and decreasing. Prior to Robinson's work the only
boundary conditions that had been considered in the rigorous analysis of

quantum statistical mechanics were Dirichlet boundary conditions. Robinson

emphasized that the complementary use of Neumann boundary conditions,
which were physically equally compelling, led to upper-lower bound techniques
of great analytic Utility. These techniques are now commonly referred to äs

Neumann-Dirichlet bracketing and have been applied in various other fields

such äs constructive quantum field theory [Guer 2] and quantum-mechanical
scattering theory [Marti 1]. For a review of these applications, see [Sim 2].

The functional integration method of proving independence of boundary
conditions originated with Novikov [Nov 1] who considered hard-core bosons

at low densities. This technique was reviewed by Ginibre [Gin 6] and further
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developed by Angelesen and Neneiu [Ang 1]. It has also been extended to other
eontexts (see [Sim 2]).

The infinite-volume limit of the pressure has also been established for some

Systems for whieh classical stability falls, i.e., for different speeies of bosons and
fermions with Coulomb interaetion. We mentioned in the end of the Notes and
Remarks to Section 6.3.1 that these Systems might have a type of quantum-
mechanieal stability because of the Pauli excliision principle and the screening
effect of the potentials. The infinite-volume limit of the pressure for a System of
positively charged bosons interacting via Coulomb forces with negatively
charged fermions was proved by Lieb and Lebowitz in 1972 [Lie 6]. If the total
System is electrically neutral, the limit is independent of the shapes of the finite
volumes A, while the limit is shape dependent for Systems with a net charge.
The existence of the thermodynamic limit for two-dimensional neutral Cou
lomb Systems was demonstrated by Fröhlich in 1976 [Frö 4]. Later Fröhhch
and Park were able to use correlation inequality techniques to prove the ex

istence of the thermodynamic limit for the pressure and the correlation func-
tions at arbitrary temperatures and chemical potentials for Boltzmann particles
interacting via two-body potentials of positive type [Frö 5] and they announced
similar results for bosons. We will give a brief account of their results in the
case of distinguishable particles with some simplifying assumptions. Consider a

System of Boltzmann particles on U^' consisting of two different speeies of
particles. These speeies are indexed by a "charge" q, where q may assume the
values 1. The potential energy between a particle with charge q at the point
X G [R^ and one with charge q' at x' G U^' is given by

U(q,X',q',x')=qq'^(x-x') ,

where <!> is a real Symmetrie function on IR''. The crucial assumption on <|) is
that it is positive definite in the sense that

n

^QC,-)(x,--zy)>0
O' -l

for all finite sequences ci, . . . ,c G C, xi, . . . ,z,, G [R^ For more technical rea-

sons one also has to assume that

(D(0) < +00 .

The potential for n particles at the points x^^ and with charges q^^ is then

U^"\q",x")^ Y^ qiqj^(xi-xj) .

^<i<j<n

The Hubert space for n particles with charges ^i , . . . , ^ confined to a bounded
region A C [R^' is

A = (g)l'(A;^^T,-) =I-(A^V^"V')
/=!

and the Hamiltonian is given by
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^A ^(^'') - ^SA(^'^) = Ä + ^^"H^"' )
r(l)where 7^^^ is V^ with Dirichlet boundary conditions. The partition function

is now

00 _/J . ,Z^=Z^(^,z)=^^5:Trs(e-^<'(^))
= 0

'

q"

-E^E/^-"-''^''^^"H-^-") ' (1)
,^iV^^"

where the q" sum runs over all 2" possible charge configurations and

e-^^A^(^'')(Jc^/) is the kernel of ^-K'^^^"). The finite-volume pressure and the

finite-volume particle-density correlation functions are then defined by

Pf.(ß,z)=-^^\og(Z^(ß,z)) (2)

and

p^(ß,z;g",^)

{00 m r

^^^/ jy"^-^^A"(^"^'")(xV'",xV") . (3)
m = Q^' q"' ^^"^

Theorem [Frö 5]. Adopt the preceding assumptions.
It follows for arbitrary ß > 0 and z > 0 and an arbitrary sequence of

bounded regions A converging to R^ that

1. P(ß,z) = lim PA (^, z)
A ^ IrS

exists and is independent of the particular sequence chosen, andP(ß,z) käs the

Standard properties of the thermodynamic pressure'^

2. p(ß,z-q\^) = \\m pf,(ß,z-q",x")
A>oo

exists for 77 = 0, l, 2, It is monotonely increasing in z and bounded by

(z(n/ßf'-~)\^p{nß<^((ü)/2} .

The theorem is proved via the Feynman-Kac formula, which now takes

the form

^-K'^(.")(^^^, ^) ^ l j^-A^(,,^)exp(- 1^ dtU(^\q\o,(tr]\ , (4)
J(^\,ßT l Jo J

where

d|^^.:^l^(co") = l{d^,^;^;f(o^,] .
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One expresses Qxp{ J^ dtU^^^'>(q^^,o}(tY}} by means of Gaussian Integrals
äs follows. Define a kernel W by

W(q, X, /; q', x'
, t'] = qq'^(x - x']d(t - t']

where q,q' ^ {-\, l}]x,x' G U''] t, t' G [0,^] and d is the unit point measure

at zero. We identify W with the corresponding quadratic form.
Define

=L-({-l,l} X r X [0,jö];^^x J^jcx JO .

where dq is the counting measure on {-1,1}, and ehoose some selfadjoint
operator // on sueh that

(1) H>^,
(2) //"" is Hubert-Schmidt for some 77 < + oo,
(3) H'^^WH''^ is a bounded form for some < + oc.

Let ^ consist of the real functions in p|^>j /)(//"), and equip ^ with the
seminorms

/K.II//VII, /7 = 1,2,....

The set ^ is then a locally convex topological space, and condition (2)
ensures that 5^ is a nuclear space. Condition (3) implies that W is continuous
äs a form on 5^ x c^, and hence W extends to a distribution on 5^ (g) e$^ by
the nuclear theorem [[Gel 1]]. But W is positive because O is positive definite.

By Minlos' theorem [[Gel 1]] there exists a measure diJi^y on the dual space
^' of ^ such that

/ d^i^(^y^^(f^ = ^-(i/2)(/^/)
j^'

where (fWf) is the value of the quadratic form W on /. The measure /% is
often called the Gaussian measure with mean 0 and covariance W. Define the
Wick ordered product of the function cp G =5^' i-> e^^^^^ by

. g/^(/). ^^(\m(fwf}^i(p(f]

(this is consistent with the definition of Wick ordering in the beginning of
the Notes and Remarks to Section 6.3). One can then compute that

/ diiw(9] n
Ly-i

: e'Mfj} . V^
-exp - > {f.Wfj}

l <i<j<r

for /l ,...,/ G .5^. By approximating

fj(q,X, t) = dq^q.d(x - (ßj(t]]
with functions from 5^, and using the notation

9(f] = / <P(^, ^, t)f(q, X, t]dqd'xdt
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we obtain

/\ " { f^ l
diiw(9] n ' ^^P r / ^^^(^j^ ^j W' ^) r

'

j\ L -/o J

= exp(-/^^t/('^H/,^ar)| . (5)
l ^0 J

This is the desired expansion of Qxp{- f^ dt U'<^\q",co(tY}} in terms of

Gaussian Integrals.
Now, define

^A(^)- E /^^^/ ^A^r/'^H^expjJ ^^9(^,60(0,0^:
^^{-1,1}-^^ J^^.ß ^ ^^ J

- E /^^^/ ^/^ri^'V^):cosf/^r(p(^,co(0,o):
^e {^1,1} VA JüA,/, . \J() J

and substitute the formulas (5) and (4) into (1) to derive

00 _n r r

Zf,(ß, z) = Y.- d^i^(cp)c{((pr = / ö?/i^(,p)exp{zC^(<p)} .

n = Q
^' ^ ^

Combining this with (2) and (3) we obtain

^A(;ß, z) -^ log(y rf/.J,p) exp{zC^((p)}

and

pA(^,z;9",x")=ZA()S,z)-V

X jdn^(v) l[Jdß^:/^'^(coj) : expl^i 1^^ dt<p(qj, Wj(t), /)} : exp{zC^(,p)} .

