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Preface to the Second Printing of the Second Edition

In this second printing of the second edition several minor and one major mathe-

matical mistake have been corrected. We are indebted to Roberto Conti, Sindre

Duedahl and Reinhard Schaflitzel for pointing these out.

Canberra and Trondheim, 2002 Ola Bratteli

Derek W. Robinson

Preface to the Second Edition

The second edition of this book differs from the original in three respects. First,
we have eliminated a large number of typographical errors. Second, we have

corrected a small number of mathematical oversights. Third, we have rewritten

several subsections in order to incorporate new or improved results. The principal
changes occur in Chapters 3 and 4.

In Chapter 3, Section 3.1.2 now contains a more comprehensive discussion
of dissipative operators and analytic elements. Additions and changes have also

been made in Sections 3.1.3, 3.1.4, and 3.1.5. Further improvements occur in

Section 3.2.4. In Chapter 4 the only substantial changes are to Sections 4.2.1 and

4.2.2. At the time of writing the first edition it was an open question whether

maximal orthogonal probability measures on the state space of a C*-algebra
were automatically maximal among all the probability measures on the space.
This question was resolved positively in 1979 and the rewritten sections now

incorporate the result.

All these changes are nevertheless revisionary in nature and do not change
the scope of the original edition. In particular, we have resisted the temptation
to describe the developments of the last seven years in the theory of derivations,
and dissipations, associated with C*-dynamical systems. The current state of this

theory is summarized in [[Bra 1]] published in Springer-Verlag's Lecture Notes in
Mathematics series.

Canberra and Trondheim, 1986 Ola Bratteli

Derek W. Robinson
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Preface to the First Edition

In this book we describe the elementary theory of operator algebras and

parts of the advanced theory which are of relevance, or potentially of
relevance, to mathematical physics. Subsequently we describe various
applications to quantum statistical mechanics. At the outset of this project
we intended to cover this material in one volume but in the course ofdevelop-
ment it was realized that this would entail the omission of various interesting
topics or details. Consequently the book was split into two volumes, the
first devoted to the general theory of operator algebras and the second to the
applications.

This splitting into theory and applications is conventional but somewhat
arbitrary. In the last 15-20 years mathematical physicists have realized the
importance of operator algebras and their states and automorphisms for

problems of field theory and statistical mechanics. But the theory of 20 years
ago was largely developed for the analysis of group representations and it
was inadequate for many physical applications. Thus after a short honey-
moon period in which the new found tools of the extant theory were applied
to the most amenable problems a longer and more interesting period ensued
in which mathematical physicists were forced to redevelop the theory in
relevant directions. New concepts were introduced, e.g. asymptotic abelian-
ness and KMS states, new techniques applied, e.g. the Choquet theory of
barycentric decomposition for states, and new structural results obtained,
e.g. the existence of a continuum of nonisomorphic type-three factors. The
results of this period had a substantial impact on the subsequent development
of the theory of operator algebras and led to a continuing period of fruitful

Vil



viii Preface to the First Edition

collaboration between mathematicians and physicists. They also led to an

intertwining of the theory and applications in which the applications often
forced the formation of the theory. Thus in this context the division of this
book has a certain arbitrariness.
The two volumes of the book contain six chapters, four in this first volume

and two in the second. The chapters of the second volume are numbered

consecutively with those of the first and the references are cumulative.

Chapter I is a brief historical introduction and it is the five subsequent
chapters that form the main body of material. We have encountered various
difficulties in our attempts to synthesize this material into one coherent book.

Firstly there are broad variations in the nature and difficulty of the different

chapters. This is partly because the subject matter lies between the main-
streams ofpure mathematics and theoretical physics and partly because it is a
mixture of standard theory and research work which has not previously
appeared in book form. We have tried to introduce a uniformity and structure

and we hope the reader will find our attempts are successful. Secondly the

range of topics relevant to quantum statistical mechanics is certainly more
extensive than our coverage. For example we have completely omitted
discussion of open systems, irreversibility, and semi-groups of completely
positive maps because these topics have been treated in other recent mono-

graphs [[Dav 1]] [[Eva 1]].
This book was written between September 1976 and July t979.

Most of Chapters 1-5 were written whilst the authors were in Marseille at

the Universit6 d'Aix-Marseille 11, Luminy, and the Centre de Physique
Th6orique CNRS. During a substantial part of this period 0. Bratteli was

supported by the Norwegian Research Council for Science and Humanities
and during the complementary period by a post of " Professeur Associ6 " at

Luminy. Chapter 6 was partially written at the University of New South
Wales and partially in Marseille and at the University of Oslo.

Chapters 2, 3, 4 and half of Chapter 5 were typed at the Centre de Physique
Th6orique, CNRS, Marseille. Most of the remainder was typed at the

Department of Pure Mathematics, University of New South Wales. It is a

pleasure to thank Mlle. Maryse Cohen-Solal, Mme. Dolly Roche, and

Mrs. Mayda Shahinian for their work.

We have profited from discussions with many colleagues throughout the

preparation of the manuscript. We are grateful to Gavin Brown, Ed Effros,
George Elliott, Uffe Haagerup, Richard Herman, Daniel Kastler, Akitaka

Kishimoto, John Roberts, Ray Streater and Andr6 Verbeure for helpful
comments and corrections to earlier versions.
We are particularly indebted to Adam Majewski for reading the final

manuscript and locating numerous errors.

Oslo and Sydney, 1979 Ola Bratteli

Derek W. Robinson
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The theory of algebra of operators on Hilbert space began in the 1930s with a

series of papers by von Neumann, and Murray and von Neumann. The

principal motivations of these authors were the theory of unitary group
representations and certain aspects of the quantum mechanical formalism.

They analyzed in great detail the structure of a family of algebras which are

referred to nowadays as von Neumann algebras, or W*-algebras. These

algebras have the distinctive property of being closed in the weak operator
topology and it was not until 1943 that Gelfand and Naimark characterized

and partially analyzed uniformly closed operator algebras, the so-called

C*-algebras. Despite Murray and von Neumann's announced motivations
the theory of operator algebras had no significant application to group
representations for more than fifteen years and its relevance to quantum
mechanical theory was not fully appreciated for more than twenty years.

Despite this lapse there has been a subsequent fruitful period of interplay
between mathematics and physics which has instigated both interesting
structural analysis of operator algebras and significant physical applications,
notably to quantum statistical mechanics. We intend to describe this theory
and these applications. Although these results have also stimulated further

important applications of algebraic theory to group representations and
relativistic field theory we will only consider these aspects peripherally.

In order to understand the significance of operator algebras for mathe-
matical physics, and also to appreciate the development of the theory,
it is of interest to retrace the history of the subject in a little more detail.

In late 1924, and early 1925, Heisenberg and Schr6dinger independently
proposed equivalent, although seemingly disparate, explanations for the

empirical quantization rules of Bohr and Sommerfeld. These rules had been

developed as an aid to the classification of experimental data accumulated
in the previous two decades which indicated an atomic and subatomic
structure that failed to conform to the accepted rules of classical Newtonian
mechanics. These explanations, which were originally known as matrix

mechanics and wave mechanics, were almost immediately synthesized into
the present theory of atomic structure known as quantum mechanics. This

theory differs radically from all previous mechanical theories insofar that it

has a probabilistic interpretation and thus replaces classical determinism

by a philosophy of indeterminism.

3



4 Introduction

Heisenberg's formalism identified the coordinates of particle momentum
and position with operators pi and qj satisfying the canonical commutation
relations

pipj - pjpi = 0 = qjqj - qjqj,

pi qj - qjpi = - ih6ij,
and the equation determining the change of any such operator A with the
time t was specified as

OA, i(HA, - A, H)
at h

In these equations h is Planck's constant and H denotes the Hamiltonian

operator, which is conventionally a function of the particle position and

momenta, e.g.,
n

A
2

H
2m

+ V(ql, q2, qj,

where the first term corresponds to the kinetic energy of particles with mass m
and the second to the energy of interaction between the particles. Although
Heisenberg's formalism was tentatively proposed in terms of matrix operators
a simple calculation with the commutation relations shows that at least
one of each pi and qj cannot be a bounded operator. Thus the operators
were assumed to act on an infinite-dimensional Hilbert space Physically,
each vector  c- .5 corresponds to a state of the system and for normalized
the values (0, A, 0) correspond to the values of the observables A at the time t.

Schr,bdinger's wave mechanics, on the other hand, was directly formulated
in terms of a function 0 of n variables, the particle coordinates. The function
0 represents the state of the system and the dynamics of particles of mass m
with mutual interaction V are determined by the Schr,5dinger equation

ih
00,

(X 1, .

-

h2 n 02
Xn)  X_2 + V(X1, Xn) C(XI, Xn)-0 t 2m j=1 i

Physically, the distribution

Pt(Xl - - -  Xn) = I C(X1i ...  Xn) 12 dxl ... dXn

corresponds to the probability distribution that the particle coordinates
should assume the values x 1, . , , , Xn at time t when the system is in the state  .
In particular, this presumes that  , is a normalized vector of the Hilbert

space L2(Rn).
The relation between the two formalisms, and their equivalence, follows

from the identifications .5 = L2(R") and

(Pi 0) (XI, - - - , Xn) = - ih
ao

(X1, - - -, Xn),
Oxj

(qjO)(xj, - - -, xn) = XiO(XI, - - - 5 Xn),
n 2

(H )(xj_ . -, Xn) = Y_ P'
+ V(ql, - - -, qn)  (X1, - - -, Xn)-((i=l 2m
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The complementarity between the dynamical algorithms then follows by the

transposition law

A, 0) A

where A and 0 correspond to A, and 0, at time t = 0.
The work of Stone and von Neumann in the late 1920s and early 1930s

clarified the connection between the above formalisms, provided a mathe-

matically coherent description of quantum mechanics, and proved that the

theory was essentially unique. Firstly, these authors extended Hilbert's

spectral theorem to general selfadjoint operators on Hilbert space. This
theorem assigns a projection-valued measure on the real line EA(A) to each
such operator A and thus for every unit vector 0, A c- R  -+ (0, EA(AM is a

probability measure and in von Neumann's interpretation of quantum
mechanics this measure determines the distribution of values obtained when
the observable corresponding to A is measured while the system is in the
state 0. In this theory functions of observables still have an interpretation as

observables, i.e., iff is a real Borel function then the function f of the ob-
servable represented by A is the observable with probability distribution
given by B  - (0, EA(f -'(B))O) in the state 0, where B ranges over the Borel
sets. The latter observable is then represented by the operator f(A). In

particular, A 2, A',... have observable significance. Secondly, in 1930,
Stone showed that if t  --+ U, is a continuous unitary representation of the
real line then there exists a unique selfadjoint H such that

dU,
dt

iU,H

on the domain of H and, conversely, if H is selfadjoint then this equation
determines a unique continuous unitary representation of R. The connection
between U and H corresponds to an exponential relation U, = exp{itH}
and Stone's theorem shows that the Schr6dinger equation has a unique
solution 0, satisfying the relations 110, 11 = 110 11 of probability conservation,
if, and only if, the Hamiltonian H is selfadjoint. This solution is given by
0, = U

-, 0, where we have chosen units such that h = 1. The corresponding
solution of Heisenberg's equation of motion is then given by

A, = UAU-,

and equivalence of the two dynamics results because

(0, A0,) = (U, 0, AU, 0) = (0, A, 0).

Finally, Stone announced a uniqueness result for operators satisfying
Heisenberg's commutation relations piqj - qjpi = -ibip etc., and von

Neumann provided a detailed proof in 193 1. As the pi, or qi, are necessarily
unbounded it is best to formulate this result in terms of the unitary groups
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Ui(t) = exp{ipitl, Vj(t) = exp{iqjtl associated with the selfadjoint operators
pi, qj. These groups satisfy the Weyl form of the commutation relations,

Ui(s)Vj(t) = Vj(t)Uj(s)e"6ij,

Ui(S)UP) - UPW(s) = 0 = Vi(S)Vj(0 - Vi(Ovi(s),

and the Stone-von Neumann uniqueness theorem states that the only
representation of these relations by continuous unitary groups on Hilbert

space are sums of copies of the Schr6dinger representation. (In Chapter 5
we derive this result from a more general theorem concerning the C*-algebra
generated by an arbitrary number of unitary groups satisfying the Weyl
relations.)
Thus by the early 1930s the theory of quantum mechanics was firmly

founded and the basic rules could be summarized as follows:

(1) an observable is a selfadjoint operator A on a Hilbert space .5;
(2) a (pure) state is a vector in S_- ,);
(3) the expected value of A in the state  is given by (0, AO);
(4) the dynamical evolution of the system is determined by specification

of a selfadjoint operator H through either of the algorithms

A   A, = e'tHAe- itH, or 0  -4 0, = e- itHO.

Detailed models are then given by specific identification of A, H, etc., as above.
A slight extension of this formalism is necessary for applications to

statistical mechanics. In order to allow the extra uncertainty inherent in the
statistical description one needs a broader notion of state. A mixed state 0)

is defined as a functional over the observables of the form

w(A) Y Ai(Oi, Aoj),
i

where Ai > 0, Yj Ai = 1, and 11 0i 11 = 1. If all bounded selfadjoint operators
on b, represent observables then these mixed states are automatically of the
form

(o(A) = Tr(pA),

where p is a positive trace-class operator with trace equal to one.

Subsequently, various algebraic reformulations ofthis quantum mechanical
formalism were proposed. In 1932 von Neumann observed that the product

AB + BA

2

of two observables A, B can again be interpreted as an observable in his

theory because

A B
(A + B)2 _ A2 - B2

2
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This product satisfies the distributive laws,

A-(B + C) = A-B + A-C, (B + Q-A = B-A + C-A,

A(A - B) = (AA) - B = A - (AB),

and is commutative, A - B = B - A, but the product is not associative in

general, i.e., (A - B) - C may be different from A - (B - Q. On the other hand,
the following rule, which is weaker than associativity, is satisfied:

((A-A)-B)-A = (A-A)-(B-A).

In 1933 Jordan suggested that the quantum observables should be character-

ized by this algebraic structure. Algebras over the reals satisfying these

axioms are now commonly known as Jordan algebras. In the mid-1930s

Jordan, von Neumann, and Wigner classified the finite-dimensional Jordan

algebras over the reals with the additional reality property

A, - A, + A2 - A2 + - .. + A,, - A,, = 0 => A, = A2 = ... = A,, = 0.

These algebras are direct sums of simple ones, and, with one exception, a

simple, finite-dimensional Jordan algebra is an algebra of selfadjoint
operators on a Hilbert space with Jordan product defined by the anti-

commutator. The exceptional algebra is the algebra of hermitian 3 x 3
8matrices over the Cayley numbers, and is denoted by M3

Despite these investigations and subsequent analysis ofinfinite-dimensional
Jordan algebras by von Neumann, it appeared that the most fruitful algebraic
reformulation of quantum mechanics was in terms of the W*-algebras of

Murray and von Neumann. Thus the quantum observables were identified
with the selfadjoint elements of a weakly closed *-algebra of operators 9JI on

a Hilbert space .5 and the states as the mixed states described above. These

mixed states are linear functionals over 9W which assume positive values on

positive elements and equal one on the identity. It is now conventional to

call all normalized, positive, linear functionals states. The mixed states are

usually called normal states and can be characterized by various algebraic,
or analytic, properties among the set of all states. (The general structure of

topological algebras and their'states is discussed in Chapter 2.)
In 1947, following the characterization of C*-algebras by Gelfand and

Naimark, Segal argued that the uniform convergence of observables has a

direct physical interpretation, while weak convergence has only analytical
significance (a viewpoint which is disputable). Thus he proposed that the

observables should be identified as elements of a uniformly closed Jordan

algebra and demonstrated that this was sufficient for spectral theory and

hence for the quantum mechanical interpretation. Nevertheless the lack of

structural classification of the Jordan algebras compelled the stronger
assumption that the observables formed the selfadjoint part of a C*-algebra
W with identity and the physical states a subset of the states over %. Sub-

sequently, the structure ofJordan algebras has been developed, and this latter

assumption appears well founded. (Albert and Paige, in 1959, showed that the
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exceptional algebra M3' has no Hilbert space representation, but Alfsen,
Schultz, and Stormer, in 1974, developed Segal's theory for Jordan algebras
91 with identity which are Banach spaces in a norm 11-11 having the three

properties

(1) 11A - B11 < IlAll 11B11,
(2) 11A All = 11AII 2,
(3) 11A - All < 11A - A + B - B11

for all A, B in W. An equivalent order-theoretic definition states that (91, 1)
is a complete order unit space such that A - A > 0 for all A c- 91, and -I <

A < I ==> A - A :!! 1. Alfsen, Schultz, and Stormer proved that in this case W
contains a Jordan ideal 3 such that %/3 has a faithful, isometric representation
as a Jordan algebra of selfadjoint operators on a Hilbert space, and each

"irreducible" Jordan representation of % not annihilating 3 is onto M3 8.)
Segal also developed the mutual correspondence between states and

representations of a C*-algebra %, which is of importance both mathe-

matically and physically, and subsequently reinterpreted the Stone-von
Neumann uniqueness theorem as a result concerning states. If 9t and 9W are

the C*-algebra and W*-algebra, respectively, generated by the Weyl opera-
tors { Ui(s), Vj(t); s, t c- R, i, j = 1, 2, . . - ,

n I in the Schubdinger representation
then Segal defined a state (o over 91 to be regular if o_)(Ui(s)Vj(t)) is jointly
continuous in s and t, for all i andj. This regularity property is directly related
to the existence of position and momentum operators and the rephrased
uniqueness theorem states that o-) is regular if, and only if, it is the restriction
to 91 of a normal state over 9N. The representations corresponding to such
states are sums of copies of the Schr,6dinger representation.
The latter form of the uniqueness theorem indicates that the distinction

between the W*-algebra and C*-algebra description of quantum observables
for systems with a finite number of particles is at most a matter of technical
convenience. Nevertheless, it is vital in the broader context of systems with
an infinite number of degrees of freedom, e.g., systems with an infinite number
of particles.
There are several different ways of extending the formalism of Heisenberg

to an infinite number of operators pi, qj satisfying the canonical commutation

relations. Either one can construct a direct analogue of the Schr6dinger
representation by use of functional integration techniques or one can use a

unitarily equivalent reformulation of this representation which is meaningful
even for an infinite number of variables. The oldest and most common

version of the representation which allows this generalization was proposed
by Fock in 1932 and rigorously formulated by Cook some twenty years later

(see Chapter 5). Once one has such a formulation one can construct an

infinite family of unitary Weyl operators and a C*-algebra % and a W*-

algebra 9W generated by these operators. But now the uniqueness theorem is

no longer valid. There exist regular states over W which are not obtained by
restriction of normal states over 9W and the representations corresponding
to these states are no longer sums of copies of the Fock-Cook or Schr6dinger
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representation. This lack of uniqueness was not generally recognized until
the 1950s when Segal, Friederichs, and others gave examples of inequivalent
regular representations. In 1955 Haag proved a theorem which essentially
showed that two pure ground states are either equal or disjoint, i.e., generate
inequivalent representations (see Corollary 5.3.41 in Chapter 5). Thus

distinct dynamics appeared to determine distinct representations. The

significance of the inequivalent representations was also partially clarified

by Garding and Wightman in 1954 and completely explained by work of

Chaiken, Dell'Antonio, Doplicher, and Ruelle, in the mid-1960s. The regular
states over 91 which are restrictions of normal states over 9W are exactly those

states in which a finite number of particles occur with probability one. (This
result, which was indicated by model calculations of Haag, van Hove, Araki
and others, in the 1950s, governs our approach to the Stone-von Neumann

uniqueness theorem in Chapter 5). Thus the Schr6dinger representation
suffices for the description of a finite number ofparticles, but other representa-
tions of the C*-algebra, or W*-algebra, are essential for systems with an

infinite number of particles. The realization of this distinction was the

starting point for most of the subsequent applications of *-algebras to

mathematical physics.
It is not, of course, immediately evident that the examination of systems

composed of an infinite number of particles is relevant to physics and in the

context of statistical mechanics this was often hotly contested in the 1950s
and 1960s. To understand the relevance it is necessary to examine the type
of idealization which is inherent in physical theories even with a finite number
of particles.
As a simple example let us first envisage the scattering of a particle from a

fixed target. The experiment consists of repeatedly shooting the particle at the

target with a predetermined velocity and then measuring the velocity after

scattering. A typical theoretical problem is to calculate the force between the

target and the incident particle from the scattering data. The first common-

place theoretical idealization is to reduce the problem to the discussion of

two bodies in isolation. This is harmless if the experimental setup has been

carefully arranged and the forces exercised by the surroundings are negligible,
and this can of course be checked by rearrangement of the apparatus. Such
controls are a part of good experimental procedure. In order to have a

reliable, reproducible, experiment it should also be ensured that the scattering
data is insensitive to small changes in the initial and final measurement

processes. For example, if the forces are strong and the particle and target are

initially close then a small change in initial velocity would have a large effect
on the final velocity. Similarly, if the final velocity is measured too soon

after the particle has passed the target then its velocity will not have stabilized
and a slight lapse in the measurement procedure would produce a significant
change in the data. In a well-executed experiment various checks and counter-

checks should be made to ensure the invariance of the data under such per-
turbations. If this is the case then the theoretician can interpret the results as

asymptotic data, e.g., the experimentally measured outgoing velocity is
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considered to represent the velocity the particle would obtain after an

arbitrarily long passage of time. Thus while the experimentalist might collect

all his data between breakfast and lunch in a small cluttered laboratory his
theoretical colleagues interpret the results in terms of isolated systems
moving eternally in infinitely extended space. The validity of appropriate
idealizations of this type is the heart and soul of theoretical physics and has

the same fundamental significance as the reproducibility of experimental
data.

The description of thermodynamic systems by statistical mechanics is

another source of idealization of a finite physical system by an infinite
theoretical model. The measurement of the heat capacity of a liquid is a

typical thermal experiment and is accomplished by heating a sufficiently
substantial sample of the liquid in a calorimeter. After the appropriate
measurements the experimentalist divides the heat capacity by the mass of
the sample and quotes the result as a specific heat in calories/gram 'K, or

other suitable units. This data is presented in this form because the experi-
mentalist is confident that, under the conditions of the experiment and within
the accuracy of the measurement, the heat capacity is proportional to the

mass but otherwise independent of the size of the sample, the make of the

calorimeter, etc. Ofcourse, this can be checked by repetition of the experiment
with various volumes of liquid and different calorimeters and again such
checks are a concomitant of good experimental procedure. The theoretical

quantity to compare with the measured result is then the portion of the
calculated heat capacity strictly proportional to the size of the system for a

large system, and a convenient mathematical procedure for obtaining this is

to divide the heat capacity by the volume and then take the limit as the volume
tends to infinity. This is usually called the thermodynamic limit. Thus one

again introduces an idealization of a finite system by an infinite system and
this idealization is justified if the foregoing tenets of experimental procedure
are valid, and if the theoretical model used for the calculation is reliable.
But if matter is composed of atomic particles then the idealized infinite

liquid, being at nonzero density, contains an infinite number of particles,
i.e., the theoretical model of the liquid involves an infinity of particles.

Before explaining the use of algebraic methods for the description of such
infinite systems let us emphasize that in thermodynamics not all significant
quantities are stable under perturbations. In fact, the most interesting
phenomena, phase transitions, involve instabilities. Typically, if one confines

a liquid at fixed temperature and reduces the pressure then at a certain

critical value the liquid vaporizes and slight variations of the pressure
around this critical value produce quite distinct thermodynamic states,
or phases. Similarly, if the pressure is held fixed and the temperature raised

then at a critical temperature a liquid-vapor phase transition takes place and
small variations of the temperature around this critical value produce large
changes in quantities such as the density. At the critical pressure, or tempera-
ture, various mixtures of vapor and liquid can coexist and hence the state of

equilibrium is not unique. Thus the density per unit volume, the specific
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heat per gram 'K, etc., while well defined at most pressures and temperatures
appear to have no precise meaning for certain critical values of the thermo-

dynamic parameters. One therefore expects the theoretical counterparts of
these quantities to vary sharply with the temperature, etc., at these critical

points. Here again the idealization of the thermodynamic limit is useful
because the rapid variation of the quantities calculated at finite volume

appears as a sharp discontinuity after the infinite volume limit. In fact this

appearance of discontinuities is sometimes cited as a justification of the
limit process.

Let us now examine the role of C*-algebras and W*-algebras in the

description of infinite particle systems.
If one first considers a finite system in a subset A of space then the algebraic

rephrasing of quantum mechanics sketched above identifies the correspond-
ing observables as the selfadjoint elements of a C*-algebra WA. Therefore
the observables corresponding to an arbitrarily large system would be
determined by the union of the 91A -

In specific models of point particles
WA could correspond to the C*-algebra generated by Weyl operators acting
on the Fock-Cook representation space 6A, or to all bounded operators
on 5A. But in any case if A, c-- A2 then the algebras should satisfy WA, C 91A2 -

It can be shown (Theorem 2.2.5 and Proposition 2.2.7) that if AC_ WA, r-) %A2
then the norm of A as an element in 91Ai is the same for i = 1 and i = 2. It

follows that the union of the 91A has a unique norm completion which is a

C*-algebra. The algebra W is constructed without reference to a particular
state, or representation, of the system and can be understood as the C*-

algebra of observables of the infinite system. Algebras built in this manner
from a family of subalgebras 91A are usually referred to as quasi-local algebras
and the WA are called local algebras. The 1934 paper of Murray and von

Neumann mentions the interrelationships of algebras corresponding to

observables situated in separate parts of a system as a motivation for the
examination of W*-algebras in the context of quantum mechanics. Neverthe-

less, it was not until 1957 that Haag emphasized the importance of the quasi-
local structure in field-theoretic models and in the 1960s that it was applied
to quantum statistical mechanics. In this latter context the algebraic structure

has provided a useful framework for the analysis of equilibrium states.

The rules of quantum statistical mechanics provide various algorithms,
the Gibbs ensembles, for the construction of the equilibrium state WA,,,, of a

system in A, as a state over 91A. The suffix a denotes the thermodynamic
parameters, e.g., Lx could represent the temperature and density, or the

temperature and chemical potential, and the relevant algorithm depends upon
the selection of this parametrization. In conformity with the above discussion
one attempts to take the thermodynamic limit of the O)A, ,.

Thus for each

A C_  'A and each A one tries to calculate

co,,(A) = "M (OA',a(A),
A'- oo

where the limit indicates that A' increases to eventually contain any compact
subset. The set of values wJA) then represents equilibrium data which is
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independent of size and shape. It is to be expected that the limit exists except
for certain critical values of a. At these exceptional values various limit

points should exist and each set of limit data then describes a possible
equilibrium situation, i.e., several independent thermodynamic phases
exist. But the limit data determine a state o), over 1 1 and thus the equilibrium
states of the system correspond to a subset of the states over 121 and this

construction gives a parametrization a  --* co,, of these states.

Most applications of the algebraic formalism to statistical mechanics

have concentrated on equilibrium phenomena and have attempted to

justify, and amplify, this interpretation of equilibrium states as states over a

C*-algebra  [. There have been two different types of analysis which are

partially related but whose emphases are distinct. The first approach follows

the course outlined in the above discussion while the second is less direct

and aims at the characterization of the equilibrium states without reference

to the thermodynamic limiting process. Nevertheless, both approaches
have the same subsequent goal, the derivation of physically significant
properties of the set of states designated as equilibrium states, e.g., smoothness

properties of the thermodynamic parametrization of these states. Let us

next sketch these two approaches in slightly more detail.

In the first type of analysis one begins with a specific Hamiltonian operator
H, which incorporates a description of the interactions and boundary
conditions for particles in a finite region A and then tries to construct the

Gibbs equilibrium state of the system. Schematically, these states are of the

form

O)A, #(A) =
Tr(e - PHAA)
Tr(e - PHA)

where P is the inverse temperature in suitable units. Thus for this construction

it is necessary to prove that HA 'Sselfadjoint and exp I -#HAI is of trace-class.

Next one examines the existence, or nonexistence, of the limit cop of the states

O)A,fl as A --). oo. Discussion of these questions involves a whole range of

techniques of functional analysis, e.g., functional integration, convexity and

subadditivity inequalities, integral equations, etc. In the simplest models of

classical mechanics the results give a rather detailed justification of the

a priori discussion. Unfortunately, the present results for more realistic

models of classical and quantum mechanics are only partial and give little

information concerning critical phenomena.
In the second type of analysis one begins with a general prescription for

the dynamics of the idealized infinite system and the simplest, and strongest,
assumption is that the time development t   Tt(A) of the observables A

is given by a continuous one-parameter group 'r of *-automorphisms of the

C*-algebra % of all observables. One then specifies criteria for a state Co

over W to be an equilibrium state in terms of properties of o-) relative to r,

e.g., the obvious requirement of stationarity with time of o) corresponds to

the invariance condition

o_)(ct(A)) = co(A)
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for all A c- 91 and t c- R. Several equivalent sets of criteria have been developed
and justified either by arguments from first principle, e.g., stationaritY,
stability, and ergodicity, or by analogy with the Gibbs equilibrium formalism
for finite systems. For example, one has the formal identity

Tr(e - PHA(eitHAAe- itHA)B) = Tr(e -PHAB(e'(' + ifl)HAAe- i(t + ifl)HA

Hence using the definition of the Gibbs state COA, P introduced in the previous
paragraph and tentatively identifying -rt(A) as the limit of

exp{itHAIA exp f - itHA I

as A --+ oc one would expect the thermodynamic limit o-)p of the (OAJ to

satisfy the relation

o_)#(r,(A)B) = cop(Brt + ip(A))
for all A, B c- W and t c- R. This identity was first noted by Kubo in 1957, and
subsequently by Martin and Schwinger in 1959, for the finite-volume Gibbs
states. It is now commonly referred to as the KMS condition and was

proposed as a criterion for equilibrium by Haag, Hugenholtz, and Winnink,
in 1967. The condition presupposes that the function t  -+ co(B-r,(A)) is

analytic in the strip 0 < Im t < # and then expresses an approximate
commutation of observables within the state co. The general analysis of
equilibrium states then proceeds by the examination of the states satisfying
the given criterion of equilibrium such as the KMS condition. One attempts
to prove existence and settle questions of uniqueness and nonuniqueness, etc.
The KMS condition has played an important role in the synthesis of the

mathematical and physical theories largely because an almost identical
relation occurred in Tomitas analysis of von Neumann algebras. In the mid-
1960s Tomita assigned to each "faithful" normal state co over a W*-algebra
9J1 a canonical one-parameter group of *-automorphisms r'. Tomita was

solely motivated by questions of structural analysis but in 1970 Takesaki
demonstrated that the state co satisfied the KMS condition with respect to
the groupr' with the slight difference that t  -+ -rt'(A), A c- 9)1, is not necessarily
continuous in norm. The Tomita-Takesaki theory is developed in detail in
Chapter 2 and analysis of the KMS condition occurs in Chapter 5.
Although the above approaches to equilibrium statistical mechanics

have different points of departure they both lead to a designation of a class
of states as equilibrium states and the analysis of these states is aided by
the infinite-volume idealization. For example, this idealization allows
properties such as homogeneity of a physical sample to be expressed by
exact symmetry properties of the theoretical model. The group of space
translations acts as *-automorphisms of the C*-algebra W of all observables
and homogeneity is reflected by invariance of the equilibrium state under
this group. Analysis of invariant states over a C*-algebra leads immediately
to a noncommutative analogue of ergodic theory which itself developed from
classical statistical mechanical. Ergodic theory analyzes a dynamical system
(X, y, T) consisting of a measure space X, a probability measure y, and a
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one-parameter group T of measure-preserving transformations of X. The
direct algebraic analogue (91, a), -c) consists of a C*-algebra 92t, a state (0,
and a one-parameter group of *-automorphisms T which leaves co invariant

although it is also of interest to examine more complicated groups. The

general analysis of equilibrium states, in the mid-1960s, established that

many results of classical ergodic theory could be extended to the non-

commutative case if (o, -c) satisfies a suitable property of asymptotic
abelianness, e.g., a property of the kind

lim llr,(A)B - Br,(A)II = 0.
JtJ-X

Typically, this condition allows one to deduce that each invariant (0 has a

unique decomposition in terms of invariant states which are analogues of

ergodic measures. These states are characterized by properties of inde-

composability, or mixing, and the decomposition appears related to the

separation of thermodynamic phases. These developments, which are

described in detail in Chapter 4, provide another useful and interesting
synthesis of mathematics and physics.

In the foregoing approach to the second type ofanalysis ofequilibrium states

we made the idealization that the time development is given by a continuous

one-parameter group -c of *-automorphisms of a C*-algebra  R. This assump-
tion, however, is only satisfied for very simple models. It is false even for the

noninteracting Bose gas. Thus for a more realistic theory it is necessary to

weaken this assumption and various possibilities are indicated by extension
of the first form of analysis. One attempts to construct the equilibrium state

o-) and the time development r simultaneously. In the "next best" situations 'r

is then given as an automorphism group of the weak closure 7r.(121)" of 9t
in the cyclic representation associated with w. If one adopts the viewpoint that
mixtures of vector states in this particular representation constitute all

"physically interesting" states or if one includes all selfadjoint operators in

7r,,(111)" among the observables this latter description is acceptable. Thus in
this wider context one refines the algebraic notions of physical states and
observables.

In 1963 Haag and Kastler made a number of interesting suggestions con-

cerning states and physical equivalence which to a large extent justify the

viewpoint mentioned above. They argued that if observables A, . . . , A,
are measured in a state w one obtains numbers w(A,) = A, . . . , (o(A,,) = A,
but the inherent imprecision of the measurement process means that these
observed values are only determined to lie within small intervals (Ai -, Ai + e).
Thus o-) is physically equivalent to any state (o' which satisfies

I (o(A i) - w(A i) I < r, i - n,

i.e., physical equivalence is determined by neighborhoods in the weak*

topology. But mixtures of vector states of any faithful representation 7U.(9t)
are weakly* dense in the set of all states and hence this line of reasoning
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suggests that these states are a sufficiently large set for a full physical de-

scription. Nonetheless, if one studies systems which are physically dissimilar,
e.g., systems at different temperatures, or densities, then it is necessary to

study states which are not mixtures of vector states of one or other representa-
tion and it is practical to examine the dynamical evolution in each state

separately.



Notes and Remarks

The papers by Murray and von Neumann are conveniently collected in

Volume 3 of the collected works of von Neumann [[Neu 1]]. The Gelfand-

Naimark characterization of C*-algebras occurs in [Gel fl.
The appendix to Mackey's Chicago lectures EEMac 1]] describes the

influence of von Neumann algebra theory for the development of group

representations. This appendix also discusses much of the same material

presented in this chapter.
Many of the early papers on quantum mechanics are accessible in the book

edited by van der Waerden EEWae 1]] and von Neumann's axiomatization of

the theory occurs in its earliest form in [[Neu 2]].
The work of Stone and von Neumann can be found in Volume 2 of von

Neumann's collected works [[Neu 1]] and the monograph of Stone [[Sto t]].
Segal's formulation of quantum mechanics in terms of C*-algebras is

summarized in [Seg 1].
The structure theory of Jordan algebras is reviewed by Stormer in EEStr t]].
In this chapter we have given an historical account of the development

of quantum theories, and also mentioned some of the attempts to develop the

theory axiomatically, originating with von Neumann's theory. We have,
however, avoided developing a detailed axiornatization ofquantum statistical

mechanics, because at present there exists no set of axioms which covers all

models. We mentioned, for example, at the end of the introduction the

difficulties associated with the assumption that the dynamics is given by a

strongly continuous one-parameter group of *-automorphisms of the C*-

algebra associated with the system. For a more complete review of the

development of axiomatic quantum theories up to 1974, the reader could

consult Wightman's article on Hilbert's sixth problem [Wig 2].
The remainder of the topics discussed in this introductory chapter are

described in detail in the following chapters. References can be found in the

Notes and Remarks to the relevant chapters.
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C*-Algebras and

von Neumann Algebras





2.1. C*-Algebras

2.1.1. Basic Definitions and Structure

C*-algebra theory is an abstraction of the structure of certain algebras of
bounded operators acting on a Hilbert space and is simultaneously a special
case of the theory of Banach algebras. Consequently, the theory can be

developed in two different ways. Either one can begin with an abstract

description suited to the general analysis of Banach algebras or one may
start with a specific representation of the algebra on a Hilbert space. We will

follow the first of these approaches.
Let 91 be a vector space with coefficient field C, the field of complex

numbers a, fl,... .
The space W is called an algebra if it is equipped with a

multiplication law which associates the product AB to each pair A, B c- W.
The product is assumed to be associative and distributive. Explicitly, one

assumes

(1) A(BC) = (AB)C,
(2) A(B + Q = AB + AC,
(3) afl(AB) = (aA)(#B).

A subspace 0 of 91 which is also an algebra with respect to the operations ofW
is called a subalgebra. The algebra 91 is commutative, or abelian, if the product
is commutative, i.e., if

AB = BA.

A mapping A G Iff --.> A* c- 91 is called an involution, or adjoint operation,
of the algebra 91 if it has the following properties:

(1) A** = A;
(2) (AB)* = B*A*;
(3) (aA + #B)* = dA* + PB*.

( i is the complex conjugate of a). An algebra with an involution is called a

*-algebra and a subset 0 of 91 is called selfadjoint if A c- 0 implies that

A* c- 0.

19
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The algebra % is a normed algebra if to each element A e % there is

associated a real number IJ All, the norm of A, satisfying the requirements

(1) A 11 0 and 11 A 0 if, and only if, A = 0,
(2) aA = I a 111 A 11,
(3) A + B 11 :!! 11 A 11 + 11 B
(4) IIABIJ :!! IJAII JIBIJ.

The third of these conditions is called the triangle inequality and the fourth

is the product inequality.
The norm defines a metric topology on % which is referred to as the

uniform topology. The neighborhoods of an element A c- % in this topology
are given by

,&(A; e) = JB; B c- 91, JIB - All < ej,

where E > 0. If W is complete with respect to the uniform topology then it is

called a Banach algebra. A normed algebra with involution which is complete
and has the property 11 A 11 = 11 A* 11 is called a Banach *-algebra.
Our principal definition is the following:

Definition 2.1.1. A C*-algebra is a Banach *-algebra % with the property

IIA*All = JIAI12

for all A e 91.

The norm property which characterizes a C*-algebra is a relic of an

underlying Hilbert space structure. Note that this property combined with

the product inequality yields 11 A* 11 = 11 All automatically, because

IIA112 = IIA*All < IIA*II IIAII

and hence IJAII :! , IIA*11. Interchanging the roles of A and A* one concludes

that

IJAII = JJA*JJ

for all A c- %.

The following examples illustrate how the C*-norm condition arises.

Note that here and throughout the sequel, we use the term Hilbert space to

mean a complex Hilbert space.

EXAMPLE2.1.2. Let .5 be a Hilbert space and denote by Y(.5) the set of all bounded

operators on .5. Define sums and products of elements of Y016) in the standard manner

and equip this set with the operator norm

11 A 11 = supj 11 A 11; 0 c-.5, 110 11 1.

The Hilbert space adjoint operation defines an involution on Y(.5) and with respect
to these operations and this norm Y(5) is a C*-algebra. In particular, the C*-norm
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property follows from observing that

11A 112 = sup{(A0, A c-

= sup{(O, A*AO); 0 E -5, 11011 11
< sup{jjA*AOjj; 0 C- .5, 11011 = 11

11A*A11
11A*IJ 11AIJ

11A 112.

Note that any uniformly closed subalgebra 91 of Y(.5) which is selfadjoint
is also a C*-algebra.

EXAMPLE 2.1.3. Let YW(.5) denote the algebra of compact operators acting on

the Hilbert space .5. It follows that YW(.5) is a C*-algebra. Firstly, YW(.5) is a self-

adjoint subalgebra of Y(.5) and, secondly, it is uniformly closed because the uniform
limit of a set of compact operators on b is automatically compact.

Function algebras provide other examples of C*-algebras which appear
at first sight to be of a slightly different nature to the foregoing.

EXAMPLE 2.1.4. Let X be a locally compact space and QX) the continuous

functions over X which vanish at infinity. By this we mean that for each f C- CO(X)
and s > 0 there is a compact K - X such that I f(x) I < s for all x c- X\K, the comple-
ment of K in X. Define the algebraic operations by (f + g) (x) = f(x) + g(x),
(ocf) (x) = ocf(x), (fg) (x) = f(x)g(x), and an involution by f*(x) = f(x). Finally,
introduce a norm by

11 f 11 = SUpf I f(X) 1; X G Xj.

It follows that CO(X) is a commutative C*-algebra. In particular, the norm identity
is valid because

11 ff* 11 = supf I f(x) I'; x e Xj = 11f 11'.

Note that if it is a measure on X and h = L'(X; y) is the Hilbert space of Y-square
integrable functions over X then CO(X) may be interpreted as an algebra of multipli-
cation operators on S ). Thus CO(X) is a sub-C*-algebra of Y(!-6) and is analogous to

the previous examples.

An identity I of a C*-algebra W is an element of W such that

A = 1A = Al

for all A C- W. It follows by involution that T * is also an identity. But W can

have at most one identity because a second such element V would satisfy

V = T V = 1.
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Thus I = I. Note also that the relations

IITII = 111*111 = 111112,

IIAII IIIAII < IITII IIAII

imply that 11111 = 0 or 1. But if 111 = 0 then one must have 11 A 11 = 0 for all

A c- % and the algebra is identically zero. We will systematically ignore this

trivial case and assume that 11111 = 1.

Although a C*-algebra can have at most one identity element it is not

automatic that it possesses an identity. For example, the algebra Y16(.5)
(cf. Example 2.1.3) possesses an identity if, and only if, -5 is finite-dimensional

while the algebra CO(X) (cf. Example 2.1.4) has an identity if, and only if,
X is compact. The absence of an identity can complicate the structural

analysis of % but these complications can to a large extent be avoided by
embedding % in a larger algebra % which has an identity. The construction

of this larger algebra is accomplished as follows:

Proposition 2.1.5. Let % be a C*-algebra without identity and let  R denote
the algebra ofpairs J(Y., A); oc c- C, A c- %I with operations (a, A) + (p, B) =

(a + fl, A + B), (oc, A)(P, B) = (afl, aB + #A + AB), (a, A*) = (c_x, A*). It

follows that the definition

I(a, A)II = sup jjaB + ABII, B c- %, IIBII = 11

yields a norm on T1 with respect to which T1 is a C*-algebra. The algebra 91 is

identifiable as the C*-subalgebra of  ftjbrmed by the pairs (0, A).

PROOF. The triangle and product inequalities for 11(a, A)II are easily verified. We

next show that 11(a, A)II = 0 implies a = 0, A = 0. But 11(0, A)II = IJAII and hence

11(0, A)II = 0 implies A = 0. Thus we can assume Lx :A 0 and by scalar multiplication
we can even take a = 1. But

JIB - ABIJ < JIBIJ 11(l, -A)II

and hence 11 (1, - A) II = 0 implies B = AB for all B c- W. By involution one then has

B = BA* for all B c- 111. In particular, A* = AA* = A,

B = AB = BA,

and A is an identity, which is a contradiction.

The C*-norm property follows by noting that

11 (a, A) 112 = supflIaB + AB 112 ; B c- IN, 11 BIJ = 1  

supjJIB*(5aB + (YAB + (xA*B + A*AB)II; Bc-121, JIBIJ = 11i

ftoc, A)*(a, A)II
< A)* 1111 (a, A) 11.

Therefore

(a, A) 11 < 11 (a, A)* 11.
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ABut the reverse Inequality follows by replacing (a, A) with Hence

11(a, A) 11 2 :! 11(a, A)*(a, A)11 :!  11(a, A) 112

and the desired conclusion is established.

The completeness of it follows straightforwardly from the completeness of C

and 91.

Definition 2.1.6. Let 91 be a C*-algebra without identity. The C*-algebra
 A_ obtained by adjoining an identity I to 91 is defined as the algebra of pairs
(oc, A) described in Proposition 2.1.5. We use the notation aT + A for the

pair (oc, A) and write W = C1 + 91.

Note that if W is a C*-algebra with identity T then it is quite possible to

have a C*-subalgebra 0 which has no identity. In this situation the algebra  8'
obtained by adjoining an identity is identifiable as the smallest C*-sub-

algebra of % which contains both 0 and T.

Although the above construction provides a powerful tool for investigating
C*-algebras without identity it does not solve all problems related to the
absence of an identity. An alternative approximation procedure which allows
the construction of an "approximate identity" will be discussed in Section
2.2.3.

Next we introduce a number of additional concepts which constantly
reoccur in algebraic theory.
A subspace 0 of an algebra W is called a left ideal if A c- W and B e 0

imply that AB c- 0. Alternatively, 0 is a right ideal if A c- % and B c- 0 imply
that BA c- 0. If 0 is both a left ideal and a right ideal, then it is called a two-

sided ideal. Note that each ideal is automatically an algebra. For example, if 93
is a left ideal and B1, B2 c- 0 then automatically B, c- W, B2 c- 0, and B,B2 c- 0-
Further note that if 0 is a left (or right) ideal of an algebra % with involution
and if 0 is also selfadjoint then 0 is automatically a two-sided ideal. Ex-

plicitly, if B c- 0 then AB c- 0 for all A c- %. But by selfadjointness B* c- 0
and hence A*B* c Q3 for all A c- W. Again by selfadjointness BA = (A *B*)* C- 0.
Thus 0 is two-sided.

IfW is a Banach *-algebra and 3 - 91 is a closed two-sided *-ideal then the

quotient space %/3 can also be regarded as a Banach *-algebra. Thus an

element A c- W/3 is a subset of elements defined for each A c- % by

A = JA + I; I c- 31

and multiplication, addition, and involution are defined by AB = AB,
A + 13- = A--+B-, and A* = ;i-*. The requirement that 3 is a two-sided ideal

guarantees that these operations are well defined, i.e., independent of the

choice of representative A + I, B + 12, Of li, P. For example,

(A + Il)(B + 12) = AB + 13,
where

13 = I1B + A12 + 1112 C_ 3-
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The quotient space %/3 becomes a Banach *-algebra if we also introduce the

norm by the definition

IIAII = inf IIIA + III; I e 31.

It is straightforward to check that this definition yields a norm and that W/3
is complete with respect to this norm. It is less evident that if W is a C*-

algebra then %/3 equipped with the foregoing structure is also a C*-algebra.
We will give a demonstration of this fact in Section 2.2.3.

EXAMPLE 2.1.7. Let  21 - Y(.5) be the C*-algebra of all bounded operators on

the complex Hilbert space .5. Choose a vector Q c- -5 and define 3Q by

3Q =  A; A c- W, AQ = O .

The set 3Q is a left ideal of 9J.

EXAMPLE 2.1.8. Let % = Y(.5) and 0 = YW(5), the algebra of compact

operators on  5.  13 is a two-sided ideal of % because the product of a bounded operator
and a compact operator is a compact operator.

EXAMPLE 2.1.9. Let 91 = CO(X), the commutative C*-algebra of Example 2.1.4.

If F is a closed subset of X, and  3 consists of the elements in % which are zero on F

then 93 is a closed two-sided ideal of W, and the quotient algebra %/0 is identifiable

as CO(F). Using the Stone-Weierstrass theorem one can show that each closed,
two-sided ideal in % has this form.

A C*-algebra W is called simple if it has no nontrivial closed two-sided

ideals, i.e., if the only closed two-sided ideals are 101 and %. If % has an

identity this amounts to saying that % has no two-sided ideals at all, closed or

not. Simple C*-algebras play a fundamental role in applications to mathe-

matical physics.
We conclude this introductory section, by stating the basic structure

theorems for C*-algebras. In Examples 2.1.2-2.1.4 we saw that uniformly
closed selfadjoint subalgebras of bounded operators on a Hilbert space are

C*-algebras and, furthermore, the function algebras CO(X) yield examples
of commutative C*-algebras. The structure theorems state that these

particular cases in fact describe the general situation.

Theorem 2.1.10. Let % be a C*-algebra. Itfollows that % is isomorphic
to a norm-closed selfadjoint algebra ofbounded operators on a Hilbert space.

Theorem 2.1.11. Let % be a commutative C*-algebra. Itfollows that % is

isomorphic to the algebra CO(X) of continuous functions, over a locally
compact Hausdorff space X, which vanish at in nity.Ifi

The proofs of these theorems will be given in Sections 2.3.4 and 2.3.5.



2.2. Functional and Spectral Analysis

2.2. 1. Resolvents, Spectra, and Spectral Radius

In real and complex analysis two of the most important elementary functions
are the inverse and the exponential. The function z c- W  -+ (A - z) - I

c- C
is the crucial element in analysis with Cauchy transforms and the function

x c- R F-+ expjiAxj c- C is the starting point for Fourier analysis. Both these
functions are of paramount importance in generalizing functional analysis
to other algebraic structures. Study of the inverse function immediately
leads to the notions of resolvent and spectrum and we will next analyze these

concepts for elements of a C*-algebra.
If % is an algebra with identity I then an element A c- W is said to be

invertible if there exists an element A Ei 91, the inverse of A, such that

AA-1 = = A-'A.

There are a number of elementary conclusions which follow directly from this
definition. If A is invertible then it has a unique inverse and this inverse is
invertible with (A - 1) - '

= A; if A and B are invertible then AB is invertible
and (AB) - '

= B - 1A if W is a *-algebra and A is invertible then A * is
invertible and (A*) - ' (A - ')*.

Definition 2.2.1. Let W be an algebra with identity 1. The resolvent set

rg,(A) of an element A c- W is defined as the set of A c- C such that Al - A is
invertible and the spectrum u,(A) of A is defined as the complement of

r,(A) in C. The inverse (Al - A) where A c- r,(A), is called the resolvent of
A at A.

The spectrum of an element of a general algebra can be quite arbitrary but
in a Banach algebra, and in particular in a C*-algebra, the situation is quite
simple, as we will see.

There are various techniques for analyzing resolvents and spectra, and
one of the simplest is by series expansion and analytic continuation. If, for

example, A c- C and I A > 11 A 11 then the series

A-1 Y tA '
M>O A/

25
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is Cauchy in the uniform topology. But, by completeness, the series must

define an element of % and one immediately verifies that this element is the

inverse of AT - A. In particular, A C- na(A) and the spectrum a- ,(A) is bounded,
,g,u(A) g; {A; A c- C, JAI :!! IIA111. More generally, if A0 c- r,,,(A)and JA - A01 <
II(A01 - A)-'jj then the Neumann series

,
(A0 - A)'(AolY

.>0

defines an element of% and by explicit calculation this element is (AT - A)
Thus A c- r,(A). This latter argument also establishes that r,),(A) is open and

- A)-' is continuous on nj,(A). As c,,,(A) is the complement of

r,,,(A) it is automatically closed and hence compact. One can also show that

the spectrum is nonempty.

Proposition 2.2.2. Let A be an element of a Banach algebra with identity
and define the spectral radius p(A) ofA by

p(A) = sup c- uj,(A)

Itfollows that

p(A) = lim 11 An1l 1 In inf 11 An1l 11n <11 A 11.
n oo n

In particular, the limit exists. Thus the spectrum ofA is a nonempty compact
set.

PROOF. Let JAI" > 11A n1l for some n > 0. As each in c- Z can be decomposed as

in = pn + q with p, q c- Z and 0 < q < ii one again establishes that the series

A-1 A)Y (
,.>0

is Cauchy in the uniform topology and defines (Al - A)-'. Therefore

p(A) < 11A n1l 1/n

for all n > 0, and consequently

p(A) :!! inf 11 AnIj 1/n < lim inf 11 An 11 11".

Thus to complete the proof it suffices to establish that p(A)  rA, where

I'A = lim sup IIA'11 I In

11 -

There are two cases.

Firstly, assume 0 c- r,(A), i.e., A is invertible. Then I = 11 AnA-11 < JjAnjj IIA-11 and

hence I < rA ',A-'. This implies rA > 0. Consequently, if rA = 0 one must have

0 c- a%(A) and p(A) > I'A

Secondly, we may assume rA > 0. We will need the following simple observation.

If A is any sequence of elements such that R = (I - A -' exists then I - Rn
n

'

n n)
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- A,(1 - An) and A, (I - Rn) (T - (T - Rj) Therefore 111 - R, 11 -- 0 is

equivalent to II An 11 - 0 by power series expansion.
Define SA = {A; A c- C, JAI > rA I. We assume that SA s; r9j(A) and obtain a

contradiction. Let w be a primitive nth root of unity. By assumption

RjA; A) = n
-I  y (I _

(OkA ) -I

k=1 A

is well defined for all A c- S,. But an elementary calculation shows that

RjA; A) (T
Next one has the continuity estimate

(0kA I (t)kA) (T rA )_ A

= I -
(OkA - 1CokA 1

-

1
1 -

CokA -1

rA A rA

< rA I 11A 11 sup 11(7T - A)- 1112,
Y c- S 

which is uniform in k. (The supremum is finite since A 1--- 11 (A - A) `11 is continuous

on r,(A) and for I A I > 11 A 11 one has

II(AT - A)-111 < JAI` I IJAII"IJAI" = (JAI - IIAII)-l.)
"  : 0

It immediately follows that for each e > 0 there is a A > rA such that

An)-1 _ (I _ X)-'  <

rAn An

uniformly in n. But IIAn IIIAn _, 0 and by the above observation 11(T An/An) - 1 -T

--+ 0. This implies that 11(l - AnIrAny '
- T 11 --+ 0 and JjA"IJ1rA" 0 by another

application of the same observation. This last statement contradicts, however, the
definition of rA and hence the proof is complete.

A second useful technique for analyzing resolvents, etc., is by transforma-
tion. For example, the identity

(Anj - An) = (Al A) (An 11 + An-2A + + An- 1)

demonstrates that if A" c- rw(An) then A c- rw(A). Therefore, by negation,
u,,(A)n g aw(An). Other examples of relations which follow from simple
transformations are contained in the next proposition.

Proposition 2.2.3. Let 91 be a *-algebra with identity. For A c- W and A c- C

a%(AT - A) A - aQ,(A),

u,s(A*) a%(A),
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and if A is invertible

Moreover, for each pair A, B c- % one has

a,n(AB) u 101 = cn(BA) u 101.

PROOF. The first property is evident; the second follows from the relation

(Al - A*) A)*.

The third statement is a consequence of

(Al A) AA(A-1 - A-11)

and

(A- 1 A- A- 'A- '(A - Al).

Explicitly, one argues that if A :A 0 and Al - A is not invertible then the first relation

shows that A'I - A - 1 is not invertible. The second relation establishes the converse.

The exceptional point A = 0 is dealt with by noting that the invertibility implies that

{01  a%(A) and

a,s(A-1) 9 {A; JAI < IIA-111 < +ool.

Finally, if A c- rA(BA) then one calculates that

(A - AB)(1 + A(A - BA)-'B) = At

This demonstrates that Al - AB is invertible with the possible exception of A = 0.

Therefore a%(BA) u 101 --::) uA(AB) u {01. Interchanging A and B gives the reverse

inclusion and hence equality.

Further examples of spectral relations which arise from simple transforma-

tions occur in the subsequent discussion of elements of C*-algebras. But first

we must adopt a convention for defining the spectrum if the algebra does not

contain an identity. The simplest procedure is to adjoin an identity.

Definition 2.2.4. Let % be a *-algebra without identity and C1 + % the

*-algebra obtained by adjoining an identity. If A c 91 then the resolvent set

r,,(A) and the spectrum of A are defined, respectively, by

r9j(A) = nii(A), C%(A) = uqi(A).

Next, we partially characterize the spectra of special classes of elements of a

C*-algebra %. The most important elements are the normal, selfadjoint,
isometric, and unitary elements.

An element A c- W is defined to be normal if

AA* = A*A

and selfadjoint if

A = A*.
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If W has an identity I then A is called an isometry whenever

A*A

and A is unitary if

A*A AA*.

Note that a general element A c- W has a unique decomposition in terms of

selfadjoint elements A,, A2 of the form

A = A, + iA2-

The real and imaginary parts A,, A2 of A are given, respectively, by A,
(A + A*)/2 and A2 = (A - A*)12i.
Our convention concerning the spectrum in Definition 2.2.4 essentially

allows us to assume the existence of an identity in discussing the C*-algebra
situation. One has the following:

Theorem 2.2.5. Let W be a C*-algebra with identity.

(a) If A c- W is normal or se fadjoint then the spectral radius p(A) of A
is given by

p(A) = JIAJI.

(b) IfA c- 91 is isometric, or unitary then

p(A)

(c) IfA c- W is unitary then

u,A(A) 9 {A;Ac-C, JAI = 11.

(d) If A is se fadjoint

a, ,(A) - [- IJAII, JIAIJ, aq,(A 2) C: [0, 11A 11 2].

(e) For general A c- W and each polynomial P

a H(P(A)) = P(ujj(A)).

PROOF. (a) The normality of A and the C*-norm identity imply that

11A 2nJ12 =JI(A *)2n(A )2nll
= II(A*A )2"11
= II(A*A)2n-1112

IIA*A 112" 11A 112'

Therefore

p(A) = lim 11A 2"112 -n

11AII.
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(b) The proof is similar to (a). One has

IIA,,112 II(A*),,A,,Il

L

(c) As each unitary element is isometric u%(A) is contained in the unit disc by
part (b). But from Proposition 2.2.3 one has

a,A(A) = aN(A a%(A (agi(A))

It follows immediately from these two observations that aq,(A) is contained in the

unit circle.

(d) Each selfadjoint A is automatically normal and hence p(A) = II All. Thus if

1 -'j > IIAIJ one has  -' c- r,(A) and I + il IA is invertible. Define U c- % by

U = (I - ilAIA)(I + ilAIA)-'.

It is straightforward to check that U is unitary. Hence I (I - i I A I a) (I + i I A I a) U

is invertible for all a c- C with Im a 0 0 by part (c). But

T(1- ijAla)(l + ilAlLx)-' - U = 2iIAI(1 + iIAIot)-1(A - al)( + ilAIA)-'

and hence A - a is invertible for all a such that Im (x 0 0. Therefore a%(A) g
R n JA; I A I :!! 11 A 111 A 11, 11 A 11 ]. The statement concerning UQI(A') then follows

from part (e).
(e) First note that if

B tj Aj,
i=1

where Ai e W and AjAj AjAj for i, j n then B is invertible if, and only if,
each Ai is invertible. This follows because invertibility of the Ai together with com-

mutativity of the A j, Aj implies Aj 1 A j- A i
1 Aj 1 and hence

B-' fjAi
i=1

where the order of the factors is irrelevant.

Conversely, if B is invertible

Aj- B- Aj.
j#i

Now choose (xi, a c- C such that

n

P(x) - A =  x H(x - ai),

and then

P(A) - Al = a 11 (A - (xi I).
i = 1

Hence A e u,,(P(A)) if, and only if, (xi c- u%(A) for some i = 1, ...,
n. But P(a)

and hence A c- a%(P(A)) is equivalent to A c- P(aw(A)).
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Remark. If A is normal the last statement may be extended to the equality
aw(f(A)) = f(uN(A)) for all continuous functions f This result is known as

the spectral mapping theorem.

The spectral radius formula p(A) A 11 for A selfadjoint or A normal is of
fundamental significance and will be repeatedly used without comment.

Corollary 2.2.6. If 91 is a *-algebra and there exists a norm of 91 with the
C*-norm property and with respect to which W is closed then this norm is

unique.

PROOF. If A c W then a%(A) depends only on the algebraic structure of %. Thus if
A = A*, 11 A p(A) is uniquely determined. For general A

11AII = 11A*A11 1/2
= p(A*A )1/2.

The foregoing result on the spectra of selfadjoint elements can now be used
to remove an ambiguity in the definition of the spectrum. If 0 is a subalgebra
of W and A e 0 then there are two possible spectra, u,,,(A) and uQ3(A). In
general these spectra are distinct although the inclusion 0 g W does imply
that a,),(A) - uo(A). The situation for C*-algebras is, however, simple.

Proposition 2.2.7. Let 0 be a C*-subalgebra of the C*-algebra W. If
A e 0 then

a,11(A) = o793(A).

PROOF. We may assume that W and 0 have a common identity element. We must
show that if AT - A is invertible in W then it is invertible in Q8. In fact, we will show
that it is invertible in the C*-subalgebra ( generated by 1, A, and A*. This will then
give

uc(A) = a93(A) = uz(A).

Thus we need to establish that if A c- W is invertible then A c (E. Suppose first
that A is selfadjoint; then uQ3(A) g R by Proposition 2.2.5. Now we will obtain
A by analytically continuing (A - AT)-' along the imaginary axis from
A A0 = 111 A 11. First note that (A - A0 T) is determined by a uniformly convergent
series

I)-,
A

(A - A0 0 A( 0)
each of whose terms is contained in E. Thus (A - A0 I)-' c- E. Secondly, for A  u%(A)
the resoivent R(A) = (A - AT)-' is a normal operator and aw(R(A)) = a9l(A - AT)- I

= (uA(A) - A)-' by Proposition 2.2.3. If d(A) denotes the distance from A to UH(A)
it follows from Theorem 2.2.5 that IIR(A)II = d(A)' and this estimate implies that
the series

R(A) Y (A - A0)"R(A0)"-"
n : 0
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converges in a sphere of radius d(A,) = IIR(Ao)ll-' around A,. This ensures the

validity of the analytic continuation argument because d(A0) > I A0 I for A0 pure

imaginary, the invertibility of A implies that uN(A) e R\ E - 8, 81 for some e > 0,
and hence

A`
n 0

for some A0 pure imaginary and I A0 I > 11 A
Next let A be invertible but not necessarily selfadjoint. It follows that A*A is

invertible and by the foregoing argument (A*A)-' is contained in the C*-subalgebra
of (E generated by I and A*A. Finally, define

X = (A*A)- 'A*.

One has X c- (S but the relation XA = I implies that X = A and hence A is in-

vertible in (E.

As the spectrum a9l(A) of each element A of the C*-algebra % has the above

independence property we will simplify our notation by dropping the 3uffix %.
Thus in the sequel we denote the spectrum of an element A of a C*-algebra
by a(A).

2.2.2. Positive Elements

Probably the most important class of elements of a C*-algebra is the class of

positive elements because the notion of positivity allows the introduction of

an order relation between various elements of the algebra and gives a method
of making quantitative comparisons.

There are various equivalent characterizations of positivity but the most

convenient definition appears to be in terms of the spectrum.

Definition 2.2.8. An element A of a *-algebra % is defined to be positive
if it is selfadjoint and its spectrum a(A) is a subset of the positive half-line.

The set of all positive elements of 91 is denoted by 91,

We begin the analysis of positive elements by examining their square roots.

It is worthwhile emphasizing that the square root operation plays a

distinguished role in complex function analysis. This operation, together
with the elementary algebraic operations, allows the easy construction of

absolute values of a function, e.g., If I = 1"=, and this in turn provides theN/ "
starting point for decomposition of a real function into positive and negative
parts,f = (I f I f)/2, etc. Thus for the generalization of function analysis
it is convenient to have an algebraic algorithm for forming the square root.

We next examine such algorithms.
As a preliminary we deduce the following simple characterization of

positive elements.
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Lemma 2.2.9. Let 91 be a C*-algebra with identity 1. A se fadjoint element
A e W is positive if, and only if, ll - A111 All 11 :!! 1. If A is se fadjoint,
and 11 T - A 11 < 1 then A is positive, and 11 A 11 < 2.

PROOF. If A is positive then a(A) - [0, 11 A by Theorem 2.2.5. Thus

a(l - AIII A 11) g [0, 1] and 111 - AIII A 1111 < 1. Conversely, 11 T - 4/11 All:!! I implies
a(l - Al 11 A 11) g; [ - 1, 1 ], or a(A) g [0, 2 11 A 11 ], and hence A is positive. The proof of
the second statement is identical.

Theorem 2.2.10. Let W be a C*-algebra. A se fadjoint element A C- W is

positive if, and only if, A = B2 for some setfadjoint B c- W. Moreover, if A
is positive there exists a unique positive B such that A = B2 and this B lies

in the abelian C*-subalgebra of 9f generated by A.

PROOF. If B is selfadjoint then B2is selfadjoint and a(B') - [0, JIB 112] by Theorem
2.2.5(d). Thus B2 is positive. To prove the converse we construct a positive B such

that B2 = A.

If W does not have an identity then we first adjoin one. Next for A > 0 and A

positive we note that AT + A is invertible and

A(Al + A) - 1
= I - A(AT + A)

It now follows easily from Proposition 2.2.3 that

u(A(Al + A)-') g [0, IJAII(A + IIAII)-']
and hence

IIA(Al + A)-1JJ < IJAII(A + JJAIJ)-1.

This estimate allows us to define B c- 91 by a Riemann integral

B =

1 ' d' 
A(Al + A)

0
A1/27r

f,
Convergence of the integral is measured with respect to the algebraic norm and it

follows from the foregoing estimate that the integral is well defined at both zero and

infinity. It can now be verified by explicit calculation that A = B2. One writes B2 as

a double integral, separates the integrand into partial fractions, and then integrates
with respect to one variable. We omit the details of this verification (see Notes and

Remarks at the end of this chapter for detailed references). But we will demonstrate

that B is positive. Since

1 - dA I

7r fo A1/2 A + 1

one has

III - BIJ <
1 dA

11 (A + 1) -'1 - A(A + A)
7r fo A1/2

IIA(Al + A)- 1 11 - III - All.
n fo A1/2 A + 1
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One has, however, 11 A(Al + A) - 1 11 :!! I for A > 0 and 111 - A I for A positive
with 11 A 11 = t (Lemma 2.2.9). Therefore one concludes that 111 - B 1. This

implies that B is positive by a second application of Lemma 2.2.9.

Next let 91A denote the abelian C*-algebra generated by A. If  > 0 one has

(Al + A) C_ TtA = C' + 9tA by Proposition 2.2.7. Hence A( l + A) C_ %A and

B c- 91A *

Finally, we must prove that B is the unique positive element with the property
A = B2

.
As a preliminary first note that one may repeat the above construction to

find a positive C such that B = C2
. Furthermore, C is in the algebra generated by B

which is, of course, equal to %A. Thus A, B, and C mutually commute. Next assume a

second positive element B' such that B 2
= A, and a positive C' such that C,2 = B.

Clearly C' commutes with B' and then C'A = CBQ = B 2 C, = AC' implies that

C' commutes with A. But then C' commutes with B and C because they are in 21A
In this manner one deduces that A, B, B', C, and C' all commute. Now note that

0 (B2 - B 2) (B - B)

(B - B)B(B - B') + (B - B')B(B - B')

((B - B')C)2 + ((B - B')C,)2.

Both elements in this final expression are positive and as their sum is zero both

elements must be zero (if X = ((B - B')C)2 one has X c- 121, and - X c- 91, which

imply u(X) = 0, or X = 0). Taking the difference of the two elements then gives

(B - B')' = 0 and hence II(B - B')'IJ = 0. Applying Proposition 2.2.2 and Theorem

2.2.5 one then concludes p(B - B') = 0 and JIB - B'11 = 0, i.e., B = B.

This result allows us to define the square root of a positive element A of a

C*-algebra % as the unique positive element B, of %, such that B2
= A.

The square root is denoted by _,1A, or A 1/2. If Ais selfadjoint then the modulus

of A can also be defined as -,I;P. The modulus, or absolute value, is denoted

by JAI.

Remark. The square root of A was constructed through an integral algorithm
whose main utility was to prove that A 1/2 is in the algebra generated by A.

Once this, and the uniqueness of A 1/2
,
have been established one may use

other, easier, algorithms. For example,
A \n

A 1/2
= IIA11 1/2 1 C"  _

n
11AII)

where the c,, are the coefficients of the Taylor series for the function

x G [0, 1] F-4 /I - x c- [0, 1]. Convergence of the series is assured by
Lemma 2.2.9.

Next we examine properties of the set of positive elements and the de-

composition of selfadjoint elements into positive and negative parts.

Proposition 2.2.11. The set 91, of positive elements of the C*-algebra
is a uniformly closed convex cone with the property

%+ n (-%+) = {01.
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IfA is a setfadjoint element of91 and one defines A + = (I A I A)/2 itfollows
that

(1) A+ c W

(2) A = A+ A-,
(3) A+ A- = 0.

Moreover, A+ are the unique elements with these properties.

PROOF. It clearly suffices to prove the proposition in the case that  1 has an

identity. If A c- W + and A > 0 then AA c- 91 + by Lemma 2.2.9. Next we show that if

A, B c W +
then (A + B)12 c W + .

It is sufficient to consider the case 11 A 1, 11 B 11
but then 11 (A + B)12 11 :!5; 1 and

A + B III - All ll - B11
I -

2
<

2
+

2
.<

where the last estimate uses the first statement of Lemma 2.2.9. The desired result
then follows from the second statement of this lemma. Now, as we have already noted,
A c- 91 + r-) ( - W +) implies a(A) = 0 and hence by the selfadjointriess of A, 11 A 11 0,
or A = 0. To deduce that W

+ is closed consider A,, c- 91 + such that 11 A,, - A 11 0.
Then 11 A,, 11 - 11 A 11 - 0. But A,, c- W +

is equivalent to 1111 A,, 11 - A,, 11 A, 11 and in the
limit one has 1111 All - All :!! 11 All, which is equivalent to A G W+.

Now consider the decomposition statement. It is evident that A A+ - A
-

but

4A+A- A2 JAIA + AJAJ - A 2
= 0

because A commutes with I A  A 2
as this latter element is in the abellan algebra

generated by A 2. We next prove that A+ is positive. The proof for A
-

is identical.
First define A, by

A,, = n(I + nA+2)-'A+ 2

and note that

AJAJ = AA+.

Next we estimate

JJAJAJ - A+ 11 2 lln(I + nA +2)- 1A+3 - A + 112

11 (1 + nA +2)- 'A+ 112

11(l + tiA +2)-2A +211

ll( + nA +2)- 'A +211 11(l + nA +2)-111

1111  - (I + nA + 2) - 111 11(l + nA +2)-111.

But T + nA +2 has spectrum in [1, oo>, and hence ( + nA +2)- ' has spectrum in

[0, 1], by Proposition 2.2.3. It immediately follows that

JJAJAJ - A+ll < n- 1/2
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Thus A , is the uniform limit of A,, I A 1. But I A 1, A -,2, etc., are positive and commute.
Therefore

1/2 2

Aj A I I A1114 1A, 11/2 + A +2 IA, 11/2 1 A11/4)C- IR + -

The positivity of A, then follows because W
+ is closed.

Finally,if A,, Ac-121,,A =A, -A2, and AjA2 =Othen A 2
= A 12 + A2 2

(A, + A 2 )2 .
Therefore I A I = A, + A 2 by the uniqueness of the positive square root

andA+ = (JAI + A)/2 = A,.SimilarlyA- = A2-

The decomposition A = A, - A- described in Proposition 2.2.11 is
often referred to as the orthogonal decomposition of A. Its existence is useful
in deducing the final, and most important, characterization of positive
elements.

Theorem 2.2.12. Let % be a C*-algebra. The following conditions of
A c- % are equivalent:

(1) A is positive;
(2) A = B*B for some B c-

PROOE (1) =:> (2) is already contained in Theorem 2.2.10.

(2) => (1) Denote the orthogonal decomposition of B*B by

B*B = C - D.

Thus, C, D e 91, and CD = 0 = DC. We must show that D = 0. But first we have

Next remark that

(BD)*(BD) = D(C - D)D D3
C

BD = S + iT

with S and T selfadjoint, and one then calculates that

(S2 2) C W,(BD)(BD)* = -(BD)*(BD) + 2 + T

where we have used the fact that %+ is a convex cone. Thus u((BD)(BD)*)
[0, 1! B112 JID 112 ] and by Proposition 2.2.3 u((BD)*(BD)) -- [0, JJBIJ2JID 112] .

But we

already concluded that (BD)*(BD) c- - 91, and therefore u(D3) = 101. The spectral
radius formula then gives JID 3 11 = 0 = JID 113 and hence D = 0.

Let us now examine some of the implications of the foregoing character-
izations of positive elements. As %

+
is a convex cone with % + r-) ( - % ) =

{01 one can introduce an order relation A - B >- 0 between selfadjoint
elements. The relation A - B   ! 0 is interpreted to mean that A - B c- % +

and we also write A > B, or B -< A. If A >- B and A 0 B one of course

writes A > B.

This order relation has the two properties
(1) A >- 0 and A :!! 0 imply A = 0,
(2) A>BandB>CimplyA>C,

but the special properties of positive elements of a C*-algebra yield some

less obvious orderings.



Functional and Spectral Analysis 37

Proposition 2.2.13. Let A, B, C be elements of a C*-algebra W. The

following implications are valid:

(a) ifA  ! - B  !! 0 then 11 A B

(b) ifA > 0 then All All  !! A';
(c) ifA > B > 0 then

C*AC > C*BC > 0

for all C Ei W;
(d) ifW possesses an identity, A  !! B > 0, and A > 0 then

(B + AT)- I > (A + AT)-'.

PROOF. (a) We adjoin an identity I to W if necessary. The spectral radius formula
of Theorem 2.2.5 then gives A < 11 A 111 and hence 0 :!! B :!! 11 A 11 T. But this implies
that JIB 11 :! 11 All by a second application of the same formula.

(b) One has a(A - 11 A 111/2) g [ - 11 A 11 /2, 11 A 11 /2] and hence u((A - 11 A 111/2)2)
[0, IIA 112/4] by Theorem 2.2.5(d). Thus

0 A
IJAJIT2

<
IIIA 112

2 4

which is equivalent to 0 :!! A2 <IJAIIA.
(c) As A - B c 91

+ one has A - B = D*D for some D c- W by Theorem 2.2.12.
Butthen

C*AC - C*BC = (DC)*(DC) c- 121+

by the same theorem.

(d) One has

A + AT >- B + AT -> AT

and both A + AT and B + AT are positive invertible. Therefore by part (c)

(B + AT)- 1/2(A + AT)(B + AT )- 1/2 > I.

If, however, X = X* and X >- T then u(X) g [1, oo> and u(X-') - [0, 1] by
Proposition 2.2.3. Thus X-' -< 1. This gives

(B + A )1/2(A + AT)-'(B + AT)1/2 < 1.

Finally, multiplying each side by (B +AT 1/2 and invoking part (c), one finds

(A + AT)-' :!! (B + AT)-'.

There are many other interesting inequalities which may be deduced from

Proposition 2.2.13(d) by integration with suitable functions of A. For example,
if A > B > 0 one has

A 1/2
dA

(I - AT (AT + A)
7r 0 A1/2f,
1 " dA

AT (AT B)-)
E f A1/27 0

B 1/2



38 C*-Algebras and von Neumann Algebras

i.e., A 1/2 > B 1/2 > 0. By use of similar transforms one can deal with other
fractional powers and deduce that A > B  ! 0 implies A' > B" > 0 for all
0 < a < 1. But this is not necessarily true for a > 1.
The following decomposition lemma is often useful and is another applica-

tion of the structure of positive elements.

Lemma 2.2.14. Let W be a C*-algebra with identity. Every element
A-e W has a decomposition of theform

A = ajUj + a2U2 + a3U3 + a4U4

where the Uj are unitary elements of% and the ai e C satisfy I ai I :!! 11 A 11 /2.

PROOF. It suffices to consider the case 11AII = 1. But then A = A, + iA2 with

A, = (A + A*)/2 and A2 = (A - A*)12i selfadjoint, IIA111 < 1, IIA211 < 1. A

general selfadjoint element B with 11B11 < I can, however, be decomposed into two

unitary elements B = (U + + U _)/2 by the explicit construction U +
= B + i'll - B2.

As a final application of the properties of positive elements we consider
another type of decomposition. First let us extend our definition of the
modulus. If W is a C*-algebra then A*A is positive for all A e % by Theorem
2.2.11. The modulus of A e % is then defined by I A I = 1A*A. If A is self-
adjoint this coincides with the previous definition. Now note that if% contains

an identity and A is invertible then A*A is invertible and its inverse is positive.
It follows that I A I is invertible and I A I - "

= ,I(A; A . But one then has

A = UJAJ.

where U = A I A I Moreover, U* U = I and U is invertible (U A I A
Therefore U is a unitary element of W and in fact lies in the C*-subalgebra
generated by A and A*. This decomposition of A is a special case of the so-

called polar decomposition. The general polar decomposition concerns

operators on a Hilbert space and represents each closed, densely defined

operator A as a product A = V(A*A) 1/2 of a partial isometry V and a

1/2positive selfadjoint operator JAI = (A*A) .
We illustrate this and other

Hilbert space properties in the following:

EXAMPLE 2.2.15. Let Y(S) ) denote the algebra of all bounded operators on the

complex Hilbert space 5; then Y(5) is a C*- algebra by Example 2.1.2. If A C- Y(-5)
then the abstract definition of positivity is equivalent to A = B*B for some B c- Y(-5)
and this implies that ( , A ) = 11B 11 2 > 0for all  c .5. In Hilbert space theory this
last property is usually taken as the definition of positivity but it is equivalent to the
abstract definition by the following reasoning. If the values of ( , A ) are positive
then they are, in particular, real and (0, AO) = (A0, 0). Therefore the polarization
identity

3

Aq) i-k((o + ik ik(p))(01 9), A(0 +
4 k=O
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demonstrates that (0, Aq) = (A0, 9) for all 0,  o c-.5, i.e., A is selfadjoint. But if
A < 0 then

JI(A _ AJ)0112 JJA0 112 + 21AI(o, AO) + A2110112
A2110112

and A - AT is invertible. Consequently a(A) c- [0, 11 A 11 ] and A is positive in the general
sense.

EXAMPLE2.2.16. LetAc-Y(.5)andlAl=(A*A)' /2
.
Now define an operator V

on all vectors of the form I A 10 by the action

VIA10 = A0.

This is a consistent definition of a linear operator because I A 10 = 0 is equivalent to

0 111 A 10 11 = 11 A 0 11 and hence A0 = 0. Moreover, V is isometric because 11 V I A 10 11
= A0 11 = 111 A 10 11. We may extend V to a partial isometry on .5 by setting it equal
to zero on the orthogonal complement of the set I I A 10; 0 c- .51 and extending by
linearity. This yields the polar decomposition of A, i.e., A = VI A 1. This decomposition
is unique in the sense that if A = UB with B > 0 and U a partial isometry such that

U9 = 0 just for  o orthogonal to the range of B then U = V and B = I Al. This
follows because A*A = BU*UB = B2 and hence B is equal to the unique positive
square root I A I of A*A. But then U I A I = V I A I and both U and V are equal to zero

on the orthogonal complement ofthe range of I A 1. In general, V will not be an element
of the C*-algebra 91A generated by A and A*, although we have seen that this is the
case whenever A has a bounded inverse. Nevertheless, in Section 2.4 we will see that
V is an element of the algebra obtained by adding to 91A all strong or weak limit
points of nets of elements Of %A -

2.2.3. Approximate Identities and Quotient
Algebras

In Section 2.2.1 we gave examples of C*-algebras which failed to have an

identity element and demonstrated that it is always possible to adjoin such an

element. Nevertheless, situations often occur in which the absence of an

identity is fundamental and it is therefore useful to introduce the notion of an
approximate identity.

Definition 2.2.17. If 3 is a right ideal of a C*-algebra W then an approximate
identity of-1 is defined to be a net' JE, I of positive elements E,, c- 3 such that

(1) JJE,,,JJ < 1,
(2) a < #implies E,, Ep,
(3) lim,,, I I E,, A - A I 1 0 for all A c- 3.

' A set I& is said to be directed when there exists an order relation, (X between certain pairs
of elements (x, # c- ?/ which is reflexive (a :!! a), transitive ((X < # and 1,, imply a < 1), anti-

symmetric (a < and # :!! a imply # = a) and when for each pair a, c-& there exists a y such
that ot < 7 and A net is a family of elements, of a general set M, which is indexed by a
directed set J//.
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The definition of an approximate identity of a left ideal is similar but con-

dition (3) is replaced by

(3) lim,, 11 AE,, - All = 0 for all A c- -3.

It is necessary to prove the existence of approximate identities.

Proposition 2.2-18. Let 3 be a right ideal ofa C*-algebra W-3 possesses an

approximate identity.

PROOF. First adjoin an identity to E, if necessary. Next let 41 denote the set of finite

families of 3. The set J& can be ordered by inclusion, i.e., if a = JA,, ...,
A  and

# = {B1,..., B,,J thena > # is equivalent to # being a subfamily of a. Now for the

foregoing choice of a define F. c- W by

F,, Y AiAi*

and introduce E,, by

E,, = mF,,(l + mF,,)

As each Ai c- 3 one has E_ F,, c- 3. Furthermore JJEJJ < 1 and

(E,,,Ai - Ai)(E,,Ai - Ai)* (E,, - I)AiAi*(E,, - 1)

+ mF,) F,,(T + mF,,) -

F1/2(l + mF,,,) -2F1/2

< F,', /2(J + mF,,) - 1 F,,' /2

( - ( + mF.)
M

1
< -

M

Here we have used 0 :!! (I + mF,,)-l < I and Proposition 2.2.13(c). Therefore by
part (a) of the same proposition

IIE,,Ai - Ai 112<
M

and consequently 11 E,, A - All -,-+ 0 for all A c 3. Finally, note that

Ea, - Ep = (T + nF#)-1 - (T + mF,)-'

but a > P implies mF. > nF# and hence E,, >- Ep by Proposition 2.2.13(d). Therefore
the E,, form an approximate identity.

The existence of an approximate identity allows us to complete the
discussion of quotient algebras which we began in Section 2.1. The principal
result is the following:
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Proposition 2.2.19. Let 3 be a closed two-sided ideal of a C* algebra %. It
follows that 3 is selfadjoint and the quotient algebra %/3 defined in Section
2.1.1 is a C*-algebra.

PROOF. Let  f E,,J be an approximate identity of 3. If A e 3 then 11 A*E, - A*
IIE,,A - All --> 0. But A*E,, c- 3 and hence A* c 3 because 3 is closed. This proves
that 3 is selfadjoint.

To complete both the discussion of the quotient algebra given in Section 2. 1.1
and the proof of the proposition we must show that the norm on the quotient
algebra,

IJAII = inf{IIA + III; Ic 31,

has the C*-norm property. To prove this we first establish that

lim 11 A - E,, A 11.

This follows by adjoining, if necessary, an identity to W, noting that for I e 3.,
IIEJ - III --* 0, and

lim sup 11 A - E,:, A lim sup 11 (T - EJ (A + 1) 11

IIA + Ill.

The inequality follows because a(E,,) C- EO, 1]. Therefore a(l - EJ G EO, 1] and
JIT - EJI :!! 1. But then one concludes that

IJA 11 lim sup 11 A - E,, A 11

lim inf11 A - EAll

> inf{IIA + Ill; Ic-31 = 11,411.

The C*-norm property is then a consequence of the following calculation:

11,4112= limlIA - E,,A 112

= limll(A - E,,A)(A - E,,A)*Il

= limll(I - E,)(AA* + I)(T - Ea)II

11 AA* + Ill,

where I is an arbitrary element of 3. Thus

11,jI12 < lI'j'j*II < 11,11111,4*11,
which implies firstly that 11,411 = 11A*11 and, secondly, that



2.3. Representations and States

2.3. 1. Representations

In the previous sections we partially described the abstract theory of C*-

algebras and illustrated the general theory by examples of C*-algebras of

operators acting on a Hilbert space. Next we discuss representation theory
and develop the connection between the abstract description and the

operator examples. The two key concepts in this development are the con-

cepts ofrepresentation and state. The states of91 are a class oflinear functionals
which take positive values on the positive elements of % and they are of

fundamental importance for the construction of representations. We precede
the discussion of these states by giving the precise definition of a representa-
tion and by developing some general properties of representations.

First let us define a *-morphism between two *-algebras W and 0 as a

mapping 7r; A c- W F--+ 7r(A) c- 0, defined for all A c- % and such that

(1) 7r(oA + #B) = a7r(A) + #7r(B),
(2) 7r(AB) =7r(A)7r(B),
(3) 7r(A *) =7r(A)*

for all A, B c- % and a c- C. The name morphism is usually reserved for

mappings which only have properties (1) and (2). As all morphisms we

consider are *-morphisms we occasionally drop the * symbol.
Now each *-morphism 7r between C*-algebras % and 0 is positive because

if A > 0 then A = B*B for some B c- W by Theorem 2.2.12 and hence

n(A) = n(B*B) = 7r(B)*n(B) > 0.

It is less evident that 7r is automatically continuous.

Proposition 2.3.1. Let % be a Banach *-algebra with identity, 0 a C*-

algebra, and 7r a *-morphism of % into 0. Then n is continuous and

117T(A)II < 11AII

for all A c- %. Moreover, if % is a C*-algebra then the range 0,, = 17T(A);
A c- % of 7z is a C*-subalgebra of 0.

42
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PROOF. First assume A = A*. Then since 93 is a C*-algebra and 7r(A) c- 0, one

has

11 7r(A) 11 = sup{ I A 1; A c- u(7r(A))l

by Theorem 2.2.5(a). Next define P = n(l,) where 1, denotes the identity of W. It
follows from the definition of 7r that P is a projection in 0. Hence replacing 0 by
the C*-algebra POP the projection P becomes the identity I

, of the new algebra 0.
Moreover, n(91) s:- F8. Now it follows from the definitions of a morphism and of the

spectrum that cz(7r(A)) = uw(A). Therefore

11 n(A) 11 sup I A 1; A c- u,,(A)l A 11

by Proposition 2.2.2. Finally, if A is not selfadjoint one can combine this inequality
with the C*-norm property and the product inequality to deduce that

11 7r(A) 11 2 =117r(A*A)II < 11A*A11 :!! 11A 112.

Thus 11 7r(A) 11 < 11 A 11 for all A e W and 7r is continuous.
The range 0,., is a *-subalgebra of 0 by definition and to deduce that it is a

C*-subalgebra we must prove that it is closed, under the assumption that W is a C*-
algebra.
Now introduce the kernel ker 7E of 7r by

ker 7r = JA c- W; 7r(A) = 01
then ker 7r is a closed two-sided *-ideal. For example if 4 c- W and B c- ker 7r then
7r(AB) = 7r(A)7r(B) = 0, 7r(BA) = 7r(B)7r(A) = 0, and 7r(B*) = 7r(B) = 0. The closed-
ness follows from the estimate lln(A)II :!! JJAJJ. Thus we can form the quotient
algebra W,, = W/ker 71 and %,, is a C*-algebra by Proposition 2.2.19. The elements
of 91,, are the classes 4 = {A + I; I c ker 7rJ and the morphism 7r induces a

morphism ft from %,, onto !5,, by the definition A(,4) = 7r(A). The kernel of A is zero
by construction and hence ir' is an isomorphism between %,, and F8, Thus we can

define a morphism A` from the *-algebra 0,, onto the C*-algebra ' t7, by
A - '(A(A)) = A and then applying the first statement of the proposition to i and
A successively one obtains

11,411 = Ili-ImAvi < 11A(A)11 :!  11,411.
Thus 11A 11 = 11 A(A) 11 = 11 7r(A) 11. Consequently, if 7r(A,,) converges uniformly in 0 to

an element A,, then A. converges in 91,, to an element A and A,, = A(A) = 7r(A)
where A is any element of the equivalence class A. Thus A,, c 07, and F8.,, is closed.

Next we define the concept of *-isomorphism between C*-algebras.
A *-morphism n of % to 0 is a *-isomorphism if it is one-to-one and onto,

i.e., if the range of 7r is equal to 0 and each element of 93 is the image of a

unique element of W. Thus a *-morphism 7r of the C*-algebra % onto a C*-
algebra 0 is a *-isomorphism if, and only if, ker -g = 0.
Now we can introduce the basic definition of representation theory.

Definition 2.3.2. A representation of a C*-algebra 91 is defined to be a pair
(.5, 7r), where Sn is a complex Hilbert space and 7r is a *-morphism of % into
Y(.5). The representation (.5, 7r) is said to be faithful if, and only if, 7E is a

*-isomorphism between % and n(W), i.e., if, and only if, ker 7r = {01.
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There is a variety of rather obvious terminology associated with this
definition. The space .5 is called the representation space, the operators 7T(A)
are called the representatives of W and, by implicit identification of 7r and the
set of representatives, one also says that 7r is a representation of % on Sv .
The discussion preceding Definition 2.3.2 established that each representa-

tion (.5, 7r) of a C*-algebra % defines a faithful representation of the quotient
algebra %,, = %/ker 7r. In particular, every representation of a simple
C*-algebra is faithful. Naturally, the most important representations are the
faithful ones and it is useful to have criteria for faithfulness.

Proposition 2.3.3. Let (.5, 7r) be a representation of the C*-algebra %.
The representation isfaithful if, and onlY if, it satisfies each of thefollowing
equivalent conditions:

(1) ker 7r = {01 ;

(2) 117r(A) 11 = 11 A 11 for all A c- W;
(3) 7r(A) > Ofor all A > 0.

PROOF. The equivalence of condition (1) and faithfulness is by definition. We now

prove (1) => (2) => (3) => (1).
(1) => (2) As ker 7r =  01 we can define a morphism 7r-' from the range of 7r

into % by 7r-'(n(A)) = A and then applying Proposition 2.3.1 to 9' and 7r

successively one has

JJAJJ = JJ7r-1(7r(A))JJ :!! 117r(A)II :!  JJAJJ.

(2) =:> (3) If A > 0 then 11 A 11 > 0 and hence 11 7r(A) 11 > 0, or 7r(A) :A 0. But

z(A) > 0 by Proposition 2.3. t and therefore ir(A) > 0.

(3) => (1) If condition (1) is false then there is a B c- ker 7r with B :A 0 and 7U(B*B)
0. But JJB*BJJ   ! 0 and as JJB*BJJ = JJBJJ' one has B*B > 0. Thus condition (3) is

false.

A *-automorphiSM T of a C*-algebra 91 is defined to be a *-isomorphism of
into itself, i.e., -c is a *-morphism of % with range equal to % and kernel

equal to zero
:

The foregoing argument utilizing the invertibility Of T implies the following:

Corollary 2.3.4. Each *-automorphism -r of a C*-algebra % is norm

preserving, i.e., 11 -r(A) 11 = 11 All for all A c- W.

Now we turn our attention to various kinds of representation and methods
of composing or decomposing representations.

First we introduce the notion of a subrepresentation. If (.5, 7r) is a repre-
sentation of the C*-algebra 91 and .51 is a subspace of 5 then .51 is said to be

invariant, or stable, under 7r if 7r(A)- ',   S31 for all A c U. If 51 is a closed

subspace of .5 and P_5, the orthogonal projector with range .51 then the
invariance of .51 under 7r implies that

Py,1 7r(A)Py,, = 7r(A)Pb 
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for all A Ei 91. Hence

7r(A)Pf,, (Pf,,7r(A*)Pf,): 

P.517E(A)
for all A e W, i.e., the projector P.5, commutes with each of the representatives
7r(A). Conversely, this commutation property implies that .51 is invariant
under 7r. Hence one deduces that .5, is invariant under 7r if, and only if,

7r(A)P.61 = P.517E(A)
for all A c- 91. Furthermore, we may conclude that if .5, is invariant under 7r

and if 7r, is defined by
7r,(A) = P,617r(A)P.51

then (151, 7r,) is a representation of W, e.g.,

7r,(A)7r,(B) = (Pf,17r(A))(7r(B)Pf,,)
= P-5,7r(AB)Pf, = 7r,(AB).

A representation constructed in this manner is called a subrepresentation of

(.5, 7r).
Note that the foregoing method of passing to a subrepresentation gives a

decomposition of 7r in the following sense. If .5, is invariant under 7r then its

orthogonal complement 51' is also invariant. Setting -52 = -51j- one can

define a second subrepresentation (55,2, 7r2) by 7r2(A) = Pb27r(A)P-,2. But

.5 has a direct sum decomposition, S;,) = -51 (D 52, and each operator
7r(A) then decomposes as a direct sum n(A) = 7r,(A) ED n2(A). Thus we

write 7r = 7rl ED 7r2 and (15, 7r) = 051, 7rO ED 0529 n2)-
A particularly trivial type of representation of a C*-algebra is given by

n = 0, i.e., n(A) = 0 for all A e W. A representation might be nontrivial but
nevertheless have a trivial part. Thus if .50 is defined by

.50 = f ; V/ c- .5, 7r(A) = 0 for all A c- WJ

then fV,0 is invariant under 7r and the corresponding subrepresentation
7ro = Pf,7rPb. is zero. With this notation a representation (.5, 7t) is said to be

nondegenerate if .50 = {01. Alternatively, one says that a set T1 of bounded

operators acts nondegenerately on .5 if

{C A = 0 for all A E 9W} = {01.

An important class of nondegenerate representations is the class of cyclic
representations. To introduce these representations we first define a vector 91
in a Hilbert space -5 to be cyclic for a set of bounded operators 9M if the set

lin. span {AK2; A c- 9JI) is dense in f_-). Then we have the following:

Definition 2.3.5. A cyclic representation ofa C*-algebra % is defined to be a

triple (.5, n, 92), where (15, n) is a representation of % and 0 is a vector in

.5 which is cyclic for n, in .5.
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In the sequel, if there is no possible ambiguity we will often abbreviate the

terminology and say that Q is a cyclic vector, or Q is cyclic for 7r. There is a

more general concept than a cyclic vector which is also often useful. If R is a
closed subspace of Sv then R is called a cyclic subspace for .5 whenever the set

Y 7r(Ai)oi; Ai c- W, Oi c R
i

is dense in .5. The orthogonal projector P,,, whose range is Sk, is also called a

cyclic projector.
It is evident from these definitions that every cyclic representation is

nondegenerate but there is a form of converse to this statement. To describe
this converse we need the general notion of a direct sum of representations.

Let (.5, 7r,,),,c, be a family of representations of the C*-algebra W where
the index set I can be countable or noncountable. The direct sum

5,11
a C- I

of the representation spaces .5,, is defined in the usual manner' and one

defines the direct sum representatives

7E = ( 7r,,,
a e I

by setting 7r(A) equal to the operator 7r,,(A) on the component subspace
This definition yields bounded operators 7r(A) on .5 because 11 7r,,(A) 11 :!! 

IJAII, for all occ-I, by Proposition 2.3.1. It is easily checked that (25, 7r)
is a representation and it is called the direct sum of the representations
(.5a, na),,, One has the following result.

Proposition 2.3-6. Let (.5, 7r) be a nondegenerate representation of the
C*-algebra 91. It follows that 7r is the direct sum of a family of cyclic sub-

representations.

PROOF. Let {Q,,I,,c-j denote a maximal family of nonzero vectors in .5 such that

(7r(A)Q,,, 7r(B)Qfl) = 0

for all A, B c- it, whenever a :A fl. The existence of such a family can be deduced with
the aid of Zorn's lemma. Next define !5,, as the Hilbert subspace formed by closing
the linear subspace J7r(A)K2_ A c- 911. This is an invariant subspace so we can intro-
duce 7r,, by 7r,,(A) = Pb,.7r(A)P5. and ilt follows that each 7r_,, Q is a cyclic

The finite subsets F of the index set I form a directed set when ordered by inclusion and
consists of those families 0 (p = J(p,,J of vectors such that 9_  , C- .5,, and

I iM + I-M Y +119"112
F -F F -F

The scalar product on .5 is then defined by

((P, M = I ((P., 00"', = lim I ((P-., 0.)b" -

F -F
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representation of W. But the maximality of the JQ,,I,,c-j and the nondegeneracy of 7r

imply that there is no nonzero Q which is orthogonal to each subspace S5,, and hence

(1) .5" ,
7r = (1) 7r_,

a E I a E I

The foregoing proposition essentially reduces the discussion of general
representations to that of cyclic representations. This is of importance
because there is a canonical manner of constructing cyclic representations
which we will discuss in detail in Section 2.3.3. The type of decomposition
used to reduce the general situation to the cyclic situation depends upon the
existence of nontrivial invariant subspaces. No further reduction is possible
in the abseace of such subspaces and this motivates the next definition.

Definition 2.3.7. A set 1JW of bounded operators on the Hilbert space b is
defined to be irreducible if the only closed subspaces of S.5 which are invariant
under the action of 9JI are the trivial subspaces f0J and -5. A representation
(.5, 7r) of a C*-algebra W is defined to be irreducible if the set 7r(W) is irreducible
on b.

The term topologically irreducible is sometimes used in place ofirreducible.
The term irreducible is defined by the demand that the only invariant sub-

spaces, closed or not, are fOl and .5. Actually, the two notions coincide for

representations of a C*-algebra but we will not prove this equivalence.
There are two standard criteria for irreducibility.

Proposition 2.3.8. Let 9JI be a seffiadjoint set of bounded operators on the
Hilbert space .5. Thefollowing conditions are equivalent:

(1) 9N is irreducible;
(2) the commutant 9M'offl, i.e., the set ofall bounded operators on .5 which

commute with each A c- M, consists ofmultiples ofthe identity operator;
(3) every nonzero vector  c- .5 is cyclicfor 9JI in .5, or 931 = 0 and 5 = C.

PROOF. (1) => (3) Assume there is a nonzero 0 such that lin. span JA ; A c- 9311 is
not dense in -5. The orthogonal complement of this set then contains at least one

nonzero vector and is invariant under 9R (unless V = (0) and C), and this
contradicts condition (1).

(3) => (2) If T c- IJ91'then T* c 9JI'and, furthermore, T + T* C- 101'and (T - T*)l
i c- 9JI'. Thus ifIN' -A CT then there is a selfadjoint operator S C- M'such that S 5' - AT for

any A c- C. As all bounded functions of S must also be in the commutant one deduces
that the spectral projectors of S also commute with 9N. But if E is any such projector
and 0 a vector in the range of E then 0 = E0 cannot be cyclic and condition (3) is
false.

(2) =:> (1) If condition (1) is false then there exists a closed subspace A of
which is invariant under 9N. But then Pq c- 9J1' and condition (2) is false.

We conclude this survey of the basic properties of representations by
remarking that if one has a representation (.5, n) of a C*-algebra then it is

easy to construct other representations. For example if U is a unitary



48 C*-Algebras and von Neumann Algebras

operator on .5 and we introduce 7ru by 7ru(A) = U7r(A)U * then (.5, 7ru) is a
second representation. This type of distinction is, however, not important
so we define two representations (.51, 7r,) and 052, 7r2) to be equivalent, or

unitarily equivalent, if there exists a unitary operator U from .5, to -52
such that

7r,(A) = Un2(A)U*

for all A c- W. Equivalence of 7r, and 7r2 is denoted by 7r,  _- 7r2

2.3.2. States

Although we have derived various properties of representations of a

C*-algebra W we have not, as yet, demonstrated their existence. The

positive linear forms, or functionals, over W play an important role both in
this existence proof and in the construction of particular representations. We
next investigate the properties of such forms. We denote the dual of 91 by
91*, i.e., W* is the space of continuous, linear functionals over 91, and we

define the norm of any functionalfover W by

11 f 11 = supf I f(A) 1; 11 A 11 = 11.

The functionals of particular interest are defined as follows:

Definition 2.3.9. A linear functional w over the *-algebra W is defined to be

positive if

w(A*A) > 0

for all A c- W. A positive linear functional w over a C*-algebra W with

11coll 1 is called a state.

Notice that we have not demanded that the positive forms be continuous.
For a C*-algebra continuity is in fact a consequence of positivity, as we will

see in Proposition 2.3.11. Note also that every positive element of a C*-

algebra is of the form A*A and hence positivity of w is equivalent to (o being
positive on positive elements.
The origin and relevance of the notion of state is best illustrated by first

assuming that one has a representation (.5, 7r) of the C*-algebra W. Now let
KI c- .5 be any nonzero vector and define wo by

wn(A) = (0, 7r(A)fl)

for all A c- W. It follows that con is a linear function over W but it is also

positive because

(%(A*A) = 117r(A)K2 11 2 > 0.

It can be checked, e.g., from Proposition 2.3.11 and Corollary 2.3.13 below,
that 11conil = 1 whenever 11KIII = 1 and 7r is nondegenerate. Thus in this case"
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wn is a state. States of this type are usually called vector states of the repre-
sentation (.5, n). Although this example of a state appears very special we will

eventually see that it describes the general situation. Every state over a

C*-algebra is a vector state in a suitable representation. As a preliminary
to further examination of the connection between states and representations
we derive some general properties of states.

The basic tool for exploitation of the positivity of states is the general
Cauchy-Schwarz inequality.

Lemma 2.3.10 (Cauchy-Schwarz inequality). Let w be a positive linear

functional over the *-algebra 91. Itfollows that

(a) (o(A*B) = o)(B*A),
'(b) I o_)(A *B) 12 _< (o(A*A)o_)(B*B)jbr all pairs A, B e 91.

PROOF. For A, B c- W and A c- C positivity of w implies that

(o((AA + B)*(AA + B)) > 0.

By linearity this becomes

I A 12w(A*A) +  a)(A*B) + Aa)(B*A) + w(B*B) > 0.

The necessary, and sufficient, conditions for the positivity of this quadratic form in A

are exactly the two conditions of the lemma.

As a first application of this result we derive the following interrelation-

ships between positivity, continuity, and normalization for functionals over

a C*-algebra.