One now derives correlation inequalities for quantities like

/ d^^((p}(p(fi}"'(p(fn)

in much the same way äs for classical lattice models, and uses these to show the
existence of the thermodynamic limit by monotonicity arguments. One can also
extend the argument to establish the thermodynamic limit for other correlation
functions and imaginary time Green's functions.

Section 6.3.4

The results on the thermodynamic limits of the finite-volume Gibbs states for
Böse gases with positive -body potentials obtained in Theorem 6.3.22 and

Corollary 6.3.24 appeared in [Bra 17], where these results were also proved for
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general boundary conditions. The result alluded to in the Remark following
Theorem 6.3.22 is due to Park in 1985 [Par 1]. Results similar to Theorem
6.3.25 were proved by Duneau and Souillard [Dune 1] in 1973. Theorem 6.3.26
was proved in bits and pieces by several authors. The pointwise convergence of
the Green's functions for C'" D was established by Gruber in 1968 [Gru 1].
(See also [Gin 8].) The füll result for fermions was proved by Ruelle [Rue 14],
[Rue 15] in 1971-1972 by establishing uniform bounds on the derivatives of the
finite-volume Green's functions and essentially applying Lemma 6.3.23, i.e., a

technique similar to the one used to prove Proposition 6.3.29. The boson
results were established with similar methods by Duneau and Souillard in the

paper quoted above.
The study of the infinite-volume limit of Green's functions from a general

viewpoint originated in a 1970 paper by Dubin and Sewell [Dub 1], soon to be
followed by Ruskai [Rusk 1] and Sirugue and Winnink (see [Win 3]). Some
later refinements were made by Bratteli and Robinson [Bra 16] and J0rgensen
[J0r 2]. In [Dub 1], [Rusk 1], [J0r 2] the multitime Green's functions are viewed
äs States on a certain *-algebra essentially introduced by Wightman in 1956
[Wig 3]. This is the free *-algebra ^(^) generated by pairs of elements (A, t)
with A e^ and t G U modulo the relations

(^1,0(^2, 0 = (^1^2, 0 .

l(^l,0 + (^2, 0 = (^-4i+^2, 0 .

and

(1,?) = (1,0)
and ^1,^2 e 2l, A e C, ? e R. More specifically, let SB denote the *-algebra
linearly spanned, over the complex numbers, by strings of elements

P=(Ai,ti)(A2,t2)---(Ak,tk)
with AI e 9l, t, e R. Define the *-operation by

P* = (AI, tk}(Al_ tt-i) - (A\, ti)
and let 3 be the two-sided ideal generated by the elements

(AI, t)(A2, t) - (AiA2, t) ,

l(A^,t) + (A2,t)-(lAi+A2,t) ,

and

(1,0 -(1,0) .

Then S(^) is the quotient *-algebra 2B/3. One next defines a one-parameter
group 7 of *-automorphisms of 35 (^) by

7,((^i, ^i) (A-, 40) = (Ai,ti+t)'" (Ak, tk + 0
One can then prove the following analogue of the GNS construction [Dub 1],
[Rusk 1], [J0r 2].
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Proposition. Let co be a positive linear functional (co(P*P) > 0 for all

P G 33 (^)) on 33 (^) satisfying the conditions

(i) co(yt(P]] = ^(P]> for allteU and P e 23(^).
(ii) The mapping t\-^o}(P*yt(P)) is continuous on U for all P e (^).

Itfollo\vs that there exists a
* -representation n ö/S(M) on a Hubert space

, a cyclic vector Q G anda strongly continuous unitary representation U of
U on 9) such that

(1) co(P)-(Q,7r(P)Q),
(2) ^(00 - Q,
(3) U(t)n(P]U(-t] = n(y,(P)\

and ifwe identify ^ äs a subalgebra of^(^)byAe^^(A,0)e S(^) and

UQ is the restriction ofnto^ itfollows that

(4) cD((A,,ti)(A2,t2)'"(Ak,tk))
= (Q, nQ(Ai)U(t2 - ^1)710(^2) U(tk - 4-i)7ro(^^)Ü).

Furthermore, conditions (l)-(3) determine n and U up to unitary equivalence,

This proposition gives no Information on which functions G define states on

S(9l) through the formula

G(Ai,. ..,Ak]ti,..,,tk)= o}((Ai,ti)(A2, t2)"' (Ak, tk))
and Theorem 6.3.27 gives the first complete characterization of the two-point
functions for this to be true, although [Win 3] and [Bra 16] contain partial
characterizations. The technique of dilating the map t\-^Xf io a unitary group
t^-^Uf used in the proof of this theorem goes back to Naimark in 1943 [Nai 3].
An exposition of this and other dilation theorems can be found in [[Eva 1]] and,
less complete, in [[Rie 1]]. The separating character of the vector in Theorem

6.3.28 was demonstrated in [Win 3] and the example in the subseqUent warning
is due to Kishimoto. The reader should be aware that Theorem 2 in [Bra 16] is

erroneous, due to disregarding this warning. The semi-abstract setting dis-

cussed prior to Proposition 6.3.29 was introduced in [Bra 16], and this pro

position and the associated corollary and remark are taken from this paper,

although very similar results occur in [Win 3].
The main theorem in Section 6.3.4.2 on Böse gases with repulsive interac-

tions appeared in [Bra 17], and all the estimates in the subsequent lemmas are

taken from [Bra 16].
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Courbage, Miracle and Robinson 218

Crossed product 136-141, 284, 310

skew 141

Cross section 290



Subject Index 503

Cross-norm 144

Cuntz 306, 226

Cyclic
projector 46

subset 85, 86

subspace 46

vector 45, 46, 86, 109 et seq.

Dang Ngoc 234

and Guichardet 462

Decomposition 14, 32, 45, 105, 106, 117,
121, 216-218, 221, 275, 343, 379,
415, 424, in

almost periodic 430, 431, 433, 436,
437

barycentric 321, 324, 335, 350, 356,
367,447,458,461,^7, 114,301,
302

central (factor) 317, 358, 370, 423,
440, 447, 460, 779, 143, 211, 227

direct sum 45, 356

direct integral 450, 453

ergodic 318, 374, 380, 386, 390, 393,
423, 429, 440, 461, 462, 463, 119,
144

extremal 317, 318, 358, 359, 367, 440,
447, 727, 143, 144, 210

finite 319

at infinity 317, 321, 373, 453, 454,
465

Jordan 216, 219, 222, 236, 305, 369

orthogonal 36, 229, 319

polar 38, 72, 87, 89, 90, 92, 107, 108,
109, 112, 116, 130, 152, 232, 279,
287, 291, 292, 302, 312, 396, 397,
419, 27, 727, 275