Proposition 2.3.11. Let (o be a linearfunctional over a C*-algebra The

following conditions are equivalent:

(1) o) is positive;
(2) (o is continuous, and

w lim (o(Ea2)
a

for some approximate identity {E I of
If these conditions arefulfilled, i.e., ifw is positive, then

(a) (o(A*) = w(A),
(b) I w(A) 12 _< co(A*A)jj(ojj,
(c) jw(A*BA)j < (o(A*A)jJBjJ,
(d), 11(oll = sup{w(A*A), IJAII 11

for all A, B c- %, and

I I (o IIlim w(E.),
cz

where {E,,j is any approximate identity of W.
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PROOF. (1)=>(2) Let A, A21 ...
be a sequence of positive elements with

IIAJI 1. Now if Ai:-: L- 0 and J]i  i < + oo then Yi  iAi converges uniformly, and,
monotonically, to some positive A and hence, by linearity and positivity

Aia)(A) :!i o-)(A) < + oo.

Since this is true for any such sequence  i the co(A) must be uniformly bounded.
Thus

M
+
= sup co(A); A > 0, 11 A 11 < 1 If < + oo.

But it follows easily from Proposition 2.2.11 that each A c- 91 has a decomposition
3

A
n=O

with A,,  !! 0 and 11 A. 11 :!! 1. Hence IIco 11 :!  4M + < + oo, i.e., co is continuous.

Next let us apply the Cauchy-Schwarz inequality of Lemma 2.3.tO to obtain

I o-)(AE,,) 12 < o-)(A*A)co(E2) :!! _ M + 11 A112co(E2).

Taking the limit over cc one finds

I co(A) 12 :  M+MIIA 112

where M = SUP, o)(E.). Thus IIWI12 M+ M. But M < 11o)II, because IIE,'II !:_ 1, and
M+ <- Ilrcoll. Therefore IIo_)II = M+ M = lim,,, (o(E2). Incidentally, because E2 <

E., one also has 11coll :!! _ lim,, co(E.) < 11coll. Thus 11coll = lim,,, (o(E.) and the last
statement of the proposition is established.

(2) => (1) We may assume 11coll = 1. lf III has an identity I then

III - E"211 < III - E,,II + III - EJI IIE,11

and we have lim,,, E'2 = 1. Hence co(I) = 1. If 'If does not have an identity we adjoin
one and extend co to a functional (Z) on it CI + 91 by

C)(Al + A) A + w(A).

Because A - AE"2 = (A - A EJ + (A - A E,,)E,, we have lim,, A E"2 A. Using
the definition of the norm on  A_, Proposition 2.1.5, we tnen have

Co(Al + A) I A + co(A) I = lim I A(o(E"'2) + (o(A E2)1

lim suplIAE'2 + AE '2 11 :!! IIAI +All.

Thus in any case we may assume that % has an identity and

CO(I) = I = 11(011.

Next we show that A = A* implies that w(A) is real. Set

co(A) = a + ifl, a, P c- R.

For -any real 7 we then have

(o(A + i l) = a + i(fl + 7).
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But A + iTT is normal with spectrum in

a(A) + iT A A 11 + iT.

Hence

+ 2.11 A + iTT 11 = p(A + iTT) 111 A j
Since I co(A + V/1) + T I we obtain

+ < /JI A +

for any 1/ c- R. This implies that 0, i.e., (o(A) is real.
Finally,

A*A

for any A c- % by Lemma 2.2.9. Hence

o)(A *A)
IIA 112

But (o(T) = I and w(A*A) is real and it is necessary that

(o(A *A) > 0.

Thus w is positive.
Finally, note that (a) and (b) follow by applying Lemma 2.3.10 to A and E.,

and then taking a limit over oc. The same lemma implies that

I o.)(A *BA) 12 < w(A*A)co(A*B*BA)

and inequality (c) follows by remarking that

A*B*BA :!! JIB 112A*A

and hence

(o(A*B*BA) < JIB 112 co(A *A).

Property (d) follows from (b).

Corollary 2.3.12. Let w, and (02 be positive linear junctionals over the
C*-algebra %. Itfollows that o-), + W2 is a positive linearfunctional and

11 W 1 + W2 11 '-'::: 11 W 1 11 + 1102 11 -

In particular, the states over WfOrm a convex subset of the dual of W.

PROOF. The positivity of (o, + ( )2 is evident and

11COl + (0211 = lim(o.),(E 2) +w,(E '2))

= lim. co,(E"2) + liM OJAE"2) = 11(0111 + 11(0211-

Finally, if w, and (02 are states then co = Aw, + (I - A)OJ2 is positive for 0 :!! A < 1
and 11 co 11 = A 11 co 1 11 + (1 -  ) 11 W2 11 = 1. Thus o) is a state.
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Next remark that if W is a C*-algebra without identity element and

fl = C1 + % is the algebra obtained by adjoining an identity then every

o-) c- %* has an extension Co c- ft* defined by (7o(A + A) = Allo_)11 + w(A).
This extension (Tj is usually called the canonical extension of w and it is a

state extension.

Corollary 2.3.13. Let % be a C*-algebra without identity and ft the C*-

algebra obtained by adjoining an identity. Further, let co be a positive
functional over % and (b its canonical extension to ft. It follows that Co is

positive and 11611 = 11o)JI. Moreover, if 0)1, 0)2 are two positive forms and

(bl, C02 their canonical extensions then

(0 1 + 0) 2
`: (0 1 + CO2 -

PROOF. Applying Proposition 2.3.11 (b) one estimates that

Co((AT + A)*(Al + A)) I A 12 11 (J) 11 +  co(A) + Ao)(A*) + (,)(A*A)

( 1A 111 W 11 1/2 - u)(A*A) 1/2)2 > 0

and hence Co is positive. But, as it contains the identity, 11611 = 6(T) = 110)11 by Pro-

position 2.3.11. Finally,

(7) 1 (AT + A) + (7) 2 (AT + A) = A( I I (o 1 11 + 11 (0 2 11 ) + (o 1 (A) + 0)2 (A),

and

0)111 + 11C0211 = 11COl + (0211,

which yields the last statement of the corollary.

The property of positivity introduces a natural ordering of functionals.

If (t), and 0)2 are positive linear functionals we write wl  ! C02, or o), -

W2 > 0, whenever co, - (02 is positive and we say that o_), majorizeS W2
The properties of states with respect to this ordering will be of great sig-
nificance throughout the sequel.

9 and 0 < A < 1 then (o = Acol + (1If C01, C02, are states over A)W2 is

a state with the property that w > Aco 1 and co > (I - 402
Thus if w is a convex combination of two distinct states then it majorizes

multiples of both states. It is natural to call a state pure whenever it cannot

be written as a convex combination of other states and the foregoing remark
on majorization motivates the following definition:

Definition 2.3.14. A state co over a C*-algebra is defined to be pure if the

only positive linear functionals majorized by w are of the form Aco with

0 < A < 1. The set of all states is denoted by E9, and the set of pure states by
P14.
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To conclude this section we derive some elementary properties of the sets of

states Ew and PA. As these sets are subsets of the dual W* of W they can be

topologized through restriction of any of the topologies of 91*. There are

two obvious such topologies. The norm, or uniform, topology is determined

by specifying the neighborhoods of w to be

T(W;,B) = {W'; W, C- %*, 11W - W'11 < 81,

where 8 > 0. In the weak* topology the neighborhoods of w are indexed

by finite sets of elements, A,, A 2, - .., A,, c- W, and e > 0. One has

0&((o; A 15. . ., A,; E) = fw'; w' c- W*, I w'(A j) - (o(A j) I < e, i = 1, 2_ .., nj

In practice it appears that the weak* topology is of greatest use although
we will later have recourse to the uniform topology.

Theorem 2.3.15. Let W be a C*-algebra and let B91 denote the positive
linearjunctionals over % with norm less than or equal to one. Itfollows that

Bw is a convex, weakly* compact subset of the dual W* whose extremal

points are 0 and the pure states P%. Moreover, B% is the weak* closure ofthe
convex envelope of its extremal points.
The set of states Ew is convex but it is weakly* compact if, and only if, W

contains an identity. In this latter case the extremal points of EW are the

pure states P% and Ew is the weak* closure of the convex envelope ofP%.

PROOF. B91 is a convex, weakly* closed subset of the unit ball %, * of %*, i.e.,
%

1
*
= {w; (o c- w 11 < 11. But 91, * is weakly* compact by the Alaoglu-Banach

theorem.

Now 0 is an extreme point of Bw because if (o c B91, and - w c- B91 then w(A*A) = 0

for all A c- 11 and Proposition 2.3.11 (b) gives w(A) 0 for all A c %, i.e., w = 0.

Next suppose w c- As and o-) = AwI+ (I - *)2with 0 < A < I and 0-),, (02 c-Bq,
It follows that o) >_ A(o, and hence Aw, = yaj for some 0 < y < I by purity. But
1 = 110)11 = 4(0111 + (1 - *01W2 11 and one must have 11 wj 11 = I = 11(0211. Therefore
A = y and (o = w, Similarly, (.o= (02 and hence (,o is an extremal point of B%.

Suppose now that (o is an extremal point of Bw and w =A 0. One must have 11 o) 11 = 1.

Thus (o is a state and we must deduce that it is pure. Suppose the contrary; then there

is a state a), :A co and a A with 0 < A < 1 such that w > A(o,. Define (j,2 by 0)2 =

((o - Aa),)/(l - A); then 11(1)211 = (11(oll - Ajja)jjj)/(1 - A)= I and (02 is also a

state. But w = Awl+ (1 - A)(1)2and w is not extremal, which is a contradiction.

The set Bw is the closed convex hull of its extremal points by the Krein-Milman

theorem. This theorem asserts in particular the existence of such extremal points,
which is not at all evident a priori.

Finally, if % contains an identity I then EA is the intersection of B91 with the hyper-
plane (o(l) = 1. Thus the convexity, weak* compactness, and the generation pro-

perties of E% follow from the similar properties of B91. It remains to prove that E% is

not weakly* compact if T 0 W and this will be deduced in Section 2.3.4.
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2.3.3. Construction of Representations

If (.5, n) is a nondegenerate representation of a C*-algebra 91 and Q is a

vector in .5 with JJQJJ = 1 then we have deduced in the previous section that

the linear functional

wn(A) = (0, 7r(A)Q)

is a state over %. This type of state is called a vector state. Now we want to

prove the converse. Every state is a vector state for some nondegenerate
representation. Thus starting from a state (o we must construct a representa-
tion (.5., 7r.) of W and a vector 0. c- .5. such that (o is identified as the vector

state o-)Q_, i.e., such that

o)(A) = (Q., 7r,,,(A)Q.)

for all A c- %.
The idea behind this construction is very simple. First consider the

definition of the representation space .5.. The algebra % is a Banach space
and with the aid of the state w it may be converted-into a pre-Hilbert space

by introduction of the positive semidefinite scalar product

<A, B> = o)(A*B).

Next define 3. by

3. =  A; A c- 9A, o)(A*A) = 01,

The set 3. is a left ideal of % because I c- 3,,, and A c- % implies that

0 :!  w((AI)*AI) !:_ 11A 11 2(0(1*1) = 0

by Proposition 2.3.11, i.e., AI c- 3,,.
Now define equivalence classes  A,  B by

OA = JA; A = A + I, I c- 3,,,j

and remark that these equivalence classes also form a complex vector space
when equipped with the operations inherited from 91; OA + OB = OA+B,
*A = O.A. Furthermore, this latter space is a strict pre-Hilbert space with

respect to the scalar product

( A, OB) = <A, B> = w(A*B).

It must, of course, be checked that this is a coherent and correct definition

but this is easily verified with the aid of Proposition 2.3.1t. For example,
(OA, OB) is independent of the particular class representative used in its

definition because

w((A + I,)*(B + 12)) = co(A*B) + w(B*Il) + w(A*12) + 0)(Il*I2)
= (o(A*B)
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whenever 11, 12 c- %. It is well known that a strict pre-Hilbert space may be

completed, i.e., linearly embedded as a dense subspace of a Hilbert space in a

manner which preserves the scalar product, and the completion of this space
is defined as the representation space 35,
Next let us consider the definition of the representatives 7r"'(A). First we

specify their action on the dense subspace of b,, formed by the vectors  B,
B c- 91, by the definition

nw(AVB  z  AB

Note that this relation is again independent of the representative used for
the class  B because

7ccO(A)OB+I  OAB+AI  OAB  7rw(A)OB

for I c- Zf, Moreover, each n,(A) is a linear operator because

7r(,(A)(4B + Oc) = 7r,,(A)OAB+C = OAAB+AC
= 4AB + OAC
= ),7r,,(A)OB + 7'co(A)OC-

Finally, by Proposition 2.3.11 (c) one finds

I I n,,(A)OB112 = (OAB, OAB)
= co(B*A*AB)
< 11A 112w(B*B)
= 11A 112 11 OB 112

and hence n.(A) has a bounded closure, which we also denote by n"(A).
The algebraic properties of the 7r,,, follow easily, e.g.,

7rJA1)7r,,(A2)OB = 0AIA2B = 7r,,(A1A2)OB

and hence 7r,,,(A1)7r,,)(A2) = 7r,(AIA2). Thus we have now constructed the

representation (.5, 7r.).
It remains to specify the vector Q..
If W contains the identity we define Q. by

QW = 01

and this gives the correct identification of co:

(Q, 7r.(A)Qw) (01, OA)

Note further that the set f7r.(A)K2.; A c- WJ is exactly the dense set of equiva-
lence classes JOA; A c- W} and hence Q. is cyclic for (.5, 7r,,).

If 91 does not contain the identity then we can adjoin it and repeat the
above construction for TL Now, however, it needs an auxiliary argument to

prove that Q. is cyclic for the set 7r,,(%). By construction the set 7r,"(TI)Q"
=

nw(Cl + %)K2. is dense and thus the cyclicity of Q., for 7r,(%), follows if Q,,
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is in the closure of the set Let JEj be an approximate identity of

then

0.112 = 11Q.112 + 11 112 - 2(Q,,, 7r,,(Ejf2j
= I + w(E"'2) - 2w(E,,).

Therefore

limjj7rjEjQ,,, - Qj = 0
Ix

by Proposition 2.3.1t and the desired result is established.

We have now established the principal part of the following theorem.

Theorem 2.3.16. Let co be a state over the C*-algebra 91. It follows that

there exists a cyclic representation (.5, n, Qj of 91 such that

(o(A) = 7r,,,(A)Q,,)

for all A c- % and, consequently, I I f2.112 =11coll = 1. Moreover, the repre-

sentation is unique up to unitary equivalence.

PROOF. The only statement that we have not as yet proved is the uniqueness. By
this we mean that if 7r,,,', is a second cyclic representation such that

w(A) = (Q.', 7r,,(A)Q,,')

for all A c- % then there exists a unitary operator from .5. onto .5",' such that

U - '7r.'(A)U = 7c,,,(A)

for all A c- W, and

Un. = Q.'.

This is, however, established by defining U through

and noting that

U7r,,(B)Q.)
= (i)(A*B) = (7r,,(A)Q,,, n,,)(B)f2,j.

Thus U preserves the scalar product and is consequently well defined. It easily
follows that the closure of U is unitary and has all the desired algebraic properties.
We omit the details.

Corollary 2.3.17. Let co be a state over the C*-algebra W and 'r a *-auto-

morphism of 91 which leaves (o invariant, i.e.,

(o(T(A)) = co(A)

for all A c- %. It follows that there exists a uniquely determined unitary
operator U,, on the space of the cyclic representation (Sv ,,, 7r,", Qj con-

structedftom (o, such that

U. 7r.(A) U,,- , 7r,,,(-r(A))co
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for all AE %, and

U1W 01W = n1w.

PROOF. The result follows by applying the uniqueness statement of Theorem

2.3.16 to the -cyclic representation (S5,_ 7r. - -r, Qj, where 7r. o r (A) = 7r.(-r (A)).

Definition 2.3.18. The cyclic representation (.5,, 7r, Qj, constructed from
the state o) over the C*-algebra %, is defined as the canonical cyclic representa-
tion of 91 associated with (o.

Next we demonstrate that the notions ofpurity ofa state w and irreducibility
of the representation associated with w are intimately related.

Theorem 2.3.19. Let (o be a state over the C*-algebra % and (.5., 7r., K2.)
the associated cyclic representation. Thefollowing conditions are equivalent:

(1) (.5, 7r,,,) is irreducible;
(2) o-) is pure;
(3) w is an extremal point ofthe set Ew ofstates over

Furthermore, there is a one-to-one correspondence

COTO) = (M., 7r.(A)Q,,,)

between positivejunctionals O)T, over %, majorized by a) and positive operators
T in the commutant 7r.', of 7r,,,, with 11 T 11 < 1.

PROOF. (1) =:> (2) Assume that (2) is false. Thus there exists a positive functional

p such that p(A*A) < co(A*A) for all A e W. But applying the Cauchy-Schwarz
inequality one then has

I p(B*A) 12 p(B*B)p(A*A)
co(B*B)o)(A *A)
11 7r,,,(B)Q,, 112 11 7r,,(A )Q. 11 2.

Thus 7r,,)(B)Q(,) x 7r,.,)(A)f2(, F-+ p(B*A) is a densely defined, bounded, sesquilinear
functional, over .5. x and there exists a unique bounded operator T, on S-).'
such that

(7r,jB)K2., T7r,,,(A)Q,,) = p(B*A

As p is not a multiple of (o the operator T is not a multiple of the identity. Moreover

0 :!E p(A *A)
= (7r,,(A)Q_ T7r,,,(A)K2,,)
< w(A *A) = (7r.(A)Q,,, 7r(jA)K2,,)

and hence 0 :!  T:!! t But

(7r,jB)K2., T7r,,,(C)7r,,,(A)Qj = p(B*CA)
= p((C*B)*A) = (7r,,(B)Q,_ 7r,,,(C)T7rjA)Q,,))

and therefore Te n.'. Thus condition (1) is false.
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(2) => (1) Assume that (1) is false. If T c 7r,,,then T* c- 7r.'and T + T*, (T - T*)Ii
are also elements of the commutant. Thus there exists a selfadjoint element S of

7r.' which is not a multiple of the identity. Therefore there exists a spectral projector
P of S such that 0 < P < I and P c- 7r,,,'. Consider the functional

p(A) = (PQ,,,, 7r,.,(A)QJ.

This is certainly positive because

p(A*A) = (P7r,,,(A)f2_ P7rJA)QJ > 0.

Moreover,

o)(A*A) - p(A*A)
> 0.

Thus (o majorizes p. It is easily checked that p is not a multiple of (0 and hence (2)
is false.

This proves the equivalence of the first two conditions stated in the theorem and

simultaneously establishes the correspondence described by the last statement.

The equivalence of conditions (2) and (3) is already contained in Theorem 2.3.15.

This characterization of pure states has two easy, and useful, consequences.

Corollary 2.3.20. Let o-) be a state over a C*-algebra without identity
and let Co denote its canonical extension to IR = C1 + It follows that co

is a pure state over % if, and only if, 6) is a pure state over  R-

PROOF. If (.16, 7r,_ QJ is the cyclic representation associated with 0J and 1,) is the

identity operator on .5,,, then one can readily identify the representation associated

with Co by Q6 = Q,,,, and nc,)(Al + A) = A%, + 7r,,(A). The two representa-
tions are simultaneously irreducible and hence the two states are simultaneously
pure.

Corollary 2.3.21. Let o) be a state over an abelian C*-algebra. It follows
that co is a pure state if, and only if, u)(AB) = (o(A)o)(B)J6r all A, B c- %.

PROOF. The state (t) is pure if, and only if, the associated representation is irreducible.

But 7r.( I) c-- nj' [), because W is abelian, and hence (8- ), , ) is irreducible if, and1 _)" 7T
"

I I

only if, .5. is one-dimensional. This is true if, and only if, the state factors as in

condition (2).

2.3.4. Existence of Representations

In continuation of our discussion of representations we next establish the

existence of nontrivial representations and prove the basic structure theorem,
Theorem 2. 1. 10, announced in Section 2. t. The proof partially depends upon
the properties ofconvexity, compactness, etc., that we have already established
for the states of a C*-algebra but the principal new ingredient is the Hahn-

Banach theorem.
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Theorem2.3-22A (Hahn-Banach). Let Y beasubspaceofa normed linear
space X andfa bounded linearfunctional on Y. Itfollows thatfhas a bounded
linear extension F, on X, such that 11 F 11 = 11 f 11 -

In Section 2.4, and subsequent chapters, we need a generalization of this
theorem to spaces with locally convex topologies determined by families of
semi-norms. The existence of states of a C*-algebra follows, however, from
the foregoing simple version.
We begin with a result concerning states with specific properties.

Lemma 2.3.23. Let A be an arbitrary element of the C*-algebra W. There
exists a pure state o-) over W such that

o-)(A*A) = 11A 112

and hence there exists an irreducible representation (.5, 7r, Q) ofW such that

117r(A)II = JJAJJ.

PROOF. First adjoin an identity, if necessary. Next consider the. subspace 0, of

given by

A + #A *A; a, # c- C

and define a linear functional f, on 0, by

f(A + #A*A) + #11A 112.
One has

loc + #11A 1121 sup I I a + #A 1; A c- u(A *A)J
llod + #A*All

by the spectral radius formula applied to the normal element OCT + #A*A. Thus
llf1l < 1. Butf(T) = I and hence 11f 11 = I = f(T). Now apply Theorem 2.3.22A with
the identification X 91, Y = 0. It results that there exists a bounded linear extension
(o, of f, with 11 (oil I = f(1) and hence o-) is a state by Proposition 2.3.11. But
(o(A*A) =.f(A*A) 11A 112 .

Now let EA denote the set of all states with the property
o-)(A*A) = 11A 112 .

This set is a nonempty, convex, weakly* closed, and hence weakly*
compact, subset of the set E, of all states over W. Hence EA possesses extreme points
by the Krein-Milman theorem. Let 6 be such an extreme point and suppose that
6 = A0)1 + (1 - 402 for some pair of states 0)11 (02 and some 0 < A < 1. But
lwi(A*A)l 11A 112 and 11 A112 = A(ol(A*A) + (I - A)(02(A*A). This is only possible
ifco,(A*A) C02(A*A) = 11A 112 and hence (ol, 0)2 c- EA. But as (b is an extreme point
of EA one concludes that co I

= 0)2 = A Thus 6) is an extremal point of E'U, and this
implies that co is pure by Theorem 2.3.19. This completes the proof of the first state-
ment of the lemma. The second follows from the relations

11A 112 = w(A*A) = 117r,,(A )Q. 11 2

< 11 7r,,)(A )112 <11A 112,
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where 7r,_ Q.) is the cyclic representation associated with W and the last

inequality is an application of Proposition 2.3.1.

Now we are in a position to prove the basic structure theorem. Let us

first recall its statement.

Theorem 2.1-10. Let % be a C*-algebra. It follows that % is isomorphic
to a norm-closed se fadjoint algebra of bounded operators on a Hilbert

space.

PROOF. For each state w of % construct the associated cyclic representation
(5,_ 7r., Q,,,) and then form the direct sum representation (.5, 7r),

 71  71

. . E% . . E%

For each A c- W there is an O)A such that 11 7r.,(A) 11 A 11 by Lemma 2.3.23. But

11n(A)II  !! 1171"A(A)II = JJAJJ. Thus 117z(A)II = JJAJJ by reapplying Proposition 2.3A

and 7r is faithful.

We can also complete the proof of Theorem 2.3.15.

It remains to prove that the states E% of the C*-algebra III are not weakly* compact
if does not contain the identity. For this it suffices to show that each weak*

neighborhood of zero contains a state. Now each element of % can be decomposed
as a linear combination of four positive elements and it suffices to consider the

neighborhoods indexed by A
1, A 2, - . ., A,, c- % ,

and -E > 0. Introducing A =

A, + - - - + A,, c- % ,
it is sufficient to find an w c- Em such that w(A) < & Let (.5, 71)

be a faithful nondegenerate representation of %. As A is not invertible in % it is not

invertible in C1 + W because if A` is an inverse in the latter algebra then AA -2

is an inverse in 91. Therefore n(A) is not invertible in Y(-5) and there must exist a

unit vector  c- -5 such that w,(A) A  ) < e. Thus w. is a state with the desired

property.

To conclude this section we give another consequence of the Hahn-

Banach theorem which is often useful.

Proposition 2.3.24. Let 91 be a C*-algebra, 0 a sub-C*-algebra of%, and 0J

a state over 0. Itfollows that there exists a state Co, over %, which extends o).

Ifw is a pure state of!S then'Co may be chosen to be a pure state of%.

PROOF. First remark that we may assume W and 0 to have a common identity.
The general situation can be reduced to the special situation by adjoining an identity
and considering the canonical extension Co of oi to C1 + 0. For the second statement

of the theorem it is then essential to note that purity of a state and purity of its canon-

ical extension are equivalent (Corollary 2.3.20).
Next o) has a bounded linear extension do with 11611 = JJwJJ = I by the Hahn-

Banach theorem. But (b(T) = w(l) = I and hence 6) is positive by Proposition 2.3.11.

Thus co is a state.

Finally, let E. denote the set of all states over % which extend w. The set is a

nonempty convex subset of the set of all states Ea. Moreover, E,,, is weakly* closed,
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and hence weakly* compact. By the Krein-Milman theorem, E,,, has at least one

extremal point (b. We now argue that if a) is pure then 6) is pure. Assume that (b =

A(b, + (I - A)6, for some 0 < A < 1, where co, and 6, are states over 91. The

restrictions w, and w,, of 6), and co,, are states over Q3 and hence co = AW, +

(1 - A)(92. But (o is assumed to be a pure state over 0 and hence o.), = (02 = W-

Therefore (h 1, (b2 c E. and, since eb is an extremal point of E'_ one has (b I
= 6)2 = &

This demonstrates that 6) is an extremal point of EA, i.e., 6 is a pure state over

by Theorem 2.3.19.

2.3.5. Commutative C*-Algebras

To conclude the discussion of representations we prove the structure

theorem for abelian C*-algebras, Theorem 2. 1.11. In fa& we are now in a

position to prove a more precise form of this theorem in which the topological
space X is explicitly identified. The space X is defined in terms of characters,
whose formal definition is the following:

Definition 2.3.25. Let % be an abelian C*-algebra. A character (0, of W, is a

nonzero linear map, w; A c- % i--+ w(A),E C, ofW into the complex numbers C
such that

o-)(AB) = o-)(A)w(B)

for all A, B c- %. The spectrum a(%), of91, is defined to be the set ofall characters
on 91.

The introduction of characters is quite conventional but, in fact, characters
are nothing other than pure states. To establish this we need, however, the

following simple result.

Lemma 2.3.26. If a) is a character of an abelian C*-algebra % then

a)(A) c- a(A), the spectrum of A, for all A c %. Hence I co(A) I < 11 All and

o)(A*A) > 0.

PROOF. First adjoin an identity, if necessary, and define (b on  R = CT + 91 by
Cb(Al + A) = A + (o(A); then (b is still a character because

(o((AT + A) (yT + B)) Ali + yw(A) + Aw(B) + (o(A)(o(B)

(b(AT + A)6(yT + B).

Thus we may assume T c- 91 and because (o(A) = o)(AT) = (o(A)(o(T), and a) 0 0,
one must have o)(T) = 1. Next assume A  ,g(A). Then there exists a B such that

(AT - A)B = T and consequently

co(AT - A)w(B) = w(T) = 1.

But then (A - a)(A))w(B) = I and A 0 (o(A). This proves that (o(A) E a(A) and then

I w(A) I :!! p(A) = 11 A 11 by the spectral radius formula. Finally w(A*A) c- a(A*A)  t 0.
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Proposition 2.3.27. Let o-) be a nonzero linear functional over the abelian

C*-algebra %. Thefollowing conditions are equivalent:

(t) a) is a pure state;
(2) co is a character.

Hence the spectrum a(%), of%, is a subset ofthe dual %*, of%.

PROOF. (1) => (2) This has already been proved (Corollary 2.3.21).
(2) => (1) Lemma 2.3.26 demonstrates that co is a continuous positive form with

11o)JI :!! 1. But if E,,, is an approximate identity then

o)(A) = lim (o(AEJ = o)(A) lim o)(E,,)

and hence

1 = lim o)(E,,,).

Therefore 11 o) 1 and o-) is a state. Finally, it is a pure state, because it is multiplica-
tive, by another application of Corollary 2.3.21.

Now we may demonstrate. a more precise version of Theorem 2. 1.11.

Theorem 2.1.11A. Let % be an abelian C*-algebra and X the set of
characters of % equipped with the weak* topology inheritedfrom the dual

%*, of %. Itfollows that X is a locally compact Hausdorff space which is

compact if, and only if, % contains the identity. Moreover, % is isomorphic
to the algebra CO(X) ofcontinuousfunctions over X which vanish at infinity.

PROOF. First let us prove that X is locally compact. If a), c- X then we may choose

A c- %, such that wo(A) > 0 and hence, by scaling, we may assume that wo(A) > 1.

Thus the set

K = jo); co c- X, w(A) > 11

is an open neighborhood of o), whose closure K satisfies

K c-- I co; w c- X, co(A) > 11.

We now argue that the last set is compact. Clearly, a weak* limit (0, of characters

(o_ has the multiplicative property o)(BC) = oj(B)o)(C). But

o)(A) = lim o),,(A) > I

and hence (o is nonzero. Thus the set {o); w c- X, (o(A) > 11 is a closed subset of the

weakly* compact unit ball of %* and hence it is itself compact. Note that if % has an

identity then the set of all characters is closed by the same argument applied to A = 2T

and hence is a weakly* compact subset of the unit ball of %*.

Next ifA e W we define its representative A by A(o-)) = (o(A). It follows immediately
that A is a complex-valued, continuous, function and, moreover, the map A - A is a



Representations and States 63

morphism, e.g., AB(o)) = a)(AB) = (o(A)w(B) = A((o)B(w). But the basic existence
lemma (Lemma 2.3.23) also proves that

11 2 = Sup I j((t)) 12 2.IA = suplA*A(w)l = IIAII1
. e X EX

Thus A  -+ A is an isomorphism. Next we prove th#t A c CO(X). For this it suffices
to show that for each e > 0 the set

K, = f(o; o) c X, I o)(A) I > EJ

is weakly* compact. But this follows by an argument identical to that used in the
previous paragraph.

Finally, note that the functions A separate points of X in the sense that if W I :A W2
then there is an A such that A(w,) :0 *(02)- Indeed, this is the definition of W, :A (02
Thus the set of A gives the whole of CO(X) by the Stone-Weierstrass theorem. If X
is compact then CO(X) contains the constant functions and W must contain the
identity.

The transformation A  -4,4 is usually called the Gelfand transform. In
specific cases the structure theorem can be made more precise.

Theorem 2.1.11B. If W is an abelian C*-algebra which is generated by
one element A (and its adjoint A*) then 91 is isomorphic to the C*-algebra of
continuousfunctions on the spectrum u(A), ofA, which vanish at 0.

PROOF. First consider the case that W has an identity. Hence A is invertible, i.e.,
0 0 a(A), and X = a(W) is w dkly* compact. Next define a mapping  o by

9(co) = w(A)

for all (o c- X. Then  o maps X into a(A) by Lemma 2.3.26. If (ol, (02 e X then w, = C02
is equivalent to wl(A) = (02(A) because the coi are multiplicative and A generates %.
Thus 9 is one-to-one and we next argue that it is a homeomorphism. If A c U(A)
then the closure of the set f(Al - A)B; B c WJ is a closed two-sided ideal in % which
does not contain the ball {C; Cc 91, 111 C 11 < 11. This follows by noting that all
elements of this ball are invertible, C - 1 Y_  ! o (I - C)", and this would contradict
A c a(A). Thus Lemma 2.3.23 implies the existence of a pure state W with A -

A c ker w, i.e., w(A) = A. The map 9 is clearly continuous and it is a homeomorphism
since X and a(A) are compact.

If W does not contain an identity, consider the algebra T1 = CT + W obtained
by adjoining an identity to W. Then 91 is generated by I and A. By Corollary 2.3.20
each character o) on W has a unique extension to a character (D on Iff by setting
(b(AT + A) = A + (o(A). Conversely, if (b is a character of %, then (big, is a character
of 91 unless 61% 0, in which case Co is the unique character (b, of  A_ defined by

1, 1% 0. Thus a( A) = u(91) u as sets.

Now, define a map (p; C by

9(6) = (b(A).

Then 9 maps u( A) into a(A) by Lemma 2.3.26. If 9((51) = W02), then (5, 19, = C02191
while (DJI) = 1 = e020); thus (b, = Co., so (p is one-to-one. The same argument as

above shows that 9; a( A)  -4 a(A) is onto, and in fact a homeomorphism. If B F--+ 1-3
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is the Gelfand isomorphism TI  -* Qa(ff)), we thus obtain an isomorphism B" B;
C(u(A)) by setting B( ) i3-((p Then, by the definition of 9, we have

c- a(A).

Thus 91 -- 4'1 is isomorphic with the subalgebra of C(u(A)) generated by the identity
function A   A. By the Stone-Weierstrass theorem this algebra is just the continuous

functions on a(A) vanishing at 0.



2.4. von Neumann Algebras

2.4. 1. Topologies on Y(.5)

Each C*-algebra can be represented by an algebra of bounded operators
acting on a Hilbert space Sn _ In general, there are many inequivalent methods
of representation but in any fixed representation the algebra is closed in the
uniform operator topology. Detailed analysis of the representation structure

entails study of the action of the algebra on vectors and subspaces of the
Hilbert space .5. In this analysis it is natural and interesting to consider all

operators which approximate the C*-algebra representatives on all finite-
dimensional subspaces. Thus one is motivated to complete the operator
algebra in some topology which is weaker than the uniform topology but
which, nevertheless, has some form of uniformity on the finite-dimensional
subspaces. There is a large variety of such topologies but it turns out that the
closure of the C*-algebra is independent of the particular choice of topology.
The enlarged algebra obtained by this closure procedure is an example of a

von Neumann algebra.
Our immediate aim is to study von Neumann algebras but it is first

necessary to review the various operator topologies associated with Y(.5).
All the topologies we consider are locally convex topologies respecting the

vector space structure of Y(.5). The topologies will be defined by a set of
seminorms {pj. One obtains a basis for the neighborhoods of zero in these

topologies by considering, for each finite subsequence pl,...,p,,, of the
seminorms, the sets of A c- Y(.5) such that pi(A) < 1, i = 1, ...,

n.

Much of the subsequent analysis relies heavily on the general Hahn-
Banach theorem for real, or complex, vector spaces. In Section 2.3.4 we

introduced the theorem for normed spaces, Theorem 2.3.22A, and the

generalization essentially consists of a restatement with the norm replaced
by a seminorm, or any other homogeneous subadditive function.

Theorem 2.3.22B (Hahn-Banach). Let X be a real vector space and p a

real-valuedfunction on X satisfying

(1) P(C01 + C02) :!! P(C0J + P(C02), C01, C02 C_ X,
(2) p(Aco) = Ap(co), A >- 0, co c- X.

65
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Further, let Y be a real subspace of X and f a real linear functional on Y

satisfying

f(0)) :!! P(O)), 0) C- 1'.

Itfollows thatf has a real linear extension F to X such that

F((o) < p(o)), 0) C- X.

If X is a normed space and one chooses p(co) = 11 w 1111 f 11 then this theorem
reduces to Theorem 2.3.22A. If, however, X is a locally convex topological
Hausdorff space and p is chosen to be one of the seminorms defining the

topology then the theorem establishes the existence of continuous linear
extensions of continuous functionals over subspaces.

Both versions of the Hahn-Banach theorem that we have presented are

statements concerning the existence of extensions of linear functionals. The
theorem can, however, be rephrased as a geometric result involving separa-
tion properties. A version of this nature is the following:

Theorem 2.3.22C (Hahn-Banach). Let K be a closed convex subset ofa
real locally convex topological Hausdorff vector space. Ifwo 0 K then there
exists a continuous affine functional f such that f((oo) > 1 and f(o)) <
for all co c- K.

This third version can be deduced from the second as follows. Fix w' c- K and
define L by

L = {w; a) = w" - w, co" c- Kj.

Next introduce PL by

PL((o) = inf  A; A > 0, A 'co c- Lj.

One may check that PL(0)1 + 0)2) < PL(0)J + PL(0)2), PJ 0)) = 4L(W)
for A > 0, and PL(O)) :! 1 if and only if (o c- L. For this one uses the convexity
and closedness of L and the fact that 0 c- L. But one also has wo - o)'  L
and hence PL(COO - 0)) > 1. Now define g on the subspace I A(o)o - 0)); A c- R I
by g(A(o)o - 0)')) = APL(0)0 - (o). Theorem 2.3.22B then implies that g has

a continuous linear extension to X such that g(W) :!! PL(co). The function

f((o) = g((o - (o') has the desired properties.
This argument shows that the third version of the Hahn-Banach theorem

is a consequence of the second but the converse is also true. As this is not

directly relevant to the sequel we omit the proof.
Now we examine the operator topologies of Y(.5).

The strong and the a-strong topologies. If  c- S3 then A  -* JJA jj is a

seminorm on Y(.5). The strong topology is the locally convex topology on

Y(.5) defined by these seminorms.
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The related a-strong topology is obtained by considering all sequences
{ nj in .5 such that < oo. Then for A e Y(.5)

11 2 < 112 2
< 00.JJA n

-
11AY

n n

Hence A  -* [Y-n JJA n 112]1/2 is a seminorm on Y(.5). The set of these semi-

norms defines the a-strong topology.

Proposition 2.4.1. The a-strong topology isfiner than the strong topology,
but the two topologies coincide on the unit ball YI(b) of Y(b). YI(b) is

complete in the uniform structure defined by these topologies. Multiplication
(A, B)  -+ AB is continuous on YJ.5) x Y(.5)  -+ Y(.5) in these topologies.
If .5 is infinite-dimensional multiplication is not jointly continuous on all of
Y(.5), and the mapping A  -, A* is not continuous.

PROOF. Since the seminorms defining the a-strong topology are uniform limits of

strongly continuous seminorms, the first statement follows immediately. The com-

pleteness of YIJ.5) follows from the completeness of .5. The continuity of multi-

plication on Y,(15) x Y(.5) is a consequence of the relation

AB - AOBO = A(B - Bo) + (A - AO)Bo .

The discontinuity ofA F--+ A*, for .5 infinite-dimensional, is illustrated by the following
example. Let { J be an orthonormal basis for and consider the elements A,, e
Y(15) defined by A,,  = ( _  ) .

Then A,, --+ 0 a-strongly, but (A,,* ,,
( ,, A,, ) = ( ,,  IVn  ), i.e., A,,* , =  , so A,,* , does not tend to zero.

The weak and the a-weak topologies. If  , q e f), then A F-). I ( , A?1) I is a

seminorm on The locally convex topology on _T(.5) defined by these

seminorms is called the weak topology. The seminorms defined by the

vector states A  --+J( ,A )J suffice to define this topology because is

complex and one has the polarization identity
3

4( , A?1) 1] Fn( + i"q, A( +in,)).
n=O

Let 1 nb {q,,) be two sequences from .5 such that

E 11U1, < 00, Y_ 1h,11, < 00.

n n

Then for A c- Y(.5)

1: ( n, Aqn)  n A nn
n n

-

1/2 1/2

< 11 A 11 11  n 112 11 N112

< 00.

Hence A In ( , Aqn) I is a seminorm on The locally convex

topology on Y(SD;,) induced by these seminorms is called the a-weak topology.
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Proposition 2.4.2. The a-weak topology isfiner than the weak topology, but
the two topologies coincide on the unit sphere YJ-5) of Y(.5). YJ.5) is

compact in this topology. The mappings A F- AB, A  -4 BA, and A  -4 A* are

continuous in this topology, but multiplication is notjointly continuous ifSV; is

infinite-dimensional.

PROOF. Since the seminorms, defining the a-weak topology are uniform limits of

weakly continuous seminorms, the first statement is immediate. The separate con-

tinuity of multiplication is evident, while the continuity of A   A* follows from the
relation I ( , A *q) I = I (q, A  ) 1.

The compactness of Y1(15) in the weak topology follows from the next pro-
position and the Alaoglu-Bourbaki theorem.

Proposition 2.4.3. Let Tr be the usual trace o.n Y(.5), and let 9-(.5) be the
Banach space of trace-class operators on .5 equipped with the trace norm

T F-+ Tr(I T 1) = 11 T11Tr. Then it follows that Y(.5) is the dual 9-(.5)* of
by the duality

A x T c- Y(.5) x 9-(.5) F--+ Tr(A T).

The weak* topology on Y(.5) arising from this duality is just the a-weak

topology.

PROOF. Because of the inequality I Tr(A T) I < 11 A 1111 T IlTr, Y(15) is a subspace of

by the duality described in the proposition. Conversely, assume co C-

and consider a rank one operator E, , defined for 9,  e .5 by

E,,,, X = (p(o, X).

One has E,*,,p = E0, and E,,,uEp 11 11'E,, Hence
(P

IIE,,q,IlTr = ll llTr(E,,,,)1/2 = 11 11 11(pll.

It follows that

Hence there exists, by the Riesz representation theorem, an A Ei Y(.5) with 11 All <
llwll such that

Aq).

Consider wo c- 9-(.5)* defined by

then

wo(T) = Tr(AT);

coo(E,p) = Tr(AE,,,&)
(0, Aq)

w(E, 0).
Now for any T c-5-(b__) there exist bounded sequences { ,,J and {9,,J and a sequence
faJ of complex numbers such that

I I a. I < 00

11
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and

T = I (x,, E,,,,, 0,

The latter series converges with respect to the trace norm and hence

(o(T) Y
n

1: a,,(o0(E,_0,) = w,(T) = Tr(AT).
n

Thus Y(Sj ) is just the dual of

The weak* topology on Y(.5) arising from this duality is given by the seminorms

A e Y(.5) F-+ I Tr(A T) 1.

Now for

T = Y_ OCn E,_

one has

Tr(A T) = a,, Tr(E,., On A)

ajo,, A 9n)-
n

Thus the seminorms are equivalent to the seminorms defining the a-weak topology.

Definition 2.4.4. The space of a-weakly continuous linear functionals on

Y(.5) is called the predual of Y(.5) and is denoted by

As noted in Proposition 2.4.3, Y*(.5) can be canonically identified with
and _T(5) =

The strong* and the a-strong* topologies. These topologies are defined by
seminorms of the form

A  -4 JJA 11 + JJA* 11
and

1/2

A Y I I A  ,, 112 + Y JJA* ,, 112
n

respectively, where YLn 11 n 11 2 < c)o. The main difference between the strong*
and the strong topology is that A i--+ A* is continuous in the former topology
but not the latter. Otherwise the following proposition is proved as in the

strong case.

Proposition 2.4.5. The a-strong* topology is finer than the strong* topol-
ogy, but the two topologies coincide on the unit sphere YIJ.5) of
Multiplication (A, B) F--+ AB; YJ.5) x YJ.5) F--+ Y(.5) is continuous, and
A F-+ A* is continuous in these topologies, but multiplication Y(S);,) x

Y(.5)  ---+ Y(.5) is discontinuous if .5 is infinite-dimensional.
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The relation between the various topologies on zG9(.5) is as follows:

uniform < a-strong* < a-strong < a-weak

A A A

strong* < strong < weak

Here "
<

"

means "finer than," and if S') is infinite-dimensional then "

<
"

can

be taken to mean "strictly finer than."
It is interesting to note that the a-strong*, a-strong, and a-weak topologies

allow just the same continuous linear functionals. The same is true when the
a- is removed. As the proof of both assertions are the same we prove the
former.

Proposition 2.4.6. Every a-strongly* continuous linear functional CO on

Y(.5) is a-weakly continuous, hence is in Y*(.5) and has theform o)(A)
In ( n, Aqn), where Y-n 11  n 11 2 < C)O, Y_n 11  112 < 00.

PROOF. Suppose that o-) is a a-strongly* continuous linear functional on Y(-5).
Then there exists a sequence RnI in -5 such that g"112 < oo and

1/2

lo)(A)i (11A ,, 112 + 11A * ', 11 2)In  !,I
- I

Let (Dn'= - . -t)n, where .5,, = .5 for n = 1, 2_ ..,
and S )̀,, 15, the conjugate

Hilbert space' of .5, for n 1, - 2, . ...
Note that  = I ' ' '

,  2,  1,  1,  2, - - -1 is
an element in 6. For each J 

- m, qm; m = 1, 2, ..1 EE 6 and A c- Y(-5) define

J IA*q-,n, Aqn; m 2_.J.

Then ! c- 11 A 11, and the map A  --> is linear. By the inequality on (0,
the map AZ F-- (o(A) is a bounded linear functional on the space JA ; A C- The
Riesz representation theorem asserts the existence of an q c-  such that

(o(A) = ( , ! )

j [(q,,, A  n) + A
n=1

Hence w is a-weakly continuous.

An immediate consequence of Proposition 2.4.6 is the equality of closures
of convex subsets of Y(.5) in the various topologies.

3
as a set. if  c-5, let denote the corresponding element in The Hilbert space

structure on  5 is then defined by
+ T,



von Neumann Algebras 71

Theorem 2.4.7. Let R be a convex subset of Y(.5) and the ball of
radius r in Y(Sn ). Thefollowing conditions are equivalent:

(1) A is a-weakly closed,
(2) A is a-strongly closed;
(3) A is a-strongly* closed;
(4) R r-) is weakly (therefore a-weakly) closedfor all r > 0;
(5) R r-) is strongly (therefore a-strongly) closedfor all r > 0,
(6) R r) Y,(.5) is strongly* (therefore a-strongly*) closedfor all r > 0.

PROOF. The equivalence (1) --> (4) follows from the fact that Y(.5) is the dual of

Y*(.5) and a theorem of Banach (see Notes and Remarks). The implications
(4) => (5) => (6) and (1) => (2) => (3) are trivial. Since R r-) is convex for all r,

the implications (3) => (1) and (6) => (4) follow from Proposition 2.4.6 and the fact
that a closed convex set containing zero is its own bipolar.

2.4.2. Definition and Elementary Properties of
von Neumann Algebras

Let .5 be a Hilbert space. For any subset 9JI of Y(.5) we again let 9JI'denote its

commutant, i.e. the set of all bounded operators on .5 commuting with every
operator in T1. Clearly 9JI' is a Banach algebra of operators containing the

identity 1. If 9Y is selfadjoint then 9JI' is a C*-algebra of operators on .5, which
is closed under all the locally convex topologies defined in the preceding
section. One has

9JI S;; 9JI" = Miv) 9JI(vi) =

gy, = 9J7 = 9MV) qVii) =

Definition 2.4.8. A von Neumann algebra on .5 is a *-subalgebra T1 of

Y(.5) such that

M = 9M

The center,3(9JI) of a von Neumann algebra is defined by

,30N) = 9M r-) 9R'.

A von Neumann algebra is called a factor if it has a trivial center, i.e., if

3(gil) = C1.

We next note some elementary facts about von Neumann algebras.
Let A be a selfadjoint element in a von Neumann algebra 9M. If some operator
commutes with A then it also commutes with all the spectral projections of A,
hence these spectral projections lie in 9R. Since A can be approximated in
norm by linear combination of spectral projections and any element in 9)?
is a linear combination of two selfadjoint operators, A = (A + A*)/2 +
i(A - A*)12i, the projections in 9JI span a norm-dense subspace of T1.
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Since any element in a C*-algebra with identity is a linear combination of
four unitary elements (Lemma 2.2.14), it follows that an element A C- Y,(.5)
lies in 9N if, and only if, VA V* = A for all unitary elements V c- 9jl'. Hence
if A = U I A I is the polar decomposition (Example 2.2.16) of an element
A c- 9Y, then for any unitary element V c- 9A'

VU V*VJAJ V* = VUJAJ V* = VAV* = A = UJAJ.

Thus by the uniqueness of the polar decomposition

VUV* = U, VIAIV* = JAI.

Hence U c- 9N, 1 A I c- 9N.

Similarly, if  A,,j is an increasing net of positive operators from 9W with
least upper bound A c- Y(.5) ,

then for any unitary element V c- 9jl', 1 VA,,, V*
{A,,,l has least upper bound VA V*. Hence A = VA V* and A c- 9Y.

EXAMPLE 2.4.9. Y(5) is a von Neumann algebra and even a factor since Y(.5)'
C1. Y16(15

 
) is not a von Neumann algebra, since CT and hence

YQ-5)" = Y(S3). Note that in this case one can easily approximate any operator in

Y(.5) by finite-rank operators in any of the locally convex topologies considered in
Section 1, i.e., the closure ofY in any of these topologies is Y(-5). This is a special
case of a fundamental fact known as the von Neumann density theorem, or the bi-
commutant theorem, which we prove below (Theorem 2.4.11).

Definition 2.4.10. If 9N is a subset of Y(.5) and R is a subset of .5, let [9WR]
denote the closure of the linear span of elements of the form A , where
A c- 9W,  c-.51. Let [9WR] also denote the orthogonal pfojection onto FMR].

Recall that a *-subalgebra % - Y(.5) is said to be nondegenerate if

[W-5] Sn (see Section 2.1t).
If W Y(5) contains the identity then it is automatically nondegenerate.

Theorem 2.4.11 (Bicommutant theorem). Let % be a nondegenerate
*-algebra ofoperators on S-3. Then thefollowing conditions are equivalent:

(1) W, = W;
(2) (resp. (2a)) 9t (resp. 91j is weakly closed;
(3) (resp. (3a)) iff (resp. %,) is strongly closed;
(4) (resp. (4a)) iff (resp. 911) is strongly* closed;
(5) (resp. (5a)) i9J (resp. is a-weakly closed;
(6) (resp. (6a)) W (resp. is a-strongly closed;
(7) (resp. (7a)) 91 (resp. W,) is a-strongly* closed.

PROOF. The equivalence of (2a), (3a), (4a), (5), (5a), (6), (6a), (7), (7a) follows
from Theorem 2.4.7. Clearly (1) implies all the other conditions and (2) => (3) =>

(4) ==> (7). Hence it remains to show, for example, that (6) => (1). To do this consider
a countably infinite sum of replicas of S_ '

where -5n =.5 for all n.V: 6 =  ," = 1 5n,
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If A c- Y(.5), define 7r(A) c- Y(6) by

7r(A) ff)  ,, (1) (A  J.(
n n

7r is clearly a *-automorphism of Y(.5) into a subalgebra of Y(6).

Lemma 2.4.12. One has the relation 7r(W") = 7E(W)".

PROOF. Let E,, be the orthogonal projection from b = .5,, onto -5,, = .5.
Clearly, B c- Y(6) lies in 7r(W)' if, and only if, E, BE c 19' for all n and in. Hence

C c- Y(6) lies in n(%)" if, and only if, C commutes with all the E, and E, CE,, is a

fixed element of W", i.e., if, and only if, C c- 7r(W").