of positive linear functionals over

*-algebras 463

property of a lattice 336

of representations 317,440,446
spatial 439, 447, 449-451, 455, 465

spectral 95, 251, 320, 407
of States 129, 317, 449, 450, 459, 460

theory 317, 319, 373, 413, 414, 440,
459

Delbrück and Moliere 435

Dell' Antonio 9, 279

and Doplicher 218

Doplicher and Ruelle 275

Density matrix 76, 85, 106, 124, 127-

131, 210, 405, 25, 36, 159, 268-274,
278-284, 293, 295, 383, 384

Derivation 160, 233-249, 265-268, 282,
286, 292, 306, 307, 309, 4, 214, 244,
247, 249, 413, 427, 430

bounded 235, 236, 246, 249, 262, 263,
290, 291, 300, 301, 144, 145, 244

everywhere defined 235, 267, 263, 306

implementation of a 269

inner 305, 144

nonclosable 306

normal 308

norm-closed 235-245, 306

spatial 268, 270-272, 274, 287

Symmetrie 233, 144

theorem 262

Diifeomorphism 159

Diflferentiable

strongly 203

uniformly 161, 162

weakly* 203

Digernes 3 1 1

Dirac 277

Direct integral 439, 440, 450, 454

Direct sum 45, 46, 60, 439, J57, 363,
364

Dixmier 152, 312

Dobrushin ^29, 440, 446, 453

Doplicher and Kastler 463, 464

Kastler and Robinson 461

and St0rmer 462

Douglas 460

Dual 48, 5l, 53, 62, 76, 130, 170, 203,
204, 216, 219, 305, 317, 350

group (see Group, dual)
Duality 126, 130, 169, 209, 439, 442

Dubin and Sewell ^59

Duhamel two-point function 93, 221,
225

Duneau and Souillard ^59

Dunford 155

Dye 305

Dynamics, perturbed 97

Dynamical
flow 159

System 13, 136, 137

System, C*- 136, 137, 139, 142, 310,
76-106, 204, 212-214, 235, 422, 423



504 Subject Index

Dynamical (Contd.)
W^- 136-142, 310, 77-^7, 114, 123,

144, 150, 158, 165-170, 178, 212-

214, 237

Dynamics 159, 160, 4, 5, 45--62, 72, 78,
94, 119, 144, 176, 239, 250, 251,
259, 348, 349, 427

Dyson 252

Lieb and Simon 441

and Lenard 447

Effros 465

Einstein 442

Element

analytic (entire) 97-101, 115, 178-

183, 231, 265-267, 272, 293, 76-80,
84, 94, 157, 158, 167, 207-210,
244-248, 277, 307, 334, 432 (see
also Vector, analytic)

even 121, 7(52

identity (see Identity)
invertible 25, 38, 213

isometric 28

normal 28

odd 121, 162

positive 7, 32, 38, 215, 276, 27, 92, 94,
116, 123

quasi-analytic 311

self-adjoint 28, 103, 147, 212, 213

unitary 28, 38, 72, 97, 107, 110, 111,
141, 214, 384, 395, 417, 418,411,
101, 102, 145, 146, 211-214

Elliott 152, 306, 309, 311

Ensemble, canonical 4, 437

grand canonical 4, 46, 437

microcanonical 4

Entropy 89, 268-302, 432-435

conditional 268, 274-284, 295, 432,
434

maximal conditional 275

maximum 89, 90, 221, 267, 273, 274,
286-300, 340, 422, 435, 444

mean 290, 292, 296, 300-302, 348, 434

per unit volume 270

relative 2(57-270,275-250
total 270,277

Envelope
lower 326, 327

upper 326-328, 335, 338

Equicontinuity 167, 185

Equicontinuous, T(X,F}- 168, 174, 204

Equivalence
physical 14

quasi- 79-82, 128, 370, 395, 452

unitary 48, 56, 79, 80, 151, 283, 396,
429, 442, 450, 457

Ergodic theory 13, 401, 423, 432, 435

(see also Action, Decomposition,
State)

Ergodicity, central 395

Evans 225,226
Evans and Hanche-Olsen 222

Extension

canonical 52, 58, 60

State 52

Extremal point 53, 57, 317, 321, 325,
327, 330, 331, 350, 353, 405, 425,
464, 777, 720

Face 319, 321, 355, 369, 372, 373, 385,
428, 432, 436, 440, 447, 449, 450,
454, 455, 464, 722, 123, 131-136,
139, 230, 231, 339

stable 333, 334, 353, 354-356, 373,
377, 378, 301

Factor 7l, 127, 142, 151, 267, 277, 305,
310, 312, 355, 356, 358, 423, 446,
448

finite 134

hyperfinite 137, 142, 150, 151, 305
infinite 148

Krieger 142, 151

purely infinite 148

semifinite 148

State (see State, factor)
type I 148, 355, 356

typel 148

type II 148, 150

type IIi 148, 305

type 11^ 148, 150, 305

type III 134, 148-151, 421, 464, 132,
226

type IIIo 150, 151

typellli 150,151
type III l 150, 151,257

Ealk and Bruch 227

Eannes and Verbeure 227, 222, 445,
446



Subject Index 505

Fell 459

Feller 303

Fermi gas 4, 45-61, 76, 113, 119, 161,
175, 176, 197, 237, 354, 355, 387,
403, 415, 421, 423, 443

sea 54

surface 54, 176

Feynman 232, 452

Integrals 450

Feynman-Kac formula 370, 372, 384,
385, 448, 449, 453

Field(s) 10, 308

algebra 797, 198, 201, 218

construction theory 232, 440, 442
Euclidean 444

external (magnetic) 304, 314, 315,
318, 330, 332, 336, 339, 345, 349,
438-442

relativistic 3, 461, 223, 409

System 197, 198, 201, 204

Fisher 443

Fock 8, 797

Fock space (see Space, Fock)
Form

bilinear 93, 94, 102, 18, 19, 23
closable 26, 55

closed 26-30, 55

positive 26-30, 55, 73, 355

quadratic 26-30, 51-58, 73, 342, 356-

365, 444, 457

sum 361,363
Symmetrie 77, 22

symplectic 23

sesquilinear 214, 270, 26, 40, 60, 78,
93, 334, 406, 436

Fortuin, Ginibre and Kasteleyn 442
Fourier analysis 25, 94, 241, 243, 244

transform(ation) 244, 250, 253, 257,
260, 417, 20, 49, 85, 97, 104, 161,
169, 170, 173, 179-181, 186, 205,
206, 253, 258, 335, 338, 349, 444

Free energy 270, 292, 295-295, 302, 347,
436, 440-443

equilibrium 297

mean 297, 295

minimum 277, 267

Fresnel integral 767

Friederichs 9, 277

extension 104

Fröhlich and Lieb 441
and Park 454

Simon and Spencer 440

Fujii, Furuta, and Matsumoto 313

Fukamuja 1 52

Misonou, and Takeda 460
Füll family of states 220, 221, 222, 305

Function
affine 66, 319, 321, 325, 327, 330, 336-

339, 349, 364, 37, 288, 290, 301,
345

almost periodic 400, 401, 430, 435,
436, 464, 36

analytic 9l, 76, 79-83, 85, 97, 124

Borel 5, 295

concave 326, 328, 336, 99

convex 321, 325-327, 331-333, 353,
355, 377, 80, 94, 297, 299

countably additive set 321

lower semi-continuous 377, 37, 97,
108, 110, 159, 396

of positive type 463

subadditive 65, 329, 336, 337

superadditive 336, 337

trigonometric 430

upper semicontinuous 326-328, 331,
332, 338, 27^, 275, 288, 301, 347,
365

Function(al) analysis 152, 267

Hermitian 216-218, 222, 223, 305,
368

integration 555, 358, 394, 443, 454

linear 42

multilinear 39

normal 76, 146, 384
number 36, 52, 396

positive (linear) 48, 5l, 76, 145, 339,
340, 346, 360, 368, 369, 370, 418,
425, 88

sesquilinear 57

tangent 174^176, 182, 234, 297-299,
441, 443

truncated 39-44, 149, 151, 154, 182,
218, 219, 233

Wightman 463

Functionals

disjoint positive linear 370

ordering of 52

Furuta 313



506 Subject Index

G-abelian 381, 385, 386, 392-395, 397,
403, 405, 414, 415, 418, 419, 427,
433, 434, 462, 44, 45, 57, 133, 139-