Lemma 2.4.13. IfTl is a nondegenerate *-algebra ofoperators on a Hilbert

space .5, then  belongs to [Mflfor every  c-

PROOF. Let P = [Mfl; then

MP = PMP

for all M c- 9JI. By conjugation one has

PM* = PM*P

for all M* c- 9N. As 9M is a selfadjoint set one deduces that

MP PM = PMP

for all M c 937, i.e., P c 9M. Now if P and fl one has + U.

But then the relation

A ' + AE' = A e [Mfl

implies that A " = 0 for all A c- 937. Thus, for an arbitrary q c-.5 and A c- 9JI

( ", Aq) = (A* ", q) = 0.

Thus  " is in the orthogonal complement of [9X5] = b. Hence  " = 0 and  c- [Mfl.

Lemma 2.4.14. Let 9W be a nondegenerate *-algebra of operators on a

Hilbert space .5. Then for any  c- .5, A c- TZ", and s > 0 there exists an

element B c M such that

JJ(A - B) 11 < e.

PROOF. We must show that [W] = [M%]. Let P be the orthogonal projection
onto [Tifl. Since 9J1[9)7fl g [9.Nfl, P c- W. Hence P commutes with Tz", so 9M'[9J1fl
g; [937fl. By Lemma 2.4.13,  c- [Tifl, hence 9X% - [Mfl, and [M%] g [9-W].

END OF THE PROOF OF THEOREm 2.4.11. Assume (6); let A c- W" and let 1 nl
be a sequence in .5 such that

_" 11  " 11 2 <oo. Then (Bn  n C_  . Since 91 is nondegenerate,Y
7r(91) is nondegenerate. Also 7r(A) c 7r(%)" by Lemma 2.4.12. Hence Lemma 2.4.14
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applies with A replaced by 7r(A), 9JI = 7r(121) and Thus there exists a

B c- 91 such that

,s > 11 (7r(A) - 7r(B)),,'

Y JI(A - B) ,,112] 1 2

and A must be in the a-strong closure of 91. Hence A c- % and W" - 121.

Corollary 2.4.15 (von Neumann density theorem). Let % be a non-

degenerate *-algebra ofoperators acting on a Hilbert space .5. Itfollows that

% is dense in W in the weak, strong, strong*, a-weak, a-strong, and a-strong*
topologies.

PROOF. If % is the closure of % in any of the topologies above, then iW = 91',
hence %" = 91". But % = %" by Theorem 2.4.11.

Next we prove a useful theorem which immediately implies a stronger
version of Corollary 2.4.15.

Theorem 2.4.16 (Kaplansky's density theorem). If % is a *-algebra of
operators on a Hilbert space then the unit ball of% is a-strongly* dense in the
unit ball of the weak closure of %.

PROOF. Let 9A be the weak closure of 91, %, and 9N, the unit balls of 91 and 9R,
respectively, and for any subset 91 of Y(.5) let 91s , be the selfadjoint elements in 91. It

is evident that 91, is norm dense in the unit ball of the norm closure of 91, so we may
assume that IN is a C*-algebra.

By Theorem 2.4.11, W is a-strongly* dense in 9R, hence Ws,, is u-strongly dense in

9JI,,,. (Theorem 2.4.11 is applied to the subspace [91S-)] of .5.) The real function t i ,

2t(l + t') - ' increases strictly from - I to 1 on the interval [ - 1, 1] and has range
in [ - 1, 1]. Hence if one defines a function f: Y(.5),a F- by f(A) =
2A0 + A') - 1 then for any C*-subalgebra 0 9 Yl(.5) f maps 93sa into  31 sa

Moreover, f maps 931 sa
in a one-to-one fashion onto itself. Hence iff is continuous in

the a-strong topology it will follow that 911 sa
= P91J IS u-strongly dense in 9N I sa

f Oka)-
For A, B C_ 45)sa, we estimate

1(f(A) - f(B)) (I + A2)- 1 [A(I + B2) 2 2)-l+ A )B] (I + B

+ A 2)- '(A - B) (I + B2)-1
+ (T + A 2)- 'A(B - A)B(I + B2)-1
(I + A 2)- '(A - B) (I + B2)-1
+ lf(A)(B - A)f(B).4

Hence, f is a-strongly continuous by Proposition 2.4. 1.

To complete the proof, consider the Hilbert space Each operator
A c- Y(6) is represented by a 2 x 2 matrix (Aij), ij = 1, 2. Let  2_1 (resp. 01) be the

operators in Y(.5) such that Aij c- W, ij = 1, 2 (resp. Aii c- 9A). Clearly, T1 and 9A
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are *-algebras on .5, and 91 is weakly dense in 9W. Now pick B Ei 9W with JIB 11 < I
and define b c- A by

b =

0 B).(B* 0

Then P* P and 11j3_11 < 1. By the first part of the proof there exist operators

All A12

A21 A22)(
with A,2 A*, such that ! converges u-strongly to A Then A12 converges 6-2

strongly to B and A*12 = A21 converges a-strongly to B*. Thus A12 converges
a-strongly* to B. But one also has 11 A 12 11 -!! 11'T11 < 1

-

2.4.3. Normal States and the Predual

If p is a a-finite measure, then L'(dy) forms a von Neumann algebra of

multiplication operators on the Hilbert space L2(dy). L'(dy) is the dual of

L'(dy); Ll(dy), however, is only a norm-closed subspace of the dual of

LI(dy). In this section we single out an analogous subset of the dual of a von
Neumann algebra 9W, called the predual, and study its properties.

Definition 2.4.17. The predual ofa von Neumann algebra 9W is the space of all

a-weakly continuous linear functionals on 9W. It is denoted by 9JI* *

Note that we have already introduced this definition in the special case

that T1 = Y(.5). If co is any functional on 9.W which is continuous with respect
to any locally convex topology induced by Y(.5), then (o extends to a

continuous linear functional on Y(.5) by the Hahn-Banach theorem

(Theorem 2.3.22B). Thus, by Proposition 2.4.6 one may replace a-weakly in
Definition 2.4.17 by a-strongly*, and all elements a) c- 9JI* have the form

(o(A) = Y ( , Aqj,
n

where Y gj2 < oc) andY-n 111 j2 < 00.
_n

Proposition 2.4.18. The predual 9JI* of a von Neumann algebra 9JI is a

Banach space in the norm of9JI*, and 9M is the dual of9JI* in the duality

(A, o_)) c- 9N x 9X*   a)(A).

PROOF. Let 9W-1 be the elements in Y*(.5) which are orthogonal to 9W. Since T1
is a a-weakly closed subspace of 9W = 9W". But the Hahn-Banach theorem
ensures that any element in 9J7* extends to Y*(.5). Moreover, any element in Y*(-5)
defines an element in 9W* by restriction. Thus 9JI* is canonically identifiable with
the Banach space Y*19JI'. Hence 9J? is the dual of this space, because Y(.5) is the
dual of Y*(.5) (Proposition 2.4.3).
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Proposition 2.4.18 states that each von Neumann algebra is the dual of
a Banach space. It is interesting to note that this may serve as an abstract
definition of a von Neumann algebra:

Theorem (Sakai). A C*-algebra % is *-isomorphic with a von Neumann

algebra if, and only if, W is the dual of a Banach space.

We will not give a proof of this result since it is not needed in the sequel
(see Notes and Remarks).
We turn next to a characterization of the positive functionals in 9JI*

Lemma2.4.19. Let JA,,j bean increasing net in Y(.5), with an upper bound
in Y(.5), -

Then fA,j has a least upper bound (l.u.b.) A, and the net converges
u-strongly to A.

PROOF. Let S1 be the weak closure of the set of A, with fl > oc. Since Y(_5), is

weakly compact, there exists an element A inn , Sl,,. For all A,, the set of B c- Y(_5),
such that B > A,, is a-weakly closed and contains A_ hence A > A_ Hence A

majorizes JA,,j and lies in the weak closure of JAJ. If B is another operator majorizing
JAJ, then it majorizes its weak closure; thus B > A and A is the least upper bound of

JA,J. Finally, if  c-5 then

I I (A - Aj 11 211A AJI JI(A - A 1/2 11 2

I I A (A - Aj

- + 0.

Since the strong and a-strong topology coincide on Y(-5)1, this ends the proof.

Definition 2.4.20. Let 9Y be a von Neumann algebra, and (o a positive
linear functional on 9Y. If (o(l.u.b, Aj = l.u.b., o)(Aj for all increasing nets

JA,,j in 9N, with an upper bound then co is defined to be normal.

Theorem 2.4.21. Let (o be a state on a von Neumann algebra 9Y acting on a

Hilbert space .5. Thefollowing conditions are equivalent:

(1) o) is normal;
(2) o) is a-weakly continuous,
(3) there exists a density matrix p, i.e., a positive trace-class operator p

on .5 with Tr(p) = 1, such that

a)(A) = Tr(pA).

PROOF. (3) => (2) follows from Proposition 2.4.3 and (2) => (1) from Lemma
2.4.19. Next we show (2) =:> (3). If w is a-weakly continuous there exist sequences
1 nb lqnl of vectors such that Y n 11  n 11 2 ::: 00, Y_njj j2 < oo, and w(A) =

Y n ( - Aqn). Define 6 =  n" = 1 5 and introduce a representation 7r of M on .5 by
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7r(A)(( ,, (1),, (AOJ. Let and then w(A) 7r(A)q).
Since co(A) is real for A G 9N, we have

4(o(A) = 2( , 7r(A)q) + 2( , 7r(A*)tl)
= 2( , 7r(A)q) + 2(q, 7r(A) )

+ q, 7r(A)( + q)) - q, 7r(A)( - q))
+ q, 7r(A) ( + q)).

Hence, by Theorem 2.3.19 there exists a positive Tc- 7r(9R)' with 0 :!! T < 1/2 such
that

7r(A)q) (T( + q), 7r(A)T( + q))
7r(A)O).

Now 0 c- 6 has the form and therefore

w(A) Y (0_ A0J.
n

The right side of this relation can be used to extend (o to a u-weakly continuous

positive linear functional (b on Y(.5). Since 6(1) = 1, it is a state. Thus, by Pro-

position 2.4.3 there exists a trace-class operator p with Tr(p) = I such that

(b(A) = Tr(pA).

Let P be the rank one projector with range  ; then

( , p ) = Tr(PpP) = Tr(pP) = (b(P) > 0.

Thus p is positive.
We now turn to the proof of (1) =* (2). Assume that w is a normal state on M.

Let f B,.J be an increasing net of elements in 9R+ such that 11B,,11 :!! I for all a and such
that A i--+ w(AB is u-strongly continuous for all a. We can use Lemma 2.4.19 to

define B by
B = l.u.b. B,,, = a-strong lim B,

Then 0 :!! B < I and B c- 9N. But for all A c- T? we have

I a)(AB - AB ) 12 = I o-)(A(B - B,,,) 1/2(B - B,,) 1/2)12
< co(A(B - B,,)A*)(o(B - B,,,)

I I A112w(B - B,,).

Hence

11 (t)(. B) - (o(. Ba) 11 :!! ((.o(B - BJ) 1/2

But (o is normal. Therefore (o(B - BJ --+ 0 and w(- BJ tends to w(. B) in norm. As

9X* is a Banach space, o)( B) c- T?*. Now, applying Zorn's lemma, we can find a

maximal element P c- 9W + r-) M , such that A F--+ w(AP) is a-strongly continuous. If
P = I the theorem is proved. So assume ad absurduni that P :A 1. Put P' = I - P
and choose an  c- S) such that (o(P') < ( , P' ). If JB:,J is an increasing net in 9R+
such that B,, <_ P', w(B,,) ( , B,, ), and B = l.u.b.., B,, a-strong lim,, B_ then
B c- 1JW

, ,
B < P', and (o(B) sup w(B,,) > sup( , B,,  ) = &). Hence, by Zorn's

lemma, there exists a maximal B c- 931+ such that B :!  F and W(B)  ! ( , B ). Put

Q = P' - B. Then Q c- 9JI, Q :A 0 (since (o(P) < ( , P' )), and if A c- 9N, A :!! Q,
A 0 0, then (o(A) < ( , A ) by the maximality of B.
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For any A c- M we have

QA*AQ :!  JJA112Q2 :  JJA11211Q11Q.

Hence (QA*AQ)IIIA11211QII :!  Q and o)(QA*AQ) < ( , QA*AQ ). Combining this
with the Cauchy-Schwarz inequality one finds

I o)(A Q) 12 :!! w(1)(,o(QA*AQ)
< ( , QA*AQ ) = IIAQ 112.

Thus both A  -* o)(AQ) and A  - (o(A(P + Q)) are a-strongly continuous. Since
P + Q :!! T, this contradicts the maximality of P.

We note in passing that the notion of normal state can be used to give
another abstract characterization of von Neumann algebras.

Theorem (Kadison). If% is a C*-algebra thefollowing two conditions are

equivalent:

(1) % is *-isomorphic with a von Neumann algebra;
(2) any bounded, increasing net of operators in % has a least upper

bound and for any positive nonzero element A c- % there exists a

normal state o_), over %, such that w(A) 0 0.

Any a-weakly continuous linear functional is a linear combination of four

a-weakly continuous states by the polarization identity. Thus, Theorem
2.4.21 implies that the a-weak topology is only dependent on the order
structure on a von Neumann algebra and not on the particular Hilbert space
representation. This implies that isomorphisms and homomorphisms
between von Neumann algebras are automatically continuous in the a-weak

topology. Before stating the formal result, we need a characterization of the

a-weakly closed ideals of a von Neumann algebra.

Proposition 2.4.22. Let 9N be a von Neumann algebra and 3 a a-weakly
closed two-sided ideal in M. It follows that there exists a projection
E c- 9Y n 9X' such that 3 = 9NE.

PROOF. Note first that 3 is selfadjoint by the following argument. If A C- 3 has

polar decomposition A = U I A I then A*A c- 3, and I A I = (A*A)l /2 c 3. Thus

A* = I A I U* c- 3. Next, by Lemma 2.4.19, there exists a largest projection E C- 3.

If JE,.J is an approximate identity we may take E = a-strong lim,, E.. It is then clear

that E is an identity for 3. Hence for A c- 9N one has

AE = (AE)E = E(AE) = (EA)E = E(EA) = EA.

Thus E c- TV and so E c T? n IN.

Theorem 2.4.23. Let 9Y and 91 be two von Neumann algebras and -1 a

*-homomorphismfrom D1 onto 91. Itfollows that -r is a-weakly and a-strongly
continuous.
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PROOF. Let {A,,J be an increasing net in 931, and define A by A l.u.b." A,, =
a-weak lim, A_ Then because r preserves positivity and is onto T(A) l.u.b., T(A

(7-weak liM., T(A.). Hence if (o is a normal state on % then 0) - T is a normal state

on M. Now any a-weakly continuous functional is a linear combination of a-weakly
continuous states. It then follows from Theorem 2.4.21 that if 0-) is a a-weakly con-

tinuous functional on 91 then a) -,r is a-weakly continuous on 937. Hence T IS a-

weakly continuous.

Next, if A,, converges a-strongly to 0 then A,,*A,, converges a-weakly to 0. Hence
T(A )*-c(A,,) = T(A,,*A,,) converges a-weakly to 0 and -r(A,,) converges a-strongly to 0.

Theorem 2.4.24. Let 9W be a von Neumann algebra, w a normal state on 9K
and let (5, 7r, 0) be the associated cyclic representation. It follows that
7r(M) is a von Neumann algebra and 7r is normal in the sense that n(l.u.b, A,,,)
= Lu.b, n(A,,)f&r any bounded, increasing net {AJ in Tl,.

PROOF. If A , ,, A in 9Y then 7r(A,,) is increasing and 7r(A,,) < 7r(A) for all a. But
since to is normal, we have for any B c- 9Y

(7r(B)Q, 7z(A)7r(B)Q) = w(B*AB)

= (o l.u.b. B*A,,B

= W.b. w(B*A,,B)

= l.u.b. (7r(B)Q, 7r(A,,)7r(B)Q)
a

for all B c M. But the set 7r(9N)K2 is norm dense in .5 and so 7r is normal.

Proceeding as in the proof of Theorem 2.4.23 it follows that 7r is a-weakly con-

tinuous as a map from 9W into Y(.5). Hence the kernel 3 of 7r is a U-weakly closed
ideal in M. By Proposition 2.4.22 there exists a projection E c- 931 n TV such that
3 = ME

Hence 7r lifts to a faithful representation of the von Neumann algebra Tq(l - E)
by 7r(A(T - E)) = 7r(A), and we may assume that 7r is faithful. Then by Proposition
2.3.3, 7r is isometric. Thus 7r maps 9N, onto 7r(9N),. But 9W, is a-weakly compact and 7r

is a-weakly continuous. Thus 7r(M)l is a-weakly compact and, in particular, a-weakly
closed. By Theorem 2.4.11, 7r(9N) is a von Neumann algebra.

2.4.4. Quasi-Equivalence of Representations

Earlier, at the end of Section 2.3. 1, we. introduced the concept of unitary
equivalence of two representations of a C*-algebra W. It follows from
Theorem 2.3.16 that (.51, 7r,) and (S_ 12, 7r2) are unitarily equivalent if, and only
if, the unit vectors of Sq 1 and the unit vectors Of b2 define the same set of
states of %. A slightly weaker but more natural concept of equivalence where
physical applications are concerned is the concept ofquasi-equivalence oftwo
representations
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Definition 2.4.25. If 7r is a representation of a C*-algebra W, then a state w of
is said to be n-normal if there exists a normal state p of n(%)" such that

co(A) = P(7E(A))

for all A c- W.
Two representations 7r, and 712 of a C*-algebra % are said to be quasi-

equivalent, written 7r,  -_ n2, if each 7r,-normal state is 7r2-normal and
conversely.

If (.5, n) is a representation of a C*-algebra %, and n is a cardinal, let n7r

denote the representation of W on n.5 ( '= 1 .5 defined byk

n n

n7r(A) (1) 4 (1) (7r(A ) J-
k = 1 k = I

We have already proved in Lemma 2.4.12 that (n7r(%))" is isomorphic to

7r(%)" by an isomorphism which extends n7r(A) i--+ 7r(A), A e W.
The next theorem shows among other things that quasi-equivalence is the

same as unitary equivalence up to multiplicity.

Theorem 2.4.26. Let W be a C*-algebra and let (.51, 7r,) and 052, 7r2) be

nondegenerate representations of%. Thefollowing conditions are equivalent:

(1) there exists an isomorphism -r: 7r 1 7r2(%)" such that'r(7r, (A))
7r2(A).for all A c- W;

(2) 7rl - 7r2, i.e., the 7r,-normal and the 112-normal states are the same;

(3) there exist cardinals n, m, projections El' c- n7r,(W)', E2'C Mn2(91)'
and unitary elements U 1: .51 F-+ E2'(M-52), U2: -52  - E '(n.5 1) such
that

U,7r,(A)Ul* M7r2(A)E2',

U27r2(A)U2* nn,(A)El'

for all A c- W;
(4) There exists a cardinal n such that n7r, -- nn2, i.e., 7E, and 7r2 are

unitarily equivalent up to multiplicity.

Remark. This theorem really contains two distinct ideas; one is contained in
the equivalence (1).=>(2) and concerns the representations 7E, and n2,
while the other is contained in (1) <--> (3) -#> (4) and concerns the structure of
isomorphisms between von Neumann algebras, in particular the question of
when isomorphisms are unitarily implemented. For example, if 7r, and 7r2
are irreducible and quasi-equivalent, the isomorphism T is unitarily imple-
mented and 7r, and 7r2 are unitarily equivalent. Analogously, if both njw)"
and 7rA)" have a separating and cyclic vector, the isomorphiSM T is unitarily
implemented by Corollary 2.5.32, and again 7r, and 7r2 are unitarily equivalent.
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PROOF OF THEOREm 2.4.26. (1) =:> (2) is an Immediate consequence of Theorem
2.4.23.

(2) =:> (3) By Proposition 2.3.6, 7r, is a direct sum of cyclic representations, i.e.,

we can find a set { ,,J of unit vectors in Sn such that In, (%) J are mutually orthogonal,
and Y T. Let

(o,,(A) Tc,(A) ,), A c- 91,

be the states corresponding to  ,,. By assumption, Coa is n2-normal for each a. Hence,
by Theorem 2.4.21, there exists a sequence fqj in -52 such that   .j2 = I and1 11  '

wjA) = Y_ 7r2(A)q,,,)
11

= (qa, t OrAA)q,,)

for A c- W, where qz = ( n q.,n C_ t O -52. Thus, by Theorem 2.3.16, there exists a

unitary U,,: In 1 (9WJ   D 0 7r2(91)qJ such that

U,z7r,(A)U,,* = t 07rAA)P 07rAW)U-

If k is the cardinality of fal, we obtain, by addition, an isometry U, = J, U'z from

-51 In, (%) J to kX0 -52 = (3). 0 0 -52) with range

(D lt 0 7r2020qJ = E2' 0 0 -52))
such that

U,7r,(A)Ul* = kN07r2(A)E2'-

This establishes the first half of (3); the second half follows by interchanging the
roles of 7r, and 7r2 -

(3) => (4) We may choose n and m in (3) to be infinite, i.e., setting k = sup1n, ml
we have that kn = km = k. Then it follows from (3) that k7r, is unitarily equivalent to

a subrepresentation of mk7r2 = k712 and k7r2 is unitarily equivalent to a subrepre-
sentation of nk7r, = k7r, A Cantor-Bernstein argument then implies that k7r,
and k7r2 are unitarily equivalent.

(4) => (1) Follows immediately from Lemma 2.4.12.

A state co of a C*-algebra W is called a primary state, or a factor state, if
n,J%)" is a factor, where n. is the associated cyclic representation. Two
states (o 1 and (02 of 91 are said to be quasi-equivalent if 7r,", and 7[-2 are quasi-
equivalent (in the abelian case this is the same as equivalence of the prob-
ability measures corresponding to co I and W2). The next proposition is useful
in applications to quasi-local algebras (see Section 2.6).

Proposition 2.4.27. Let co, and C02 be factor states of a C*-algebra
Itfollows that co, and 0-)2 are quasi-equivalent if, and only if, _21(('01 + 0-)2) is a

factor state.

PROOF. Let (.5i, 7ri, Q) be the cyclic representations defined by (oi; put
*5 = -51  -52 0 1/,/2) (0,  02), 7r = 711 (D 7r2, and w =

21((01 + C02)-ItfOllOWS
that a)(A) = (0, 7r(A)Q) for A c- 91, i.e., (5(,), 7r,_ Q.) identifies with the subrepresenta-
tion of (.5, 7r) determined by the projection E' = [7r(91)Q] c- 7r(%)'.



82 C*-Algebras and von Neumann Algebras

Assume first that 7r, and 7E2 are quasi-equivalent. By Theorem 2.4.26 there exists

an isomorphism T; n1M)"  __> 7E2M)" such that T(7r,(A)) :--:: 7[2(A)- Since any element

in 7r(%)" is a a-weak limit of elements of the form 7r I (A)  7E2(A) = 7E I (A) ( r(n I (A)),
and T is a-weakly continuous, it follows that nj(91)" is isomorphic to n(W)" by the

isomorphism A i--> A ( T(A). Hence n(W)" is a factor. But A F-> AE' is a a-weakly*
continuous homomorphism from 7r(%)" onto nj%)", and 7r(91)" has no nontrivial

a-weakly closed ideals, by Proposition 2.4.22. It follows that nj%)" is isomorphic
to 7r(%)", hence 7r.(%)" is a factor.

Conversely, assume that 7r, and 7r2 are not quasi-equivalent and let C C 7r(91).
Let E be the orthogonal projection from .51 (D .52 onto .5, {01. We will show that

CE = EC. Since 7r(%)' is a von Neumann algebra, it is enough to show that

(I - E)CE = 0. Assume this is not the case, and let U be the partial isometry in

the polar decomposition of ( - E)CE. Then U c- n(%)' since E, C G 71(91)' and

UE = (I - E)U = U. Hence U7r,(A) = 7r2(A)U, i.e., U establishes a unitary equiv-
alence between a subrepresentation of 7r, and a subrepresentation Of 7r2 -

Since any subrepresentation of a factor representation is quasi-equivalent with the

representation itself (by Theorem 2.4.26(l) and Proposition 2.4.22) it follows that

7T1 7E2, which is a contradiction. Hence CE = EC for any C c- 7r(%)', and thus

E c- 7r(%)" i.e., E c- 7r(%)" r) 7r(%)'. It follows that EE' is a nontrivial element in the

center of 7r.(%)" 7r(%)"E' (nontrivial since E'(-51 ( {01) [7r,(%)Ql] ( 101
=A {01 and E'(101 52) 0 101, thus 0 :A EE' :A E'). Hence W _2L(W1 + (02) is not

a factor state.



2.5. Tomita-Takesaki Modular Theory and

Standard Forms of von Neumann Algebras

Theorem 2. 1.11 (a) established that an abelian von Neumann algebra 9Y has
the form QX) for a compact Hausdorff space X. If w is a normal state on 931
then the Riesz representation theorem implies the existence of a probability
measure y on X such that w(A) = f A(x) dp(x) for A c- T1. It follows im-

mediately that if 7r, Q) is the cyclic representation associated with W then

.5 is identifiable with L2(X, It), Q with the function which is identically
equal to 1, and 7r(931) with L"(X, y) acting as multiplication operators
on L2(X, It). Suppose that the support of p equals X. The predual 9X*
is then identified as L'(X, y). In particular, a positive functional p c- 9j?*
is represented by a unique positive function in L', which is again a square
of a unique positive function in L2. This establishes a one-to-one correspond-
ence between the positive normal states and the positive functions L2

+

in L2 ( = .5). This correspondence can then be used to define another one-to-

one correspondence between the automorphisms of 9W and the unitary
operators on L2 which map the positive functions onto the positive functions.
Let us briefly examine the structure of the positive elements L2+ of L2.

These elements form a closed convex cone which is self-dual in the sense that
the inequality

fdy fg > 0

is valid for allf c- L2 + if, and only if, g c- L2+. An abstract description of this
cone is given by remarking that the algebra 9Y is a C*-algebra and its positive
elements form a uniformly closed convex cone (Proposition 2.2.11). Each
element of this cone is of the form A *A, with A c- 9W, the L2-representative of

27r(A*A)Q is positive, and L
+

is the weak closure of such vectors. The self-

duality then arises because

(n(A*A)K2, n(B*B)K2) = w(A*AB*B)
= w((AB)*AB) > 0.

The second step uses the commutativity of 9R
In this section we assign a similar structure to a general von Neumann

algebra 9JI with a faithful (see Definition 2.5.4) normal state co. Namely, we

83
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construct a Hilbert space 5 with a "positive self-dual cone" _`1P such that the

positive elements in M* correspond to vectors in _9 and automorphisms of9Y

correspond to unitary elements in -5 which leave 9 invariant. Although the

general description of _9 is similar to the abstract description for abelian 9W
there is an essential difference which arises from noncommutativity. Let 9JI
act on .5 and assume Q is cyclic for 9A. One can form the convex cone A*An
of vectors in .5 but if 9W is not abelian this cone does not necessarily have the

property of self-duality. There is no reason why the associated state 0-)(A) =
(Q, AQ) should satisfy o)(A*AB*B)   ! 0. This property is, however, valid if (0

is a trace, i.e., if (o(AB) = o)(BA) for all A, B c M, and it is worth comparing
this latter situation with the abelian case.

Define the conjugation operator J, on .5, by

JAQ = A*Q.

The trace property of o-) gives

11 AQ 112 = (o(A*A) = (o(AA*) = IIA*Q 112

and hence J extends to a well-defined antiunitary operator. Moreover,

JAJBQ = JAB*Q = BA*f2.

For 9W abelian this calculation shows that J implements the *-conjugation,
i.e., A* = j(A), where we have defined j by j(A) = JAJ. In the trace situation
the action ofj is more complex. One has, for example,

(BI 0, Alj(A,)B2Q) = co(B,*A,B2A2*)
= (BQ,j(A2)AlB2K4)

and this demonstrates that j(A) c- 9JI', a property which is of course shared by
the abelian case.

The example of a trace indicates that the general self-dual cone should be
constructed by modification of the *-conjugation in the set AA*K2. The A*
should be replaced by an alternative conjugate element j(A) and the con-

jugation j should be expected to provide a map from 9JI to W. Examination
of the map AQ  --* A*K2 is the starting point of the Tomita-Takesaki theory
which we consider in Section 2.5.2. Prior to this we introduce, in Section 2.5. 1,
the class of algebras that are analysed in the sequel and which are of im-

portance in applications.

2.5. 1. a-Finite von Neumann Algebras

All the von Neumann algebras encountered in quantum statistical mechanics
and quantum field theory fall in the following class.

Definition 2.5.1. A von Neumann algebra 9W is a-finite if all collections of

mutually orthogonal projections have at most a countable cardinality.
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Note in particular that a von Neumann algebra on a separable Hilbert

space is a-finite. The converse is not, however, valid, i.e., not all a-finite von
Neumann algebras can be represented on a separable Hilbert space.

Definition 2.5.2. Let 9Y be a von Neumann algebra on a Hilbert space
A subset R s; .5 is separating for 9W if for any A E M, A = 0 for all  c- R

implies A = 0.

Recall that a subset R is cyclic for 9JI if [9JIR] There is a dual
relation between the properties of cyclic for the algebra and separating for the
commutant.

Proposition 2.5.3. Let 9JI be a von Neumann algebra on .5 and R 9 .5 a

subset. Thefollowing conditions are equivalent:

(1) R is cyclic for 9A;
(2) R is separatingfor 9JI'.

PROOF. (1) => (2) Assume that A is cyclic for 9JI and choose A'c- 931' such that
A'R = {0}. Then for any B c- 9JI and  c- R, A'B = BA' = 0, hence A[TIR] = 0
and A' = 0.

(2) => (1) Suppose that R is separating for 9JI' and set P' = [9JIR]. F is then a

projection in 9JI' and (I - P')R = {0}. Hence T - F = 0 and [M] = .5.

Definition 2.5.4. A state w on a von Neumann algebra 9W is faithful if
co(A) > 0 for all nonzero A e 9JI,.

EXAMPLE 2.5.5. Let 9JI = Y(.5) with .5 separable. Every normal state w over 9JI
is of the form

(o(A) = Tr(pA),

where p is a density matrix. If co is faithful then a)(E) > 0 for each rank one projector,
i.e., Ilp' /2 011 > 0 for each  c- .5\{01. Thus p is invertible (in the densely defined
self-adjoint operators on .5). Conversely, if co is not faithful then 0-)(A*A) = 0 for some
nonzero A and hence Ilp' /2A*011 = 0 for all  c- .5, i.e., p is not invertible. This
establishes that a) is faithful if, and only if, p is invertible. Remark that if .5 is non-
separable then p can have at most a countable number of nonzero eigenvalues and
hence co(A) must vanish for some positive A, i.e., o) is not faithful. Thus Y(.5) is
a-finite, i.e., CV,, is separable if, and only if, Y(.5) has a faithful normal state.

The next proposition gives a characterization of a-finite von Neumann

algebras.
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Proposition 2.5.6. Let 9N be a von Neumann algebra on a Hilbert space.5
Then the following four conditions are equivalent:

(1) 9Y is a-finite;
(2) there exists a countable subset of .5 which is separatingfor 9X;
(3) there exists afaithful normal state on 9X;
(4) 9R is isomorphic with a von Neumann algebra 7E(9N) which admits a

separating and cyclic vector.

PROOF. (1) ==> (2) Let J ,J be a maximal family of vectors in .5 such that [9y' J
and [D1',,"_J are orthogonal whenever a =A a'. Since EM' ,] is a projection in M

(in fact the smallest projection in M containing  J, J ,,J is countable. But by the

maximality,

Y

Thus Is cyclic for 931'. Hence J J is separating for 9N by Proposition 2.5.3.

(2) =:> (3) Choose a sequence  ,, such that the set 1 nl is separating for 9N and
such that In 1. Define (o by

o)(A) Y_ ( - AU-
n

co is a-weakly continuous, hence normal (Theorem 2.4.21). If co(A*A) = 0 then

0 - A*A J = JJA ,, 112 for all n, hence A = 0.

(3) =:> (4) Let w be a faithful normal state on T1 and (.5, n, Q) the corresponding
cyclic representation. By Theorem 2.4.24, 7r(M) is a von Neumann algebra. If

7r(A)Q = 0 for an A c- 9N then o-)(A *A) = 11 7r(A)Q 112 = 0, hence A*A = 0 and A = 0.

This proves that 7r is faithful and that Q is separating for 7r(TI).
(4) => (1) Let Q be the separating (and cyclic) vector for 7r(M), and let {EJ be a

family of mutually orthogonal projections in 9N. Set E Y,;, E,,. Then

11 7r(E)Q 112 (7r(E)Q, 7r(E)Q)

11ir(EJQ 112

by Lemma 2.4.19. Since 7r(E )Q 2
+ ( O' only a countable number of the

7r(E,,)Q is nonzero, and thus the same is true for the E..

2.5.2. The Modular Group

If 9Y is a a-finite von Neumann algebra we may assume, by Proposition 2.5.6,
that 9A has a separating and cyclic vector Q. The mapping A c- 9JI  --+ AQ c- .5
then establishes a one-to-one linear correspondence between 9M and a dense

subspace 9XQ of .5. This correspondence may be used to transfer algebraic
operations on 9A to operations on 9JI0. In this section we study the antilinear

operator So on TIK2 which comes from the *operation on 9Y and various

operators associated with So.
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Before starting with the proper subject of this section we need a definition
and a lemma.

Definition 2.5.7. Let TZ be a von Neumann algebra on a Hilbert space
A closed operator A on is said to be affiliated with 9Y, written Aq9A, if

9R'D(A) g D(A) and AA' A'A for all A' c- W.

A relation between elements of the algebra and unbounded affiliated
operators is provided by the following:

Lemma 2.5.8. Assume that A is a closed operator affiliated with a von

Neumann algebra 9W. IfA = U I A I is the polar decomposition of A, then U
and the spectral projections of I A I lie in 9N.

PROOF. Let U' be a unitary element in W. Then

U'UU'*U'IAIU'* = U'UIAIU'* = UIAI,

so by the uniqueness of the polar decomposition

U'UU'* = U

and

U'JAJU'* = JAI.

Hence U c- 9W. If

JAI A dE(A)

is the spectral decomposition of I A 1, then by the second relation above

AU'dE(A) U'* = U' A dE(A) U'* A dE(A).

By the uniqueness of the spectral decomposition of I A I it follows that

U'E(A) U'* = E(A),

i.e., E(A) c- 9W for all A > 0.

Now we return to the study of the antilinear operator So.
In the introduction we examined the special example of a trace state. In

the trace case the operator J corresponding to So was antiunitary and
J93IJ 9 9W'. In particular, AWK2 c T112. But one also has 9JI92 = J(J931Q) c
M112. Thus in examination of J, or So, it is natural to define a supplementary
operator on W112 which should correspond to inversion of the conjugation.
Thus we actually study two antilinear operators, So and F0, one associated
with 9XI and the other with 931'Q.
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Proposition 2.5.3 established that if 0 is cyclic and separating for 9W
then it is also cyclic and separating for 9K. Therefore the two antilinear

operators So and Fo, given by

for A c- 9N and
So AQ A*f2

Fo A'Q A`0

for A' c- 9X', are both well defined on the dense domains D(So) = 9J1f2 and

D(Fo) = 9J?'Q.

Proposition 2.5.9. Adopt the foregoing definitions. It follows that So and

Fo are closable and

So* = Fo, Fo* = go,
where the bar denotes closure. Moreover, for any 0 c- D(90) there exists a

closed operator Q, on .5, such that

QQ Q*f2 = so 0,

and Q is affiliated with 9A. The corresponding result is also truefor Fo.

PROOF. For A c- 9Y, Ac- 9Y' we have

(A'Q, So AQ) = (A12, A *Q)
= (AQ, A'*Q)
= (AQ, Fo AQ).

Thus Fo g So*. Hence So* is densely defined and So is closable. Analogously,
So -- Fo*.
To show that So* is actually the closure of Fo we first pick a c- D(So*) and set

So* . Then for A c- 9Y one has

(AQ, (AQ, So* )
( , So AQ) A *Q).

Next define operators Qo and Q' by0

Qo: AQ A

Q0+ : AQ A0

for all A c- 9A. The foregoing relation then establishes that

(BQ, QoAQ) = (BQ, A ) = (A*BQ,  )
= (0, B*AQ) = (BO, AQ) = (QO'BQ, AQ)

for all A, B c- M. Hence Qo +
-- Qo* and Qo is closable. Let Q' = To.

If A, B c- 9N then

QoABQ = AB = AQOBE2.
Hence by closure

Q'A ;2 AQ,
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i.e., A maps D(Q') into D(Q') and commutes with Q' on D(Q'). Hence if Q' = U'l Q'I
is the polar decomposition of Q' then U' c- 9JI' and all the spectral projections of I QI
lie in 931' (Lemma 2.5.8). Let E,,'c- TV be the spectral projection of I Q'I corresponding
to the interval [0, n] and set

Q,,' = U'E 'J Q'I

It follows that Qn'c- TV and

Q,,'p U'En1 Q'I n = U'E,,U'* Ul Q'I Q

U'E,,'U'*Q0 K2 UE,,'U'*

Moreover,

Q'*K2 E,'J Q'I U'*Q E,,'Q'K2 = En*n 0

Hence U'EnUN c- D(Fo) and

Fo(UE,,'U'* ) = E,,'O.

Now, E,,' converges strongly to the identity I and UU'* is the projector with range
equal to the range of Q. This set contains  = I  . Hence  c- D(Fo) and Fo  = 0
= S0%. Thus So* g & g So* and Fo = So*. Interchanging So and Fo in this

argument yields go = Fo*.

Definition 2.5.10. Define S and F as the closures of So and F0, respectively,
i.e.,

S = So, F = F0.

Let A be the unique, Positive, selfadjoint operator and J- the unique anti-

unitary operator occurring in the polar decomposition

S = JA' /2

of S. A is called the modular operator associated with the pair 1931, nj and J is
called the modular conjugation.

There are various relatively straightforward connections between the

operators S, F, A, and J.

Proposition 2.5.11. Thefollowing relations are valid:

A = FS, A SF,
1/2 - 1/2S=JA

,
F = JA

J = J*' j2 = 1,

A- 1/2
= JA112j.

PROOF. A = S*S FS, and S = JA' /2 by Definition 2.5.10 and Proposition
2.5.9. Since So = So It follows by closure that S = S-', and hence

JA 1/2
= S = S- I

= A- 112j*,
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so that j2A 1/2
= JA- 112j*. Clearly, JA- 112j* is a positive operator, and by the

uniqueness of the polar decomposition one deduces that

j2

and then

J* = J, A- 1/2
= JA 112j.

But this implies that

F = S* = (A- 112j)* = jA - 1/2

and

SF = A-1/2JJA -1/2
= A- 1.

Before proceeding let us again consider the abelian and trace examples
discussed in the Introduction. In both these examples Q is separating because
cyclicity and the trace condition co(B*A*AB) = w(BB*A*A) establish that
AQ = 0 is equivalent to A = 0. One checks that A = 1, S = F = J and,
moreover,

j9Xj g 9JI" j9jl,j - 9W,

thus

j9jlj = MI.

Thus the modular operator A reflects in some manner the nontracial character
of w. Although these examples provide no direct insight into the possible
properties of A, one can infer the structural characteristics of A from the

following discussion.
Consider the action of the operator SAS, with A c- 9N. For each pair B,

C c- 9N one has

(SAS)BCQ SAC*B*f2 BCA*f2

and

B(SAS)CK2 BSAC*Q BCA*Q.

Thus SAS is affiliated with 9JI'.
Now suppose that A is bounded, and thus A-' = JAJ, S, and F are

bounded. Then by the above reasoning

SMS - 9R" F9N'F - 9W.

Thus

AMA` = A 1/2JJA' /29JIA -1/2JJA- 1/2

= FSMSF - F99?'F g 9Y,

and by iteration

n .RA - n S 9NA 9.
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for n = 0, 1, 2, Now for A c- 9Y, A'c- 9JI',  o, 0 c- 5, consider the entire

analytic function

f(z) A 11 - 2z((p, [AzAA - z, A]

Thenf(z) = 0 for z = 0, 1, 2, 3, and we have the estimate (using A

IIJAJII = IJAII)

Jf(Z)j = O(IIAII-2Re z(11 A 11 JRezj)2) = O(j)

for Re z  !! 0. By Carlson's theorem it follows thatf(z) = 0 for all z Ei C. Hence

Az9JIA - z - 9JI" = 9JI

for all z c- C. Since 9N = Az(A - zMAz)A - z g Az9J?A z it follows that

Az9JIA - z
= 931, z C- C.

Next

j9jjj = jA1/2TIA - 112j = S9JjS 9XI

and, analogously,

J9JI'J = JA- 1/29JI'A 112j = FM'F - 9JI.

Hence

j9yj = 9jl,.

The principal result of the Tomita-Takesaki theory is that these relations

persist in the general case when A is not necessarily bounded, i.e.,

J9JU = 9JI' and A"9NA- 9JI

for all t c- R.

The proof in the general case follows different lines from the proof above.

To describe these lines assume in the trace case that we know a priori that

9X92 = T1,92.

Thus for any A c- 9JI there exists an A' c- Wsuch that A*Q = A'Q. The relation

JAJ = A' then follows because

JAJBQ = JAB*K2 = BA*f2 = BAQ = A'Bf2

for all B c- 9JI. Hence J9JU 9 9JI', and by a symmetric argument J9jl'J g 9Y,
i.e., JMJ = 9R.
The next lemma demonstrates a result analogous to TIO = 9JU2, but the

resolvent of the modular operator intervenes in the general case to modify
this equality.

Lemma 2.5.12. If A e C, -A 0 R, and A' c- 9K then there exists an

A A c- T? such that

AA*Q = (A + Al)'A'fl.
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Thefollowing estimate is validfor AA:

11AA11 < (21AI + A +  )-1/2 11 A'11

PROOF. The proof is based on the following simple fact.

Observation. Leta,b, K c- R, and A c- C\101 benumbers such that

I a + Ab I < K.

Itfollows that

1/2 + A + -)- 1/2(ab) < (21AI A - K.

Indeed, this observation is a consequence of the calculation:

K 2 > I a + Ab 12 - (a - I A I b)2
(21AI + A + A)ab.

Now, let (A + Al)-'A'Q, and let B'c- 9JU be an arbitrary element. Since

(A + AT)- 'B'*B' c- D(A) 9 D(S)

it follows from Proposition 2.5.9 that there exists a closed operator B affiliated

with M such that Q c- D(B) r- D(B*) and

BQ = (A + AT) B'B'L

Thus

B'*B' = (A + Al)ffl.

Let B = U I B I be the polar decomposition of B. We have that

I A(Q, I B 10) + (0, U I B I U*f2)1

A(BQ, UQ) + (U*Q, B*Q) I

I A(BQ, UQ) + (ABO, Uf2)1
1 ((A + AI)BQ, UQ) I

J(B*B' , UQ)j
J(B' , UB'Q)j :! - jjff jj JjB'.Qjj.

The Observation now implies that

11 IB 11/2Q11 - 111B 11/2 U*f2 11 < (21AI + A + A) -1/2 JJB jj JIB'Q11.

On the other hand

JJB' 112 (B'*B' ,
((A + AI)BQ, (A + Al)-'A'Q)
(BQ, A'Q)
(IBI 1/2Q, A'j B 11/2 U*Q)

< 11 A'11 111 B11/2f2ll 11 IB 11/2U*Q11
:!! (21 A I+ A + A)-1/211A,11 jjff jj 11B1211.
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Dividing both sides by 11 B' B(A + AI) - ' AQ 11 we get the estimate

11 B'(A + AI) -'A'Q 11 < (2 1 A I+ A + X) - 1/2 IIA'Ji JIB'011.

This means that the mapping defined on 9R0 by

B'Q i---* B'(A +  1) - 'AQ

is a bounded densely defined operator with norm less than or equal to

(21AI + A + A) - 1/2 11 A'11.

Denoting the closure of this operator by A,* we have A;, * c- 9JI" = 9N and

AA*Q = (A + Al)-'AQ.

The second fundamental lemma now explicitly relates the elements
A A c- 9N, A' c- 9K of Lemma 2.5.12.

Lemma2.5.13. If Ac-C, -A R, and A'c-M', let AAc-9X be the

element in 9N such that

A,I*Q = (A + AT) -IA'Q

(the existence ofAAfollowsfrom Lemma 2.5.12). Itfollows that

JAJ = A- 1/2AAA' /2 +  A'/2AAA- 1/2

as a relation between bilinearforms on D(A 1/2) r) D(A -1/2).

PROOF. Let B', C be arbitrary elements of 991' and let B, C c- 931 be such that

B*Q = (A + I)-IB'Q,
C*Q = (A + CQ.

Since (A + AT)A,*Q = A'Q we have that

(AAA*Q, B*CQ) +  (AA*Q, B*Cf2) = (A'Q, B*CQ).

We now consider the individual terms in this relation. The first term is

(AAA*f2, B*C92) = (FSA;,*K2, B*CQ)
= (SB* 92, SAA*Q) = (C*BK2, AAK2)
= (BE2, CAA92) = (SB*92, SAA*C*Q)
= (AA*C*K2, AB*f2)
= (C'Q, (A + T) A, A(A + T) B'Q).

The second term, divided by  , is

(A'x*f29 B*CQ) = (BAA*Q, CK2)
= (SA A B*Q, SC*Q) = (AC*Q, A, B*K2)
= (CU, (A + T) AAJA + T) B'92).

The last term is

(A'Q, B*Cf2) = (A'BQ, CQ)
= (ASB*Q, SC*Q) = (C*Q, FASB*Q)
= (C'Q9 (A + Ty 1A1/2JAVA 1/2(A + T) B12).
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Since WQ is dense in we find the relation between bounded operators:

(A + 1) A, A(A + 1) - I +  (A + 1) - I AA,(A +

= (A + I)- 'A 1/2JAVA 1/2(A + 1) - 1.

Multiplying to the left and right by (A + 1 )A -1/2 then gives the desired result.

Now we exploit the relation of the preceding lemma to identify JAV as an

element of 9JI. This relation has the form

JAV = (D - 1/2 +  D 1/2) (A. )
with D 1/2(B) = A 1/2BA- 1/2

,
and for A > 0 a formal application of the

Fourier integral
oo

dt
e

1PI

e" + e
Irt ep12 + e- p/2f

yields the inverse relation

A, = A- 1/2
'0

dt
Ait

D't(JA'J),f e"' + e

with D"(B) = A'tBA The key to the proof of the following theorem is to

justify this inversion because Fourier analysis then shows that AA C- 931

implies that D't(JA'J) c- 9Y. This outlines the proof of the principal result.

Theorem 2.5.14 (Tomita-Takesaki theorem). Let 9Y be a von Neumann

algebra with cyclic and separating vector Q, and let A be the associated
modular operator and J the associated modular conjugation. Itfollows that

J9XJ 9XI

and, moreover,

A't9JIA 9JI

for all t c- R.

PROOF. If Bc-Y(.5) then, by spectral analysis, the functions tc- Ri-+(0,A"BA-"P)
are continuous and are bounded by 11 B 1111 tP 1111 (p 11 for all  , 9 c- -5. Thus by integration
of bilinear forms one can define the transform I,(B), of B, for each A > 0 by

IA(B) = A- 1/2 (it
et + e-

AiIBA - it.

Now take 0, (p c- D(A 1/2) (-) D(A- 1/2 ) and consider the function

f(A) (A- 1/20, IA(B)A 1/2(p) + A(A 1/20, IJB)A -1/29)

dt JA - 1/2(A-( 1/2)- ito, BA( 1/ 2) -11

- .
et + e-tf

+ AI/2(A( 1/2)- i'o' BA-( 1/2) - it9
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Using the spectral decomposition of A,

A = fdEA (p) y,

one finds

f(A) = f dt
Ait fd2-(EA (p)o, BEA (p) o)

/1 i'f  P  1/2+ YA /2 .e" + e P) IUA)  p )'
But the domain restrictions on 9, 0 allow interchange of the order of integration
and one has

P
1/2 tpA 1/2 dt tPA it

f(A) = fd2(EA(p)o, BEA(p)9) +  p f e.1 + e-.t  p

= fd2(EA(p)o, BEA(p)9) (0, Bq),

where the first step uses the Fourier relation quoted before the theorem. Thus as a

relation between bilinear forms on D(A' /2) n D(A- 1/2) one has

A- 1/2 IA(B)A 1/2 + AA 1/2 I,(B)A -1/2
= B.

It follows easily from the definitions that the operators (D- 1/2 + AD 1/2 ) and I;L on
Y(.5) commute, hence it follows from the last relation that 1. = (D- 1/2 + AD 1/2)-l.

Comparison with Lemma 2.5.13 then establishes that the relation between A'
and A, has the inverse

A., = IA(JA'J).

Now A., c TZ and hence if B'c 9J?'

( , [B, I).(JAJ)] p) = 0.

Setting A = eP and using the definition of IA one deduces that

dt
e'P'

[B', A"JA'JA-"]T) = 0
e" + e

for all p c- R. By Fourier transformation one concludes that

A"JAVA c 9A" = 9N.

Setting t = 0 yields
J9WV C 9A.

But by Proposition 2.5.11 the conjugation of the pair (9k, 0) is the same as the con-

jugation of the pair (9W, Q). Thus, by the same reasoning,

JW g; 9R.

Using j2 we find 9W - J9N'J g 9W, which gives the fundamental result

J9YJ = 9x'.

Now because JT?'J = 9A one deduces that any element A c 9N has the form A = JAV,
where A'c 9JI'. Thus by (*)

A"AA c 9W.
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Remark. We have shown that the elements A. and A' of Lemma 2.5.12 are

related by AA = IA(JA'J) and by Fourier transformation one has

cc

A"JA'JA-" = 7r-' cosh(nt) dA A - ((1/2) +")A A c- 9Y,f,
0

where the integral is in the weak distribution sense.

Definition 2.5.15. Let 9JI be a von Neumann algebra, (o a faithful, normal
state on 9R, (.5, 7r, Q,,,) the corresponding cyclic representation, and A

the modular operator associated with the pair (7r,,(M), Qj. Theorem 2.5.14
establishes the existence of a a-weakly continuous one-parameter group
t --+ a,' of *-automorphisms of TZ through the definition

a,'(A) = 7r,,,'(A"7rjA)A-").

The group t  -* a,' is called the modular automorphism group associated with
the pair (9JI, (o).

The modular automorphism group is one of the most useful elements in
the further analysis of von Neumann algebras. It is also of paramount
importance in applications to quantum statistical mechanics (see Chapters 5
and 6) because the equilibrium dynamics is usually given by a modular group.
In this latter context the modular condition

(A' /27rjA)Q,, A1/27r,,,(B)Q,,,)

(7rjB*)K2,

is of utmost importance. Note that in terms of the modular group, evaluated
at the imaginary point t = i12, this condition has the form

(O(Ui12(A)a_i12(B)) = (o(BA).

EXAMPLE 2.5.16 If 1)N = Y(.5), with .5 separable, then each normal state 0) is of
the form

(o(A) = Tr(pA)

and (o is faithful if, and only if, p is invertible (Example 2.5.5). in this case one may
calculate that the modular group is given by c,(A) = p"Ap-". For example, the
modular condition is satisfied because

(o(BA) = Tr(pBA) = Tr(p(p-' /2 ApI /2)(PI/2Bp -1/2)).

(This condition in fact determines 6r uniquely, see Theorem 5.3.10.)
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2.5.3. Integration and Analytic Elements for
One-Parameter Groups of Isometries on

Banach Spaces

The construction of the self-dual cone discussed in the introduction to this
section proceeds with the aid of the modular group described in the previous
subsection. In order to fully exploit this tool we need some general results on
one-parameter groups. Such groups will be studied in detail in Chapter 3
and the preliminary results of this subsection will again be of use.

We consider a complex Banach space X and a norm-closed subspace F
of the dual X* of X such that either F = X* or X = F*. In the latter case we

write F = X* *

Let a(X, F) be the locally convex topology on X induced by the functionals
in F.

Definition 2.5.17. A one-parameter family t c- R of bounded, linear
maps of X into itself is called a u(X, F)-continuous group of isometries ofX if

(1) Tt I +t2
= TtlTt2 5

t 15 t2 c- R, and -ro = 1

(2) 11,rtIl = 1, t c- R;
(3) t i--+ -rt(A) is u(X, fl-continuous for all A c- X, i.e., t  -4 q(-r,(A)) is

continuous for all A c- X and q c- F;
(4) A  -4,rt(A) is a(X, F)-cr(X, F) continuous for all t c- R, i.e., q -r, c- F

for q c- F.

Note that if F = X*, (4) is automatically satisfied. In any case, (4) implies
that we can define a one-parameter familyr,* of maps of F by (,rt*q)(A) =
q(,rt(A)). It is then easy to verify that t is a a(F, X)-continuous group
of isometries of F. We will see later (Corollary 2.5.23) that ifF = X*, then (3)
amounts to the requirement that t be strongly continuous, i.e., t  -+ -r,(A)
be continuous in norm for each A c- X. IfF = X* we refer to'r, as a Co-group.
If F = X* we call rt a Co*-group. The principal groups considered in this
book fall into one of the following three categories:

(1) strongly continuous unitary groups on Hilbert spaces, i.e., X = F
where .5 = .5* is a Hilbert space;

(2) strongly continuous groups of *-automorphisms on C*-algebras.
These are automatically isometries by Corollary 2.3.4;

(3) weakly continuous groups of *-automorphisms of von Neumann
algebras, i.e., X = T1, F = 931, In this case, (4) is automatically
satisfied due to Theorem 2.4.23. Note that if t F-+ U, is a strongly
continuous group of unitary elements such that U, TIU,* -- 9M for all
t, then it is easily established that t  -o -r,(A) = UtA U,* is a weakly
continuous group of *-automorphisms of 9M.

Proposition 2.5.18. Let t  -4 Tt be a u(X, F)-continuous group of iso-
metries, and let y be a Borel measure of bounded variation on R. Itfollows
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thatfor each A c- X there exists a B c- X such that

q(B) q(,r,(A)) dy(t)

for any q c F.

This result allows us to introduce a notation for the averaging process
which indicates more clearly its nature.

Definition 2.5.19. If A and B are related as in Proposition 2.5.18 we write

B = f-c,(A) dy(t)

PROOF OF PROPOSITION 2.5.18. First note that the convex closure of any
u(X, fl-precompact subset of X is u(X, F)-compact. If F = X, this follows from

Alaoglu's theorem; if F = X* it follows from the Krein-Smulian theorem.
Because of the estimate

f q(,c,(A)) dy(t) < JJAJJ Ilyll JJqJJ

there exists an.f c- F* such that

f(q) = [q(-r,(A)) dy(t), q e F

(if F = X,, this ends the proof).
To show the existence of a B c- X such that f(q) = q(B), it suffices to show that

f is c(F, X)-continuous. Now by Mackey's theorem the a(F, X)-continuous func-
tionals of F are just the -r(F, X)-continuous functionals, where -[(F, X) is the Mackey
topology on F. This last topology is defined by the seminorms

q - sup I q(c) 1,
CEK

with K ranging over all convex, compact, circled subsets ofX in the G(X, F)-topology.
(Circled means that if A c- K and A c- C with I A I = 1, then AA c- K.) Now assume first
that p has compact support contained in [ - A, A]. By continuity of the map ,,, t  -+

Tr,(A), the set IT-c,(A); I T I = 1, t c- E - A, A] I is compact in X, and hence its convex

closure K is also compact. The estimate

lf(q)l :!  111t1l sup lq(-r,(A))l
t.f-A,A]

then implies that

I.A01 < 11/-'11 SUPM01.
C c- K

Hence f is r(F, X)-continuous. Thus f is a(F, X)-continuous and the existence of
B is established.

If y does not have compact support, pick an increasing sequence JKJ of compact
subsets of R such that (R\K,,) 0. But then for each n we can find a B,, c- X such
that

q(B,,) = q(T,(A)) dy(t), q c- F.
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The estimate

q(B,,) - f(q) I :!! 11 q 1111 A 111 y I (R\K,,)

then implies that JBJ is a norm Cauchy sequence in X and the limit.. B = hm,, B_
satisfiesf(q) = q(B).

Note that Proposition 2.5.18 is valid under more general. circumstances
than stated, e.g., property (4) in the definition of -r, is superfluous, and the

only properties of F used are:

(i) 11 A 11 = sup{ J?I(A) 1; q c- F, 11 q 11 < 11;
(ii) the u(X, fl-closed convex hull of every c(X, fl-compact subset of X

is a(X, fl-compact.

Definition 2.5.20. Let t  - -c, be a a(X, F)-continuous group of isometries.
An element A c- X is called analytic for r, if there exists a strip

IA = {Z, JIM ZI < Al

in C, a functionf ; I).  --+ X such that

(i) f(t) = r,(A) for t e R,
(ii) z  -* q(f(z)) is analytic for all q c- F.

Under these conditions, we write

f(z) = ul,(A), z C- IA.

We immediately show that the weak analyticity of condition (ii) is equiva-
lent to strong analyticity:

Proposition 2.5.21. If A is -r,-analytic on the strip I;., then A is strongly
analytic on IA, i.e. iff(z) = az(A) then (ii') is true:

(i0 1iMh- 0 h - '(f(z + h) - f(z)) exists in norm for z c- I

PROOF. if z c- I, let C be a circle around z with radius r such that C g 1A, and let

K be the ball around z with radius r/2. For any x c- K we have

q(f(X)) =
q(f(y))

dy, q c- F,
27ri fc y - x

by Cauchy's formula. Hence if z + h, z + g c- K,

(h - g) -jh - I (q(.f(z + h)) - q(f(z))) - g(ijff(z + g)) - tjff(z))) I

f q(f(y))(y - z - h)-'(y - z - g)-'(y - z)-' dy.
276 C
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Now, for fixed q the absolute value of the right-hand side is uniformly bounded in

h and g, because K has a positive distance r/2 from C. Thus, by the uniform bounded-

ness theorem, there exists a constant 7 such that

I f(z + h) - f(z) f(z + g) - f(Z)
sup < 7.

jh1:5 r, jgj:5 h - g h 9

The completeness of X implies that (dldz)f(z) exists.

Proposition 2.5.22. If t  -+ T, is a c(X, fl-continuous group of isometries,
and A e X, define

A,, nf-rt(A)e _ t2 A n = 1, 2_in7E
It follows that each An is an entire analytic element for -c, 11 An 11 < 11 A 11 for
all n, and A,, --+ A in the u(X, fl-topology as n -+ co. In particular, the 'r,-

analytic elementsform a u(X, fl-dense subspace ofX.

PROOF. Proposition 2.5.18 implies that

Mz) = nf-c,(A)e - n(t - Z)2 dtinIr7 
is well defined for all z e C because t  - e

-)2 c L'(R) for each z.

For z = se R we have

jn(S) = nf r,(A)e - n(t - S)2 dtin7E7777
=

n

-r,,,(A)e- n, 2dt  'T
7r .

= 'Es
n

-c,(A)e- n(2 dtin7E7( IT
f

But for q c F we have

= rs(An),

q(Jn(z)) - nfq(,r,(A))e - n(t - Z)2 dt.in7[7E7E
Since lq(-r,(A))l :!! , [jqjj JJAJJ it follows from the Lebesgue dominated convergence
theorem that z q(fn(z)) is analytic. Hence each An is analytic for -r,.

Next, one derives the estimate

An SUP 'CI(A) In fe-nj2 dt
IT

t
7E

Next note that

q(An A) - in fe - nt2(q(,rt(A)) - q(A)) dt
7[
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for all q c- F. But for any E > 0 we may choose 6 > 0 such that I t < 6 implies
q(T,(A)) - q(A) I < E/2. Further, we may subsequently choose N large enough that

N f e-"2dt <

1
 r7l7E It I  :b 411qll IlAll

It follows that if n > N we have

I q(An - A) I <
n f e

`2 1 q(-r,(A)) - q(A) I dtIn7r717r 111:5,5

+ nf e`2 I q(T,(A)) - q(A) I dtin7Z7Z7EII  :b

< f e
`2 dtIn7[n2 7E 1

+ 211qll IIAll
n f e

" dtin7r7rIT
< - +

2 2

Hence An A in the u(X, fl-topology.

Corollary 2.5.23. If t  -* T, is a u(X, X*)-continuous group of isometries,
then t  --+ T, is strongly continuous, i.e., t   T,(A) is continuous in norm for
each A c- X, and X contains a norm-dense set ofentire analytic elementsfor T,

PROOF. By Proposition 2.5.22 the set of entire elements for T, forms a U(X, X*)-
dense subset of X. This subset is clearly a subspace and hence it is norm dense in X

by a simple argument using the Hahn-Banach theorem. (If the subspace were not

norm dense then there would exist a nonzero linear functional which vanishes on

the norm closure of the subspace. But this contradicts the a(X, X*)-density.) But if A

is an analytic element, then t  -+,r,(A) is norm differentiable by Proposition 2.5.21

and hence t F-+ -r,(A) is norm continuous. Finally, for a general A C- X we can find a

sequence An of analytic elements converging to A and estimate

JIT,(A) - All < 11-r,(A - An)jl + JIT,(An)- Anll
+ 11 An - A 11
2 11 An - A + -r,(A,,) An

Corollary 2.5.24. If t is a a(X, X*)-continuous group of isometries

then the set Y of elements A such that t  -+ -r,(A) is norm continuous is a

norm-closed, a(X, X*)-dense subspace ofX, and Y is the norm closure ofthe
entire analytic elementsfor T,

PROOF. If Yo is the norm closure of the entire analytic elements, then 'r I y. is strongly
continuous by the same proof as in Corollary 2.5.23, and Yo is a(X, X*)-dense
in X by Proposition 2.5.22. Now if A is an entire element for T one sees easily that
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T,(A) is entire for z c- C. Hence the entire elements for T I yo coIncide with the entire

elements for T. Since Y is the norm closure of the entire elements for T I y, by Corollary
2.5.23, it follows that YO = Y

Finally, note that if -c,(A) = A"AA-" is a weakly continuous group of

*-auto-morphisms ofa von Neumann algebra, where A is a positive, invertible

selfadjoint operator, then

T (A) = A'zAA-'z

for each analytic A. Both sides of this equation are viewed as bilinear forms on
the entire vectors of t  -4 A". The equality follows from the fact that a function
which is analytic in a strip around the real axis is determined by its restriction

to this axis. This simple fact will be frequently used in the next subsection.

2.5.4. Self-Dual Cones and Standard Forms

Throughout this section 9Y denotes a von Neumann algebra on a Hilbert

space fn with a cyclic and separating vector Q. We use A and J to denote

respectively, the modular automorphism and the modular conjugation
associated with the pair (TI, Q). The associated modular automorphism
group is denoted by a, and 9NO is the *-algebra of entire analytic elements for

a. Finally, j; 9A  -* TV is the antilinear *-isomorphism defined by j(A)
JAJ.

Definition 2.5.25. The natural positive cone _91 associated with the pair
(9A, Q) is defined as the closure of the set

{Aj(A)K2; A c- TIJ.

Note that this cone corresponds exactly to the positive cones discussed
for the abelian and trace examples in the introduction to this section. The

cone is the analogue of the positive L2-functions in the case of an abelian

algebra.

Proposition 2.5.26. The closed subset _11? fn has thefollowing properties:

(1) A1/49y+Q=A- 1/49N,+ f2 = A' /49y +K2 = A- 1/49N,+ Q and hence
1 0 is a convex cone:

(2) A Yfor aII t c- R

(3) iff is a positive-definitefunction thenf(log A)_9 s 9;
(4) if  c- -9, then J =  ;

(5) ifA c- 931, then Aj(A)-IP - 80.
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PROOF. (1) For A c- 9310 we have

A1/4AA*Q = 6
- il4(A),g - i14(A *)f2

= 07-i/4(A)'9i/4(A)*Q
= 07

- i14(A)JA 1/2 o7i/4(A)Q
= '7

- i14(A)Jo7 - i/4(A)Jf2
= Bj(B)Q,

where B = 07-i/4(A). Since 17-i/4(9NO) = 9NO and 9NO is strongly* dense in 9N it

follows from this relation, and Kaplansky's density theorem, that

Bj(B)Q c A1/4 )Jj +t2 s A1/4 Vj
+
f2 for all B c- 9N.

Thus

0 /4k).R
+ Q 1/49JI

+
Q.J?P g A 1 - A

Conversely, 9310+ is strongly* dense in 9W, by Kaplansky's density theorem, hence

T10 +
Q is dense in 9W

+
Q. For 0 c- 9W +

Q we choose a sequence A,, C- Vo + such that

A,, Q -- 0. Then A1/4A,Q c- _9 by the first relation in this proof. But

JA' /2 A,,Q = A,,Q --+ 0 = JA' /20
and hence

11 A' /4(o - A,, 0)112 = (0 - A,, 0, A' /2(o _A,, f2)) --+ 0.

1/4 1/4 )W_QThus A c- -, O and A 0 g;  ?P. Combining these two conclusions yields

 Y = A 1/49JI+Q = Al/4M+Q.

If   O' is the natural cone corresponding to (9N', Q) then is the closure of the

elements of the form

A'j(A')Q = j(j(A))j(A')Q
= j(A)AQ
= Aj(A)Q,

where A = j(A') c- 9N. Hence Since A` is the modular operator correspond-
ing to (9JI', Q), it follows from the first part of the proof that

1141 = 9' = A - '/'931'+ Q = A - 1/4 pj
+ Q.

This completes the proof of property (1).
(2) Follows from (1) and the computation

A"A 1/49)j+Q = Al/4Aitgjq+n
= A 1/46 (qjj +)Q = A' /49JI

+ 0.

(3) Follows from (2) by noting that Bochner's theorem implies that a positive
definite function has the form f(x) = I e'tx dy(t), where y is a positive finite Borel

measure on R. Hence f(log A) f A" dy(t), and (3) follows because _611 is a closed

cone.

For (4) note that

JAj(A)Q = j(A)AQ = Aj(A)K2,

and for (5) that

Aj(A)Bj(B)Q = ABj(A)j(B)Q = ABj(AB)Q.
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Next we prepare the ground for the proof that JV is self-dual.

Proposition 2.5.27. (1) Let q c- Sn and assume that (q, AQ)   ! Ofor A C- V,.
Then there exists a positive, se fadjoint operator Q' affiliated with M'
such that ?7 = Q'Q.

(2) 9Y,Q and 9Y',Q are dual cones in -5, i.e.,

9X,Q = { c- .5; q) Ofor all q c- TVJ21,
9y"Q = J C- S-v ; q) Ofor all q e 9X,QJ.

PROOF. (1) Define an operator A' on D(A') = MQ by

A'AK2 A?7, A c- 9JI.

For any unitary U c- 9W, one has

A'UAK2 UAq = UA'AK2,

i.e.,

UA'U* = A.

Moreover,

(AQ, A'AQ) = (AQ, A q) = (q, A*AQ)  ! 0.

Thus A' is a positive, symmetric operator. Let Q' be the Friedrichs extension of A'.
Then Q' is a positive selfadjoint operator and, by the uniqueness of the Friedrichs
extension,

UQ'U* = Q,

for all unitary elements in 9JI. Hence Q' is affiliated with 9N' and

Q'Q = A'f2 = q.

(2) First for each subset K .5 introduce the notation

K' = {q c-.5; ( , il)  !! 0 for all  c- KI.

But if A c- M, and A'c- 9N', then

(AQ, A12) = (Q, A 1/2 A'A 1/2Q) > 0.

Thus 937
, Q g W,Q

v

and 9JI', Q  9JI
,
Q v. Now if q c- 9k,-Q v

it follows from

part (1) of the proposition that q = Q'92 for a positive, selfadjoint Q' affiliated with 9y'.
But if E,,' is the spectral projection of Q' corresponding to the interval [0, n] then

Q'E,,'c- W, and QE,'K2 = QQ Thus q c- 9N',Q and M,
v

= 9N',Q.

We now are able to establish the most important geometric properties of
the cone 8"P.

Proposition 2.5.28.

(1) 31P is a se f-dual cone, i.e., 89 where

9 v
= fq C- .5 q) > 0for a11  C- -,-"P
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(2) Y is a pointed cone, i.e.,

9 r) ( - 6-0) = {O1.

(3) If J then  has a unique decomposition  2, where

 D 2c--,'Pand j 1  2-
(4) .5 is linearly spanned by -9.

PROOF. (1) IfAc-T?,,A'c-9JI'+ then

(AI/4AQ, A - 1/4A12) = (AQ, AQ)
= (0, A 1/2AA 1/2Q) > 0

so -9 9 by Proposition 2.5.26(l). Conversely, assume  c- i.e., 0 for

all q c- 9. Put

f.(Iog A) ,

where fjx) = e
-X2/2n2

.
Then  . c- n,,,E, c D(A') and

Let q c- 19. Sincef, is positive definite f,(Iog A)q c- by Proposition 2.5.26(3). Thus

( ., q) = ( , f,, (log A)q)  !! 0, q C- 89;

Let A c- 9R+. Then A 1/4AQ c-86A' and consequently

(A 1/4  , An) = A' /4Af2)  !! 0.

1/4 " C TThus A 'R+ fj 9K, Q by Proposition 2.5.27(2). Hence  n C A - 1/4931'
+
Q - 9.

Since -0 is closed,  limn  n c- ! O and the self-polarity of 9P is established.

Properties (2), (3), and (4) follow from the fact that -01 is a self-polar cone alone.

(2) If  c 9 r) ( - 9) = _9 r-) ( -9 v ) then ( , -  )  !! 0, hence  = 0.

(3) Assume J =  . Since 9 is a closed convex set in a Hilbert space there is a

unique c- 9 such that

infI c- 011.

Put  2  I -  . Let q c- and A > 0. Then  j + Aq c- 9 and

gj _  112 < g I + 11 2,

11 2 < + AqI12 .
But this equivalent toi.e., 11  2

-
11 2

A2111112 + 2A Re( 2, 0 > 0

for all A > 0. Hence one must have Re( 2, 0 > 0. Now J 2 =  2 by assumption and

Jq = q because il c- -9. Thus

( 2, 0 = (R2, J0 = ( 2, 0

and ( 2, q) must be real. Therefore ( 2, 0  ! 0. Since 9 = 9v it follows that  2 c-'P-

Hence  =  I
-  2,  1,  2 C- We now show I -L  2 -

Since (1 - A) 1 c- 89 for
0 < A < I one has

 112 < 11(l A)  112'

 2 11 2 <11  2 gj 11 2.
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Again this is equivalent to

A2 gl 112 - 2A( ,,  2) 0

and one must then have ( ,,  2) < 0. But both  , and  2 are in _9 and hence ( ,'  2)
0. To show uniqueness of the decomposition, consider two decompositions

 1 -  21  13  2 6 6-03  1 1  23

and

11 - q23 q11 q2C_-'  ', q1 -L q2-

Then one has

 1 - q1  2 - q2

and hence

gl qJ112 = ( J q1,  2 - q2)
= _01,  2) - ( I, q2) < 0-

Thus = q, and consequently  2 = q21 i.e., the decompositions are identical.

(4) If  is orthogonal to the linear span of 9 then  c 8V v
= 8P, hence 0

and  = 0.

EXAMPLE 2.5.29. Let 931 = Y(.5) with .5 finite-dimensional and consider the
normal state w given by the density matrix p, i.e.,

w(A) = Tr(pA)

for all A c- 931. In Example 2.5.5 we demonstrated that o) is faithful if, and only if, p is

invertible. Using the identification of the modular group, a,'(A) = p"Ap-" given by
Example 2.5.16, one finds that

'I = 7r.(PI/4A*Ap- 1/4)g2. ,
A c- 9JI1. ' = %;  A

The duality condition arises because

( B,  A) = Tr(p(p-' /4B*Bp 1/4) (P 114A *AP - 1/4))
= Tr(p 1/2B*Bp 1/2A*A)
= Tr((Bp 1/2 A)*(Bpl /2 A))  !! 0.

Proposition 2.5.30 (Universality of the cone _91).
(1) If c- _9 then  is cyclic for 9N if, and only if,  is separating for T1.

(2) If c- 9 is cyclic, and hence separating, then the modular conjugation
J, and the natural positive cone -9, associated with the pair (M,
satisfy

J4 = J, 1-1P4

PROOF. (1) If  c-91 is cyclic for 9JI then J is cyclic for 9N' = J9J1J. Hence J 
is separating for 9A, and conversely.

(2) Let S, be the closure of the map

A F-+ A* , A c- 9W,
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and F, the closure of the map

Al i-, A* , A' e 9W'.

For each A e 9W one has

JF JA = JF4(JAJ) 
= J(JAJ)* 
A* = SO .

Hence S, - JF4J.
By a symmetric argument

F g JS4J
and consequently

JS4 = F J.

But then

(JS4)* S4*J = F4J = JS4
and hence JS, is selfadjoint.
We next show that JS is positive. As JS, is the closure of its restriction to 9jl , it4

is enough to show that (A JS4 A 0 for A e 9R. But

(A , JSO ) (A , JA* )
( , A*j(A*) ) > 0

since both  and A*j(A*) are in 9.

Now we have S j AI/2 = j(jS4). Thus by the uniqueness of'the polar de-4

composition it follows that

J4 = J.

To prove the last statement of the theorem we note that 9, is generated by elements
of the form

Aj4(A) = Aj(A) .

But  e 80 and hence Aj(A) e 19 by Proposition 2.5.26(5). Consequently
P

4

But

CIO
4 4

and hence

94*

After this discussion of the geometric properties of the natural positive
cone 9, we next show that all positive, normal forms on 9JI are represented
by a unique vector in the cone. As a corollary one deduces that all auto-

morphisms of 9% are implemented by unitary elements which leave the cone

invariant.
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Theorem 2.5.31. For each  c- 81P define the normal positiveform w4 c- T1* +

by
w4(A) A A C- T7.

Itfollows that

(a) for any w c- T1* + there exists a unique  c- 9 such that w = w4,
(b) the mapping is a homeomorphism when both 19 and 9x*, are

equipped with the norm topology. Moreover, thefollowing estimates
are valid:

2 < 11 (04 _ 0)'I + q11.

Remark. In the theorem we have defined a mapping c- 9 i- w, c- 9X*,.
We will denote the inverse mapping by co F-4  (co). One can demonstrate that
co  -+  (w) is monotonously increasing and concave with respect to the
natural ordering of the cones 9JI* + and 80. One can also derive a formula for
 (o)) if w < Cwn for some constant C. In that case co(A) = (A12, AAQ) for a

unique A'c- TU, by Theorem 2.3.19. Then  (w) = I A'A - 112 1 f2' where
I A'A -1/21 is the positive part of the polar decomposition of A'A - 1/2. We omit
the proofs of these statements.

We next state an important corollary of the theorem:

Corollary 2.5.32. There exists a unique unitary representation

a c- Aut(M)  -* U(a)

of the group Aut(M) ofall *-automorphisms of9N on .5 satisfying thefollow-
ing properties:

(a) U(a)A U(a)* = oc(A), A c- 9N
(b) U(oc)_0'P s  -0 and, moreover,

U((X) ((O) = 4a'(w)), (0 C- 9X*+'
where (Lx*o_))(A) = co(a(A));

(c) I Va)' J1 = 0.

The mapping a c- Aut T?   U(a) c- U(Aut 9R) is a homeomorphism when
Aut 9J? and U(Aut 9JI) are equipped with their norm topologies. It is also a

homeomorphism when U(Aut U) is equipped with the weak, strong, or

strong-* topology (these are equivalent) and Aut 9JI is equipped with the

topology ofstrong convergence ofAut(9J?)* on 9N, (a - # in this topology if,
and only if, Lx*((o)  --+ fl*(o)) in normfor each w c- 9JI*.)

Remark. One can also obtain a partial converse. If U is a unitary element on Sv 
such that U-9 = -9, then there exists a projection E c- 9W r-) 9R such that

U9J1 U* = 9JIE + 9JI'(1 - E).

This will be established in Theorem 3.2.15. (Note that all the algebras
ME + 9R'(1 - E) have the same natural cone _91.)
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The proof of the theorem and its corollary is rather long. It relies upon
several straightforward but tedious calculations combined with an ingenious
technique of comparison which involves doubling, or quadrupling, the

system. We divide the main burden of the proof into several lemmas which
the reader might be well advised to omit on a first reading.

Lemma 2.5.33. Let  j and  2 be cyclic and separatingfor T? and let -54 be

a four-dimensional Hilbert space with an orthogonal basis qij, i, j = 1, 2.

Next let a be the 2 x 2 matrix algebra generated, on -54, by the matrices Ej,
which are defined by Eij qkl = 6jk qil . Moreover, let a' be the commutant of
i.e., the 2 x 2 matrix algebra generated by those Fij such that Fijnkl
bit U. Finally, let R = -5 (D -54, nO =  1 (S) q I I +  2 (D q22, 91 = 0 0
and let Ujj; 5  -+ R be the isometry defined by Ujj =  0 qij.

Itfollows that 00 is cyclic and separatingfor % on R. The corresponding
involution, Sg2, associated with (%, 00) satisfies

U*SQ(, = U11S41UT1 + U21S4i,42 12 + U12S 2,41U21 + U22S42U22,
where S41,42 denotes the closure of the operator defined on 9W2 by

S41,42A 2 = A* ,, A c- T1.

PROOF. Any element A c- 91 has the form

A Y Aij (8) Eij,
ij

where A ij c- Ti. Thus

AQO = Alj l 0 qll + A12  2 (2) q1 2+ A21 1 0 q21 +A22 2 0 q22-

This shows that Q0 is separating and cyclic for 91, so we may define S,0 as the closure

of the map AQO  ---+ A*Q,, A c- 91. Using the above notation

A* = A*,, &Ell + A*21 OE 1 21 + A2*2 (D E2212 +A*20 E

and hence

A*Q0 = A*, l 0 q, I + A*1 2 0 q12 +A*2 I & 1121 +A*22  2 (D q22I -
2 1

Taking the closure on both sides one obtains the closability of Sand

U*SQ = UlA,"11 + U21S41, 2 12 + U12S 2,41U*21 + U22S42U*22-

Lemma 2.5.34. Adopt the same notation as in Lemma 2.5.33 and let
Al/2 be the polar decomposition Itfollows thatS41,42 = J41,42 41,42 of S41, 42

J11o = U11J4jU*11 + U21J4i,42U*12
+ U12J42941U2*1 + U22j42U*22t

and

Af2o = U11A41U*11 + U21A42,41 U*21
+ U12A 1,42U*12 + U22A42 U2*2
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PROOF. Viewing Sn., JQ., and Au,, as 4 x 4 matrices one sees immediately that the

right-hand side of (*) is an isometry of SI onto SI and that the right-hand side of (**)
is a positive selfadjoint operator. By uniqueness of the polar decomposition it is

enough to verify J,,.Af'l,' = S... This is an easy calculation.no

Lemma 2.5.35. Adopt the notation of Lemmas 2.5.33 and 2.5.34. There
exists a unique unitary element U" c- 9Y' such that Jfjo(l & E2JJQo
U' (& F21 andfor this unitary element

J42,41
= U'41 4,42 = J41U'*' J42

= U'4 U'*'

PROOF. Since j20 = 1, it follows from Lemma 2.5.34 that

J4 ,  2J 2,4 J42,4 J4 ,42 =1.

For  ij c .5 we then have

Jno(l 0 E
I )Jn. (Y_  ii qi  I I qI I +  21 q21

ij

(1 0 F, (  ij 0 qij
'J

Therefore

Jn.(l & E
1 )Jn,, F

1 1

and, by a similar argument,

JfI,(T & E22)JQo F2 2 -

But E21 is a partial isometry with initial projection 10 E, 1 and final projection
I & E22. Thus J,.(T & E21)J,,, must be a partial isometry with initial projection

SinceI & F,, and final projection T (2) F22 -

'

Jnfl (2) E2 I)Jfl(, C_ 91' = 9n' (2) iY

it follows that there exists a unitary element U'c- T?' such that

J,2fl 0 E2 I)JQ,) = U' F21

Next, for  c- we use Lemma 2.5.34 to compute

q12 = JQJ & q21)
= Jno(T & E2 1) & q 11)
= J,,)(I & E2 1)Jno JQJ & q 11)

(U' (D F21)(J 1 (D qI 1)

(U'J  O 0 q12-

Hence J42, U'J,.. Taking the adjoint we obtain J4 ,1'2 =J4 U'*. Finally, for c

(J420 0 q22 = JQJ & q22)
= J,,,(l 0 E2 I)Jf2o JDJ & q 12)
= (U'& F21)(J4 " & q21)
= (U'J i "0 & q22 -
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Therefore

i 2 = U'J
4 U'*.

Next, for any pair  1,  2 of vectors which are both cyclic and separating for
9W we let W2,  j denote the unitary element U'c- 9W obtained in Lemma
2.5.35.

Lemma 2.5.36. If  1,  2 are cyclic and separating for 9W and U' C- 9jl' is

unitary then itfollows that

OW 2,  1) U'W2,  J-

PROOF. For A e 9JI one has

SU' 2, 4 A , = A*U' 2 U'A* 2 = U'S42,41A j.
Hence

Therefore

SU'42,41 U'S42,4C

JU'42,4 UfJ42,41*
Now the result follows from Lemma 2.5.35.

Note that the last two lemmas imply that 0 satisfies a chain rule:

W35  1) = W3,  2)W2,  1)-

Lemma 2.5.37. If  is a cyclic and separating vector for 9Y the following
three statements are equivalent:

G) W, K2) = I;

PROOF. (i) => (ii) By Lemma 2.5.35, if 0( , Q) = T then J, = jn = J 'n = J.
Hence for A c- 931

( 5 Aj(A)Q) = (A* J(A)Q)
= (S4, n AQ, JAK2)

1/2
= (JA4, f, AQ5 JAQ)
= (AQ, A 1/2 AQ)  !! 0.41 n

Thus  is in the dual cone of -90, which is equal to 9,.
(ii) => (iii) This is Proposition 2.5.30(2).
(iii) => (ii) This implication is trivial.

(i) If  c- -90 then for all A c- U

0 < ( , AJnAQ)
= (A* , JOAQ)
= (S , n AQ, Jn AQ) = (AQ9 Jj S ' n AQ).
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Hence

Jn S4, "?I)  !! 0, q c D(S4, n).

By Lemma 2.5.33 and Proposition 2.5.9, the adjoint of S,., is the closure F,,n of
the mapping

A'Q F-+ A'* A' c- 9M.

Thus for A c- 937

JnF4,,J,jAK2 = J,F4,nJnAJnQ
= Jn(JOAJn)* 
= A* = S4,nAQ,

where we have used Jn Hence

S4,n g JnF4,nJn.
But by a symmetric argument

F4,n - JnS4,nJKj
and consequently

J,S4,0 = F4,nJn.
Thus

(j"S4'n)* = S*,nJn = F4,0Jn = JQS ,jj.
We have proved that J,S4,, is positive and selfadjoint. By the uniqueness of the

polar decomposition it follows that J, = J,,, because S,,, = J,(J,S,,,). Hence

0( , K2) = I by Lemma 2.5.35.

The next lemma will prove Theorem 2.5.31(a) for a dense set of forms in

9J?*,. The complete theorem will follow from this partial result and the
estimate in Theorem 2.5.3 1 (b).

Lemma2.5.38. Let ?I c- be a vector which is cyclic and separatingfor 9M.

Itfollows that there exists a unique vector  c- -9 with the property

(q, Aq) A )

for all A c- 9N.

PROOF. Let U' = O(q, 92), and set U*q. Since U' is a unitary element of 9X',
one has

(q, Aq) A )

for all A c- 931. But by Lemma 2.5.36

0( ' 92) = O(U'*q, Q) U'*O(q, 92) = I

and by Lemma 2.5.37 one concludes that  c 9.

To prove uniqueness, assume  'c--91 with w,, = w,. But  ' is separating for 9N
and consequently cyclic by Proposition 2.5.30. Thus Off, Q) is defined. Since co4, = o)4
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there exists a unitary U'c- 91such that U' , by Theorem 2.3.16. Thus by Lemma
2.5.36

off, Q) = O(U' ' Q) U.

Since  'c- 9 it follows from Lemma 2.5.37 that U' 1; thus

Lemma2.5.39. The set ofpositiveforms a), where q is cyclic and separat-
ing for 9A, is norm dense in 9Y +

112 0PROOF. If a) c- T?* + then co has the form co(A) =Yn ( - A J, withy- n 11  n
by Theorem 2.4.21. Each  nmay be approximated by a vector of the form An'Q,
where An'c- 9N'. But for A c- 9W +

(A 12, AAJ2) = (A 1/292, A'*An'A 1/2Q)n n

< 11 A,,' 112 (fl, AQ).

Thus the set of positive forms o) such that

w(A) < a(n, AQ), AEF 9J7
+

for some constant a, is* norm dense in 9X* + .
But by Theorem 2.3.19, the latter states

have the form

w(A) = (A'n, AA'Q)

where A'c- 9X'+. Now each A'c- 9JI'+ can be approximated in norm by an invertible
B'c- 9JI'+. Set q = B'n. Then q is cyclic and separating for 9R, by the following
argument. If Aq = 0 for A c- T? then 0 = B'- 'Aq = AB'- lij = AQ, thus A 0 and

q is separating for 9JI. But if A'q 0 for A'c- 9JI' then A'BK2 = 0 and Aff 0. The

invertibility of B' implies that A' 0 and q is separating for 9j?', and hence cyclic
for 9JI by Proposition 2.5.3.

Next we turn to the estimate in Theorem 2.5.3 1. First we need a lemma.

Lemma 2.5.40. Set -5sa = 931s,, = 9JI+-931+. Then the map (D;
9)lsa  - -5sa; A F- A1/4AQ is an order isomorphism of9JIs,, on the set of c-.5s.
such that

- 00 <  < an

for some constant a > 0 (the orders are those induced by the cones 931 +
and 9).

PROOF. We have A c- 9Y +
=:::,.A 1/4AK2 c- 9 by Proposition 2.5.26. Conversely, if

A = A* and A 1/4AQ c _6"P then for any A' c- 9X'

(A12, AATI) = (A'*AQ, AQ)
= (A- 1/4 1 A' 12n, A 1/4AQ)  ! 0.

Hence A > 0.

Thus 0: "sa  --+ (D(Tisa) is an order isomorphism. Next we show that (D is a(TI, 9JI*)-
UQ ), .5) continuous (u(.5, f).) is the weak topology on .5). For A c-- 9J? we have

(I + A 1/2)AQ = AQ + JA*K2;
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thus

AQ (I + A 1/2)- '(AQ + JA*Q)

and

A1/4AQ (A 1/4 + A- 1/4)- 1(AQ + JA*Q).

Consequently, for q c- -1-5sa

(q, A' /4AQ) = ((A 1/4 + A - 1/4) -'q, AQ + JA*Q).

Since II(A 1/4 + A- 1/4)-111 :!! 1/2, the continuity statement follows.

Now assume - (A2 < aQ. By suitable renormalization we may assume

0 < < 0. Put

fjlog A) 

with fn(x) = e
-X2/2n2

.
Then c D(Afl) for all P c- C and by Proposition 2.5.26(3)

0 fn(log A) :!! f, (log A)Q = Q.
n

Now for any A'c- 9Y'+

(A - 1/4 n , A'Q) A - 1/4A'Q) > 0

since A - 1/4A'Q c- _19P. Hence by Proposition 2.5.27

A - 1/4 9X'+ 0 = gy 0.

Likewise, one finds

Q - A- 1/4  A- 1/4(n _  n) C_ 94 +
n

and thus, for A'c- W,

0 < (A- 1/4 n , A12) :!! (Q, A'Q).

Hence by Proposition 2.5.27(l) there exists an operator An c- M such that 0 < A,, I
and

A - 1/4 " = AnO

and therefore  n c- 0, where

0 = J(D(A); A c- 0 < A < I

Since JA; A c- Ms, 0 < A :!! I I is a a-weakly closed, and thus a-weakly compact,
subset of T11, and (D is a(M, continuous it follows that 0 is

compact. Thus IlMn  n C_ 93-

Lemma 2.5.41. For  , q c- 89,

jj - q112 < 11(,)4 _ Onll ::! jj _ q1I jj + q1J.

PROOF. The second inequality is valid for all q c-5 since

(co4 - wl)(A) = ff( - q, A( + q)) + + q, A(' -

2 (1

To prove the other inequality, assume first that + q is cyclic and separating.
Since  + q c- -9, _9 _4 by Proposition 2.5.30(2). Also

- ( + W :!!  - ?7 < ( + 0-
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Thus applying Lemma 2.5.40 with Q + q one deduces the existence of an

A = A* c- 931, with

I < A < I

and such that

A114 A( +

Hence

> (A)

( , A ) - (q, Aq)
Re( - q, A( + q))

114( 

As J( - q) q, and jA- 1/4
- A 1/4 J, one has4+17 -

4+17

A- 1/4( A' /4
4+q 4+n

Thus

> q, -L(A 1/4 + A- 1/4) q))2 4+17

> 2

because '(A 1/4 + A- 1/4)2

Now for general  and q in-9 we can find sequences A,,, B,,'c- TI'+ of entire analytic
elements for c' such that  , = A- 1/4An.0 --+  , qn =A-1/4Bn'K2 --+ q. By adding
E,, I to A,,', B,,'we may assume A,,'  !! e,, T > 0 and B,,'  !! 8,, 1 > 0. But then A,,' + B," >
2E,, T and so the A,,' + Bn' are invertible. Hence the A -1/4(A,,' + Bn)A1/4 C9jl' are

invertible and consequently  n + q" = A - 1/4(A,,f + B,,')fl is separating and cyclic for
TI. Thus

llw - - (9,jjI  ! 11 n _ qj2
and the first inequality of the lemma follows from the second by limiting.

END OF PROOF OF THEOREm 2.5.3 1. Part (b) is simply Lemma 2.5.4 1, while

part (a) follows from part (b), Lemma 2.5.38, and Lemma 2.5.39.

PROOF OF COROLLARY 2.5.32. Let a, 9A F---+ 9N be an automorphism, and let
 c- 6-0 be the vector representing the state

A 1--+ (10, cx-'(A)Q),

A (Q, (A)K2).

Then  is separating for 9N and hence cyclic by Proposition 2.5.30. Next, define an

operator U = U(oc) on 9JIK2 by

UAQ = cx(A) .

One has

11 UAQ 112 a(A*A) ) = (K2, A*AQ) = JJAQ 112
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and so U extends by closure to an isometry, also denoted by U. Since is cyclic, the

range of U is dense, hence U is unitary and U* = Ui.e.,

U*A = a-'(A)Q.

Now, for A, B c- 9W

UAU*B = UAc(-'(B)Q
= a(Aoc-'(B)) = a(A)B .

Hence

oc(A) = UAU*, A c- 9N,

which proves (a) with the identification U(a) = U. Next, note that

SU*A Soc-l(A)K2
a-'(A)*Q
a
- '(A *)Q
U*A* 

U*S A .

Hence by closure

or

JA1 /2 U* =U*J A!/2 =U*JA 1/2

UJ U* UA 1/2 U* = JA 1/2.

By the uniqueness of the polar decomposition UJU* J or, equivalently,

EU, J] = 0,

which proves (c). Now, using (c) and (a) we have for A c- M

UAj(A)Q = a(A)j(a(A)) .

Since  c- 30, we deduce from Proposition 2.5.26(5) and Proposition 2.5.30(2) that

U

If  p c- 9N* , we then have

(U (9), A U (9)) ( (9), U*AU (9))

( (9), a(A) (9)) = 9((x (A))
(ot - '*(9)) (A) = ( ((x - 1 *(9)), A  (a

for all A c- 9A. Hence, by the uniqueness of the representing vector in -9,

UOM9) =  (a - 1 *(9)).

This establishes (b), and also immediately implies that ot  --+ U(oc) is a representation
and that U(oc) is unique.

The continuity of the maps a  --+ U( ) and U(oc) " a in the various topologies
described in the corollary follows from Theorem 2.5.31 (b) and the fact that

11 U(X) - UO 11 = 11 (UM - UW)) 6 11 -
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The last equality results from the fact that each vector  c- .5 has a unique decom-
position (Proposition 2.5.28):

0 = 01 - 02 + 43 - 04),

where 01 102, 03 1 04, and the U(ot) respect this decomposition. The
equality of the weak, strong, and strong* topology on the unitary group U(5) on .5
arises from the identity

11 (V _ U)O 11 2 = ((V _ U)O, (V _ U)O)
= 2 11 0112 _ (VO, UO) _ (UO' VO).

Thus if V --* U weakly then V --), U strongly and, analogously, V* -+ U* strongly.



2.6. Quasi-Local Algebras

2.6. 1. Cluster Properties

In the preceding sections of this chapter we described the structure of general
C*-algebras and von Neumann algebras. Now we discuss a specific class of

C*-algebras, quasi-local algebras, and partially analyze a distinguished set

of states, the locally normal states, over these algebras.
The distinctive feature of quasi-local algebras is that they are generated by

an increasing net of subalgebras, the local algebras, and we are particularly
interested in states which have an approximate factorization property on

these subalgebras. Such factorizations are commonly referred to as cluster

properties and they are closely related to "purity" or "irreducibility" criteria.

Theorem 2.6.1. Let 91 be a C*-algebra on a Hilbert space Sv , with a cyclic
unit vector 91, and define a state co on Y(.5) by

co(B) = (K2, B92), B c-

Let {931J be a decreasing net of von Neumann algebras and define M by

n = n gw,,.

If 9N cz W' or if both T? -- Wand K2 is separating for W, then the follo-
wing conditions are equivalent:

(1) 9M consists of multiples of the identity;
(2) given A c- W there exists an ot such that

Ico(AM) - oj(A)oj(M)j < JIM11

for all M c- 9R,,;
(3) given A c- W there exists an ot such that

I a)(AM) - a)(A)co(M) I :  I(O(M*M) + W(MM*)}112

for all M c- TI..

PROOF. (3) =:::. (2) First remark that replacement of A by Aft. demonstrates that

the inequality of condition (2) could be replaced by

1(t)(AM) - (o(A)w(M)l < &JIM11.

118
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An analogous remark is valid for condition (3). Therefore (3) => (2) because

{0)(M*M) + W(MM*))112 < /2 JIM 11.

(2) => (1) If condition (1) is false then there exist A, B E W and M c- 9A such that

(K2, AMBK2) =A w(M)(Q, AB92).

Rescaling A one deduces that there exist A, B c- W and M c- T? such that

Ico(AMB) - w(M)w(AB)l > JIMIJ.

Thus if 9R c 91' then (2) is false and (2) => (1). If, alternatively, Q is separating for W",
and V - W ", and if 9)1 :0 CT, then there exists an MeM such that Mf2 =A a)(M)Q.
Thus there is an A c- 91 such that I (A *K2, (M - o)(M)T)0) I > JIM 11, i.e.,

Jw(AM) - w(A)co(M)l > JIMIJ.

It remains to prove that (1) =:> (3). This depends upon the following result:

Lemma 2.6.2. Let T? be a decreasing net of von Neumann algebras on a

Hilbert space .5 and define 9A by

n
C1

Assume n is cyclic for 9R, in -5, and that there exists a net of elements
M,,, c- 9JI,,, such that thefollowing weak limits exist:

 p = weak lim MJ1, weak lim M,,*n.
Ix at

Itfollows that T and T* belong to the closure 9AK2 ofthe set TZ.Q.

PROOF. Define N,, = (M,,, + M *)/2 and + T*)/2; then for A Ei T1,,' one

has

(A0, Q) = lim(AN,,Q, n)
P

= lim(AK2, NpQ)
p

(AQ, 0).

It follows that the same relation is valid for all A E I U But

U

Now let P e 931' be the projector with range TIK2. If A c- 931' one has

(AK2, PO) = (PAO, 0) = (PAO, K2)
= (A 0, PQ) = (A 0, Q) = (Afl, 0).

Thus 0 - PO is orthogonal to the dense set of vectors 93112 and

(P + 9
0 = PO C- 9M.

2
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A similar ar ument with N,,, replaced by N, = (M, - M,,*)12i and 0 replaced by9
0 - T*)12i gives

(P -  O

2i

and we conclude that 9, 9* c 9RQ.

Now let us complete the proof of Theorem 2.6.1, (1) => (3). Assume that (3) is
false. Thus there. exists an A c- 91" and, for every a, an M,, c- 931,, such that

I w(AMj - w(A)w(M,,) I > {W(M '*Mj + W(M"M *)j 1/2.

Now the right-hand side must be nonzero because w(M,,*M,,) 0 implies M 0 0,
and then the left-hand side is zero, which is a contradiction. Next define N,, by

N,, =
M"

JCO(M  *Mj + (j)(M M",*)11/2

and remark that

lw(AN,;,) - co(A)(t)(NJI > 1

and

w(N,,*NJ + co(N,,N,,,*) = 1.

The last condition implies that 11 N, Q < I and 11 N,,*Q 11 :!! 1. Hence, by weak com-

pactness of the unit ball of .5, there exists a subnet jN,,,j such that the following
limits,

 p = lim N,,,Q, lim N,', Q,

exist. Therefore

I (Q, A 9) - w(A) (Q, > 1.

Now we apply Lemma 2.6.2 to 931 and N,,,, N, *. There are two cases. Either: 9M - 91',
hence 9M -2 91", Q is cyclic for 9JI', and the lemma is applicable; or M g 91" and 0 is

separating for W". But in the latter case Q is then separating for 9R and cyclic for 9R'

by Lemma 2.5.3, and Lemma 2.6.2 is once more applicable. In either case, since 9
cannot be a multiple of 0 by the relation above, 9M -=A C , and (1) is false.

Next we want to define quasi-local algebras. These algebras are generated
by an increasing net JWj,,c_j of subalgebras which satisfy a number of
structural relations. In order to introduce this structure it is first necessary
to specialize the index set I. In applications the index set typically consists of
bounded open subsets of a configuration space R' ordered by inclusion.
This set is not only directed but has various other properties which arise from
the operations of union and intersection. We will need partial analogues for

more general index sets.
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The directed set I is said to possess an orthogonality relation if there is a

symmetric relation _L between pairs of elements of I such that

(a) if a c- I then there is a fl c- I with a 1

(b) ifoc < #and# -Lythena I y,
(c) if a I P and oe _L y then there exists a 6 c- I such that a 16 and

6  !! A Y -

If I is bounded open subsets of R' then a 1 fl could correspond to the dis-

jointness ofa and P.
Later we need the analogue of the union of two sets. We will assume that

each pair a, fl in the index set I has a least upper bound a v fl. Thus we assume

that if oe, fl c- I then there is a a v fl c- I such that

(d) a v > a and a v P > fl,
(e) if y a, y > fl then y > a v

Next remark that if a is an automorphism of a C*-algebra W which
satisfies G2 = t, i.e., a(a(A)) = A for all A c- W, then each element A c- W
has a unique decomposition into odd and even parts with respect to a. This

decomposition is defined by

A A' + A-, A'
A + a(A)

2

It follows that a(A A , the even elements of 91 form a C*-subalgebra
W', of W, and the odd elements Wo form a Banach space.
Now we are in a position to introduce quasi-local algebras.

Definition 2.6.3. A quasi-local algebra is a C*-algebra 91 and a net {W",j,,j
of C*-subalgebras such that the index set I has an orthogonality relation and
the following properties are valid:

(1) if a > fl then W, 2 Wp;
(2) W = U, W,,, where the bar denotes the uniform closure;
(3) the algebras 9J,, have a common identity 1;
(4) there exists an automorphism a such that U2 i, a(9fj = 91, and

91,e] = {01, [W,e, W,.] = f0j, 191",,  Ufl,j f01 whenever a 1 A
where W(,,' g  9,, and %,"e - W,,, are the odd and even elements with

respect to a.

We have used the notation {A, BI = AB + BA. One case covered by this
definition is a = i and then W,,' = 91,,, and condition (4) simplifies to the
condition

[W"' %fl] = fol

whenever a 1 P. In applications to quantum mechanics a = i corresponds
to Bose statistics but for Fermi statistics a :0 1.

Assumption (3) could be replaced by the weaker assumption that each

W, has an approximate identity for %, but this generalization leads to
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notational complications which are inessential. In applications to mathe-
matical physics the subalgebras W,, are indexed by bounded open subsets of

R', ordered by inclusion. The algebra W,, is interpreted as the algebra of

physical observables for a subsystem localized in the region a of the con-

figuration space R'. The quasi-local algebra 91 corresponds to the extended

algebra of observables of an infinite system. A state (o over W then represents
a physical state of the system and the values co(A), co(B).... yield the values of

the observations A, B, . . . .
The representation (.5., n., Q.) then allows a

more detailed description of the individual state (o and the von Neumann

algebra n.(W)" is interpreted as the algebra of observables of this state.