144, 231, 339

Gr-abelian 414, 415, 417, 419, 420, 428,
433, 434, 436, 455, 463

G-central 381, 387, 392-398, 403, 462,
720, 722, 2J7

Gallavotti and Pulvirenti 3 1 1

and Mirade-Sole 436, 437

Miracle-Sole and Ruelle 427

Mirade-Sole and Robinson 438

Garding 9

and Wightman 22^

Garrison and Wong 227

Gauge automorphisms 797

invariance 197, 392, 402

transformations 39, 43, 202

Gaussian domination 440, 441

Gelfand 3, 7, 16, 152, 153

isomorphism 64

transform(ation) 63, 250, 126, 142

Generator (infinitesimal) 162, 165, 172-

206, 233-244, 265-279, 288, 290,
300, 304, 24, 37, 89-92, 96, 101,
109, 110, 144, 146, 159, 164, 211,
222, 244, 245, 249

strong 168

weak 168

Generators, neighboring 202

Gibbs 12, 4, 430

condition 259-317, 342, 432, 433

State (see State, Gibbs)
Ginibre 464, 390, 440, 442, 443, 453, 454
Glimm 152

and Jaffe 304

Jaffe and Spencer 440, 422

Godement 463

Golodets 252

Gorini, Kossakowski and

Sudarshan 22^

Gram-Schmidt orthogonalization
procedure 442, 18

Graph (of an operator) 170, 186, 187,
188, 207

Graph
convergence 186, 187
Hubert space 278

limit 187, 188, 281, 266, 371, 372

Greenberg 437, 438

Green's functions 86, 220, 338, 339, 354,
355, 373, 374, 380, 389, 395, 403,
404, 410, 411, 421, 449, 452, 459

compensating 374, 394
Griffiths 440, 442

Grothendieck 305

Group
amenable 142, 401, 462, 463,
Co- 164, 169, 174, 202, 204-206, 233,

245, 248, 305

Q- 183, 202, 204-206, 233, 245, 247,
290

character 249, 250, 407
drde 139

countable 142, 419

compact abelian 430

cydic 413, 419

discrete 142, 437, 455
dual 137, 139, 165, 249, 407, 412, 428,

435, 455, 204

Eudidean 404

finite (abelian) 141, 465

free
...

on two generators 463

gauge 797

locally compact 136, 463, 465, 752,
140

locally compact abelian 139, 249, 254,
310, 400, 401, 407, 408, 414, 417,
419-424, 429, 431-436, 455, 462-

464, 34

locally compact soluble 463
modular automorphism (see Modular

automorphism)
noncompact semisimple Lie 463

one-parameter 12, 13, 96, 97, 159,
160, 209-299, 4, 8, 77, 84, 86, 109,
111, 114, 145-150, 209-212, 243-

247, 254, 282, 306, 310, 311, 427,
445^ 446^ 460

permutation 6

perturbed 247, 430, 750

Poincare 404

quotient 424-430, 437

second countable 455, 456, 465
stabilizer 413

symmetry 209, 404, 423, 424, 429

unitary 97, 189, 250, 253, 257, 261,
264,291, 301, 302,421,5,2^,50,



Subject Index 507

50, 84, 88, 103, 130, 147, 150, 170,
180, 198, 334, 345, 409, 412, 413

Group of translations 251

Gruber 459

Hinterman and Merlini 442

Guerra, Rosen and Simon 444

Guenin 231

Guichardet 152, 462

Haag 9, 1l, 13, 14, 156

Kastler and Trych-Pohlmeyer 233

and Kastler 218

Hugenholtz and Winnink 211, 220,
227

and Trych-Pohlmeyer 233

Haagerup 155, 305, 311

Hamiltonian (see Operator,
Hamiltonian)

Hardy, Littlewood and Polya 460

Heisenberg 3, 223, 419

anisotropic model 243, 319, 333, 440,
441

Isotropie model 243

model 243, 258, 334, 337, 338, 348,
350, 422, 424, 427, 440, 443

Helium 56

Herman 304,306,311
Higuchi 441, 442

Hubert-Schmidt norm 282

Hilbert's sixth problem 16

Hill 437

Hille and Phillips 303

Hoekman 233

Hohenberg 440

Huang 220

Huber 435

Hugenholtz 13, 464, 227, 227

Ideal

gas 45,46,56,421,426
Jordan 8

left 23, 40, 146

right 23, 39

two-sided 23, 24, 78, 133, 310, 352,
427, 454, 16, 84

Identity 7, 2l, 23, 25 et seq.

approximate 23, 39, 40, 4l, 49, 56, 62,
78, 121, 153, 253, 353, 98, 99, 143,
184

Ikunishi and Nakagami 308

Indecomposability 14

Index set 120, 129

Inequality
Bogoliubov 329,331,433
Cauchy-Schwarz 49, 50, 57, 78, 131,

132, 173, 234, 422, 87, 96, 98, 162,
221, 334, 335, 416

correlation (see Correlation inequality)
generalized Schwarz 213, 232, 222-224

Golden-Thompson 275

Kadison's 305

Peierls-Bogoliubov 275, 317

product 20

triangle 20, 132, 253, 272, 274

Information 267, 435

theory 432

Infrared bounds 319, 337, 440, 441

divergence 170

Interaction, across a surface 249

anti-ferromagnetic 331, 332

attractive 220

classical 242, 258, 260, 345, 427, 429,
441

Coulomb 364, 365, 447, 454

energy 257

exponentially decreasing 257

extemal 3, 263

ferromagnetic 330, 331, 339, 346

finite ränge 241, 248, 251, 267, 437,
438

Heisenberg 335

Ising 257, 259, 321, 324, 333

long-range 261, 413, 414, 442

lower semi-bounded 360, 366

nearest-neighbour 319, 330, 332, 345,
347, 438, 439

one-body 243, 248, 310, 313, 314,
319

of a spin System 241, 244, 247, 250

positive 383, 388, 393, 401, 453

repulsive 220, 414, 461

stable 364, 390, 394, 446

superstable 364, 453

translationally (or Z^-) invariant 2^2,
257, 256, 290, 296, 300, 331, 338,
356, 364

two-body 243, 248, 251, 256, 338,
362, 364, 426, 422, 447



508 Subject Index

Invariance condition 230, 232, 375
Involution 19, 42, 45

Irreducibility
algebraic 1 54

topological 47

Ising 424, 438
model 243, 257, 319, 320, 329, 339,

340, 422-427, 439-443

Isometry (of a C*-algebra) 211

Isometry, partial 38, 110, 135, 292, 302,
371, 396

Isomorphism 43, 44, 78, 228, 341, 348,
355, 369, 385, 390, 405, 425, 433,
434, 444, 445, 452, 15, 19, 2l, 83,
111, 158, 175, 203

anti- 211

Borel 295, 435, 465
Jordan 211,213
Order 211,213,229

Isotonic family (of *-algebras) 410, 411
Israel 434
Itö and McKean 448

Sato and Ueno 448

Jacobs 435

Jacobson and Rickart 305

Jadczyk 463

Jaffe 304

Jordan 7

and Wigner 277, 428

J0rgensen 304, 459

Jost 435

Kac 220, 452

Kadison 78, 152, 154, 155, 305, 306,
309, 311

and Ringrose 312
Kadanoff and Baym 220

Kaplansky 152, 153, 305, 307
Kastler 14, 461^64, 233, 234
and Robinson 461, 465
Robinson and Ruelle 459