There are several distinguished subalgebras of njW)" which play an im-

portant role in the analysis of the states over quasi-local algebras. One such

subalgebra is the centre 3. = n.(W)" r) and two other subalgebras
are introduced by the following:

Definition 2.6.4. If w is a state over the quasi-local algebra W then we

define the commutant algebra 3,,,, of the associated representation

(15W 1 7r1W I nw),
by

3-c = n(7r.(W,,)' r) 7E,(W))"
ace I

and the algebra at infinity 3,,' by

n U 7r.(9[p)
ae I Pla

Note that 3.' is really an algebra. It would even be an algebra without
the weak closure by the condition (c) on the index set L Further, as 91 is

quasi-local and,3, =7rj91)' r-) nJ91)" one has

a e I

It easily follows that 3," L= 3,
Thus it follows immediately from Theorem 2.6.1 and Kaplansky's density

theorem (Theorem 2.4.16) that the following conditions are equivalent if 7r,,, is

faithful:

(1) 3.' consists of multiples of the identity;
(2) given A c- W there exists an a such that

Ico(AB) - w(A)w(B)l 117r,,,(B)II

for all B c- W,,' r) W;
(3) given A e 91 there exists an a such that

co(AB) - (o(A)w(B) {w(B*B) + co(BB*)j'1'

for all B c- 91,,' r-i W.
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Next we consider properties of the algebra,3,,,'. If a 0 1 then the properties
of anticommutation lead to many complications and it is not evident that

3. 1
-- 3.; but this is indeed the case.

Theorem 2.6.5. Let (o be a state over a quasi-local algebra. The algebra at

infinity 3,,-L is contained in the center _3,,, of the associated representation
and, more specifically,

if

3. n U n.(91fle) - 3. r-, 7r.(A')".
ac-I fli-a

Thefollowing conditions are equivalent:

(1) 3,,,' consists of multiples of the identity;
(2) given A e 91 there exists an a such that

lo-)(AB) - o)(A)w(B)l < 117r.(B)II

for all B e W# and all fl I a;

(3) given A Ei W there exists an a such that

jw(AB) - (o(A)(o(B) I :!! Jo)(B*B) + (o(BB*)j 1/2

for all B c- W# and all fl I a.

PROOF. If 9JI is defined by

U

then

n
11

Once we establish that 3,)-L s; 3. the equivalence of the three conditions

follows from Theorem 2.6.1 and Kaplansky's density theorem (Theorem 2.4.16).
Thus we concentrate on the characterization of J.-L.
We first claim that if B e 3.J- then B e njW')". As B c-.3,,)' implies B* e it

clearly suffices to consider selfadjoint B. Now consider the sets P = (a,  ,, . ..' E)
with a in the index set I, the vectors 0,, ..., 0,, in .5,,, and E > 0. One can form a

directed set of these sets by defining fl, :!! fl, if, and only if, cc, :!! ot, foil#, - Joilft,,
and r,,  !! 82, where we have used the notation flj = (aj, Joi pj, rj). Next we define a

net B. indexed by this composite direct set. If fl = (a, 0,, 0_ e) then

Be U 7[.(91)
Y1.

and it follows from Kaplansky's density theorem that there exists a y. with 1 a

and a B, c- 7r.(%,,,) such that B, = Bo*, 11 B0 11 :!! 11 B 11, and

JI(Bo - B)Oill < e,

for i = 1, 2, n. Thus B0 converges strongly to B and as jja(B,)jj = jjBfljj JIBIJ
there is a subnet such that a(B#.) converges weakly. This last statement is a consequence
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of the weak compactness of the unit ball of Proposition 2.4.2. Therefore the

odd and even parts k of B,. converge weakly. Let C denote the weak limit of B-

One has

C 11 2= lim llm(B  , B,  ),
fl, X,

where both limits are over the same subnet. But for fl' fixed in this subnet one has

B,, c- and for P" sufficiently large B,,, e with 7,,, 1 y,,. Thus

lim( , B B,  lim - ( , B,  B 

(CO, B 0)

by the anticommutation of odd elements. Hence

IICO112 lim(CO, B 0) IICO112
fl,

and C = 0. We conclude that Bt converges weakly to B and we have established that

B c- U 7r"Afl

But this last set is a subset of 3.' and hence

U

7r.(%)' n nj%')".

The commutation properties of quasi-local algebras ensure that 3,,,' is a

subalgebra of,3.. One also has in general that 3,,,c - 3, For algebras with

slightly more structure and a special class of states one can actually deduce

equality of these various central subalgebras. It will be convenient to examine

algebras with an increasing net of von Neumann algebras.

Definition 2.6.6.  ,et %, {9,Rajac ,
be a quasi-local algebra whose generating

net is formed of von Neumann algebras 9JZ,,,. A state co over % is defined to be

locally normal if o) is normal in restriction to each 9A.,

In applications to statistical mechanics one typically has that 9y,, is iso-

morphic to Y(bj for some .5, If w is locally normal then Theorem 2.4.21

implies that a) in restriction to each 9Y,,, is determined by a density matrix p",
on a Hilbert space

co(A) = Tr(p,,,A), A Ei

Thus co could be specified by the family of pairs fb, p,,I. Note that the in-

clusion relations 9Y,,, 9 9N#, a then imply certain compatibility con-

ditions on the p,,,. Specification of o) by the pairs 1.5, p is sometimes

useful because one encounters quasi-local algebras with subalgebras %,, which
are not von Neumann algebras but which are isomorphic to irreducible

C*-subalgebras of Y(.5,,). Note that in this setting each such (o has a canonical
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extension 6) to the algebra t generated by the net f C
vof *

on Neumann
algebras by

t'b(B) = Tr(p,,B), B c-

In applications to field theory the local alge ras 9N,, are more general
factors and most of the subsequent analysis is only relevant to the statistical
mechanical examples.

Lemma 2.6.7. Let be a quasi-local algebra whose generating
net is formed of von Neumann algebras 9R, and let co be a locally normal
state with associated cyclic representation (.5, 7r, Q). It follows that 7r is

normalfor each a.

PROOF. Assume that A. is an increasing net of positive elements of M', which

converges to A e 9W,, (see Lemma 2.4.19) and let B e 9W#, where #,-:, a. Then B*A, B
converges to B*AB in Up. Since w 1,, is normal, we then have

(ir(B)K2,7r(A7)7r(B)Q) = (t)(B*A7B)
co(B*AB) = (7r(B)K2,7r(A)7r(B)f2).

Now, Up 7r(T?p)!Q is dense in .5; thus n(A) converges to n(A) and 7rim. is normal.

The essential lemma for the analysis oflocally normal states is the following:

Lemma 2.6.8. Let W be a C*-algebra ofoperators on a Hilbert space and TZ
a von Neumann algebra contained in W. Assume there exists-a projection
E from 9V onto 9X' n W which is a-weakly continuous and such that
E(W) 9 W. Itfollows that

9W, n W" o

PROOF. First note that as E is a projection onto TZ' r-) W one has E(A) = A for all
A E 9JI' n W". Next remark that ON' n %)" g TV n W and it suffices to prove the
reverse inclusion. But if A e TZ' n W" then there exists a net {AflJ E- % such that

A = lim Ap
p

and hence

A = E(A) = lim E(A,)
p

because of the first remark and the a-weak continuity of E. But E(A.) e TZ' r-)

and hence A c- (W n %)".

An immediate application of this lemma is the following result which
derives the equality of 3.c with the center.

Proposition 2.6.9. Let 91, {T1,J,,1 be a quasi-local algebra whose generat-
ing net isformed ofvon Neumann algebras TZ, and let w be a locally normal
state over W. Assume TZ, is isomorphic to for some .5,, and all a.
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Itfollows that the center 3,,, and the commutant algebra 3,,' ofthe associated

representation coincide, i.e.,

,3.= n(,(n n 7uwv, &c.
a

PROOF. Choose a set of matrix units JEijJ for Tl,, and define a projection E on

Y(.5.) by
E(B) 7r.(Ei,)B7r.(E1i).

The properties of matrix units ensure that this sum converges strongly. Since 7r.19)1.
is normal (Lemma 2.6.7), Zi nffii) = 7r.(T) = 16., and

E(B) 7r.(Ei1)B7r.(E1i) = B

for B c- 7r.(9J1J, and for any B E Y(.5.) one has E(B) c- 7r.(9J1J' because

E(B)7r.(Eij) = 7r.(Ei,)E(B)7rJE,j) = 7rJEij)E(B).

Moreover, if % is any von Neumann algebra such that 7r.(9WJ g % E- Y(.5.) then

E(91) - 91. Hence E(n.(931fl)) - 7r.(9W )' r) n.(9W,) for #  !! a. As 91 is generated
uniformly by the Ufl one concludes that E(7r.(W)) g 7r.(91) and E(n.(%)")
7r.(9J1J' r) 7r.(91)". Thus Lemma 2.6.8 applies. Therefore

n (7r.m.), n 7r-mr = 3.c

Next we describe a situation in which 3. = 3,,)'. Equality of these two

algebras depends upon identification of the von Neumann algebras generated
by 9R,,' r-) % and Up_L, Mp. The first algebra corresponds to the observables,

invariant under observations in the region indexed by a and the second

corresponds to the observables outside of a. Equality of these two algebras is

sometimes referred to as duality. It plays an important role in the discussion

of statistics in field theory.
The following result establishes for some systems with a = z.

The more intricate case ofa 0 1 can also be handled (see Notes and Remarks).

Theorem 2.6.10. Let 91, {9XJ,, c- I be a quasi-local algebra, with a = i,

whose generating net isformed of von Neumann algebras 9W, and let co be a

locally normal state over W. Assume that 931,,, is isomorphic to YQ5J, and that

Tl,, u 9R# generatie M,, , p in the weak operator topology and thatfor any pair
a, # there exists a y I a such that # < y v Lx. Itfollows that the center,3. and
the algebra at infinity 3,,,' of the associated representation coincide. More-

over, thefollowing conditions are equivalent:

(1) 3.(= 3.') consists ofmultiples ofthe identity, i.e., W is afactor state;

(2) given a and 8 > 0, there exists an a' such that

Jw(AB) - o)(A)w(ft < 611AII JIBIJ

for all A c- 931, all B c- Tip, and all # I a';
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(3) given a and s > 0, there exists an oe' such that

lco(AB) - w(A)w(B)l < sJJAJJ{w(B*B) + w(BB*)}111
for all A c- all B c- TIp, and all # I a

PROOF. Let us construct the projection E as in the proof of Proposition 2.6.9.
Our assumptions ensure that each A E 7r.(%)" is of the form

N,
A = lim Y 7r.(A,, i)7rJBY, i)

Y
(i=

I

where the limit is in the strong operator topology and

AY, i c- 0., By, i c- U Tip.
pla

But if A c- n.(9J1,,)' r) 7r.(W) then E(A) = A and

N,
A = lim E E(7r.(A Y. i))7r.(BY, j) c- U 7r.(SRp)

because A, i c- M,, ensures that E(7r.(A Y, )) is a multiple of the identity. Thus

r) 7r.(W))" U 7r.(9xo)

and application of Proposition 2.6.9 gives

,3, n u 7rw(gxp))
Now consider the three conditions. Clearly (3) (2) and (2) implies condition (2)

of Theorem 2.6.5 because the 931., generate W in the uniform topology and 7r. 1,,. is
faithful since it is normal and 9W,, is a factor (Proposition 2.4.22). Application of this
theorem then establishes that (2) => (1). It remains to prove that (1) =:> (3). Now (0

restricted to T1. is determined by a density matrix p,, and, for 6 > 0, one may choose
a finite rank projector E e Y(.5,) such that

Tr(pjl - E)) < 62

Let E also denote the image of this projector in 7r,(T?,,). If A c- 9M,, and B c- 931p with
a I P one has

w(AB) = w(EAEB) + w((l - E)AEB) + w(BEA(T - E)) + w((T - E)A(I - E)B)

by straightforward decomposition and use of quasi-locality to commute B and
EA(t - E). Therefore

co(AB) - co(EAEB) I :!! o)(1 - E) 1/2 11 A 11 (2w(B*B)1/2+ w(BB*)1/21
< 36 11 A 11 {w(B*B) + w(BB*)} 1/2

Similarly,

Jw(AB) - w(A)w(B)l < lw(EAEB) - a)(EAE)co(B)J
+ 66JJAJJ{w(B*B) + w(BB*)J 1/2
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But asE has finite rank on .5,, the, algebra EM,,E has a finite basis and thus by Theorem
2.6.5 one may, using that any two norms of a finite dimensional linear space are

equivalent, choose oc' such that

sup lco(EAEB) - w(EAE)co(B)J < bfco(B*B) + co(BB*)) 1/2

JJAJJ = 1, A e%R,.

for all B c- 9JIp with a'. Combining these estimates with 6 = g/7 gives the desired

result.

Theorem 2.6.10 gave a criterion ensuring that a state of a quasi-local
algebra is a factor state. We next give conditions for quasi-equivalence of

two factor states, stating roughly that they are quasi-equivalent if, and only if,
they are equal at infinity.

Corollary 2.6.11. Let W, be a quasi-local algebra satisfying all the

requirements in Theorem 2.6. 10, and let w, and (1)2 be locally normalfactor
states ofW. The following conditions are equivalent:

(1) w, and C02 are quasi-equivalent;
(2) given s > 0 there exists an cc such that

1col(B) - C02(B)l < sJJBJJ

for all B c- Mp with # I oc;

(3) given 8 > 0 there exists an oe such that

Ico,(B) - a)2(B)l < e{co1(B*B) + C02(B*B) + co,(BB*)
+ a)2(BB*)J 1/2

for all B c- Mp with P I oc.

PROOF. By Proposition 2.4.27, co, and a)2 are quasi-equivalent if, and only if,
W M + C02)/2 is a factor state. For any A, B in 91 we have

w(AB) - co(A)co(B) = '(co,(AB) - co1(A)co1(B))2

 '12#02(AB) - COAA)COAB))
 -L(co,(A) - 0)2(A))(co1(B) - COO)).4

If co, and C02 are factor states it is clear from this calculation that conditions (2) and

(3) of the corollary suffice for w to satisfy conditions (2) and (3) of Theorem 2.6.10.

Thus a) is a factor state and, co, and co, are quasi-equivalent.
If, conversely, co is a factor state there are two possibilities: either W, = (02-then

(2) and (3) are trivially fulfilled, or (t), 0 (02-in this case, fix some A e U,, 9R,, such
that w,(A) :0 W2(A). The above calculation then gives an expression ofW,(B) - (02(B)
as a linear combination of w(AB) - co(A)w(B) and (oi(AB) - coi(A)(oi(ft i = 1, 2.

Application of the criteria of Theorem 2.6.10 to the three states co, (0,, and (02 then

gives (2) and (3) of the corollary.

This completes our general discussion of cluster properties. We will return

to the subject in Chapter 4.
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EXAMPLE 2.6.12. Let I be an arbitrary index set and If the directed set of finite
subsets of I, where the direction is by inclusion. Associate with each a c- I a finite-
dimensional Hilbert space .5_ with each A c- If the tensor product space

A
'::: 0 S-1;I.,

..A

and define  11A : -_ 9905J (See Section 2.7.2 for the definition of tensor products.)
If A, r) A2   0 then 5A, , A2

"': 5A 0 6A2 and 91A, is isomorphic to the C*-

subalgebra 91A
1
0  A21 Or k

I , A21 where 'A2 denotes the identity operator on 5A2
Implicitly identifying 91,, and 91A, 0 'A2 one deduces that the algebras 191AIACIf
form an increasing family of matrix algebras. The union of these algebras is an in-

complete normed algebra with involution. The minimal norm completion of the
union is a quasi-local algebra W. Taking A I J_ A2 to mean A I r-) A2 = 0 one deduces
that % satisfies the quasilocal commutation conditions, e.g.,

AIA2 = A, (D A2 = A2A 1, A I W
A p A2 6 WA2*

The least upper bound of A, A2 is A, u A2 and it follows easily that 9k, U 94A2
generate 9k, u A2 *

Moreover, every state a) over W is locally normal because all states of matrix

algebras are normal (for a more general result see Proposition 2.6.13 below). Thus
Theorem 2.6. 10 applies to an arbitrary state ofW and gives a characterization of those
states which generate factors.

Algebras of the type constructed in the foregoing example are usually
called UHF (uniformly hyperfinite) algebras when I is countable. They are of
importance in the description of quantum statistical mechanical systems.

2.6.2. Topological Properties

We continue our discussion of quasi-local algebras by discussing some

topological properties of locally normal states and, in particular, properties
of metrizability. The metrizability will be of relevance in Chapter 4, where we
discuss the decomposition of states.

First we need some information concerning the states of irreducible
subalgebras of Y(.5) and especially the C*-algebra YW(.5) of compact
operators on .5. For this discussion we define a state w over any irreducible
subalgebra  ff of Y(.5) to be normal if it is determined by a density matrix p
in the canonical manner:

w(A) = Tr(pA), A c- W.

Proposition 2.6.13. Let YW(.5) denote the C*-algebra of compact
operators on the Hilbert space .5, 9-(-5) the Banaeh space of trace class
operators on .5 equipped with the trace norm T  --+ 11 T 11 Tr = Tr I T 1, and Y(.5)
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the von Neumann algebra of all bounded operators on 5. It follows that

9-(.5) is the dual YW(.5)* ofY W(.5) by the duality

T x A c- 9-(.5) x  --+ Tr(TA).

Hence 21'P(Sn ) is the bidual of and every state o-) over YIK(.5) is
normal.

PROOF. First remark that 67-(.5) is a uniformly dense subspace of YW(-5) and hence
9 = Y(6) by Proposition 2.4.3, where YW(-5)* is identified as a

subspace of by restricting functionals. Thus if (0 c- YW(b)* then

o)(A) = Tr(TA), A c-

for some suitable T c- Let T = U I T I be the polar decomposition of T; then
A I T I = A U*T and it follows that

I Tr(I T I A) I = I Tr(TA U*) I
= I co(A U*) I :!! 11 (t)A

because A c-67-(.5) implies A U* c- Thus A  -+ Tr(I T I A) is an element of _'FW(.5)*.
Next, if JP,,J is the increasing net of all finite rank projectors,

0 < sup Tr(I T I P,,,) :!! sup 11 w 1111 P,, 11 = 11 o) 11 < + oo

and hence I T I c- Thus The statement concerning the bidual
follows from Proposition 2.4.3 and the identification of the dual allows one to easily
conclude normality of all states.

If one considers algebras W which contain Y W(.5) as a subalgebra then
the following characterization of the normal states over W is often useful.

Proposition 2.6.14. Let W 2 Y W(Sn;) be a C*-alaebra o bounded operatorsf
on the Hilbert space .5 which contains the compact operators as a subalgebra.
A state w, over W, is normal if, and only if,

supI I a)(A) I ; I I A I I = 1, A c- Y 16(.5)1 = 1.

PROOF. If (o is normal then it is evident that there are finite rank projectors P,,
such that

sup (o(P,,) = sup Tr(pP,,) = Tr(p) = 1.

Conversely, if the norm condition is satisfied then the restriction of (o to Y,6(-5) is a
state over this latter algebra and there must exist a density matrix p such that

(o(C) = Tr(pQ

for all C c- YW(S-)). If JP I is the increasing net of finite-dimensional projections on .5
one deduces that

lim 0)(1 - P") = 0.
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If A c- W the Cauchy-Schwarz inequality implies

Jw(A - P,,,A)l :!  (o(l _ p")112o)(A*A) 1/2.

Hence

w(A) = lim w(P,, A) = lim Tr(pP,, A) = Tr(pA).

This shows that o) is normal.

In the general discussion of states over a C*-algebra % (Section 2.3.2), we
introduced two topologies, the weak* or u(91*, 91)-topology, and the uniform

topology. The weak* topology is generally coarser than the uniform topology
because each neighborhood in the basis defining the weak* topology clearly
contains a neighborhood of the uniform topology. The situation is nicer for
the normal states whenever YW(.5) g W.

Proposition 2.6.15. Let 91 9 Y(.5) be an irreducible C*-subalgebra of the
C*-algebra Y(.5) of all bounded operators on the Hilbert space .5. The

following conditions are equivalent:

(1) the weak* and uniform topologies coincide on the set N% of normal
states over 91;

(2) the algebra W contains the C*-algebra -TW(.5) of all compact
operators as subalgebra.

PROOF. (1) => (2) Assume (2) is false. We sketch the proof that (1) is false. Firstly,
if 91 r-) Y16(.5) is nonzero then one can show that _5016(.5) - W. Hence we may assume

91 r-) YIW(.5) = fol. Secondly, it follows from this condition and the irreducibility
of% that every state over W is a weak* limit of vector states (see Notes and Remarks).
In particular, each normal state over 91 is a weak* limit of vector states. If the weak*
and uniform topologies were to coincide one would then conclude that each density
matrix is the limit in trace norm of rank one projectors. This is absurd and hence (1)
is false.

(2) =:> (1) The states N, can be equipped with the weak* topology arising from

YIV(.5) and this is coarser than the weak* topology of W because % 2 YW(-5).
Furthermore, N. can be equipped with the uniform topology from Yle(s-')), but it
is readily checked that this coincides with the uniform topology from % because

sup{ I Tr((p - p')A) 1; A c- YW(.5), 11 A I I = I I
= Tr(I p - p'l) = sup{lTr((p - p')A) 1; A c- 91, 11A 11 = 11.

Thus it suffices to prove that the weak* and uniform topologies of Yle(.5) coincide
on N,,. But if w c- N, then there is a density matrix p such that

w(A) = Tr(pA).

Hence for E > 0 there is a finite rank projector E c- 91 such that

0 < Tr(p(T - E)) < e,
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e.g., E could be chosen to be a suitable spectral projector of p. Next we define a

neighborhood of (o by

W(w; F,) = o; w'c N,, sup (o) - (o) (EA E) < r,f,
A e%, 11 All

The set W(o); P,) contains a weak* neighborhood because E has finite rank. Hence
the bounded operators on E-5 have a finite basis of matrix units and the condition

sup I (w - (t)') (EAE) < E

A c- -TW(J5), 11 A 11 = I

is implied by a finite number of conditions of the form

I (o-) - (o) (A < e.

Next, for &c- W(o); e)

Tr(p'(1 - E)) = Tr(p(T - E)) + ((o - o)) (E)
and hence

0 :!! Tr(p(1 - E)) < Tr(p(T - E)) + I (o) - o)') (E) I < 2.6.

Further, for each A c- YW(5) we can apply the triangle inequality and Cauchy-
Schwarz inequality to obtain

((o - a)') (A) (co - co') (EA E) I + 2 11 A 11 (,/Tr(p(T E)) + /Tr(p( - E))).

Hence one concludes that

sup I (o) - (t)') (A) I < E + 2,/,c + 2,//2E,
A.%, IJAII = I

i.e., the uniform neighborhood

U(w, 6) = {w'; (o'c E,,,, 11w - &11 < 61

contains the neighborhood W(co, E) wheneverc + 2,//E + 2."/2-e < 6.

The foregoing coincidence of topologies implies, of course, that the weak*
topology is a metric topology on NA and that the normal states are metrizable
in this topology. If W is separable then the set of all states Es, over W, is
always metrizable in the weak* topology but the result for the normal states
follows without any separability assumption.

Let us now consider the set of states Ew over a quasi-local algebra
generated by the subalgebras c I. The set E91 can be equipped either with
the weak* topology of W or the uniform topology as before. The special
structure of W allows us, however, to introduce a third topology on EW
which is intermediate to these two topologies. This third topology is called
the locally uniform topology and is specified by the set of neighborhoods

V(o-); a, s) o)'; & c- Es, sup I w'(A) - o-)(A) I < E

JJAJJ =1, Ac-91,,

where (o e E%, a c- I, and e > 0. Clearly, the locally uniform topology is
finer than the weak *-topology and coarser than the uniform topology. If %
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is generated by an increasing sequence of subalgebras W,, then the locally
uniform topology is a metric topology and one can construct a metric for it by

1101 - (1)211 Y, 2`11(ol W211n
n- (0211n' 1 I + 1101

where

Ikol - (0211n  supflo),(A) - C02(A)I; 11AII = 1, A c- Wnj.

Theorem 2.6.16. Let W, {91j,,, I be a quasi-local algebra and assume that
each W,, is isomorphic to a subalgebra 7r(91,,) of such that 7r(W,,,) -2

and define a state co over W to be locally normal if co restricted to

each 91,,, is normal. Itfollows that the weak* topology and the locally uniform
topology coincide on the locally normal states. Thus if 91 is generated by an

increasing sequence of subalgebras then the set of locally normal states is
metrizable in the weak* topology.

The proof of this result is an easy consequence of the fact that the W,,
generate W and the coincidence of the local topologies given by Proposition
2.6.15 and the assumption that 7r(91,,,) We omit the details.

2.6.3. Algebraic Properties

We conclude our discussion of quasi-local algebras W, f91,j,,c_j by proving,
under some general conditions on the W,,,, that W is simple. In the ensuing
discussion an ideal in a C*-algebra will always mean a closed, two-sided
ideal. (Note that such ideals are selfadjoint by Proposition 2.2.19.)
The proof of the next proposition makes use only of conditions (1) and (2)

in the definition of quasi-local algebras (Definition 2.6.3).

Proposition 2.6.17. Let W, JW,,j,,c_j, be a quasi-local algebra and let 3 bean
ideal in W. It follows that 3,, _3 r-) W,, is an ideal in 91,, for all a, and

U 31Z.
a

In particular, any representation 7r of W such that 7rj%. isfaithfulfor all a,

isfaithful on 91.

PROOF. it is clear that .3,, is an ideal in W,, for all ot and that

U

To prove the converse, let 7r be a morphism of W such that ker 7r = 3. We will show

that if A 0 U 1, 3., then A 0 3. Assume A 0 U,, .3a and let fA,, I g U, %, be a sequence
such that A. -+ A. Since A 0 U,, 3 we have that

infJ11A - B11; B c- U .3  = e > 0.
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Choose N such that n > N Implies 11 An A 11 < E/2. For n N, If An C_
n

we have
for any B c- 3,,,,

JjAn B11 > 11A - B11 11A - Anjj > e
2 2

Now since ker(7r J,j 5 we have for n > N, by Proposition 2.2.19,%1Xn = 31 n

7r (An) 11 = inf An - B 11; B c- 3,1 > -

2

because the norm on the C*-algebra is the same whether it is viewed as a

subalgebra of 7r(%) or as the image of the quotient map %'X.  _4 %'Xn/3"n (Corollary
2.2.6). Since 7r is continuous, 7r(An) 7r(A). In particular,

8

117r(A)II lim 117r(AJ11 > -

n-.
2

It follows that A 0 3.

The next corollary gives a general criterion for simplicity. The proof only
makes use of conditions (1), (2), and (3) in Definition 2.6.3.

Corollary 2.6.18. Let 91, JW,,,j,,c_j be a quasi-local algebra. Thefollowing
conditions are equivalent:

(1) W is simple;
(2) for any a and any A c- 91,,,\{01 there exists a a such that the ideal

generated by A in Wfl is equal to %#.

PROOF. (2) => (1) Assume (2), and let 3 be a nonzero ideal in 91. By Proposition
2.6.17 there exists an a such that 3 r) %,, 0 {01. But by (2) it follows that there exists

 !! a such that %, 9 3. Hence %Y s 3 for all y  !: fl, and 3 = %, i.e., 91 is simple.
(1) => (2) Assume (1), and let A c- %,,\101. For any #   ! a let 3, be the ideal

generated by A in %,. Then 13,1 is an increasing net of C*-algebras, and 3 =

is a nonzero ideal in % since 3,, n %, is an ideal in % for > (X.

It follows from (1) that Zs' = 91. But then there exists some ot and an element
B c- 3, such that I I B - I I I < t. Hence B is invertible and I = B - 'B c- 3#, i.e.,  c- 3,
and 3, = %pl = %#*

The following corollary applies, for example, if all the W,,, are matrix
algebras, or general finite factors, or if the W, are type III factors on separable
Hilbert spaces (see Definition 2.7.B).

Corollary 2.6.19. Let W, {%,,,j,,c_j be a quasi-local algebra and assume that
each %,,, is simple. Itfollows that % is simple.

PROOF. This is an immediate consequence of Corollary 2.6.18.

The next corollary can be generalized to the case when M. are general
9jj' e

=factors on a separable Hilbert space such that {A e 9N,,; a(A) = A I
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is a properly infinite von Neumann algebra for all a. (See Definition 2.7.15.)
The proof of the general case is essentially the same as the proof of the case

stated here, but needs a bit more technology.

Corollary 2.6.20. Let W, I be a quasi-local algebra with a = 1, and

931,, isomorphic to where is a separable, infinite-dimensional
Hilbert space. Itfollows that W is simple.

PROOF. We will prove this by applying Corollary 2.6.18. Let A c- 91,,\{O}. Replacing
A by A*A we may assume A positive. Let E be the spectral projection of A cor-

responding to the spectral interval [ 11 A 11 /2, 11 A 11 ]. Then E :A 0. Next choose some

y, # such that y I a and # > y v a. We will show that E is an infinite-dimensional

projection in T1, = Y(_5fl).
To this end, let {Eijl g Y(.5.) be a complete set of matrix units for 931Y

Then all the Eij commute with E. In particular, EEii are projections for all i. Now

EEjj = EEjiEiiEij = Eji(EEii)Eij-
It follows that if EEii = 0 for some i then EEjj= 0 for allj. But this is impossible since

E = El = Y-i EEii. Thus {EEiij is an infinite set of mutually orthogonal nonzero

projections dominated by E and E is infinite-dimensional. Hence there exists a

partial isometry Wc- Y(.50) such that

WEW* = 1.

But since A > (11 A 11 /2)E it follows that

WAW* >
JJAJJ

1.
2

Thus WA W* is invertible, and the ideal generated by A in 9J10 must be 9R, itself.

The simplicity of 91 now follows from Corollary 2.6.18.



2.7. Miscellaneous Results and Structure

In this section we review some further results in the theory of operator
algebras which are important either for applications to mathematical physics
or for the structure and classification of the operator algebras (and hence

potentially important for applications in mathematical physics). We will

not give complete proofs for these results, but in some cases we will give
some hints and in all cases references to the complete proofs.

2.7. 1. Dynamical Systems and Crossed Products

In analyzing symmetries of physical systems in the setting of an operator
algebra, the first concept encountered is that of a dynamical system.

Definition 2.7.1. A C*-dynamical system is a triple 1%, G, al, where % is a

C*-algebra, G is a locally compact group, and a is a strongly continuous

representation of G in the automorphism group of 91, i.e., for each g c- G,
ag is an automorphism of 91 and

Cx
91

(x
92

Cx9192;

g  -4 ag(A) is continuous in norm for each A c- % (e is the identity in G, 1 is the

identity map of W).
A W*-dynamical system is a triple {9X, G, al, where 9Y is a von Neumann

algebra, G is a locally compact group, and a is a weakly continuous repre-
sentation of G in the automorphism group of 9JI.
A covariant representation of a dynamical system is a triple 7ES_

, , U), where
is a Hilbert space, 7r is a nondegenerate representation of the algebra on .5

which is normal in the W*-case, and U is a strongly continuous unitary
representation of G on Sn such that

7r(a9(A)) = Ug7r(A)Ug*' A c- % (resp. TI), g c- G.

Note that in the W*-case, the continuity requirement on g  --+ Lxg is equivalent
to the requirement that g F-+ ag*-  is strongly continuous on 9X* .

When

136
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G = R, this follows from Corollary 2.5.23, but it is true in general. This can

be seen by averaging, in the sense of Definition 2.5.19, with a continuous

function.
To each C*- (resp. W*-) dynamical system we associate a new C*-algebra

(resp. von Neumann algebra), called the crossed product of % with G and

denoted by C*(%, a) =- W G (resp. W*(9Y, a) 9Y G). Before pro-
ceeding with the somewhat messy definition of these objects, we indicate the

four main motivations for introducing these concepts.

(1) There is a one-one natural correspondence between covariant

representations of a dynamical system and nondegenerate representa-
tions of the crossed product.

(2) In many cases of interest, the algebra of a dynamical system is the
crossed product of the fixed point subalgebra of W (resp. TI)

fA c W; ocg(A) = A, all g c- GJ
with a "dual object" of G (which is the dual group if G is abelian),
such that the action a is obtained naturally as a dual action on the
crossed product. Positive results in this direction exist almost

exclusively in the W*-case, and have been used to analyze "field
algebras " in terms of " observable algebras" when G is a gauge group.

(3) Crossed products are important to construct examples both in C*-
and von Neumann algebra theory. When the action a is free and

ergodic in a certain sense one can prove that the crossed product is a

simple C*-algebra in the C*-case, and a factor in the W*-case.
(4) W*-crossed products play a fundamental role in the classification -of

factors and have led to an almost complete classification of hyper-
finite factors. These are the factors which are the weak closure of a

union of an increasing sequence of finite dimensional subalgebras.
All the factors encountered in mathematical physics are hyperfinite
but the physical significance of the classification is still unclear. We
will list in Section 2.7.3 the main results of the classification.

We now turn to the definition of crossed products.

Definition 2.7.2. Let fW, G, al be a C*-dynamical system. Let dg and A(g)
denote, respectively, the left Haar measure and the modular function on G.
Let A(W, G) be the continuous functions from G into W with compact
support. A( R, G) is a linear space in a natural way, and we equip R(W, G) with

a multiplication, involution, and norm, defined by

(xy) (g) = f x(h)1h(y(h - 'g)) dh
G

x*(g) = A(g) -I cxg(x(g

JJXJJJ = fG 11x(h)JI A, x, y c- R(W, G), g c- G.

One verifies that A(W, G) satisfies all the axioms for a Banach *-algebra
except the completeness. Thus the completion L'(W, G) of R(W, G) is a
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Banach *-algebra when the algebraic operations are extended by continuity.
Now, define a new norm on L'(%, G) by

11X11 = sup 117r(X)11'
7r

where 7r ranges over all the Hilbert space representations of L'(%, G). Then
one easily sees that 11 11 is a C*-seminorm on L'(%, G), and we have

11X11 :!! 11X111

because, for any representation 7r of Ll(%, G),

117[(X)II 117r(X*X)111/2 = O(n(X*X))112
O(X*X)112 < IIX*Xllll2 < 11XII1.

Furthermore, using a technique from the definition of the W*-crossed

product, one may show that L1(9t, G) has a faithful representation. Thus 11 11
is a norm. The completion of L'(9f, G) in this norm is called the C*-crossed

product of% and G, and is denoted by

C*(%, a) -= % & G.

We note that the one-to-one correspondence between covariant representa-
tions 1.5, 7r, U1 of f%, G, al and representations p of C*(%, ot) is given by

P(X) f 7r(x(h))U(h) dh, x c- R(%, G).
G

This gives p in terms of {n, Uj; to construct 17r, U1 when p is given one notes

that % and G act by multiplication on C*(%, a), i.e., one defines n and U by

7r(A)p(x) = P(AX),

U(g)p(x) = P('X)'
where

Ax(h) = A(x(h)),

gx(h) = x(g -'h).

Note that p(C*(%, oc)) and {7r(%), U(G)j generate the same von Neumann

algebra on S) . [Dop 1], [Tak 1].
In describing the von Neumann crossed product, it is suitable to work in a

concrete representation.

Definition 2.7.3. Let {T?, G, al be a W*-dynamical system, and assume

9Y acts on a Hilbert space Sn . Define a new Hilbert space L2(.5, G, dg) as the

completion of R(.5, G), where R(J5, G) is the set of continuous functions
from G, into .5, with compact support equipped with the inner product

q) f ( (g), q(g)) dg.
G
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Define a representation 7ro of 9Y and A of G on L'(.5, G) by

(7ro(A) ) (h) ah- 1 (A) (h),

(A(g) )(h)  (g-lh).

It is easily seen that 7ro is a normal faithful representation of 931 and A is a

strongly continuous unitary representation of G such that

A(g)7r0(A)A(g)* = no(a (A)).

The von Neumann algebra on L2 (Sv , G) generated by no(9Y) and A(G) is
called the crossed product of 9JI by G and is denoted by W*(9JI, a) = M& G.

Note that if x c- R(9JI, G), we may define an element  c c- W*(TI, G) by

 C' njx(g))A(g) dg.f,
G

One verifies straightforwardly that

XY, X

where

XY(g) x(h)ah(y(h 'g)) A
G

and

x
*(g) A(g) - Ix,(x(g 1))

This connects this definition of crossed product with the C*-definition, and
shows that the algebra L'(W, G) used in the definition of the C*-crossed
product has a faithful representation. The W*-crossed product is the von

Neumann algebra generated by the set of - c with x c- R(9Y, G).
In the sequel we assume the group G to be abelian. Most of the results

can be generalized to nonabelian G although the generalization is not always
simple. For s, t c- G we write s + t = st and s - t = st

- 1. We let 6 be the dual
group of G. Thus 6 is the set {TJ of characters of G, i.e., homomorphisms of G
into the circle group {z c- C, I z I = 11, with a group operation defined by

<TIT2, 9> = <T1, 9XT2, 9>-
We equip (3 with the topology of uniform convergence on compact subsets
of G and then C; is a locally compact group. Moreover, 6 = G as topological
groups, by Pontryagin's duality theorem.

Next let {W, G, al be a C*-dynamical system with G abelian, and define
a mapping from 6 into Y(R(W, G)) by (iyx)(t) = <T, t>x(t). Then i. is a

*-automorphism of R(W, G) and extends by continuity to a *-automorphism
of C*(W, Lx). f C*(W, oc)5 05 ij is a C*-dynamical system.
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Analogously, let {9N, G, al be a W*-dynamical system with G abelian, and
define a mapping y from C; into the unitary group on L'(.5, G) by

P(*(t) = <7, 040.

Then

M(7)7ro(A)y( )* no(A), A c- 9J1,

<Y' t>A(t), t c- G,

and therefore

y(y)Ap(y)*, A c- W*(9Y, a)

Theorem 2.7.4 ([Land 1], [Nak 11). Let ON, G, al be a W*-dynamical
system where G is abelian. Then thefollowing statements are equivalent:

(1) there exists a W*-dynamical system  91, such that

{W*(91, fl), G,

is isomorphic to {9N, G, al;
(2) there exists a strongly continuous unitary representation U ofG in 9N

such that Lx,(U,,) = <y, t> U,.
In case (1), 91 is isomorphic to M' = {A c- 9JI; a,(A) = Afor all g C- Gj.

PROOF. The rigorous proofs of these statements are long and tedious and do not

give much more insight than a formal argument, provided one is acquainted with the
fundamental facts of abelian harmonic analysis. We will therefore only give a formal
argument.

(1) => (2) Taking U, = A(T), this follows immediately from the definition of the
dual action.

(2) => (1) In this case introduce 91 by

91 = JA c- TI; cx,(A) A for all t e GI

and, more generally, 91Y by

 A c- M; ct,(A) t>A for all t c- Gj.
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It is then clear that WUY Yand %Y UY* g %.Thus 91y UY. Also UY%UY*
and hence one may define an action # of 0 on 91 by

fly(A) = Uy A Uy*.
One next defines the isomorphism q of 1931, G, al and I W*(%, fl), G, #1 by setting

q Ai UY,) no(A)A(yi),

where A i c- % = 9311.

Note that the requirement that the Uy has the representation property
UYIUY2 = UYIY2 cannot be removed from the condition in (2). This is de-
monstrated by the example 9N = Y(L2(R)), G = R', and

oe,,(A) = U(t) V(s)A V(s)* U(t)*

where U(t) (h) =  (h - t), V(s) (h) = e" (h). One then has U(t)V(s)
e"V(s)U(t). It follows easily that (t, s) c- R2

j_+ CXt, s is a continuous group, and

91 = 931a = C1.

Thus 91 (3p R2
=. L'(R2), which is not isomorphic to Y(L2(R)) for any

action # on 91. Next, for u, v c- R, define W(u, v) = U(- v) V(u). Then

cx,JW(u, v)) = 0"W(u, v),

but the unitary elements W(u, v) do not define a representation of R2

There exists cases where the requirement UYI UY2 = UYIY2 can be removed, for
example, ifW is properly infinite (see Definition 2.7.15) and G is separable
[Tak 2], [Con 2]. One might also generalize the notion of crossed product to
that of a "skew-crossed product" and replace the group property of U by
some cocycle property [Zel 1], [Robe 1].
The next motivating reason for introducing crossed products is to construct

special operator algebras. In physics the algebra of quantum observables is
often obtained from the abelian algebra of classical observables by taking
something like the crossed product with the group generated by a set of

conjugate" variables p of the classical variables q [Ara 5]. [Heg 1].
We now give an analysis of crossed products in a particularly simple case

which, nevertheless, reveals many of the general features. Let G be a finite
abelian group, and W a finite dimensional abelian C*-algebra, i.e., 91 = 16(X),
where X is a finite set with the discrete topology. The action a of G on W
then induces an action r of G on X (the characters on 91) by (a , f) (x) =
f(T,(x)). One verifies easily that X is divided into disjoint orbits X15. . ., X,, by
this action, i.e., each Xi is of the form {T,(xi); g c- G} for some xi c- X. For
each i define Gi = Ig c- G; gxi = xil and then Gi is a subgroup of G, depending
only on Xi up to an inner automorphism of G. The action of G on Xi is

isomorphic with the action of G on the residue classes gGi. It is now a useful
exercise to show that

n

C*(W(X)5 (Y(L2(Xi)) 0 L'(Gi))

W*(L'(X), a).
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Hence in order that the crossed product be simple or, equivalently, be a factor

or a full matrix algebra, we see that X must contain only one orbit, i.e., the

action ot must be ergodic, and for each x c- X we must have that gx = x

implies g = e. Thus the action must be free. This motivates the following
definition.

Definition 2.7.5. For a C*- or W*-dynamical system (%, G, (x), where W is

abelian, we define the action a to be ergodic if % does not contain a non-

trivial closed two-sided globally Lx-invariant ideal. The action isfree if for any

g :0 e and A > 0 there exists a B such that A > B > 0 and a,(B) :0 B.

Note that in the C*-case ergodicity means that all the orbits of the action

induced by a on the spectrum a(%) are dense in a(%), and in the W*-case

ergodicity means that % does not contain nontrivial a-invariant projections.
This follows from Theorem 2. 1.11 (A) and Proposition 2.4.22.

Of course this definition makes perfect sense for nonabelian %, but other
notions of ergodicity and freedom are often more appropriate in such cases

[Tak 1], [Zel 1], [Taka 1], [Gli 3]. The discussion of the finite-dimensional

case now indicates the validity of the following theorem:

Theorem 2.7.6 ([Eff 1]). Let {%, G, al be a C*-dynamical system, where %
is abelian and separable, G is discrete, amenable, and countable, and the

action a is ergodic andfree. Then C*(%, a) is simple.

In the von Neumann case we have for example the following theorem:

Theorem 2.7.7. Let 19N, G, al be a W*-dynamical system, where 9A is

abelian, a-finite, and G is a countable group actingfreely and ergodically on

931. Itfollows that W*(M, a) is afactor.

Such a factor is called a Krieger factor [Kri 1]. Unless 1931, G, al is iso-

morphic to {L'(G), G, translationl, this factor is not isomorphic to Y(.5).
A Krieger factor is known to be hyperfinite and the converse is "almost"

true [Con 3]. Constructions related to this played an important role in the

early attempts to construct nonisomorphic factors.

2.7.2. Tensor Products of Operator Algebras

In the proofs in the earlier parts of this chapter, we occasionally encountered
the following construction. Given a C*-algebra W, we considered all n x n

matrices (Ai) 1:5 i, j:5 n
with A ij e %, and multiplication and involution given by

(Aij)(Bij) = 1, AikBkj(
k

(Aij)* = (Aj" ,)-
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Denote this *-algebra by 0 = W & M, It is not difficult to show that there
is a unique C*-norm on 0 such that

Jj(TjjA)jj = Jj(Tjj)jj IJAII,
where 11(yij)ll is the C*-norm of the n x n matrix (yij). !B is called the tensor

product of W and Mn.
To generalize this construction consider first a finite collection X1,

X2, - . ., Xn of vector spaces. Then there exists a unique vector space O'j= I Xi
with thefollowing three properties:

(i) for each family fxj, where xi e Xj, there exists an element 0i xi in
(Di Xi depending multilinearly on the xi, and all elements in Oj Xi
are a finite linear combination of such elements;

(ii) (universal property) for each multilinear mapping 7r of the product
of the Xi intc a vector space Y, there exists a unique linear map
9: (Di Xi F-+ Y such that

 O 0 Xi = 7EQXjj)
i

for all xi c- Xj;
(iii) (associativity) for each partition Uk Ik of f 1,... , nj there exists a

unique isomorphism from (Di Xi onto (Dk (0i - Ik Xj) transforming
(gi xi into Ok (0i IS Ik Xi)*

Now, if Xi = .5i are Hilbert spaces, we may define an inner product on

(Di _'V j by extending the following definition by linearity

0  i' 0 fj
i i i

The completion of (Di .5i in the associated norm is called the tensor product
of the Hilbert spaces .5i and is denoted by

n

(9 5i
j=1

Note that if Mki% is an orthonormal basis for -Ik )j then the

n

0 dij),
i=1

where the ki varies independently for each i, form an orthonormal basis for
n

0 5i.
i=1

If Xi = 9JIi are von Neumann algebras on Hilbert spaces .5j, then one may
define a *-algebraic structure on (Di 9-Ni by

0 Ai 0 Bi = 0 (AiBi),

0 Ai = 0 (Ai*).
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Now define a map 7r: (Di 9JIi  - Y("- j .5j) byV.j\

7r "- A i A i  j.

It follows that 7r is a faithful *-representation of (3i Mi. The weak closure of

7r((Di 9Y) is called the von Neumann tensor product of f9j1jj and is denoted

\C/ I= 1 Mi. By Theorem 2.4.26 any isomorphismr between von Neumannby
algebras 9M and 91 has the form -c(A) = U((A (D I)E')U*, where T is the

identity on some "large" Hilbert space .5, Ec- 9M 0 _T(S--3), and U is an

isometry. Using this one can show that 0 L 9Ri depends only on the

isomorphism classes of*9JIi and not on .5j.
If Xi = %j are C*-algebras the situation is more complicated. Again one

can make

n

0
i = 1

into a *-algebra. In general, there exist, however, more than one norm

on (Di %j with the C*-property 11A*A11 = 11A 112 and the "cross-norm"

property JI& Aill = f1i IlAill. For applications however, the most useful

norm on (Di %j is the C*-norm. This is defined by taking faithful representa-
tions (.5j, 7r) of %j and defining

Y 0 A(k) (k))7ri(Al
k i i'

where the latter element is viewed as an operator in -I-21(oi .5j). This norm is

independent of the particular faithful representations 7ri used. The completion
of(Di Wi in this norm is called the C*-tensor product of the Wi and is denoted

by
n

It is known that if all the Wi except one are nuclear (see end of Section 2.7.3)
then the norm on (D,=, %j constructed above is unique as a C*-cross norm

[Lanc 1 ].
If is an infinite collection of Hilbert spaces, and Q,, c- .5,, are unit

vectors we may form the infinite tensor product 0. -5,, by taking all finite
linear combinations of elements of the form where K2,, except
for a finite number of a, and completing in the norm arising from the inner

product

(3  ., 0
12 a

If 9-n,, are von Neumann algebras on we may form 010,'Ma by taking
the weak closure of linear combinations of elements in T((Dn.' 5a) of the

form 0. A., where A,,, = 15,, except for finitely many ot. The resulting
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von Neumann algebra 9JI,, is highly dependent on the choice of the C a

sequence IQ,,) [Ara 6], [Pow 1]. If each 9R,, is a factor then (E)'- 9X,, is a

factor. This can be proved by applying a slight generalization of Theorem
2.6.10 on the state

(0 Ax = fj (Q, Axna)

If {91.1 is a collection of C*-algebras we may, in a similar way, form the
infinite C*-tensor product &, W,, by taking an inductive limit of the cor-

responding finite subproducts. In this case &, W,, is uniquely defined (up to

the non-uniqueness of the finite tensor products discussed earlier). References
for this paragraph are [Gui 1], [Lanc 1].

2.7.3. Weights on Operator Algebras; Self-Dual
Cones of General von Neumann Algebras;
Duality and Classification of Factors;
Classification of C*-Algebras

In this section we list various results in the theory of operator algebras
which are important in the structural theory of these algebras, but which have

not yet had any deep impact on mathematical physics. Proofs either will not
be givenpr will only be sketched.
We introduce a generalization of the concept of positive linear functional.

Definition 2.7.8. A weight on a C*-algebra % is a function w; [0, oo]
satisfying

w(A + B) = (o(A) + w(B), A, B c-

w(aA) = aco(A), ot c- R, A c- 91,

(with the convention 0 - oo = 0).
A trace on 91 is a weight w satisfying

co(A*A) = w(AA*), A c-

The following proposition is easy to prove:

Proposition 2.7.9. Ifw is a weight on 91, define TZ,, and Y,,, by

M.+ = {A c- %,; w(A) < ool,

1 0. = {A c- W; (o(A*A) < oo I

Itfollows that 9R,,, + is a cone in % + which is hereditary, i.e.,

0 :!!  A :!! B c- 9JI,,, , => A e 9JZ,, + .
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The complex linear span 9JI,,, of 9JI,,,,, is a *-subalgebra of %. Moreover,
Y,,, is a left ideal in % and

The weight a) extends to a linearjunctiona I (also denoted by 0)) on 9R".

Just as the case for states in Theorem 2.3.16 one may equip Y,, with a

pre-Hilbert structure defined by A5 B c- Y. " (o(A*B), and prove:

Theorem 2.7.10. To each weight co on W there is a Hilbert space .5 and

two maps, q;  -+ .5, 7r; %  --+ 9P(.5), such that q is linear with range dense

in .5, 7r is a representation of %, and

(q(B), 7r(A)q(C)) = w(B*AC)

for A c- %, B, C c- Y,

We next generalize the concept of normal positive functional on a von

Neumann algebra.

Theorem 2.7.11 ([Haa 3], [Ped 2]). Let (o be a weight on a von Neumann

algebra T1. Thefollowing conditions are equivalent:

(1) if JAij is a sequence in 9JI, and Yj Ai = A c- 9A, then o)(A)
Yj (t)(Ai);

(2) if JA,j is an increasing net in 9R, and A = l.u.b.,, A,,, c- T1, then

co(A) = 1.u.b, o)(Aj;
(3) if {A,j is a a-weakly convergent net in 9R, with limit A c- 9R, then

(o(A) < l.u.b.,,, (o(A,,,);
(4) there is a set {o),,l of positive, normal junctionals on T1 such that

o)(A) = sup,, (o,,,(A)j6r all A c- 9R, -

(5) there is a set  wj of positive, normal fiinctionals on 9N such that

o)(A) = Y. o),,,(A)jbr all A c- 9R,

Definition 2.7.12. A weight co on a von Neumann algebra is called normal
if it satisfies any of the equivalent conditions in Theorem 2.7.11. It is called

faithful if A c- 9N and co(A) = 0 implies A = 0. It is called semifinite if 9R" is

a-weakly dense in 9JI.