Kato 152, 304, 233, 446
Katz 232

Kelley 152

and Sherman 442
Kernel 43, 79, 151, 83, 117, 373, 371,

373, 446
Kirkwood and Salzburg 437, 438

Kishimoto 156, 304, 306, 311, 231, 427,
439, 461

KMS condition 13, 284, 5, 48, 59, 62,
76-102, 114-129, 145-153, 166,
167, 178, 210, 220-222, 259, 282,
294, 297-300, 307, 329, 405, 408,
422, 436

Kolmogorov-Sinai invariant 433
Köthe 154

Kramers and Wannier 436-439
Kubo 13, 220

Kubo-Mari scalar product 93
Kurtz 304

Landau and Lifschitz 220
Lanford 152, 227

and Robinson 436
and Ruelle 462, 431, 432, 441

Laplace transform 166, 169, 276
Lattice 323-325, 108, 239-350, 419-

427

gas 243-347, 239-352, 422-427
Law of large numbers 267
Lebowitz 442
Lee and Yang 439, 442
de Leeuw 303, 304, 458, 459
Lenz 424
Lewis and Pule 220
Lieb 439
and Liebowitz 454
and Robinson ^27
and Ruskai 433

Schultz and Mattis ^22
Lindblad 22^

Linear response 95

Lindenstrauss, Olsen and Sternfeld
464

Lumer and Phillips 303

MacGibbon 458

Mackey 16, 465

Magnetism 424
anti-ferro- 318, 334, 353
ferro- 306, 315, 318, 333, 337, 424

para- 306, 314

Magnetization, spontaneous 306, 318,
320, 331, 334, 336, 337, 345

Manifold, differentiable 159
Manuceau 225



Subject Index 509

Map
affine 210, 216, 218, 221, 222, 369,

387, 464, 162

Borel 294, 295, 298, 299, 456

completely positive 223-229

contractive 341

faithful 364-366

invertible 219

positive 209, 211, 215, 219, 229, 232,
305, 341, 222, 225

quotient 295, 424, 456

restriction 357, 358, 460

Martin 13

and Schwinger 220

Matrix units 255, 255, 308, 311, 312, 343

Matsumoto 3 1 3

Maximum modulus principle 79, 8l

Mayer 435

and Montroll 435

Mcintosh 307

Mean 379, 388, 400, 462, 163

invariant 280, 302, 313, 400, 414, 415,
421, 422, 429, 435, 436, 455, 457,
463, 36, 44, 52, 163, 193, 256, 296

Measure

Baire 213, 322, 375, 433, 440, 450, 88,
91,96

barycentric 3 1 8

Borel 97, 103, 321, 322, 340, 341, 350,
357, 370, 452, 187, 368, 369, 375,
444

of bounded Variation 97

central 370-372, 460, 461

conditional... Wiener 368

Dirac (or point) 319, 3.22, 323, 343,
338, 456

ergodic 14, 433

functional 575, 577, 380

Gaussian 456

Gibbs 445

Haar 137, 249, 289, 428, 435, 437,
438, 455, 463, 757, 142, 211, 217

Lebesgue 380, 5l, 182, 191

maximal 318, 325-327, 330-338, 343,
355, 356, 359, 361, 363, 377, 386,
424, 777, 120-122, 131, 136

maximal orthogonal 339, 359, 361,
378, 395, 440, 460

orthogonal 320, 339-462, 777, 143

probability 13, 83, 318, 319, 335, 359,
387, 424, .434, 458, 96, 135, 266,
369

projection-valued 5, 250, 261, 407,
408, 421, 188

Radon 321, 322, 326, 347, 356, 425,
88, 124, 367-369, 375

regulär 321, 322, 332, 340, 341

Riesz 350

ö--finite 75, 184

signed 323

simplicial 343, 364, 365

Standard 440^49, 452, 455, 465

subcentral 370-372, 390, 722

unique maximal 318, 334, 335, 337,
338, 363, 366, 377, 382, 385, 390,
414, 419, 432, 433, 458, 779

Wiener 367-379, 386, 387, 448-450

Mechanical work 272, 275, 216

Mechanics

classical 159, 287, 288, 289, 311, 555

matrix 3

quantum 3, 5, 6, 16, 121, 154, 159, 5,
277, 257

statistical 6, 10, 13, 16, 84, 124, 129,
273, 306, 311,461,5,^, 775,277,
257

wave 3

Mermin and Wagner 440

Messager and Miracle-Sole 441

Mini-max principle (theorem) 55, 365,
366, 393, 394, 448

Minkowski space 369

Misonou 460

Mixing 14, 393, 4l, 177, 422

strong 401-403, 42, 62, 320

strong ...
of all Orders 402, 403

weak 423, 455, 465

Miyadera 303

Modular

automorphism (group) 86, 96, 97,
102, 147, 149, 230, 278, 279, 281,
285, 84, 114, 124-128, 151, 227,
277, 430

condition 83

conjugation (involution) 89, 94, 102,
106, 226, 227, 278, 391, 397, 707,
775, 725, 160, 194, 283

function 137



510 Subject Index

Modular (Contd.)
operator 89, 9l, 94, 96, 102, 103, 226,

227, 229, 278, 283, 285, 391, 403,
86, 107, 118, 125, 160, 161, 187,
194, 283, 404

relative
... operator 275, 257

theory 83, 78, 85
Modulus (of an element) 34, 38
Mokobodski 458
M011er morphism 162, 167, 169, 175,

192, 195

matrix 163, 169, 170, 173, 233, 236
Momentum 4, 36, 53, 54, 62, 346, 350
Montroll 438

Morphism 42, 213, 224, 227, 228, 341,
342, 390, 450, 451, 162-166

anti- 211,213,224,227,228
Jordan 209,211

Miirray 3, 1l, 16, 154

Nagel 463

Nagumo 303

Nagy 152, 304

Naimark 3, 7, 16, 152, 153, 305

Nakagami 308
Nambu 427

Naudts and Verbeure 227
Verbeure and Weder 227, 225

Nearest-neighbour(s) 327-331, 421,
426, 448

Nelson 304, 448
Net 39, 119, 123, 323, 326, 336, 337,

342, 379, 383, 386, 388, 392, 396,
403, 415, 463, 108, 122, 240

decreasing 118, 119

increasing 76, 78, 79, 130, 146, 155,
348, 30, 72, 281

Net of subalgebras 118, 121, 123
Neumann series 26, 171, 241, 268, 274
Newton 233