Using part (5) of Theorem 2.7.11 it is not difficult to prove:

Proposition 2.7.13. Every von Neumann algebra admits a normal.faithful,
semifinite weight.

The first part of the following theorem is proved using so-called left

Hilbert algebras [Com 1]; the rest is then proved exactly as in the Tomita-

Takesaki theory for states in Section 2.5.2.

Theorem 2.7.14. Let co be a faithful, normal, semifinite weight on a von

Neumann algebra 9A, and define Y., .5, q, and 7r as in Proposition 2.7.9 and
Theorem 2.7.10. Then 7r is a normal *-isomorphism from 9Y onto 7r(M) =
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n(M)". Set n(V) = 9JI. There exists a left ideal Y,,' c- 9JI' such that Tl," --

Y'*Y,,,'is a-weakly dense in M, and a linear mapping q; .5 with denseco

range such that q(A'B') = Aq(B'), A' c- 9JI', B' c- and the properties:

(1) Aq(A') = A' for all A' c- Y,,,' if, and only ff, A c- Y,,, and q(A) = 0;
(2) A'tl(A) = Aofor all A c- Y,,, if, and only if, A'c- Y,,,'and il(A) = 0.

Furthermore, q(TIJ and q(9JI,,') are dense in .5 and the mappings

SO; q(M.) q(A) tl(A*),

FO; q(A') il(A'*)

are closable with closures S and F satisfying S* = F. If S = JA 1/2 is the

polar decomposition ofS then J and A satisfy all the identities ofProposition
2.5. 10 and

A"MA` = 9R, t c- R,

J9JIJ = 9JI'.

One may now define the modular group, etc., for normal, sernifinite,
faithful weights just as for normal, faithful states.

One may also define a natural positive cone in the Hilbert space
associated to a normal sernifinite weight co as the closure of the set of

7r(A)J(q(A)), where A c- M.. The cone -9. has all the properties of natural
cones derived in section 2.5.4 with obvious modifications (i.e., 80"
A 1/4OR.,)) EHaa 2].
We now turn to the problem of classifying von Neumann algebras.

Definition 2.7.15. Two projections E, F in a von Neumann algebra 9JI are

said to be equivalent (written E - F) if there exists a Wc- 9JI such that E =

W*W and F = WW*. A projection E in 9JI is said to be finite if it is not

equivalent to a proper subprojection of itself; otherwise, it is said to be
infinite. The algebra 9Y is called semifinite if any projection in 9JI contains a

nonzero finite projection (alternatively: there exists an increasing net fE"J
of finite projections in 9A such that E,, -4 1). 9JI isfinite if I is finite; otherwise,
9JI is infinite. 931 is properly infinite if all nonzero projections in the center

9JI r-) 9X' are infinite; it is purely infinite if all nonzero projections in 9N are

infinite.

The following theorem, Connes'Radon-Nikodym theorem, is fundamental
for the classification of von Neumann algebras.

Theorem 2.7.16 ([Con 4]). For any pair 9, 0 of faithful, normal, semi-

finite weights on M there exists a continuous one-parameter family t

(DO: Dq), of unitaries in 9JI with the properties:

(1) a, (A) = (DO: D o), u,"(A) (DO: Dg),*;
(2) (DO: Dq), ,

= (DO: Dq), a,"((D : Dq),J;
(3) (DO: Dq),* = (Dq: DO),, (DO: Dq),(Dq: Do)), = (DO: Dw),;
(4) O(A) = 9(UA U*) with U unitary in 9N . #> (DO: Dq), = U*a,"(U).
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The proof makes use of 2 x 2 matrix methods in much the same way as in
the proof of Lemma 2.5.33. (See Theorem 5.3.34)
We now turn to sernifinite von Neumann algebras.

Theorem 2.7.17 QDix 1]). For a von Neumann algebra 9JI the following
statements are equivalent:

(1) 9JI is semifinite;
(2) For any A c- 9M, A 0 0, there exists a normal, semifinite trace T on

JJ1 such that -r(A) > 0;
(3) there exists afaithful, normal semifinite trace on 9N;
(4) a,' is an inner group ofautomorphisms ofTifor anyfaithful, normal

semifinite weight on 9R, i.e.,for any o) there exists a positive, invertible
se fadjoint operator h affiliated with 9Y such that a,'(A) = h"Ah"
for t c- R, A c- 9A.

We remark briefly that (3) => (1) is trivial, because if o) is a faithful trace,
E is a projection, and if w(E) < oo, then E must be finite. (2) -:::> (3) is more
or less evident; (4) => (3) follows by showing that -r(A) = co(h -'A) is a

trace, while (3) => (4) uses Theorem 2.7.16. (See ETak 3].) Finally, to prove
(1) => (2) one builds up a trace by making a comparison theory for projections
in much the same way as one builds up the reals from the integers or con-

structs the Haar measure of a locally compact group.
If JE,J is a set of mutually orthogonal projections in the center 3 of the

von Neumann algebra 9Y with Y,,, E,, = 1, then 9Y splits in a direct sum

9JI = J,, ME, 9JIE,, is a von Neumann algebra with center 3E, Thus, by
going to the limit in a way which will be made precise in Chapter 4, the
von Neumann algebra splits in a generalized direct sum, or direct integral,
of factors (this applies strictly only to a-finite von Neumann algebras).
Hence the question of classifying von Neumann algebras reduces to the
classification of factors.

Definition 2.7.18. A factor M is said to be type I if it has a minimal, nonzero

projection. It is type 11 if it is semifinite, but not type 1. A type 11 factor is

type I I, if it is finite and type 11,,,, if it is infinite. 9W is said to be type III if
it is not semifinite, i.e., if it is purely infinite.

For type I factors, it is easy to give a complete classification.

Proposition 2.7.19. If9A is a type I factor, then 9N is isomorphic with Y(.5)
for some Hilbert space .5. Thus the dimension of .5, is a complete invariant

for type I factors.

Definition 2.7.20. A type I factor is said to be of type In if n is the dimension
of the Hilbert space .5 of Proposition 2.7.19.
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It remains to classify type 11 and type III factors. This can be reduced to

the classification of certain sernifinite von Neumann algebras and their

automorphisms (Connes-Takesaki duality theorem).

Theorem 2.7.21 ([Tak 2], [Con 4]). If 9N is a properly infinite von

Neumann algebra then there exists a semifinite von Neumann algebra 91

with a semi nite, normal, faithful trace -c, and a a-weakly continuous one-Ifi
parameter group a, of -automorphisms of% such that

T . OC, = e-'T, t c- R,

and

9W = W*(91, 0C).

{910,01 is another pair with these properties if, and only if, there exists an

isomorphism T: 91 F-+ 91' and a one-parameter family U, of unitary elements
in 91' such that

cx,O(A) = U,(Tay-1(A))U,*.

Furthermore, the center ofT? identifies with thefixed-point subalgebra ofthe
center 91 r-) 91' of 91 under the action of ot. The pair (91, a) can be obtained

from M by picking afaithful, semifinite, normal weight co on 9JI and setting

W*(9j1' a');

CXt a,' = the dual action of R on W*(931, aa).

PROOF. The proof follows by noting that the group a' and the weight W extend in a

natural way to an inner group of automorphisms of W*(9JI, a') and a weight on

W*(9JI, a') such that the extended group turns out to be the modular automorphism
group of the extended weight. One then applies Theorem 2.7.17 to get a trace on 91,
and finally notes that

W*(W*(991, a), 6)  --- T1 & Y(L2(R)) 9W

for any C,*-group a of automorphisms of 9J?.

Definition 2.7.22. If T? is a factor, define sox) n-a(A.), where W

ranges over all normal sernifinite weights on 9A and a(A.) is the spectrum of

A.. Define T(M) =  t c- R; a' is innerl where w is a normal sernifinite weightt

on 9W. (The latter definition is independent of co in view of Theorem 2.7.16.)

The set S(M) is a closed subset of [0, + oo > such that S(9N) r-) <0, + oo > is a

subgroup of the multiplicative group <0, + oo >. The set T19M) is clearly a

subgroup of R. If we define the Connes spectrum F(M) = F(a') as in the
Notes and Remarks to Section 3.2.3, then F(9N) is a closed subgroup of R,
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and F(M) is independent of o) by a use of Theorem 2.7.16. The following
connections hold between these concepts:

Theorem 2.7.23 ([Con 4]). If 9W is afactor then

F(M) = log(S(M)\10 )
and if S(M) 0 10, 11, then

T(M) = It c R; e"' = I for all A c- F(M)J.

If S(9JI) = 10, 11, the group T(9JQ) is not determined from S(M), it might be
a dense subgroup of R or a subgroup of the form  nTo; n c- Zj.

Since S(M)\ Oj is a closed subgroup of the multiplicative group of positive
reals, we have the following possibilities:

(1) SON)= M;
(2) S(9y) = [0, 00 >;
(3) S(gy) = 101 . jAn ; n C- Zj' A C- <0, 1>;
(4) S(Tl) = 10, 11.

Theorem 2.7.17 and Theorem 2.7.23 imply that (1) is the case if, and only if,
9N is semifinite, and (2)-(4) are the case if, and only if, 9N is of type 111.

Definition 2.7.24. 9W is a factor of type Ill, if S(M) = [0, oo >, of type IIIA
if S(M) =  01 + A', where 0 < A < 1, and oftype 1110 if S(TI) = 10, 11.

If M is a sernifinite factor, then the pair 191, al of Theorem 2.7.21 has the
form

91 = 9N (D L'(R),

at = i & translation by t

so the theorem gives no interesting information.
In the type Ill case, however, we have the following. (Remember that a

acts ergodically on 91 r-) R = 3(%) if, and only if, 9W is a factor):

Theorem 2.7.25. Let 9J? be a von Neumann algebra. One has equivalence
between thefollowing pairs of conditions:

(1A) M is afactor of type IIIA, 0 < A < 1;
(2A) 1,301), al is transitive and periodic with period -log A;

(10) 9W is a factor of type 1110;
(20)  3(91), al is ergodic, but not isomorphic to fL'(R), translationj;

(1,) 9Y is afactor of type 1111;
(2,) % is afactor of type ll(,,,.

A special class of factors for which a complete classification is known
is the class of so-called hyperfinite factors. Recall that a factor, or more
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generally a von Neumann algebra, is called hyperfinite if it is generated by
an ascending sequence of finite-dimensional factors, i.e., matrix algebras. For

a factor, this is equivalent to being generated by an ascending sequence of
finite-dimensional von Neumann algebras [Ell 4], [Ell 5]. It is known that a

hyperfinite von Neumann algebra has the property E of Tomiyama, i.e., if
9W gi Y(.5) then there exists a projection E: Y(.5)  --* 9W of norm one, i.e.,
E' = E, EY(.5) = M, JJEJJ = 1. Such a mapping E also is a conditional

expectation: E(ABQ = AE(B)C, A, C c- 9W, B c- Y(.5) [Tom 1]. The converse

is known for all factors M [Con 5], [Con 8], [Haa 5]. It is known that

Krieger factors, i.e., factors which are the crossed product of a a-finite abelian
von Neumann algebra with a single automorphism acting freely and ergodi-
cally, are hyperfinite, and conversely hyperfinite factors are Krieger factors

[Con 3], [Con 5], [Con 8], [Haa 5].
As for the classification of hyperfinite factors, it is known that there exists

just one hyperfinite type II, factor and one hyperfinite 11,,', factor up to

isomorphism [Con 5]. The automorphisms of these factors, up to the

equivalence relation relevant for Theorems 2.7.21 and 2.7.25, have been
classified [Con 6] and, as a result, it has been proved that there exists just
one hyperfinite IIIx for each A between 0 and 1, while the hyperfinite factors of

type 1110 are completely classified by the flow f,3(%), al. There exists a

hyperfinite 111, factor [Ara 6], and it was recently proved that this is the only
one, [Haa 5], [Con 8].

Parallel to this classification of factors, one has a classification of C*-

algebras. A C*-algebra % is said to be type I if all its factor representations is
of type I (a representation 7r of 91 is a factor representation if 7r(W)" is a factor).
It is known that a separable C*-algebra W is type I if, and only if, for any ideal
which is the kernel of an irreducible representation, this representation is

unique up to unitary equivalence. Also iff is type I if, and only if, for any
irreducible representation n, of %, one has, YWQ5.) g; 7r(91) [Gli 4]. Thus the
classification of separable type I C*-algebras is to some extent reduced to a

study of its ideal structure.

It is known [Gli 4], [Mar 1] that if W is a separable C*-algebra not of

type I and,9J? is an infinite hyperfinite factor then there exists a representation
7r of iff such that n(W)" = T1. This suggests that the next simplest class of

C*-algebras to study is the class of nuclear C*-algebras, i.e., the C*-algebras
such that all their factor representations are hyperfinite. Many studies in
this direction have been made [Choi 1], [Eff 2], [Ell 6], [Ped 2].



Notes and Remarks

There are several books and lecture notes on operator algebras which cover

the material of this chapter. For example, one may consult Arveson [[Arv 1]],
Dixmier [[Dix 1]], [[Dix 2]], Guichardet [[Gui 1]], Kadison [Kad 1],
Lanford [Lan 1], Naimark [[Nai 1]], Pedersen [[Ped 1]], Sakai [[Sak 1]],
and Schwartz [[Sch Ifl. The references [[Arv 1]], [[Gui 1]], [Kad 1], and
[Lan 1], are the most elementary and provide the easiest access to the general
theory. There are many books on functional analysis and its various aspects,
of which the following are a cross section: Bourbaki [[Boutfl, Kato

[[Kat 1]], Reed and Simon [[Ree 1]], Riesz and Nagy [[Rie 1]], Rudin

[[Rud 1]], [[Rud 2]], and Yosida [[Yos Ifl. References [[Ree 1]], [[Rud 2]],
and [[Rud 1]] are particularly straightforward.

Section 2. 1. 1

The material of this section is standard. The study of abstract C*-algebras
originated with the work of Gelfand and Naimark [Gel 1] and Segal [Seg 1].
The original definition of a C*-algebra in [Gel 1] was a Banach *-algebra
whose norm satisfied 11A*A11 = IIA 112 and was such that each I + A*A had
an inverse. This second condition was eventually eliminated by Fukamiya
[Fuk 1], Kelley and Vaught [Kel 1], and Kaplansky [Kap 1]. Glimm and
Kadison [Gli 1] also showed that the norm condition could be replaced by
11A*A11 = 11A*11 IJAII. More recently, Araki and Elliott [Ara 1] have shown
that the condition IIABIJ < IJAII JIBIJ is actually a consequence of the re-

maining C*-algebraic structure. Theorem 2.1.10 originated in [Gel 1] while
Theorem 2. 1.11 is due to Gelfand [Gel 2]. Some authors distinguish between
abstract C*-algebras and C*-algebras concretely realized by bounded

operators on a Hilbert space. The abstract algebra is called a B*-algebra and
the concrete algebra a C*-algebra.

Section 2.2.1

The general theory of spectra of elements of Banach *-algebras was also
initiated in [Gel 1] but the usual discussion is based upon the properties of
commutative algebraic theory [Gel 2]. We have avoided the use ofcommuta-
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tive theory by emphasizing properties which follow from simple transforma-
tions.

Section 2.2.2

Theorem 2.2.12, which establishes that an element is positive if, and only if,
it is of the form A*A, is due to Kaplansky [Kap 1]. This is the key result which
allows one to deduce that I + A*A has an inverse and thus eliminate the

surplus axiom of [Gel 1]. Our analysis of positive elements by use of the

integral algorithm for the square root is unconventional. The standard

procedure is to proceed circuitously through a preliminary analysis of

positive elements of abelian algebras. Nevertheless, integral algorithms are

often used in the discussion of fractional powers of selfadjoint operators on

Hilbert space [[Kat 1]] EERee 1]] or, more generally, fractional powers of

generators of continuous semigroups [[Yos 1]]. The veri-fication that A =

B2, in the proof of Theorem 2.2.10, is described in the semigroup context in

Chapter IX, Section 12, of [[Yos 1]]. An alternative proof via contour

integration is given in [[Kat 1]]. In relation to Proposition 2.2.13 it is

amusing to note that if % is a C*-algebra, a > 1 and if A >- B  !! 0 always
implies that A' > B" then % must be abelian [Oga 1]. A detailed discussion of
the polar decomposition is given in [[Kat 1]].

Section 2.2.3

The theory of approximate identities originates with Segal [Seg 1].

Section 2.3. 1

The theory of representations of C*-algebras and representations of topo-
logical groups are intimately entangled. Group theory preceded the algebraic
theory and to a large extent motivated it. Proposition 2.3.8, which character-
izes irreducibility, is a classic result of group theory and the equivalence of
conditions (1) and (2) is usually called Schur's lemma.

Section 2.3.2

The notions of state and pure state are due to Segal [Seg 1]. The terminology
is adapted from physics. The Krein-Milman theorem [Kre 1] is discussed
and proved in [[Yos 1]] or in [[Rud 2]].

Section 2.3.3

The construction of a representation from a state (Theorem 2.3.16), is due
to Gelfand and Naimark [Gel 1] and Segal [Seg 1] and is consequently
often called the GNS construction. The connection between irreducibility,
purity, and extremality (Theorem 2.3.19), is again in [Seg 1].
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Section 2.3.4

The Hahn-Banach theorem occurs in every book on functional analysis.
A lucid account is given by EERud 1]] or E[Rud 2]]. Our proof of the basic
structure theorem via Lemma 2.3.23 is a slight variation on the traditional
argument.

Section 2.3.5

As mentioned above the theory of commutative algebras originated with
Gelfand EGel 1].

Section 2.4

The theory of von Neumann algebras preceded that of C*-algebras and was

motivated both by group theory and quantum mechanics. The earliest

study of these algebras dates from 1929 ENeu 1]. Much of the standard

theory was developed by Murray and von Neumann in a series of papers
[Mur 11, ENeu 2].

Section 2.4.1

The Alaoglu-Bourbaki theorem can be found in EEBou 111, EERud 2]], or in
K6the EEKbt 1]]. The theorem of Banach cited in the proof of Theorem 2.4.7
can be found in EEBou 1]], Chapter 4, 2, Theorem 5. The assertion con-

cerning the bipolar of a closed convex set is also in EEBou Ifl.

Section 2.4.2

The original commutant theorem and the first density theorem were proved
by von Neumann in his earliest paper ENeu 1]. Kaplansky's density theorem
came much later [Kap 2]. These theorems are of great technical use and
it is worth citing the following result, due to Kadison EKad 11, EKad 2],
which is of a similar nature.

Theorem. Let W be an irreducible C*-subalgebra of Y'(.5) and let

{01, - - - 00, {(Pi, - - - (PnI

denote two finite families of vectors of Sv - If there exists a T c- Y(.5) such
that T9j = Oi for i = t, 2_ .,

n then it follows that there exists an A C- W
with the same property and with 11 All = 11 T 11. If T is se fadjoint then A may
be chosen se fadjoint, and if T is unitary then A may be chosen unitary.

This theorem has many applications, e.g., the equivalence of algebraic
irreducibility and topological irreducibility cited in Section 2.3.1 follows
from this result.
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Section 2.4.3

The theorem of Sakai which gives an abstract characterization of von

Neumann algebras can be found in [[Sak 1, Theorem 1.16.7]]. The termin-

ology W*-algebra is often used for the abstractly defined algebra and then
the name von Neumann algebra is reserved for the operator algebras. The
abstract characterization of von Neumann algebras by Kadison occurs in

[Kad 3].

Section 2.5.1

Although a general von Neumann algebra 9W is not c-finite there exists an

increasing net of projections P,,, c- T1 such that P,,, --+  and the reduced von

Neumann algebras 9JI,, = P,,9JZP,, are a-finite, e.g., one can take P" =
[W.5,J, where .5,,, is a finite-dimensional subspace of -5. Thus in this sense

every von Neumann algebra is generated by u-finite algebras.

Section 2.5.2

The Tomita-Takesaki theorem originated in an unpublished work of
Tomita [Tomi 1]. This manuscript states the principal theorem, Theorem

2.5.14, and detailed a proof which contained all the features of the proof that

we have given. An exposd of this work with many refinements and several

applications was subsequently given by Takesaki [Tak 3]. The proof of the

principal theorem has been simplified and shortened by various authors,
notably van Daele [Dae 1], van Daele and Rieffel [Dae 2], and Woronowicz
[Wor 1]. The present proof combines features of [Dae 1], [Wor 1] together
with some personal refinements. The theorem of Carlson used in the case

JJAJJ < + co may be found in [[Tit 1]].

Section 2.5.3

Analytic elements are of use in the study of group representations [Har 1],
[Car 1] and have also been used for the study of selfadjointness properties
[Lum 1], [Nel 1]. The Krein-Smulian theorem and Alaoglu's theorem are

discussed in EEDun 1, Chapter V]]. A discussion of the Mackey topology can

be found in [[Bou 1]]. The equivalence of weak and strong analyticity is due

to Dunford [Dun 1].

Section 2.5.4

The theory of self-dual cones and standard forms was developed by Araki,
Connes and Haagerup, independently [Ara 2], [Con 1], [Haa 1]. In our

partial description we have also followed [Ara 3], [Haa 2]. The trick of
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4 x 4 matrices used in proving Theorem 2.5.31 originates in [Con 1].
Connes also shows that a self-dual cone (in a Hilbert space) is the natural

cone of a von Neumann algebra if, and only if, it satisfies two other properties,
which he calls orientability and homogeneity.

Section 2.6. 1

The importance of the quasi-local structure of the C*-algebras of mathe-

matical physics was first emphasized by Haag [Haag 1]. Cluster properties
of the type described were first derived by Powers [Pow 1] in the context

of UHF algebras. In particular, Powers proved Lemma 2.6.7, Proposition
2.6.8, and Theorem 2.6.9 in this simple case. Powers' work has subsequently
been discussed and generalized by many authors, e.g., [Ara 4], [Haag 2],
[Lan 2], [Rob 1], [Rue 1]. The notion of algebra at infinity was introduced in

[Lan 2] and Lemma 2.6.4 is due to Araki and Kishimoto [Ara 4]. We have

generally followed the outline of [Rue 1] with improvements suggested by
EAra 4] and [Rob 1]. A more complete discussion of Fermi statistics

,) then the situation is as follows. For eachis given in ERob 1]. If 9R, , Y(.5,
a there exists an R,, c- Y(., ),,) such that

"2 =  , -9R R,,,AR,, = a(A), A c- Jl,,,,

and local normality of o) together with the assumption JM,, v MJ" = 9jz,,, v

allows the conclusion

7r.(9X,,' n M,,, , fl) = (7r,,,,(R,, Mp ' +9jj, e)y.

Further, if a is weakly continuous in the representation (.5,, n.) then one can

use this identification to conclude that 3. r-) 7r.(%e)f, Cluster

properties again characterize the case of trivial 3,,,.

Section 2.6.2

The discussion of topologies partially follows ERob 2]. The two results

quoted in the proof of Proposition 2.6.13 can be found in EEDix 2]]. The

fact that % n YW(.5) :A 101 implies % 2 Y16(.5) is Corollaire 4.1.10 and

the statement concerning vector states is Lemma 11.2.1 of this reference.

Section 2.6.3

A more detailed discussion of ideal structure and other algebraic structure in

quasi-local algebras can be found in EGli 2], EBra 11, EBra 2] and EE11 1].
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3.1. Banach Space Theory

Physical theories consist essentially of two elements, a kinematical structure

describing the instantaneous states and observables of the system, and a

dynamical rule describing the change of these states and observables with
time. In the classical mechanics of point particles a state is represented by a

point in a differentiable manifold and the observables by functions over the
manifold. In the quantum mechanics of systems with a finite number of
degrees of freedom the states are given by rays in a Hilbert space and the
observables by operators acting on the space. For particle systems with an

infinite number of degrees of freedom we intend to identify the states with
states over appropriate algebras of fields, or operators. In each of these
examples the dynamical description of the system is given by a flow, a one-

parameter group of automorphisms of the underlying kinematical structure,
which represents the motion of the system with time. In classical mechanics
one has a group of diffeomorphisms, in quantum mechanics a group of
unitary operators on the Hilbert space, and for systems with an infinite
number of degrees of freedom a group of automorphisms of the algebra of
observables. It is also conventional to describe other symmetries of physical
systems by groups of automorphisms of the basic kinematic structure and in
this chapter, and Chapter 4, we study various aspects of this group-theoretic
description. In this chapter we principally consider one-parameter groups and
problems related to dynamics.

In the conventional formulations of theories of interacting particles the
dynamical flow is introduced in an implicit manner. The natural description
of the motion is in terms of the infinitesimal change of the system. The infini-
tesimal motion is directly described by some form of Hamiltonian formalism
which allows the explicit incorporation of the interparticle interaction. In
classical mechanics the infinitesimal change is defined by means of a vector

field, in quantum mechanics by a selfadjoint Hamiltonian operator, and for
systems with an infinite number of degrees of freedom by some form of
derivation of the associated algebra. The first basic problem which occurs is
the integration of these infinitesimal prescriptions to give the dynamical flow.
This problem, which will be the central theme of this chapter, is, of course,
only a minor step in the analysis of the physical theory. The interesting
characteristics of the theory are described by the further detailed properties of
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the flow, dispersive properties, ergodic characteristics, etc. The integration
problem only involves the characterization of the completeness, or lack of

completeness, of the dynamical prescription which reflects the absence, or

presence, of catastrophic behavior of the system. These points are, however,
poorly understood for systems with an infinite number of degrees of freedom
and this problem constitutes a nontrivial first step in the analysis of the

dynamics of such systems.
The general problem is to study the differential equation

dAt
::- SA,

dt

under a variety of circumstances and assumptions. In each instance the A

corresponds to an observable, or state, of the system and wilt be represented
by an element of some suitable space X. The function

t c- R F--+ A, c- X

describes the motion of A and S is an operator on X, which generates the
infinitesimal change of A. The dynamics are given by solutions of the dif-
ferential equation which respect certain supplementary conditions of growth
and continuity. The existence of a sensible, noncatastrophic, time develop-
ment of the system is equivalent to the existence of global solutions of the

equation of motion satisfying the physical boundary conditions.
There are three basic questions concerning such solutions, existence,

uniqueness, and stability under small perturbations, and we analyze these

problems in a variety of settings, but we always assume that X is a Banach

space and S a linear operator on X. Firstly, we examine the differential

equation in the purely Banach space setting. Subsequently, we assume that X
has an algebraic structure and that S is a derivation.

Formally, the solution of the differential equation is A, = UtA, where

U, = expjtSj and the problem is to give a meaning to the exponential.
Independently of the manner in which this is done one expects U, to have the

property that UO is the identity and that Ut Us = U,,, and so we seek solu-
tions of this nature. There are, however, many different possible types of

continuity of t i--+ U, and this leads to a structural hierarchy. We examine

uniform, strong, and weak* continuity and sometimes use the assumption
that 11 U,11 :!! 1 where 11 11 indicates the norm on the bounded operators on X,
i.e.,

JIS11 = supIlISAII; A c- X, 11AII = 11.
This growth restriction can be interpreted as a law of conservation, or

possible dissipation, of probability. Thus the types of solution that we

consider fall into the two following classes:

either U = JU,I,,,- is a one-parameter group ofbounded linear operators
on X characterized by the first condition of Definition 2.5.17, i.e.,

us+, = Us U'; t' S C- R, UO = I,
where I is the identity map;
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or U I U,Jcm, is only defined for t > 0 and is a semigroup satisfying

Ul+1 = Ulu,, t, s c- R+, U0 = I.

If 11 U, All 11 All for all t c R, or t c- R + ,
A c- X, then U is a group, or semi-

group, of isometries. If, on the other hand, 11 U, 11 :!! I for all t e R + ,
we refer

to U, as a semigroup of contractions. Note that a one-parameter group of
contractions is automatically isometric, because

llu'll < 11 llut-111 = liu-111 < I.

Now we examine groups and semigroups with various types of continuity

3. 1. 1. Uniform Continuity

The theory ofuniformly continuous groups and sernigroups is straightforward
and is described as follows.

Proposition 3. 1. 1. Let I U, 1, c +
be a one-parameter semigroup ofbounded

linear operators, U, c Y(X), on the Banach space X. Thefollowing conditions
are equivalent:

(1) U, is uniformly continuous at the origin, i.e.,

lim 11 U, -Ill = 0;
t-0

(2) U, is uniformly differentiable at the origin, i.e., there is a bounded
operator S c- Y(X) such that

lim ll(U' - I)lt - Sll = 0;
t-0

(3) there is a bounded operator S c- Y(X) such that

Y
tn

U Sn.
n>0 n!

Ifthese conditions arefulfilled then U, extends to a uniformly continuous one-

parameter group satisfying

llu'll < expjltj JIS111.

PROOF. Clearly, (3)=>(2)=>(l) and hence we must prove that (1)=>(2)=:>(3).
For this note that if t is sufficiently small then

t
ds Us - I < 1,

which implies that the integral

X, -
- ds Us
t fo
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is invertible and has a bounded inverse. Next consider the identity

U, - I I '

X, - ds(U,,, - Uj
h th f.

I h I h

- ds U - - ds U,
th f ' th f

Xh.

The right-hand side converges uniformly, as h tends to zero, to (U, - I)lt and hence

I
U,

Xt I =0.im
h-0 h I)

Thus U, is uniformly differentiable and we have in fact identified the differential S by

S X
t

Finally, the identity yields the integral equation

U, - I = S ds U,,

which may be solved by iteration to give

tn
U, - Sn.

1, 0 n!

The bound on 11 U, 11 follows from this formula.

Thus the group JUtj,R of bounded operators on the Banach space X is

uniformly continuous if, and only if, its generator S is bounded. By generator
we mean the uniform derivative of the group at the origin. Note that this
definition implies that sums and uniform limits of generators are again
generators. Moreover, if U and V are uniformly continuous groups with

generators S and T, respectively, one has

1

U, - V, = t dA U,(S - T) V(1f
0

and hence

IlUt - Vtjj :!! Itlexplitl(IISII + 11TII)IIIS - T11.

Thus if S converges uniformly to T then U converges uniformly to V and the

convergence is uniform for t in any finite interval of R. Conversely, if A S 11,
A > 11 T 11, one calculates that

S - T = (AI - S) fo dt e
- At(U, - V,) (AI - T)
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and

S - T S 11 + A) (11 T 11 + A) dt e-l'11 U, - V,11-
0

Hence if U converges uniformly to V, on finite intervals of R, then S converges

uniformly to T.

This describes the case of uniformly continuous one-parameter groups and
indicates that these groups will have limited use in the description ofdynamics
because their generators, i.e., the associated Hamiltonian operators, are

necessarily bounded. Nevertheless, these groups are of some interest in the

general context of symmetries.

3.1.2. Strong, Weak, and Weak* Continuity

In this section we examine groups and semigroups of bounded operators on
the Banach space X which have weaker continuity properties than those

examined in the previous section. To state these continuity properties we

consider a formalism similar to that described in Section 2.5.3.

Let F be a norm-closed subspace of the dual X* ofX and let u(X, F) be the

locally convex topology on X induced by the functionals in F. We will assume

that

(a) 11AII = sup{lq(A)I; q c- F, 11tIll = 11;
(b) the a(X, F)-closed convex hull of every u(X, F)-compact set in X is

u(X, F)-compact;
(c) the a(F, X)-closed convex hull of every a(F, X)-compact set in F is

a(F, X)-compact.

These conditions are satisfied in the special cases F = X* and F = X*
(see Section 2.5.3) and these two choices of F will be of importance in the

sequel.
Another dual topology which is often useful is the Mackey topology

-r(X, F). This topology was briefly used in Section 2.5.3 and it is defined by the

seminorms

A C_ X '--+ PK(A) = SUP I q(A) I
?I,E K

where K ranges over the compact subsets of F. Generally, the Mackey
topology restricts K to the convex, compact, circled subsets of F, but by
assumption (c) this is equivalent to the definition we have given. The

T(X, F)-topology is particularly simple if F = X*. The unit ball of X* is

c(X*, X)-compact, by the Alaoglu-Bourbaki theorem. and hence the

,r(X, X*)-topology is'equal to the norm topology. More generally, one can
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establish that ther(X, fl-topology on X is the finest locally convex topology
such that all -c(X, fl-continuous functionals lie in F. In particular, this implies
that any u(X, fl-dense convex subset of X is -r(X, fl-dense.

After these topological preliminaries we return to the examination of

groups and semigroups. The groups and sernigroups that we wish to examine
in the remainder of this section are introduced as follows:

Definition 3.1-2. A sernigroup (or group) t  - U, ofbounded linear operators
on the Banach space X is called a u(X, fl-continuous semigroup (or group) if

(1) t  - Ut A is u(X, fl-continuous for all A e X, i.e., t tl(U, A) is
continuous for all A c- X and q c- F;

(2) A i--+ U, A is a(X, F)-a(X, fl-continuous for all t, i.e., U, c- F for
q c- F.

If F = X* then U is said to be weakly continuous, or a Co-semigroup; if
F = X, U is said to be weakly* continuous, or a Co*-semigroup.

We shall see later (Corollary 3.1.8) that a weakly continuous sernigroup is
in fact strongly continuous, i.e., t i--+ U, A is continuous in norm for all A C- X.
A special case of this has already been demonstrated for Co-groups of iso-
metries (Corollary 2.5.23). To tackle the general case we must first control the
growth of 11 Ut 11.

Proposition 3.1.3. Let U U,It, 0 be a u(X, fl-continuous semigroup on

the Banach space X. There exists an M   ! 1 and inf, , 0(t log 11 Ut 11)
such that

11 U,11 :!! Meflt.

PROOF. Because the function t c- R, F-+ q(U, A) is continuous for all q E F and
A c- X it follows, by two applications of the uniform boundedness principle, that there
is an M < - oo such that 11 U,11 :!! M for t c- [0, 1]. Now each t  !! 0 is of the form
t = n + s with n a nonnegative integer and s c- [0, 1 >. Thus

jjUtjj = jjU,nUsjj :! Mn+1 < Mefl,

where log M. Furthermore, M   ! 11 U0 11 = I and

+ t-' log M  ! t-' logjj U,11   ! inf s-' logli U,11,
slo

giving the estimates on M and A

One consequence of this growth condition is that { U, e
- Ot

0 is a U(X, F)-
continuous semigroup which is uniformly bounded, and hence the regulariza-
tion procedure of Proposition 2.5.18 can be readily applied. In the proofof the
next lemma we explicitly use the assumptions (a), (b), and (c) on the pair
(X, F).
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Proposition 3.1.4. Let t F-+ U, be a u(X, fl-continuous semigroup on X

such that 11 U, 11 :!! Mefl'. Let y be a complex measure on R , such that

10 d I y I (t) efl' < oo. It follows that

co

U,(A) dy(t) U,(A)f
0

defines a bounded linear operator on X. Furthermore, Uu is a(X, F)-
a(X, fl-continuous.

PROOF. The first statement is essentially Proposition 2.5.18. For the second state-

ment we have to show that U,,*?l c- F for all q c F, where U,* is the dual of U, on X*.

But t  --+ U,* is a a(F, X)-continuous semigroup on F by Definition 3.1.2, and we have

U,*q(A) q(U,(A))

fdy(t) q(U,(A))

fdy(t)(U,*q)(A).
Since the conditions (a), (b), and (c) on the pair (X, F) are symmetric in X and F we

may apply Proposition 2.5.18 again to conclude that U,*q c- F.

Next we introduce the generator of a u(X, fl-continuous semigroup.

Definition 3.1.5. Let U be a u(X, fl-continuous semigroup on the Banach

space X. The (infinitesimal) generator of U is defined as the linear operator S
on X, whose domain D(S) is composed of those A Ei X for which there exists a

B c- X with the property that

q(B) = lim
q((U, I)A)

f-0 t

for all ?I c- F. If A c- D(S) the action of S is defined by SA = B.

Note that the semigroup property of U automatically implies UD(S)
D(S) and

SU,A = USA

for all A c- D(S). We now analyze miscellaneous properties of generators and
their resolvents. Recall that the resolvent set r(S) of an operator S on the

Banach space X is the set of A c- C for which AI - S has a bounded inverse, the

spectrum a(S) ofS is the complement ofr(S) in C, and ifA c- r(S) then (AI - S) - '
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is called the resolvent of S. The basic properties of generators and their
resolvents are contained in the following:

Proposition 3.1.6. Let U be a a(X, F)-continuous semigroup on the Banach
space X, S the generator of U and M, # constants such that

11 U, 11 :!! M expf&J, t e R,

It follows that S is u(X, fl-densely defined and u(X, F)-a(X, F)-closed.
If Re A > # then the range R(AI - S) of AI - S satisfies

R(AI - S) = X

andfor A c- D(S)

JI(AI - S)(A)II  !! M-'(Re A - #)IIAII.

7he resolvent ofS is given by the Laplace transform
co

(AI - S)- 'A dt e--"UAf
0

for all A c- X and Re A > fl.

PROOF. If Re A > # it follows by Proposition 3.1.4 that we may define a bounded,
a(X, F)-a(X, fl-continuous operator Rx on X by

RAA = fo ds e-,"U,A.

For t  !! 0 one has

I
(Ut - I)R. A

I f ds e
- -"(Us Us)A

t t 0

I f'ds (e - -(s - t)
- e

- "s) UsAfds e-(s -') Us A
t 0 t 0

---+ ARj A - A,
1-0

where the first term converges in norm and the second in the u(X, fl-topology. It
follows that R.I A c- D(S) and

(AI - S)RzA = A

for A c- X. Since U, RA = R.I U, and RA is a(X, F)-u(X, fl-continuous, it follows that S
commutes with R. in the sense that

RA(AI - S)A = (AI - S)R., A = A

for A e D(S). Hence A c- r(S) and (AI - S)-' = R.I. The u(X, F)-u(X, fl-continuity
of (AI - S)-' then implies that AI - S, and hence S, is u(X, F)-u(X, fl-closed. Now
for any A c- X and q c- F one can use the same reasoning as in the proof of Proposition
2.5.22 to deduce that

lim q(nR,,A) = q(A).
n-.
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Since D(S) = R(R,,) = R(nR,,) it follows that D(S) is u(X, F)-dense in X. Finally,
note that for q c- F, A c- X, one has

q(R., A) I < ds e-JR-fl I q(U, A)

< f ds e -JR ' 1Mefl'jjqjj 11AII
0

M(Re A - #)-'jjqjj IJAII,

or, alternatively stated, JI(AI - S)-'jj :!! M(Re A - fl)-'. This establishes the bound

given in the proposition.

A slight variation of the above argument yields the following often useful
fact.

Corollary 3.1.7. Let U be a u(X, fl-continuous semigroup on the Banach

space X with generator S. Let D be a subset of the domain D(S), ofS, which
is a(X, F)-dense in X and invariant under U, i.e., Ut A c- Dfor all A c- D and
t c- R, Itfollows that D is a corefor S, i.e., the u(X, F)-a(X, fl-closure of
the restriction ofS to D is equal to S.

PROOF. Let 9 denote the closure of S restricted to D. If R(AI - X for some A
with Re A > # then it follows from Proposition 3.1.6 that S = S. But for A C- D one

can choose Riemann approximants
N

Y_N (A) = E e`iU,A(tj,j - ti),
i=1

N

Y-N V, - S)A) = Y e-"iUjAI - S)A(ti,l - ti)
i=1

which converge simultaneously to (AI - S)- 'A and A. Now Y-N (A) e D because of
the invariance of D under U and

(A, - S) Y-N (A) = Y-N ((A, - S)A).

Thus Y-N (A) --+ (AI - S)- 'A and (AI - S) Y-N (A) -* A. Therefore A e R(AI - S) for
each A e D. But (AI - S)-' is u(X, F)-u(X, fl-continuous and hence R(AI - 9) is

a(X, fl-closed. Thus R(AI - S) = X by the density of D.

Under some additional assumptions Proposition 3.1.6 implies that a

a(X, fl-continuous semigroup U is actually continuous in the -[(X, F)-, or

Mackey, topology. The additional assumption is an equicontinuity property
which states that there exists some fl' such that for each a(F, X)-compact
subset K g F the subset

K' = fe -"U,*q; il c- K, t  !! 0}
has a a(F, X)-compact closure. Again U,* denotes the dual of U, acting on F.
If F = X* then this equicontinuity is automatically fulfilled. One chooses fl'
and M such that 11 U, 11 < M expj#'tj and then the a(X*, X)-compactness
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property ofK'follows from the Alaoglu-Bourbaki theorem. Another instance
when the equicontinuity is fulfilled is when #'is large enough that

Ile-l"U,11 -0

as t --> oo, and q, t F-+ U,*q is jointly continuous in the a(F, X)-topology.
In order to state the general result concerning coincidence of continuity

properties it is convenient to introduce the concept of T(X, fl-equicontinuity
as follows. A family JT,,J of operators, on the Banach space X, is defined to

be -r(X, F)-equicontinuous if for each seminorm PK in the definition of the

,r(X, fl-topology there exists a seminorm PK' such that

PK(TocA) < PK'(A)
for all A c- X and for all a.

The general result is the following:

Corollary 3.1.8. Let U be a u(X, fl-continuous semigroup, on the Banach

space X, with generator S. Assume there is a fl'  !! 0 such that JUe-fl`J,0
is a r(X, fl-equicontinuous family. It follows that t  --+ U, is T(X, F)-con-
tinuous and ifA c- D(S) then

lim
(U, - I)A

- SA,
t-0 t

where the limit is in the -r(X, fl-topology. In particular, each weakly con-

tinuous semigroup is strongly continuous and its weak and strong generators
coincide.

PROOF. one has

12

q(Ut2A - UtA) ds q(U, SA)f
t,

for all A e D(S), and q c- F. Hence

t2

XtPK((Uti - Ut2)A) PK,(SA) dt e

Now for A c- D(S) and B c- X one has

PK((Uti - Ut)B):! PK((Uti - Ut2)A) + PK(Utl(B - A)) + PK(Ut2(B - A))

f t2

dt efiltPK'(SA) + (efl'ti + efl't2)pK,(B - A).
ti

But D(S) is a u(X, fl-dense subspace of X and hence is r(X, fl-dense. Thus this
estimate implies -r(X, fl-continuity of U.
Next if A e D(S) then

(U, - 1) 1 t

A ds U,SA.
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But the -r(X, fl-limit of the right-hand side exists as t -- 0 because of the

-r(X, fl-continuity of U and hence the -c(X, fl-limit of the left-hand side also exists.
The final statement follows by choosing F = X*. In this case the Mackey topology

,r(X, F) coincides with the norm topology and the seminorm assumption corresponds
to a bound 11 U, A M expjfl'tj 11 A 11. But this bound was established in Proposition
3.1.3.

Note that the resolvent bound

JI(AI - S)'11 < M(Re A - fl)-', Re A >

obtained in Proposition 3.1.6 takes the particularly easy form

JI(AI - S)'11 < 1/Re ;,

whenever U is a Co-semigroup of contractions and this obviously implies
JI(Al - S)"11 < 1/(Re Ay

for all n = 1, 2, The general situation is, however, more complicated.
One can derive the Laplace transform relations

(AI _ S) - nA = 'Odt e
-A'

tn- 1

U A, Re A >
0 (n -f

and then one has

II(AI _ Syn 11 < 'Odt e
-tReA

tn-
Meflt

0 (n -f
M(Re A #) - n.

These bounds do not follow by iteration of the bound for n = 1, unless M = 1,
because M only occurs linearly.
As a final remark about Proposition 3.1.6 we note that the resolvent set

r(S) of the generator S contains the half-plane Re A > fl. Now if S is the

generator of a Co-group U with 11 U, 11 :!! Mefl' then both S and - S generate
Co-semigroups, the semigroups JUtj,;,,0 and JU,1,0, respectively, and
hence r(S) contains both the half planes Re A > # and Re A < - fl. Thus the

spectrum a(S) of S lies in the strip I Re A I :!! # and if U is a group of isometries
the spectrum of the generator must lie on the imaginary axis.

After this preliminary analysis of generators we turn to the more interesting
problem of constructing sernigroups from generators. We will examine two

cases, F = X* and F = X, corresponding to weakly (strongly) continuous
and weakly* continuous semigroups. Actually the discussion of the two cases

is very similar and many ofthe features ofthe latter case follow by duality from
the former. For this reason the following elementary result is often useful.

Lemma 3.1.9. Let S be an operator on a Banach space X and F a norm-

closed subspace ofX* such that

11 A 11 = sup{ I q(A) 1; q e F, 11 q 11 < 11.
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If S is contained in the dual (adjoint) of a c(F, X)-densely defined operator
S*, on F, then S is u(X, F)-u(X, fl-closable.

Moreover, thefollowing conditions are equivalent:

(1) S is u(X, fl-densely dqfined, and u(X, F)-u(X, fl-closed;
(2) S is the dual (adjoint) oj'a a(F, X)-densely defined, a(F, X)-U(F, X)-

closed, operator S* on F.

If these conditions arefulfilled, and S is bounded, then 11 S 11 S* 11.

PROOF. (1) => (2) Let G(S) = {(A, SA); A c- D(S)j denote the graph of S and
consider the orthogonal complement G(S)' = 40)11 (02)11 of G(S), in F x F. We first
claim that G = {(-(02, (')1); (W1, W2) c- G(S)II is the graph of an operator S*, on F.
For this it suffices that 0)2 = 0 Imply 0) 0. But this follows from the orthogonality
relation

o),(A) + C02(SA) = 0

and the density of D(S). Next remark that G(S)', and hence G, is C(F, X) x U(F, X)-
closed by definition. Thus S* is o-(F, X)-u(F, X)-closed. Finally, if S* is not U(F, X)-
densely defined then there must be a nonzero element of G' of the form (- B, 0), i.e.,
there is a B c- X with B :A 0 such that (0, B) c- G(S). But this contradicts the linearity of
S and hence S* must be densely defined.

(2) => (1) The argument is identical to the preceding.
Now let us return to the first statement of the lemma. Because D(S*) is U(F, X)-

dense, the dual S**, of S*, is well defined as a a(X, F)-a(X, fl-closed operator on X.
But S** is then a closed extension of S, i.e., S is closable. Finally, the equality of the
norms for bounded operators follows from

I A 11 = sup{ I q(A) 1; q c- F, 11qI I

by a straightforward argument.

The main problem of this section is the construction of Co- and Co*-semi-
groups. The problem consists of characterizing those operators which can be

exponentiated in a suitable form and we will examine various algorithms for
the exponential both here and in Section 3.1.3. We begin with a result which
characterizes the generator S of a semigroup of contractions by properties of
its resolvent. The algorithm

e" = lim (1 - tx1n) n

n oo

for the numerical exponential can be extended to an operator relation if the
11 resolvent " (I - tSIn) - n has suitable properties. The definition of the
resolvent of a closed operator S requires two pieces of information. Firstly,
one must know that the range of (I - tSIn) is equal to the whole space in order
that (I - tSIn)-' should be everywhere defined and, secondly, one needs a

bound on II(I - tSIn) -njj .
For later purposes it is useful to distinguish these

two separate properties.
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Theorem 3.1.10 (Hille-Yosida theorem). Let S be an operator on the
Banach space X. If F = X*,. or F = X, then the following conditions are

equivalent;

(1) S is the infinitesimal generator ofa u(X, fl-continuous semigroup of
contractions U;

(2) S is u(X, fl-densely defined, and cr(X, F)-u(X, fl-closed. For a > 0

11 (1 - ocS)A 11 A 11, A c- D(S),

andfor some oc > 0

R(I - aS) = X.

Ifthese conditions are satisfied then the semigroup is defined in terms ofS by
either of the limits

U,A = lim exp{tS(I - ES)-'IA
E-0

lim (I - tSIn) nA,
n- x

where the exponential of the bounded operator S(I - ES) is defined by
power series expansion. The limits exist in the u(X, fl-topology, uniformly
for t in compacts, and ifA is in the norm closure D(S) ofD(S), the limits exist

in norm.

PROOF. Proposition 3.1.6 established that (1) => (2). To prove the converse we

construct the associated semigroup with the aid of the first algorithm of the theorem.

Condition (2) implies that (I - 6) - ' is a bounded, u(X, fl-continuous operator with

I I (I - 6) - ' I I < I at the point e = oco for which R(I - a, S) = X. But a perturbation
argument using the Neumann series

00 )n(I - as) "Y- (I - ocos)-'
  : 0

then establishes that R(I - 6) = X for all e > 0.

Now we distinguish between the two cases of a Co- or a Co*-semigroup, i.e.,
F = X* or F = X* *

C,-case: F = X*. First we set S, = S(I - eS)-' and use the relation S,
6) - ') to deduce that

IlexpItS,111 :!  exp{-tg- 11
(tE -Ir

II(I - 'ESY"11
n! !o

< I

for t 0. Thus the U,' = exp{tS,j are uniformly continuous contraction semigroups.
Moreover the bounded operators S,: and Sa commute and

11 U,` A - U,'5A 11 = ds
d

e*s,: + (1 -  )sb)A  fo' ds

= t f ds e'sce" - s)sl (S,: - S,,)A < t(S,: - S,5)A
0
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for all t > 0. Next note that if A c- D(S) then

JI(I - FS)-'A - All = ell(I - P-S)-'SAll
r,11SAll.

Thus the uniformly bounded family of operators (I - eS) - '
converges strongly to the

identity on the dense set D(S). Hence the operators converge strongly to the identity
and one concludes from the relation

(S, - S)A = ((I - FS)-' - I)SA

that S, A converges in norm to SA for all A c- D(S). Appealing to (*) we conclude that

{U,'Al,,,, is norm convergent, uniformly for t in compacts, for A C- D(S). Using
uniform boundedness, i.e., 11 U,'11 !! ; 1, one concludes that  U,% ,, converges strongly
on D(S), uniformly for t in compacts. If U = {U,1,0 denotes the strong limit it

readily follows that U is a C,-semigroup of contractions.
One establishes straightforwardly that

(U, ' - I)A
_

I
ds U,'S, A

t t

for all A c- X. But if A c- D(S) one obtains the relation

(U, - I)A
_

1
ds Us SA

t t

by strong limits. Therefore

(U, - I)A
- SA :! sup 11 (Us - I)SA 11

t 0:5 s:! - t

and it follows from the strong continuity of U that its generator is an extension of S.

But this implies that (I - (xS) is an extension of (I - ocS) for all a > 0. As,
however, the latter operator is everywhere defined it is impossible that 9 is a strict

extension of S. One must have S.

This completes the proof for F X* with the exception of the second algorithm,
which we will establish later.