Nondegenerate 72

Novikov 449, 451
Norm 20

Normal subgroup 424, 428, 429, 440,
463

Observable 5, 6, 7, 12, 160, 209, 370,
461, 462, 3, 6

algebra 137

Observables, algebra of 12, 122, 141,
159, 4, 197, 198

Olesen 309

and Pedersen 226
Olsen 464

Onsager 439, 448

-Yang 439

Operator
adjoint 19

affiliated with an algebra 87, 90, 287,
116

annihilation 5-72, 77, 25-27, 37, 45,
58, 148, 161, 217, 226, 258, 398,
415, 425, 426, 444

antilinear 86, 88, 16

antiunitary 84, 87, 89, 210, 226, 248
bounded 20, 160, 173, 197, 203, 205,

301, 348, 378, 409, 415, 418, 7, 77,
14, 16, 33, 87, 145

closable 88, 177, 187, 235, 267, 271,
272, 276, 5, 13, 24

closed 87, 9l, 170, 171, 177, 197, 235,
276, 348, 25

compact 2l, 72, 129-131, 210

conjugation 84

conservative 174, 265
creation 252, 257, 5-72, 77, 25-27, 45,

58, 148, 161, 217, 226, 258, 398,
425, 426, 445

decomposable 443-445, 448, 453

diagonalizable 443-448, 451, 455

dissipative 174-177, 193, 196, 197,
234, 235, 290, 303, 304, 306, 96,
2^5

double difiference 349

essentially self-adjoint 272, 278, 289,
5, 72

finite-rank 210

Hamiltonian 4, 12, 159, 163, 273, 4,
36, 45-48, 52, 57, 65, 151, 196, 241,
349-365, 390, 411, 426, 428, 450,
455

Laplacian 188, 48, 49, 54, 60, 78, 355,
370, 372, 426, 445, 446

lower semi-bounded 5, 57, 6l, 63,
169, 351, 361-363, 410

lowering 252

modular (see Modular operator)
negative part of an 34



Subject Index 511

normal 292

number 4, 7, 10, 25-37, 218, 363, 425,
429, 442

positive 57, 76, 89, 104, 273, 351, 26-

29, 3l, 40, 60, 73, 78, 114, 135, 208,
341

positive part of an 34

raising 252

self-adjoint 5, 6, 89, 104, 153, 182,
184, 240, 269-271, 273, 277, 280,
286, 291, 25-30, 36, 40-48, 57-60,
73, 76, 78, 84, 104, 276, 341, 352,
356-366, 410, 431

shift 252,257
skew-adjoint 292

spin raising 257, 255, 579, 25, 428

spin lowering 257, 255, 319, 425, 428

Symmetrie 104, 182, 238, 240, 246,
269, 272, 278, 8, 13, 54, 208, 357,
423, 428

traee-elass 6, 68, 76, 129, 5, 46-48,
57-59, 219, 220, 363-365, 410, 411

unbounded 5, 153, 463, 60, 116

unitary 8, 47, 57, 159, 210, 225-227,
240, 247, 248, 269, 293, 295, 374,
442, 13, 19, 2l, 6l, 90, 127, 142,
164, 406, 407

Weyl 8, 1l, 14, 18, 19, 30, 35, 57-60,
73, 417, 442 (see also Element)

Operators, measurable family of 442,
443

Orbit 141, 142, 425, 429, 430, 434-438,
165

Order

anti-symmetrie 39, 325

reflexive 39, 325

relation 36, 39, 318, 325-327, 334-

336, 346, 348, 349, 359, 424, 458,
459, 27

structure 78

transitive 39, 325

Ornstein 435

Orthogonality relation 12

Oscillator, harmonic 36

Ota 306

Paige 7

Parseval's equality 245

Partial order 325

Passive System 277

Path 367-376, 390, 452

Pauli (exclusion) prineiple 9, 12, 447,
454

matrices 337, 241, 310, 319

Pedersen 152, 305, 309

Peierls 415, 439, 440

argument 319, 439, 440, 445

Period, approximate (or 8-) 430

Perturbation 160, 171, 184, 193, 202,
246, 290, 95, 145-149, 164-169,
176, 194, 196, 212-215, 261-263,
273, 316, 333, 350, 358-363, 446

bounded 194, 202, 204

relatively bounded 193, 207, 363

Perturbation series (expansion) 195,
196, 311, 94, 146, 149, 150, 153-

157, 165, 232, 308-314

Phase 10, 57, 339

pure 374, 462, 113, 118, 119, 144, 289,
301, 304, 422, 445

Separation 3, 345, 426, 443

space 288

transition 10, 3, 237, 306, 324, 338,
352, 404, 439-445

Phillips 303

Planck's constant 4

Polarization identity 38, 67, 182

Potential Coulomb 559, 448

positive 364, 394, 395, 459

Potential energy 356-359, 386, 424

finite ränge 394

/c-body 358, 359, 458

Lennard-Jones 559, 360

translationally invariant 555, 590, 394

two-body 555, 590, 595, 414

Poulsen 464

Powers 156, 306, 225

and Sakai 311

Predual 69, 75, 83, 216, 233, 280, 294,
299, 446

Pressure 55, 54, 270, 387, 393, 443, 445,
450-454

Projeetion
final 110

finite 147

initial 110

infinite 147

Projections, equivalent 147
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Propagation velocity 252-257

Pseudosupported 318, 322, 331, 367,
372, 373, 377, 138

Pulvirenti 311

Pusz and Woronowicz 232, 237, 429

Radius of analyticity 178

Radon-Nikodym derivative 90

Range, numerical 292, 302, 312

Range (of an interaction) 242, 258
finite 258

Ray 159, 210

Reduced density matrices, 381-400, 414,
443, 450

truncated 393

Reed and Simon 152, 304, 452
Reflexive Danach space 206

Regularization 308

Representation 42, 23

associated with a state 57, 55, 55, 132,
349

covariant 136-138, 133, 204

cyclic 14, 45, 56, 57, 60, 353, 358, 375,
60, 82, 84, 88, 130, 139, 170, 179,
335, 405

factor (see Factor)
faithful 8, 14, 43, 44, 79, 133, 138,

139, 220, 237, 238, 272, 310, 352,
110, 199, 204, 210

Fock-Cook 8, 1l, 25, 30, 33-37, 52,
170, 217-220, 350, 446

group 155, 374

irreducible 8, 47, 57, 80, 151, 211, 224,
310, 352, 368, 393, 394, 448, 463,
34, 142, 168, 204, 218

isometric 8

multiplier 20

non-degenerate 45, 80, 446-448
normal 79

regulär 2l, 33-36, 148, 204, 208

Schrödinger 6, 8, 9, 34-36, 435

space 43

sub- 44, 8l

uniformly bounded 254, 256

unitary (group) 3, 5, 250, 251, 379,
383, 400, 403, 407-409, 412, 415,
416, 419, 421, 422, 426, 429, 430,
463, 464, 6, 7, 20, 98, 129, 141, 144,
169, 204

Representations
direct integral of 449, 450
direct sum of 8l, 319, 339

disjoint 370

equivalent 48, 370, 135, 139, 140

inequivalent 9, 168, 170, 218
measurable family of 447

Representative 43
Resolvent 25, 27, 9l, 165, 168-170, 184,

274, 306, 311, 775

convergence 184, 186, 188
Return to equilibrium 759, 777, 196
Rickart 305

Riemann Lebesgue lemma 57
Rideau 219

Rieffei 155

Riemann approximant (sum) 167, 243,
56, 63

integral 33, 215, 243
Riesz and Nagy 152, 304
Robbins 431

Roberts 304, 311, 312
Robertson 305
Robinson 304-307, 311, 461, 464, 219,

220, 232, 427, 434, 440
and Ruelle 434

Rocca and Sirugue 227

Roepstorff 227
Root mean square deviation 349
Rudin 152, 227

Ruelle 9, 459-465, 22P, 436-443, 446,
453, 459

Ruskai 459

Russo and Dye 305

Sakai 76, 152, 155, 306, 307, 309, 311,
312, 459, 460

Saturation problem 304

Scattering theory 163, 164, 233, 454

Schrödinger 3, 6

equation 4, 46, 376
Schultz 8

Schur's lemma 153
Schwartz 152

Schwarz reflection principle 275, 8l

Schwinger 1 3

Sector of an operator 292
Second law of thermodynamics 272
Second quantization 8, 45, 233
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Sector of an operator 287

Segal 7-9, 16, 152, 153, 461, 225, 22^

Semigroup 161, 164-168, 203, 9l, 144,
223, 284, 361, 368, 370, 373, 378,
383, 446

Co- 164, 169-178, 187-194, 202, 235,
303, 304

q- 164, 170, 171, 183, 193-196, 202,
205, 303, 304, 225

completely positive 22^, 225

dual 303

positively preserving 222

Semigroups, convergence
of 184-192

Seminorm 65, 66, 163, 168, 174

C*- 138

i(X.F)- 204

Separability condition S 352, 353, 367,
372, 377, 378, 426-428, 432, 436,
440, 447, 449, 450, 454, 455,
460

Separating
subset 85

vector 80, 86, 88, 109, 226-230, 277-

289, 311-444, 82, 84, 86, 87, 104,
107, 114, 120, 153, 183, 190, 263,
275, 276, 279, 409, 411

Set

analytic 295, 357, 458, 460

Baire (see Baire set)
Borel (see Borel set)
convex 53, 59, 66, 317-359, 293

directed 39, 46, 121, 123, 324, 331,
345

F^- 322, 357, 372, 373

GS- 322, 331-333, 338, 357, 458,
133

metrizable 132, 133, 318, 331, 333,
339, 458

/z-measurable 356, 357, 452, 454

/^-negligible 356, 357, 440

pseudosupporting 322, 331

resolvent 25, 28

stable 331, 342

supporting 322, 357, 426

Sewell 227, 222, 436, 437

Shale and Stinespring 219

Shannon and Weaver 435

Sherman 460

Simon 152, 304

Simplex 334, 335, 367, 368, 385-387, 405,
406, 458, 464, 117, 118, 122, 131,
133, 134, 139, 230, 231, 301, 306,
339, 441

Bauer 464

Poulsen 464

Sirugue and Testard 226

andWinnink 227,^55
Skau 458, 460

Slawny 218

Smoluchowski 449

Sommerfeld 3

Space
analytic Borel 295

configuration 120

conjugate 70, 238

direct integral 439-442, 449

direct sum 439

Fock 7, 9, 12, 15, 30, 34, 46, 56, 349,
415, 444

quotient 23

polish 295,440,456
measurable family of 441, 442, 444,

447, 449

Spectral
concentration 253

projector (projection) 58, 7l, 87, 104,
132, 135, 118

radius 25, 26, 29, 3l, 37, 44, 59, 241,
312, 22

subspace 25 1
, 252, 257, 259, 410, 142,

204

theory 7, 249, 281, 298, 308, 50, 99,
102, 188, 204

values 252

Spectrum 25-28, 32, 35, 5l, 6l, 62,
142, 149, 165, 220, 240, 245, 248,
251, 252, 256, 257, 263, 294, 306,
309, 407, 419, 420, 434, 464, 27, 33,
84, 104, 141, 147, 171, 172, 176,
180, 181, 183, 190, 351, 352, 365,
366

of an abelian C*-algebra 6l

Arveson 310

r 310

point 407, 412-415, 419-421, 424,
436, 455, 457, 464, 163

semi-bounded 261
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Spin 7, 239, 241, 424

System 311, 120, 211, 220, 222, 236-

353, 413, 422

waves 350-352

Square root 32, 34, 36, 152, 235, 236, 306

Stability 13, 160, 184, 202, 89, 90,
99, 145, 148, 150, 158, 164-183,
192-196, 211, 232, 233, 340, 364,
390, 410, 423, 447, 454

local thermodynamic 275, 437
Standard form 83, 155, 226, 228, 305
State 42, 48, 5l, 153, 344, 345, 346, 350,

352, 353, 358, 361, 363, 439, 452, 23
almost periodic 414, 424, 430-433, 422

analytic 39, 40, 382, 397, 402
bound 167

ceiling 97, 108, 113, 158, 168, 192, 197

centrally ergodic 395, 396, 202
chaotic 97

completely passive 101, 226
even 43, 103

equilibrium 1l, 12, 273, 3, 5, 40, 47-

75, 88, 112, 118, 123, 148, 149, 158,
159, 176, 177, 198, 211, 218, 219,
237-239, 260-263, 286, 291-294,
300-315, 354-363, 400, 422, 436-
443

(G-} ergodic 374, 377, 378, 393-398,
401, 405, 407, 408, 410, 413, 418,
420, 423, 424, 428, 440, 452, 459-

464, 131-135, 138, 141-144, 240,
303

extremal G-invariant 318, 727
factor 8l, 128, 317, 356, 358, 372, 401,

402, 403, 452, 460, 117-120, 133,
134, 139, 140, 151, 160, 184, 199,
219, 321

faithful 13, 83, 85, 96, 299, 403, 84,
115, 116, 124-128, 264, 275-279

finite density 36, 170
Fock 24, 219

guage invariant 44, 48-50, 54, 59, 60,
68, 78, 100, 108, 169, 206, 210, 219,
348

Gibbs 4, 46-50, 57-77, 88-93, 121,
144, 260-275, 298, 315-339, 354
et seq.

ground 9, 273, 277, 289, 309, 36, 54,
97-113, 131-141, 145, 158, 164,

168-176, 192, 194, 197, 226, 227,
338-351, 443

(G-) invariant 13, 117, 240, 268, 272,
311, 374-387, 390, 393, 398, 400,
402-407, 414, 415, 423, 427, 431,
432, 434, 459, 461, 462, 44, 52,
77-88, 98-216, 287, 290, 294, 301-

306, 315, 333, 336, 345-350, 422,
436

KMS- 285, 5, ^5-57, 75-84, 88, 92,
95, 97-216, 221, 225, 237, 260-264,
295-297, 306, 308-320, 330-340,
353, 354, 423, 437-441

locally normal 118, 124, 125, 129,
133, 219, 317, 352, 356, 373, 460,
25, 34, 52, 62, 170, 395, 396, 401,
415, 420

mixed 6

normal 7, 9, 75-83, 96, 129, 131, 210,
219, 220, 238, 299, 355, 370, 371,
383, 390, 398, 452, 460, 462, 25,
30-36, 76, 80, 115, 123-126, 132,
133, 151, 169, 170, 174-176, 276,
337-340, 341-344

passive 90, 101, 102, 211, 212, 215

periodic 414, 141, 144, 210, 211, 290,
293, 417, 422

perturbed 757, 759, 174-177, 194,
211, 265, 276, 279, 316

physical 7, 122

primary 8 1

pure 6, 53, 57, 58, 62, 153, 343, 350-

352, 356, 358, 359, 367, 368, 372,
405, 452, 461, 133, 134, 141-146,
167, 172, 174, 175, 181, 273, 275

quasi-free 40, 43, 44, 48-52, 54, 59,
60, 69, 78, 100,108, 169, 170, 219,
233, 388

regulär 23,24,29,33-37
trace 84, 87, 311, 421, 76, 83, 97, 102,

109-112, 121, 123, 154, 174, 184,
194, 211, 307

vector 49, 131, 356, 395, 133, 153, 160
States

disjoint 9, 370, 395, 777, 725, 759-

7^7, 196

neighbouring 219

orthogonal 339, 340
set of 7, 53, 59, 6l
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Statistics

Boltzmann 384, 387, 391, 392, 395,
447, 450

Böse 121, 7, 555, 366, 383-394

Fermi 121, 156, 7, 355, 365, 366, 384,
390, 394

Sternfeld 464

Stinespring 305

Stirling bounds 431

number 401

Stone 5, 16

St0rmer 8, 16, 305, 462, 464, 279

Streater 427

and Wightman 231

Subadditivity 277, 272-275, 288

strong 271,288,289,433
Subalgebra 19

central 124

fixed point 137, 149

Subspace
cyclic 46

invariant 44

measurable 441

stable 44

Summable central sequence 309

Support of a measure 318, 322, 376,
377, 427, 432, 435, 436, 437, 453

Support, finite 322-330, 335, 337, 361,
363, 371, 377, 432, 97, 775, 722

Susceptibility, magnetic 318

Symmetry 136, 209, 374, 423, 424, 7^7,
239, 286

broken 374, 413, 423, 779

inner 795

spin reversal 527, 324, 325

Wigner 210, 225, 226, 248, 305, 307

System, closed 267, 294

isolated 267

open 263,291,294

Takeda 460

Takesaki 13, 83, 155, 310, 83, 221, 227,
228

and Tomiyama 459

Taylor series 34

Temperature 3, 5, 10, 46, 57, 70, 128,
216, 220, 221, 262, 268, 306, 307,
315, 318, 422, 428, 439-441

critical 306, 318, 439, 441

negative 57, 220

zero 53,340,347
Tensor product 142-145, 7, 259, 416

Theorem

Alaoglu 98

Alaoglu-Bourbaki 53, 68, 154, 163,
168, 176, 205

bicommutant 72, 445

Bochner 103

Borchers-Arveson 261, 263, 269, 309,
421

capacity 460

Caratheodory-Minkowski 321

Carlson's 9l, 155

Cartier-Fell-Meyer 460, 722

Cauchy 88

closed graph 207, 235

Connes' 128

Connes' cocycle 257, 252

Connes' Radon-Nikodym 147

Connes-Takesaki duality 149

derivation 262, 224

edge of the wedge 8l, 83, 84, 99, 153

Effros' 450

Fannes-Vanheuverzwijn-
Verbeure 725

Fröhlich-Pfister 557, 441

Fubini's 257, 258, 757

Goldstone's 176

Haag's 140, 231

Hahn-Banach 59-61, 65, 66, 75, 101,
154, 174, 200, 218, 221, 325, 328,
329, 339, 360, 403

Hille-Yosida 171, 173, 174, 178, 181

Kadison's (transitivity) 154, 402, 777

Kaplansky density 74, 103, 122, 123,
154, 218, 232, 236, 347

Kato's 446

Kovacs-Szücs mean ergodic 383, 724

Krein-Milman 53, 59, 6l, 153, 217,
163, 173, 201

Krein-Smulian 98, 155, 341

Lebesgue dominated covergence 100,
185, 186, 412, 428, 437, 86, 87, 148,
156, 166, 173, 179, 181, 184, 185,
215, 371, 372, 401

Liouville's 275, 79, 99, 775

Lumer-Phillips 177

Mackey's 98
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Theorem (Contd.)
Mackey-Arens 223

Markov-Kakutani fixed point 415
Mazur's 403, 464

mean ergodic 378, 383, 386, 391, 394,
398^00, 411, 415, 421, 422, 462,
44, 162

Minlos' 455

monotone convergence 327
Parseval's 180

Perron-Frobenius 431

Phragmen-Lindelöf 80, 99

Pontryagin's duality 139
Pusz-Woronowicz 101

Radon-Nikodym 213, 792
Riesz representation 68, 70, 83, 213,

239, 322, 350, 124, 368, 375

Roepstorff-Araki-Sewell 9l

Roepstorff-Fannes-Verbeure 95
Sakai's 76, 233

spectral 5

spectral mapping 3 1

SNAG (Stone-Naimark-Ambrose-
Godement) 250

Stinespring's 223

Stone's 251

Stone-von Neumann uniqueness 6,
33, 34, 218

Stone-Weierstrass 24, 63, 64, 325,
346, 347, 376, 387, 202, 207,
368

Tauberian 250, 253

Taylor's 398-404
three-line 80-82, 152, 155, 157, 274
Tomita's 341, 450, 452
Tomita-Takesaki 94, 155, 311, 123

Trotter-Kato 304

uniform boundedness 100, 176

von Neumann density 72-74, 154

Thermal wavelength 55, 55, 65

Thermodynamic limit 10, 1l, 13, 5,
^9-57, 63, 67, 74, 75, 86, 109, 220,
237, 260, 298, 366, 372, 381-383,
391-395, 401, 417, 423, 438, 442,
454

Thomas 443

Time development 160
Titchmarsh 227

Tomita 13, 83, 459, 460, 227

Tomita-Takesaki theory 13, 83, 84, 9l,
146, 84, 104

Tomiyama 459

property E of 150

Topology
discrete 435

locally convex 59, 65, 97, 163

locally uniform 132, 133

Mackey (i:(X,F}-} 98, 155, 163, 164,
167, 169, 174, 184

metric 20, 132, 133

quotient 295

strong 66, 70, 74, 108, 295, 7^5, 275

a-strong 66, 70, 74

strong* 69, 70, 74, 108, 295

(j-strong* 69, 70, 74

a(X, F}- 97, 98, 99, 163, 166, 171
^-weak 67, 70, 74, 78, 279, 445, 146
uniform (norm) 20, 25, 53, 70, 108,

127, 131, 163, 169, 194,289, 335,
707, 272, 306, 436

weak 67, 70, 74, 108, 295, 356, 790

strong operator 127, 309, 750, 205,
275

weak*(ö-(U*,U)-) 14, 53, 68, 131, 132,
176, 181, 206, 307, 329, 335, 337,
346, 355, 377, 406, 86, 108, 109,
114, 116, 128, 169, 272-275, 288,
298, 302, 340, 348, 411, 436

weak operator 3, 341, 230

Trace 145, 280, 281, 287, 46, 191, 246,
265, 269, 281-283, 301

norm 68

faithful 148, 149

normal 148, 149

semifinite 148, 149

Trajectory 367-381, 384, 386, 387, 394

elementary 385, 386, 390

composite 385, 391
Transfer matrix 437-440
Translations

space 13, 41-44, 57, 62

time 57, 62

Trotter 304

product formula 304, 757, 225, 370
Twist 206, 302

Uncertainty 432, 433

Urysohn's lemma 332
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Vacuum 9, 37, 4l, 44

VanDaele 155,220
van der Waerden 16

Vaught 152

Vector

almost periodic 408, 414, 431

analytic 5, 24, 38

cyclic (see cyclic vector)
entire analytic 38

separating (see Separating vector)
von Neumann 3, 5, 1l, 16, 154, 465, 218

Wannier 440

Weight 145, 146

dual 311

faithful 146, 147, 149

normal 146, 147, 149

semifinite 146-149

Weyl 6, 218, 448

criterion 253

Wick product 444, 456

Wiener integral 366, 367, 383, 453

Wightman 9, 16, 463

Wigner 7 (see also Symmetry, Wigner)
Wils 460,579
Winnink 13, 227

Woronowicz 155

X-Y model 243, 257-261, 319, 337,
339, 426, 427, 441

Yaglom and Yaglom 433

Yosida 152, 303, 464

Yngvason 463

Zorn's lemma 46, 77, 326, 332, 441, 458