C,*-case: F = X*. Condition (2) of the theorem and Lemma 3.1.9 imply that S*,
on X*, is weakly closed and has a weakly dense domain of definition. A second

application of Lemma 3.1.9 gives

11(i - (XS*)- 1 11 = 11(i - 1XS)- 1*11 = 11(i - (XS)- 111 < 1

for cx   ! 0. The C,-version of the theorem, i.e., F = X*, then implies that S* is the

generator of a weakly continuous semigroup U,* of contractions on F = X*. Let

U, be the dual group, on X, of U,'*. Clearly, U, is- a u(X, fl-continuous semigroup of

contractions on X. Let T be the generator of U. Using Proposition 3.1.6 with  > 0,
c- X*, and A c- X, one has

q((AI - T)-'A) = f"dt e-"q(UA)

= f. dt e-,"(U,*q)(A)

q((AI - S)-'A).

It follows that (AI - T)-' = (AI - S)-', i.e., T = S, and S is the generator of U,
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Next let us derive the second exponential algorithm ofthe theorem. For this
the following simple lemma is practical.

Lemma 3.1.11. Let T be a bounded operator on the Banach space X with
11 T 11 < 1. Itfollows that

(e"(T - 1)
- Tn)All :!! ,Inll(T - I)All

for all A c- X, and all positive integers n.

PROOF. The difference on the left is estimated by

11(e"(T-1) - Tn)All e-n Y n

; -, 11 (TI - T )All
M  o M.

e
-n

nm
II(TIm -nj - I)AII

m !o M!

11 (T - I)A Ile-nI
n'

Im - nI.
m !:o M.

An easy application of the Cauchy-Schwarz inequality then gives

e- 2n (., n
m

I m - n 1)2 _< e-n
nm

(m - n)2 = n.
M!

m'0 M!

Combination of these estimates gives the required bound.

The proof of Theorem 3.1.10 is now completed by choosing A c- D(S) and T
(I - tSIn) in Lemma 3. 1.11. Thus

S(I - ts1n) - I
-

tS -n
t (I - ts

SAe' (I - n) )A <

n
n)( ( n)

'tn)IISAII.( n
This establishes that

lim U,A - I -
ts)

-

nA =0
n- w n

for all A c- D(S), uniformly for t in compacts, and the desired conclusion follows from
a uniform boundedness and density argument.

Finally, for the case F = X* one notes that D(S) is invariant under U, and one

demonstrates, as in Corollary 3.1.8, that the restriction of U, to D(S) is strongly
continuous. The convergence in norm of the limits for U, A with A c- D(S) then follows
from the Co-version of the theorem. The weak* convergence for general A follows
from the strong convergence of the corresponding limits for U,*?l for all ?I c- X*.

The Hille-Yosida theorem has a variant which applies to general U(X, F)-
continuous semigroups. Recall that a family {T,,,l of operators was defined
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to ber(X, fl-equicontinuous if for each seminorm p, in the definition of the

,r(X, fl-topology there exists a seminorm p, such that

a A)   PK'(A)PAT
for all A c- X and all a.

Corollary 3.1.12. Let S be a u(X, F)-u(X, fl-closed operator on X. Then
the conditions (1) and (2) are equivalent, and conditions (1a) and (2a) are

equivalent:

(1) S is the generator of a a(X, fl-continuous semigroup U of con-

tractions on X such that I U,1,0 is -c(X, F)-equicon tinuous;
(I a) S is the generator of a u(X, fl-continuous semigroup U of contrac-

tions such that JU,*j,,,0 is -r(F, X)-equicontinuous.
(2) JI(I - cxS)-'Il < I for a > 0 and J(I - otS)-'; ot c- [0, 1], m = 1,

2,...1 is -c(X, F)-equicontinuous;
(2a) JI(I - ocS)-'jj :!! 1 for a > 0 and J(I - aS*)-'; (x c- [0, 1], m = 1,

2,...j iST(F, X)-equicontinuous.

In these cases we have

U,A = lim exp{tS(I - ES)- 1 JA
E-0

tS -n

lim I - A,
n- oo

n

where the limit exists in the T(X, fl-topology in the case (l)(--.:>(2)) and in

the u(X, fl-topology in the case (1a) (<=>(2a)).

PROOF. The proof of the equivalence of conditions (1) and (2) is essentially identical

to the F = X* case of the Hille-Yosida theorem, and the equivalence of (1a) and (2a)
follows as in the F = X* case. The only minor change is that norm estimates are

replaced by estimates with respect to the seminorms and equicontinuity replaces
uniform boundedness.

The Hille-Yosida theorem characterizes generators by properties of their
resolvents (I - cxS)-'. We next examine an alternative description for

C,-semigroups based on a notion of dissipativity.
First note that if A is an element of a Banach space X and if q c- X* satisfies

q(A) = 11 q 1111 A 11 then ?7 is called a tangentfunctional at A. The Hahn-Banach
theorem ensures that for each A c- X there exists at least one nonzero tangent
functional at A.

Definition 3.1.13. An operator S, with domain D(S) on the Banach space X,
is called dissipative if for each A c- D(S) there exists a nonzero tangent
functional q, at A, such that

Re q(SA) < 0.

If both + S are dissipative then S is called conservative.
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To explain the origin of these notions, suppose that U is a Co-semigroup of
contractions with generator S and that q is a tangent functional at A c- D(S).
Therefore I q(U, A) I < 11 q 1111 A 11 for all s > 0. But this implies that

Re q(U, A) < Re ij(U0 A)
and hence

d
Re q(U, A) 1,0 < 0.

ds

This last condition is exactly the condition of dissipativity

Re il(SA) < 0

and this demonstrates that the generator S of a Co-contraction semigroup is
dissipative. The same argument also establishes that the generator of a

C,-group of isometries is conservative.

Although dissipativity is useful in the discussion of Co-semigroups of
contractions it is not really suited to general u(X, fl-continuous semigroups.
If one attempts to modify the definition and only consider tangent functionals
q c- F then problems of existence occur. If, however, one insists on dissipati-
vity with respect to X* then it is not evident that the generator S of the
u(X, F)-semigroups of contractions U is dissipative because the function
s i- il(UsA) with il c- X* and A c- D(S) is not necessarily differentiable.
Next we derive alternative characterizations of dissipativity which relate to

contractivity of the resolvent.

Proposition 3.1.14. Let S be an operator on the Banach space X. Then the
following conditions are equivalent:

(1) 101)] 11 (1 - cxS)(A) 11 > 11 A 11

for all A c- D(S) and all a > 0 (for all small a > 0);

(2) Re q(SA) < 0

for one nonzero tangentfunctional q at each A c- D(S).

Moreover, if S is norm-densely defined these conditions are equivalent to the
following:

(3) Re q(SA) < 0

for all tangent junctionals q at each A c- D(S).

PROOF. (F) => (2) Set B = SA and for each small a choose a nonzero tangent
functional q,, at A - LxB. One can assume llq,,Il = 1, then Condition (Y) gives

All < 11A - oeBll
= Re q,,(A - LxB)
= Re qjA) - a Re qjB)
:!  Re i7jA) + allB11.
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Now the unit ball of X* is weakly* compact by the Alaoglu-Bourbaki theorem.
Thus there exists a weakly* convergent subnet q, whose limit, as a' tends to zero,
we denote by q. Hence one deduces from the foregoing inequality that

IlAll :!! Re q(A).

But since 1 one has :!! I and then

Re q(A) :!! 11 q 1111AA

Hence Re t7(A) = IlAll and llqll = 1. This proves that q is a normalized tangent
functional at A. But one also has

I I A IIRe q,,(A) - a Re ij,,(B)
I I A I I - (x Re q,,,(B).

Hence in the limit as Y tends to zero one finds

0  !! Re q(B) = Re q(SA),

i.e., Condition (2) is satisfied.

(2) => (1). Let q be a nonzero tangent functional at A c- D(S) satisfying

Re il(SA) < 0.

Then

q A Re q(A)
Re tl((I - ocS)A)

< I 117 11 (1 - aS)(A) I I

for all a  !! 0. Dividing by llt7ll gives the desired result.

(1) => (1). This is evident.

Finally, (3) => (2) and it remains to prove (1) => (3) under the assumption that

D(S) is norm-dense.

Now if A, B c- D(S) and tj is a normalized tangent functional at A one first has

II(I + (xS)(A)II Re q((I + cxS)A)
11 All + a Re q(SA).

Therefore

Re q(SA) :!! lim sup(Il (I + ocS)(A) A ll)/oc.

But second for all B Ei D(S) one has

II(I + aS)(A)II IIA + aBll + ocllB - SAII
(I - (xS)(A + aB) + a 11 B - SA

A 11 + 2a 11 B - SA + 062 11 SB 11

for all small a > 0 by Condition (1). Therefore by combination of these results

Re il(SA) :! 2 11 B - SA 11.

But since D(S) is norm-dense we may choose B arbitrarily close to SA and deduce
that Re ?7(SA) :!! 0, i.e., Condition (3) is satisfied.

The alternative characterization of dissipativity given by Proposition
3.1.14 is particularly useful for the discussion of closure properties.
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Pro0osition 3.1.15. Let S be a norm-densely defined dissipative operator on

the Banach space X. Then

(1) S is norm-closable;
(2) the closure 9 of S is dissipative;
(3) if 97 generates a Co-contraction semigroup it has no proper dissipative

extension.

PROOF. (1) Assume An c- D(S) and An -' 0, SAn -+ A. We must prove that

A = 0. But

IlAn + aBJJ < II(I - oeS)(An + LxB)II
:!! _ 11 An 11 + a 11 B - SAn 11 + (X2 11 SB 11

for B c- D(S) and a > 0 by Condition (1) of Proposition 3.1.14. Thus taking the limit

n -+ oo, then dividing by a, and subsequently taking the limit oe --> 0, gives

JIBIJ :!! JIB -All.

Since this is true for all B in the norm-dense set D(S) one must have A = 0.

(2) If A c- D(Y) then there are A. c- D(S) such that An --+ A and SAn
Therefore if a > 0

11 A 11 lim 11 An 11
n-.

lim II(I - cxS)(An)I1 = II(I - ocg)(A)ll

and 9 is dissipative by Proposition 3.1.14.

(3) Let T be a dissipative extension of 9 then since 9 is a generator

X = (I - cxg)(D(9)) g (I - (xT)(D(T)) - X

for each a > 0 and hence R(I - aT) = X. Now suppose T is a strict extension of 9
and choose A c- D(T) such that A 0 D(9). Then there must exist a B c- D(9) such that

(I - ocT)(A) = (I - ocg)(B) = (I - aT)(B).

Hence (I - aT)(A - B) = 0. But since T is dissipative A = B, by Proposition
3.1.14, which is a contradiction. Thus no strict dissipative extension exists.

Now one has the following characterization of generators of

Co-contraction semigroups which is in part a reformulation of the Hille-
Yosida theorem.

Theorem 3.1.16 (Lumer-Phillips theorem). Let S be an operator on the
Banach space X and consider thefollowing conditions

(1) S is the generator of a Co-semigroup of contractions;
(2) S is norm-densely defined, dissipative, and

R(I - ocS) = X
for some ot > 0;

(3) S and its adjoint S*, on X*, are norm-densely defined, norm-closed,
dissipative, operators.

Then (1) <=> (2) => (3) and ifX is reflexive, i.e., ifX = X**, then all three
conditions are equivalent.
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PROOF. The equivalence (1)<=>(2) follows from Theorem 3.1.10, Proposition
3A.14, and the discussion preceding Proposition 3AA4.

(3) ==> (2). Suppose there is a nonzero q c- X* such that q((I - aS)(A)) = 0 for
all A e D(S) and some a > 0. Then

I q(SA) I = a Jij(A) I < a `11 il 1111 A 11.

Hence q c- D(S*) and since D(S) is norm-dense (I - aS*)q - 0. But dissipativity of
S* implies 11 q 11 11 (1 - (xS*)q 11 by Proposition 3. t. t4. Thus il = 0 and R(I - (6) =
X.

Finally, if S generates the Co-contraction semigroup U then S* generates the
dual contraction semigroup U". But if X is reflexive U* is weakly, hence strongly,
continuous and Condition (3) follows from Condition (1) by the Hille-Yosida
theorem and Proposition 3.1.14.

Next we consider the characterization of generators in terms of analytic
elements. These elements are introduced by the following definition.

Definition 3.1.17. Let S be an operator on the Banach space X. An element
A c- X is de-fined to be an analytic element (entire analytic element) for S if
A c- D(S"), for all n = 1, 2,..., and if

Y
tn

,

- IlSnAll < + oo

,0 n!

for some t > 0 (all t > 0).

We will see below that this notion is particularly useful for the characteri-
zation of the generators S of o-(X, fl-continuous groups of isometries U. But
we first remark that in this context the above notion of analyticity is identical
to the notion of analyticity for U introduced by Definition 2.5.20. For

example, if A is analytic for the generator S of U then the function

Z11
f(t + Z) = Y, - UtSnA

n>0 n!

is defined for all t c R and all z in the radius of analyticity of

ln  O(z"In!)JJS"All. But this function satisfies the criteria of Definition 2.5.20
and hence A is analytic for U. Conversely, if A is strongly (weakly) analytic
for U in the strip  z; I Im z I <   then the usual Cauchy estimates give

d" UtA  = JIUS"All = JIS"All <
n! M

dt"

for some M. Thus

I.In
I I S"A I I :!!  M YIZI < + coY

,I  !: 0
n! 1,>O(

for IzI <  .
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The equivalence of the two notions of analyticity for a u(X, fl-continuous
group of isometries U and its generator S allows one to conclude from

Corollary 2.5.23 that S has a u(X, F)-dense set of entire analytic elements. But

the situation for semigroups can be quite different. There are Co-semigroups
for which zero is the only analytic element. For example, let QR) be the
Banach space of continuous functions on R vanishing at infinity, equipped
with the supremum norm and let C,(R,) be the Banach subspace consisting
of f c- QR) such that f(x) = 0 for x < 0. Define the C,-group T of

translations on QR) by

(T,f)(x) = f(x - t), x c- R, t c- R,

and the Co-semigroup U of right translations on CO(R,) by

(U,f)(X) = f(x - t), x c- R, t c- R,

A function f c- CO(R) is analytic for T if it is analytic in the usual sense. Now

suppose f c- CO(R ) is analytic for U. It follows that f must be analytic for T
but this implies that f is analytic in the usual sense. Since f(x) = 0 for x < 0
it then follows that f = 0. Thus U has no nonzero analytic elements.
The primary interest of analytic elements is their utility in the construction

of semigroups by power series expansion. But it is also essential to have some
form of dissipativity to control growth properties.

Theorem 3.1.18. Let S be a u(X, F)-u(X, fl-closed operator on X

satisfying

JI(I -,xS)AII > 11AII

for all A c- D(S) and all small (x > 0. Further let Xa denote the norm-closure of
the set Xa of analytic elements of S.

Itfollows that there exists a Co-semigroup of contractions U on Xa with

generator Sa such that Sa - S and Xa is a core for Sa -

Moreover, ifF = X* or F = X* and the unit ball OfXa is u(X, F)-dense in

the unit ball of X then U extends to a u(X, fl-continuous semigroup, of
contractions on X with generator S.

PROOF. Let A be an analytic element for S and tA the radius of the convergence
of the series expansion

Y 11SIA11.
m :o

M!

Next note that

tS)n tm
I + A= S'Ac,,,m

n 0
M!

where Cn, 0
= I and

c,,,,,, (1 - p1n) if M > 1.
P=O
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Clearly c,,,,,, :f - t but a simple inductive argument establishes that c,,,. t -

m(m - 1)/2n. Hence

ts C,
lim I+- A- -S'A =0

n -0 M

for I t I < tA. Thus defining U,A for Itl < tA by

tm
U,A S'A

n' 0

one also has the identification

ts
U,A = lim I + - A.

n

Next remark that dissipativity of S implies

ts(I - n) B > JIBIJ

for all B e D(S") and t > 0 by Proposition 3. 1. t 4. Therefore setting B (I + tSIn)"A
one finds

ts t2s2
A < 1-

2
A

n n

I- (2t)2m
IlAll+

M!
JIS2'Alld,,,m

where

2m! M!
d,,, c,, m 2

< - < (M)m-2 mn`m! n" n

But d,,, 0 as n oo for each fixed m. Hence if 0 < t < tA/2 then

ts)nJIU,All = lim I + - A   - 11 All.
n-.

n

Now note that

tll 
S Y S'A - SmSA.

, M! M!
m=0 -0

Hence, since S is u(X, F)-u(X, fl-closed, UA c- D(S) and SU,A U,SA for

I t I < tA. Therefore

JISU,All = JIU,SAII :!! 11SAll

for 0 < t < tA12. Iteration of this argument establishes that if 0 < t < tA/2 then U,A
is an analytic element for S with associated radius of convergence given by
tUtA = tA, Thus it is possible to iterate the definition of U,

tm
U, , s

A = U,(UsA) Y - S'(U,A)
-

M!
m2!0

for It I < tA and 0 < S < tA/2 and consequently deduce that 11 U, All :f - 11 All for

0 < t < tA-



Banach Space Theory 181

Repeating this argument one may define UA for all t > 0 by

U,A = (Ujj"A
where n is chosen so that n > 2tltA' It is then easy to establish that this definition is

independent of the choice of n and that

U,U,A = U,,,A

for all s, t > 0. Now since U,A I I :!! I I A I I for all t > 0, by construction, each U, can

be extended to X,, by continuity and then U = wtlt2:0 is a semigroup of
contractions. But for A c- X,, one has

lim JIUA -All =0
t-0

and hence U is a C,-semigroup on X, If S,, denotes the generator of U then it is
clear that S,, I x. = S I x.. But X,, is a core for S, by Corollary 3.1.7, and hence S,, - S.
This proves the first statement of the theorem.

Next since S,, - S one has

X,, s; X,, = (I - cxSj(D(Sj) s (I - aS)(D(S)),

for all a > 0. Hence if F = X* and X,, = X then S and S,,, both generate
CO-semigroups of contractions, by the Hille-Yosida theorem, and S = S" by
Proposition 3.1.15(3).

Alternatively, assume F = X* and the unit ball of X,, is u(X, fl-dense in the unit

ball of X. Then for each A e X we may choose A. e X,, such that A. converges in the
weak* topology to A and 11A.11 !! IlAll. But the foregoing conclusion asserts the
existence of B., c- D(S) such that A. = (I - aS)B,. Moreover,

llB,Ylj :!! ll(I - ocS)B.ll = IIA711 :!5; IlAll.

Thus B., is uniformly bounded. But the unit ball of X is weak* compact by the

Alaoglu-Bourbaki theorem and hence there exists a weak*-convergent subnet B,.
of B,,. Then B.,. --+ B and A,,, = (I - ocS)(B..) --+ A where both limits are in the weak*

topology. But S is weakly* closed and so B e D(S) and (I - aS)(B) = A, i.e.,
R(I - ocS) = X. Then S = S,, is a generator as before.

We have already remarked that the infinitesimal generator of a U(X, F)-
continuous group of isometries has a u(X, fl-dense set of entire analytic
elements by Corollary 2.5.23. Combination of this remark with Theorem
3.1.18 immediately gives another characterization of the generators of

u(X, fl-groups of isometries, if F = X* or F = X*,

Corollary 3.1.19. Let S be an operator on the Banach space X. IfF = X*

or F = X* then thefollowing conditions are equivalent:

(1) S is the generator of a u(X, fl-continuous group of isometries U;
(2) S is u(X, fl-densely defined, u(X, F)-u(X, fl-closed

11 (1 - cxS)(A) 11 > 11 A

for all a c- R and A c- D(S), and either

(At): R(I - ocS) = Xfor all oc e R (for one a > 0 and one a < 0), or

(A2): the unit ball of the set X,, of analytic elements for S is

u(X, fl-dense in the unit ball of X.
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The equivalence of (1) and (2) + (At) is the Hille-Yosida theorem applied
to + S, and (t) ==> (A2) by Proposition 2.5.22. But (2) + (A2) ==> (1) by
application of Theorem 3.1.18 to both + S.

There is one other useful consequence of the construction of U given in the
proof of Theorem 3.1.18. This is an alternative version of Corollary 3.1.7.

Corollary 3.1.20. Let X be a Banach space and U a u(X, fl-continuous
semigroup of contractions with generator S. Let D be a subspace of D(S)
which is a(X, fl-dense in X, consists of analytic elements for S, and is such
that SD   D. It follows that D is a core for S.

The foregoing notions of tangent functional, dissipative operator, analytic
element, etc. are most easily illustrated in Hilbert space.

EXAMPLE 3.1.21. Let X =  5 be a Hilbert space. Then  5 = _5* and the unique
normalized tangent functional at is q = Thus dissipativity of S is
equivalent to Re( , SO) :!! 0 for all c- D(S), or

( ' SO + (*1 0):! 0.

In particular S is conservative if, and only if,

( ' SO + (Sq11 0) = 0.

Setting S = iH and using the standard polarization identities one concludes that
S = iH is conservative if, and only if, H is symmetric, i.e.,

(H9, 0) = ((p, HO), 9, 0 c- D(H) = D(S).

Thus, Corollary 3.1.19 states that S is the infinitesimal generator of a strongly
continuous one-parameter group of isometries (unitary operators) if, and only if,
S = W where H is a densely defined symmetric operator satisfying

either R(I + iLxH) = b, a c- R,
or H possesses a dense set of analytic elements.

These are the well-known conditions for H to be selfadjoint.

Although we have only given characterizations of generators of isometric

groups and contraction semigroups, most of the results have extensions to

general groups and semigroups although the growth properties of 11 U, 11 cause
some complication. For example, Theorem 3.1.19 has the following analogue:

Theorem 3.1.22. An operator S on the Banach space X is the infinitesimal
generator ofa u(X, fl-continuous group, where F = X* or F = X*, if, and
only if, S is u(X, F)-densely defined, u(X, F)-(X, fl-closed, and satisfies the
following conditions:

(1) there is an M >- 1 and 0 such that

Ily _ (XS)nAll > M-1(1 #)n IJAII

for all A c- D(Sn), all I al # < 1, and all n 1, 2_ .. ;
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(2) either

R(I - oeS) = X

for all I a I # < I (for one 0 < a# < 1 and one - I < afl < 0), or S

possesses a u(X, F)-dense set ofanalytic elements, and any element in
X can be approximated by a uniformly bounded net of analytic
elements.

Note that in this case the group U, has the growth property 11 U, 11 < Mefll'l,
and any element A c- X is the limit of a sequence A,, of analytic elements with

IIA,,Il < MIJAII.
We conclude by describing an aspect of Co*-groups, and semigroups,

which is not generally shared by their Co-counterparts.

Proposition 3.1.23. Let U be a Co*-semigroup, on the Banach space X,
with infinitesimal generator S. Thefollowing conditions are equivalent:

(1) A c- D(S);
(2) supo,,, , 11(U, - I)Ajj1t < +oo.

PROOF. (1) => (2) This implication is true for general u(X, fl-continuous
semigroups. Take A c D(S). Then

(U, - I) (A) ds Us SA.

Thus

11(Ut - I)(A)II < ds Meflsll SA 11

tMeflIISAII

for t c [0, 1].
(2) => (1) The unit ball of X is weakly* compact. Thus if

sup
11 (U, - I)A 11

M < +oo
O<t:51 t

there must exist a net t,, c <0, 1] such that t,, 0 and (U,. - I)Alt,, converges in the
weak* topology to an element B c X. Thus

. q((U,,, - I)A)
11M q(B)

for all q c- X* .
But if q e D(S*) then

((Ut* - I)q)(A)
S*q(A) = lim q(B).

Hence A c D(S**) r) X = D(S) and B S**A = SA.
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EXAMPLE 3.1.24. Let H be a selfadjoint operator on the Hilbert space .5 and
let U = JU'J'c itary grou, be the uni p, U, = expfiHtj, generated by W. This group is a
C,-group but, because .5 is self-dual, it is also a C,*-group. Therefore 0 C- D(H) if,
and only if,

"H

sup < + 00.
t C- R, t

EXAMPLE 3.1.25. Let X = QR) with the supremum norm. Translations act as a

CO-group U on X and iff c- CO(R) is absolutely continuous with derivativef'c- L'(R),
but f' 0 CO(R) then

KUJ - f)ltll < sup SUPIWX - S) - f(Olsl

< ess. sup I f'(X) I = 11 f ' 1j,", .

Thus the criterion of Proposition 3.1.23 is satisfied butf is not in the domain of the

generator S of U. In fact, D(S) = {f ;f e CO(R), f'
e QR)1. This demonstrates that

the conditions of Proposition 3.1.23 are not equivalent for all C,-groups.

3.1.3. Convergence Properties

In the preceding subsections we examined the existence and construction of
various groups and semigroups, and next we analyze their stability properties.
There are several aspects of the notion of stability, convergence, perturbation,
approximation, etc. We will approach the problem in three distinct ways in
the subsequent three subsections. First we consider convergence properties
and use these to extend our previous results on group construction.

In Section 3. 1.1 we showed that U = I UJ, c R is a uniformly continuous
group, on a Banach space X if, and only if, its generator S is bounded.
Moreover, we saw that two such groups are close in norm if, and only if,
their generators are close in norm. There is an analogue of this result for
a(X, fl-continuous groups which characterizes convergence of the groups by
convergence of the resolvents of their generators.

Theorem 3.1.26. Let U,, and U be a(X, fl-continuous semigroups, on the
Banach space X, with generators Sn and S. Assume that there is a 0
such that thefamily

fe-fl'Un,t; t  !! 0, n = 1, 2,...j u {e-fltU,; t > 01

is,r(X, F)-equicontinuous. The following four conditions are equivalent:
(1 a) E(l b)] lim,, (AI - Sj - 1A = (AI - S) A, A c- X, in the -c(X, F)-

topology,for some A with Re A > [uniformlyfor all A with
Re A > # + e];

(2a) [(2b)] lim,, -,:,, Un,A = U, A, A c- X, in ther(X, F)-topology,for all
t c- R, [uniformlyfor t in anyfinite interval of R,].
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PROOF. Clearly, (2b) => (2a) and (1b) => (1a). We will show that (2a) => (1b) and

(I a) => (2b).
First note that by replacing U,,.,, and U, by U,,., expf_- &J, and U, expf - Pt},

one may assume = 0. Also note that t F-+ U,,., A and t F-+ U, A are -r(X, fl-continuous
for all A c- X, n = 1, 2,..., by Corollary 3.1.8.

(2a) => (1b) From Proposition 3.1.6 one has

( I - Sn)_ 'A - (AI - S)- 'A = fo,dt e
- `(Un, - U,)A.

Thus invoking the continuity property established in Corollary 3.1.8 one finds

PKPI - S,,)- 'A - (AI - S)- 'A) < fo dt e- 1JR-kIPK((Un, t
- U,)A)

for any semi-norm PK. Now condition (1b) follows from the Lebesgue dominated

convergence theorem.

(I a) ==> (2b) First note that if Re A > 0 then R((AI - S) D(S) is a(X, F)-
dense and the family of differences U,,,, - U, is equicontinuous. Hence it suffices to

prove that

lim U,,,,(AI - S)-A = U,(AI - S) -'A, A c- X,
n-w

in the T(X, fl-topology, uniformly on the finite intervals of R, Next remark that

(Un, t
- Ut) (AI - S) A = Un, AAI - S) - 1

- (AI - Sn) - ')A
 W SO - 1 (Un, t

- U)A

 (( I Sn)_1 - (AI - S)-')UtA.

Hence for any semi-norm A one has

PK((Un, t
- Ut) (AI - S) A) '-- PK'(((AI S) - W - SO- ')A)

 PKVI SO- 1 (Un, t
- U,)A)

 PK(((AI SO - I
- (AI - S) - 1) U, A)

by equicontinuity. The first term converges to zero by assumption. We discuss the

other terms separately.
The resolvent formula and the equicontinuity of the semigroups Un, and U,

imply that the resolvents are equicontinuous, e.g., for each PK there is a PK' such that

PAW - Sn)-'B) ":' PK,(B).

Thus by Corollary 3.1.8

t E R +  _4 PK(((AI - SO (AI - S) U, A)

is continuous uniformly in n. But this function converges pointwise to zero as n -4 00

and hence it converges to zero uniformly on the finite intervals of R. It remains to

examine the second term.
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Note first that the product of two equicont'nuous families Is equicontinuous. Thus
for the second term it suffices to prove convergence of the correct type on ar(X, F)-
dense set of A, e.g., D(S). Now

(AI - SJ - '(U,,,, - U`,) (AI - S) A

d
ds

ds
U.,,-,(AI - S,,)-'U,(AI - S)-'A

ds S)-' - (AI - S,,)-'IU,A

and hence

PK((AI - SJ-1(U ,t U,)(AI - S)-'A)

61S PK'QW - S) (AI - Sn) Us A).

The desired convergence now follows from the above discussion of the third term and
the Lebesgue dominated convergence theorem.

The characterization of convergence of semigroups provided by Theorem
3.1.26 suffers- from two major defects. Firstly, it is necessary to assume that
the limit is a semigroup. It is possible that Un, converges to a limit U, in the
-c(X, fl-topology for all t c- R ,

but U is not a continuous semigroup.
Continuity would follow if Un,,A --> A as t --> 0 uniformly in n, for all A c- X.

Similarly, if (I - eSn) - '
--+ r(e) in the u(X, fl-topology for all E c- R , then r(e)

is not necessarily the resolvent of a generator. But it does have this property if
Y - "Sn) - 'A --* A as e --> 0 uniformly in n, for all A c- X. The second defect of
Theorem 3.1.26 is that resolvent convergence is an implicit property of the
generators, which is often difficult to verify. It is natural to attempt to find
alternative characterizations which involve the generators in a more explicit
manner. The difficulty here is that the domains D(Sn) of the various
generators might very well be mutually disjoint. Thus any direct form of
operator comparison is impossible. One way to avoid this problem, at least
for C,-semigroups of contractions, is to consider the notion of graph
convergence.

Recall that If Sn is a sequence of operators on the Banach space X then the
graphs G(Sn), of Sn, are defined as the subspaces of X x X formed by the
pairs (A, Sn A) with A c- D(Sn). Now consider all sequences An c- D(Sn) such
that

lim IlAn - All = 0, 1IM llSnAn - Bll = 0
n- oo n co

for some pair (A, B) c- X x X. The pairs (A, B) obtained in this manner

fotm a graph G, a subspace of X x X, and we introduce the notation D(G)
for the set of A such that (A, B) c- G for some B. Similarly, R(G) is the set of B
such that (A, B) c- G for some A. Moreover, we write

G = lim G(Sn).
n oo
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In general, the graph G is not the graph of an operator but under special
circumstances this can be the case. Thus if there exists an operator S such that
G = G(S) we write

S graph lim S,
n co

Clearly, D(S) = D(G) and R(S) R(G).
The next lemma establishes conditions under which a sequence ofoperators

has an operator as graph- limit.

Lemma 3.1.27. Let S,, be a sequence ofoperators, on the Banach space X,
and assume that

IKI - OCSOA11 - !! 11AII

for all A c- D(Sn), all n  !! 0, and all a c- [0, 1]. Further, let G denote the graph
given by

G = lim G(Sn)
n-w

and assume that D(G) is norm dense in X. It follows that G is a graph of a
norm-closable, norm-densely defined operator S and

JI(I - cxS)AII  ! 11AII

for all A e D(S).

PROOF. First suppose that An c- D(Sn) and B c- X satisfy

lim 11 An 11 == 0, liM 11SnAn - B11 = 0.
n-.

To deduce that G is the graph of an operator S it suffices to prove that B = 0. Now
for every pair (A', B') c- G there exist An' c- D(Sn) such that An' -, A' and Sn An' -4 H.
Moreover,

JI(I - aSn)(An + ocAn')JI  ! JjAn + ocAnl-

Taking the limit of both sides of this inequality and subsequently dividing by a gives

JJA' - B - offIl  !! IIA'11

for all a c- [0, 1]. Taking the limit of a to zero gives

JJA' - B11 ; ! IIA'11.

But this is true for all A' in the norm dense set D(G) and hence B = 0.
Thus G is the graph of a norm-densely defined operator S and the inequality follows

by graph convergence of the corresponding inequalities for Sn. The argument of the

foregoing paragraph with Sn replaced by S then proves that S is norm closable.

Our next aim is to show that graph convergence of generators can be used
to characterize strong convergence of sequences of Co-semigroups.



188 Groups, Semigroups, and Generators

Theorem 3.1.28. Let U, be a sequence ofCo-semigroups oj'contractions on
the Banach space X, with generators Sn and define the graph G,,, by

G,, = lim G(I - ISn)-
n- oo

Thejbllowing conditions are equivalent:

(1) there exists a C,-semigroup U such that

liM 11(Un,t - Ut)Ajj = 0
n ao

for all A c- X, t c- R, un formlyfior t in anyfinite interval Qf R,;
(2) the sets D(G,,) and R(G,,) are norm dense in X jbr some o( > 0.

If these conditions are satisfied then G,, is the graph of I - cxS, where S is the

generator of U.

PROOF. (1) => (2) For A c- X and oc > 0 define An by An = (I - (xS,)-'A. Then
Theorem 3.1.26 implies that An __* Y - aS)-'A, where S is the generator of U.

Moreover, (I - ISn)A,, = A and hence G,, -- G(I - aS). Thus D(G,,) and R(G,) are

norm dense by Theorem 3.1.10.

(2) => (1) Proposition 3.1.6 implies that 11 U - ISn)A 11   ! 11 A 11 for all A c- D(S,).
Thus Lemma 3.1.27 implies the existence of a norm-closable, norm-densely defined
operator S such that G, = G(I - aS) and 11 (1 - aS)A 11   ! 11 A 11. The same inequality
is then valid for the closure of S and R(I - ag) is norm closed. But R(I - aS)
R(G,,) = X. Hence S is the generator of a Co-semigroup U of contractions by Theorem
3.1.10. But if An --> A and Bn = (I LxSn)An -4 B = (I - aS)A then

((I - aSn) (I - ag) B I I (I - aSn)
- '(B Bj + A

n
- A I I

JIB - BnJI + IIA A ,Jj.

Thus as R(I - ag) X the resolvent of S., converges strongly to the resolvent of 3
and U, converges to U by Theorem 3.1.26. But the resolvent convergence also implies
that G,, is closed and hence S = S.

One simple situation in which the implication (2) => (1) of Theorem 3.1.28

can be applied is if S, and S, are generators of Co-contraction sernigroups and
there exists a core D, of S, such that

D - U n D(Sn)
M n;?! m

and

lim 11 (Sn S)A 0
n- oo

for all A c- D. It then follows that S is the graph limit of the Sn

EXAMPLE 3.1.29. Let .5 = L2(R'), the Hilbert space of square integrable func-

tions over R', and S the usual selfadjoint Laplacian operator

(So)(X) = _V"20(X).
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It is well known that the space of infinitely often differentiable functions with compact
support form a core D of S. Next for each bounded open set A g; R" let S , denote any
selfadjoint extension of S restricted to the infinitely often differentiable functions with

support in A. There are many such extensions each of which corresponds to a choice

of boundary conditions. If A,, is an increasing sequence such that any open bounded

set A is contained in A_ for n sufficiently large, then

D g U (nnD(SAn))
by definition. Hence

lim 11(es.", -ei"V 11 = 0
n-

for all  c- S for t in finite intervals of R. Arguing by contradiction one then), uni I I

deduces that the net of unitary groups e"SA converges strongly to the group e"'.

A number of classical theorems in analysis can also be derived from the

theory of semigroup convergence. As an illustration remark that if S

generates the CO-semigroup of contractions U on X then the bounded

operators Sh = (Uh - 1)1h satisfy

"M 11 (Sh - S)A 0
h-0

for all A c- D(S) by definition. But the uniformly continuous semigroups

Ut(h) Y
tn

hnj
Sn

n :O -

e- t1h Y, (t1h)n
Unh, h > 0

n>0 n!

are contractive and hence

liM 11 (U(h)t U)A 0
h-0

for all A c- X, uniformly for t in any finite interval of R, by Theorem 3.1.26
or Theorem 3.1.28. Now suppose X = CO(O, oo), the continuous functions on
[0, oo> which vanish at infinity equipped with the supremum norm, and
let U be the CO-semigroup of right translations,

(Ut f)(X) = f(X + 0.

Then

f(X + t) = liM (U,(h!f)(X)
h-0

(t1h)"
'AX)= lim Y- (Ah

h-0 ,>_o n!
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where

(AnhAX) ((Uh - I)!f)(X)
11

on - M nCm f(X + mh)Y

and the limit is uniform for x c- [0, oo > and t in any finite interval of [0, 00 >.
This is a generalization of Taylor's theorem. But setting x = 0 one also
deduces that for each F. > 0 and each finite interval [0, y] one can choose N
and h such that

f(t) _
N (t1h)n

n f)(0)(Ah
,0 n.

for all t in [0, M]. This is an explicit version of the Stone-Weierstrass theorem.
Another version of the Stone-Weierstrass theorem can be obtained by

considering the operators

F,(u) (I - s)I + sUuls
with s > 0, u > 0, and setting

(Fs(sln) - I)
Sn

(s1n)

(Ulln - I)
(11n)

U(n)Again the semigroups t
= exp tSn are contractive. But since the semi

groups U and U(") commute one estimates by use of the formula

t d
(Ut _ Ut(n (Uu Ut(n) u)A))A == 0du duf

that

ll(Ut _ U(n))All - S)A 11t tll(Sn

for all A c- D(S). Furthermore, by Lemma 3. 1.11 one has

Ut(") - F,( Y)A < F, I A
n

tn-' /2 IlSnAll,

where one must assume t c- EO, 11 to ensure that F#ln) is a contraction. A
combination of these estimates gives

ll(UI - ((1 - 01 + tUlln)n)All < tll(Sn - S)AII + tn- 1/2 IlSnAll.

provided t c- EO, 1]. Thus

lim 11 UtA - ((I - 01 + tUlln)nAll = 0
11 00

for all A c- D(S), and hence for all A c- X, uniformly for t c- EO, 11.
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Therefore, specializing to the case X = Q0, cxD) and U right translations

one deduces, for each f c- Q0, oo), that

n

f(X + t) = liM nC.(l _ ty - mtmf X +
M

n-oo m=O n

uniformly for x c- [0, oo >, and t c- [0, 1]. In particular if f e C[O, 1]

11

f(t) = liM nCm(l _ t)n-mtmf
M

n-.o m=O n

uniformly in t. This is Bernstein's version of the Stone-Weierstrass theorem.

The next theorem is a generalization of this last form of approximation.

Theorem 3.1.30. Let S be the infinitesimal generator ofa Co-semigroup of
contractions U on the Banach space X. Let t c- R,  -+ F(t) c- Y(X) be a

function with values in the bounded operators on X such that

F(O) = 1, 11 F(t) 11 < 1,

lim
(F(t) - I)A

_ SA = 0
t-0 t

j6r all A in a core D ofS. Itfollows that

lim, 11 U, A - F(tln)nA 11 = 0,
n co

for all A e X, uniformly for t in any finite interval of R

PROOF. First note that

t c- R,  -4 Ut") = expt(-)(F(s) - I)js

is a contraction semigroup, for each fixed s > 0, with infinitesimal generator
S, = (F(s) - I)ls. The contraction property follows because

Ut(') < e'ls X
WS)m

JjF(s)jjm < 1.
m :o

MI

But S, converges to S on the core D and we can apply the remark preceding
Example 3.1.29 to deduce that

lim 11 UtA - Ut(')A 0
S-0

for all A e X uniformly for t in any finite interval of R, Hence

lim 11 UtA - U,(tln)A 0
n-.
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for all A c- X uniformly for t in any finite interval of R
.
But from Lemma 3. 1.11 one

has

tn-1 /2 II(F(tln) - I)AII
('In)A - F

t 'A <U,
n (t1n)

Thus

t
lim U,A - F - A = 0

n

for all A in the dense set D, and hence for all A c- X, uniformly for t in any finite
subinterval of R,.

Note that the choice

F(t) = (I - tS)

satisfies the criteria ofTheorem 3.1.30 and reestablishes the result, obtained in
Theorem 3.1.10, that

lim U, A - I -
tS -n

A = 0.
n-oo

,

n

A more general result along these same lines is the following:

Corollary 3.1.31. Let U and V be Co-semigroups of contractions on the
Banach space X, with generators S and T. Assume that S + T is norm

closable and that its closure is the generator qI' a Co-semigroup of con-

tractions W; then

lim IIWA - (UlInVtln)nA 0,
n- x

ts tT -1 n

lim W, A - I - I - - A = 0.
n- oo n n

PROOF. Let F(t) = U, V,; tfren F(O) = 1, 11 F(t) 11 < 1, and for each A c D(S + T)
one has

(F(t) - I)A ((U,(V, - I)A + (Ut - I)A)
t t

Hence

lim
(F(t) - I)A

_ (S + T)A 0
-0 t

for all A in the core D(S + T) of the generator of W. A similar conclusion is true if
one chooses F(t) = (I - tS) - 1 (1 - t T) - '. Hence it follows from Theorem 3.1.30 that

W, A = "M (Ulln VI,,)nA = lim I - tS)
- 1 (1 _ tT)

-

I)nA.
n-.

n-.(( n n
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3.1.4. Perturbation Theory

If S is the generator of a semigroup U of bounded operators on the Banach

space X and P is an operator on X then it is natural to examine the properties
of P necessary for S + P to be a generator. If U is uniformly continuous then
S is bounded, by Proposition 3. 1. 1, and for S + P to generate a uniformly
continuous semigroup it is necessary, and sufficient, that P be bounded.

If U is a Co- or Co*-semigroup then the question is much more complicated
and there exist only partial answers in special cases.

The first result involves Co-semigroups and relatively bounded perturba-
tions.

Theorem 3.1.32. Let S be the generator of a Co-semigroup of contractions,
on the Banach space X, and P an operator with D(P) -2 D(S) satisfying

11PAII :!! allAll + blISAII

for all A c- D(S), some a > 0, and some b < 1. IfP or S + P is dissipative then

S + P generates a Co-semigroup of contractions.

PROOF. First note that the discussion following Definition 3.1.13 established

that Re q(SA) 0 for all tangent functionals q at A e D(S). But if P is dissipative
then Re q(PA) 0 by Condition 3 of Proposition 3.1.14, because the assumption
D(P) 2 D(S) automatically implies D(P) is norm-dense. Consequently, if A z- _ 0 then

Re q((S + AP)A) :!  0 and S + AP is dissipative. In the case that S + P is dissipative
one reaches the same conclusion by noting that

Re t7((S + AP)A) = A Re q((S + P)A) + (I - A) Re q(SA) < 0.

Hence in both cases one deduces from Propositions 3.1.14 and 3.1.15 that S + ;,.P is

closable and satisfies the estimate

(I - oc(S + AP))All > ll All

for all A e D(S) and a > 0.

Next we exploit the relative bound.
First note that ll(I - (xS)-'Il :!! 1 for all a >- 0 by Proposition 3.1.6. Hence

llaP(I - cxS)-'All :!E_ alloc(I - ocS)-'All + bll(I - (I - aS)-')Aj
< (aa + 2b)ll All.

Thus, if 0 < A, < (2b)-' one may choose a, such that Ajota + 2b) < I for 0 <

a < ao, and then the operator P,, = AlcxP(I - aS)-' is bounded with JJPJJ < 1.

Hence I - P,, has a bounded inverse. Next note that the identity

I - oc(s + Alp) = (I - P")(I - as)

and the property R(I - ocS) = X imply that

R(I - a(S + A, P)) = R(I - Pj
= D((I - P ,)-') = X.
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An application of Theorem 3.1.16 establishes that S + A,P is the generator of a

CO-semigroup of contractions.

To continue the proof we remark that

IPAII :!! allAll + bjj(S + AIP)AII + bA,IIPA

and, since A, :!! (2b)-', one has

PAII :!! 2allAll + 2bjj(S + AIP)AII.

We may now choose 0 :!! A2 < (4b)-' and repeat the above argument to deduce that
S + (Al + A2)P IS the generator of a C,-semigroup of contractions. Iteration of this

argument n times proves that S + AP is a generator for all 0 < A < (I - 2-n)lb.
Choosing n sufficiently large, but finite, one deduces the desired result for S + P.

There does not appear to be a CO*-analogue of Theorem 3.1.32 but in the
simplest example, when P is bounded, one may draw a conclusion.

Let P be a bounded operator which is closed in the u(X, X*)-topology on X.
Then P is the dual of a bounded norm-closed operator P*, on X*, by Lemma
3.1.9. Moreover, P* - 11P11I is the bounded generator of a uniformly con-

tinuous contraction semigroup on X, by Proposition 3.1.1. In particular,
P* - 11P11I is dissipative on X*. Next, let U be a Co*-semigroup of con-

tractions on X with generator S. Reapplying Lemma 3.1.9 one deduces that
U is the dual of a CO-semigroup of contractions U*, on X*, with dual

generator S*. Therefore Theorem 3.1.32 implies that S* + P* - 11P11I
is the generator of a CO-semigroup of contractions on X* * By duality S + P
is the generator of a Co*-semigroup U-on X with the growth bound 11 U,"11
expjjjPjjtj.
An alternative way of examining bounded perturbations is provided by

the following:

Theorem 3.1-33. Let U be a a(X, fl-continuous semigroup on the Banach

space X with generator S and let P be a a(X, F)-u(X, fl-closed, bounded

operator on X. If F = X*, or F = X*, then S + P generates a u(X, F)-
continuous semigroup Up such that

U,PA = U,A

+ I dt, .--dtnUtIPU12-tlp*'*Ut.-t,.-IPUt-t.A
n !l

fO:5tj<---_<t,<t
for all A c- X. Here the integrals exist in the norm topology ifF = X* and in
the u(X, X*)-topology if F = X, and in either case the integrals define a

series of bounded operators in Y(X) which converges in norm. If 11 U, 11 <
MeO' then

JIU,' - Utjj :!! Mefl(emll'llt - 1).
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PROOF. Co-case: F = X*. Let U,(") denote the tith term of the perturbation
series for U,. Since U is strongly continuous and

U('0) = U, U,(') = fdt, U,PU,('.-,')
0

it follows by an inductive argument that the U,(") are well defined and strongly con-

tinuous. One estimates easily that

U(")All < fo! 
I 1:! ... :! t ":5 t

dt, dt,, 11 U, U, U, P A

tn
Mn+< - 'eflt 11 P 11"11 A 11.

n !

The norm convergence of the perturbation series and the last statement of the theorem

follow immediately.
Next note that the recursion relations (*) imply the integral equation

t

U'P Ut + f.ds Us P U,'- s

and hence

up up = U, up + ds U,PUP-s UPtl t 2 t 2 t' t2

2

= U11+12 + ds U,,+sPUP + ds UsPUP_,UPf' t2-S 11 12
0

P
= K+(2 + ds Us P{UP - s

UPP
t f2 U11+(2-S1

0

Thus the family of functions A c- C F--+ Ft, (A) = U'PU'P - U"P is entire analytictj t2 tl +t2

and satisfies the homogeneous integral equations
f

F,(A) = A ds Us PF, - s(A)f
0

A Taylor series argument then establishes that F,(A) = 0, i.e., the semi-group property

P P valid. Clearly, U,P = I and it remains to identify the generator T ofUptl Ut2 = Ut
I + t2

is

UP.
If 0 < oc < (fl + MIIPII)- I then

(I - cxT)- dt e 'Up,fo, V

by Proposition 3.1.6. Using the integral equation (**) one finds that

(I - aT) f
-

dt e 'U., + a f
'

dt fids e -'U,,s P UP,(t
0 0 0

fo, ds e-sUPf dt e
- t U,,,, + a f dt e -'U,,, P s

0 0

(I - otS) + a(I - cxS) P(I - aT)
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This establishes that

(I - a(S + P))(I - ocT)-

But II(I - aS)-'Il :!! M(I - afl)` by Proposition 3.1.6 and hence our choice of a

is such that

(XIIP11 < II(I - as) -1 11-

It follows that (I - a(S + P)) is invertible, by a power series expansion, with bounded

inverse and hence (I - (x(S + P)) - '
= (I - aT) - 1. Therefore T = S + P.

C,*-case: F = X*. As P is u(X, X*)-u(X, X*)-closed and bounded it is the

dual of a bounded operator P*, on X, by Lemma 3.1.9. Further, U is the dual of a

CO-semigroup U*, on X*, with generator S*, dual to S. The previous argument then

establishes that S* + P* generates a C,-semigroup, on X*, and by duality S + P

generates a C,*-semigroup, on X. The perturbation series follows by transposition of
the corresponding series on X*.

The above theorem establishes that generators of Co- and CO*-semigroups
are stable under the addition of a bounded perturbation. A similar result for

contraction semigroups follows, of course, from Theorem 3.1.32. The " time-

dependent" series expansion does, however, have advantages and the

conclusions of Theorem 3.1.33 can be extended to certain unbounded per-
turbations. Essentially, the perturbation must be such that the series for U'
is well defined and convergent. This even includes cases where the relative
boundedness of Theorem 3.1.32 does not hold, and this has been useful in
constructive quantum field theory. Another example of the power of the

expansion is provided by the analysis of dissipative operators on Banach

spaces which leave an increasing sequence of closed subspaces of the domain

approximately invariant in a sense which is made precise in the following
theorem.

Theorem 3.1.34. Let S be a dissipative operator on a Banach space X, and

assume that there exists an increasing sequence X,, of closed subspaces ofX
such that the closure Of Un Xn is X and

U Xn g D(S).
n

Furthermore, assume that there exist linear operators

Sn,,n; D(Sn, J :-- Xn  _ Xn + m

and numbers M, oc > 0 such that

ISIX,, - Sn,mll :!! Mne-am

for n = 1, 2, m = 0, 1, . . . . Itfollows that Un Xn is a corefor S, and the
closure 9 ofS is the generator ofa semigroup ofcontractions on X.

If,furthermore, Sn, 0 is dissipativefor all n and

Sn,m ':-- Sn+m,OlXn
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for all n, m then itfollows that

etsA = lim e's-, 0 A
n- w

for all A c- Un X, uniformlyfor t in compacts.

PROOF. By Proposition 3.1.14 and Theorem 3.1.16 it is enough for the first part
of the theorem to show that (AI - S)(U n Xj is dense in X for some A > 0. It follows

from the same results that we may assume that S is the closure of its restriction to

Un Xn -
If the condition of the second part of the theorem is fulfilled, then

lim IISIX" - S.I.Ax"11 = 0
m-.

and hence the last statement follows from a small extension of Theorem 3.1.28 (see
Notes and Remarks).
We will only prove the theorem in the slightly simpler case that

SX" g X""

because the idea of the proof is clearer in this case. The extension to the general case

consists mainly of putting more iterations into the perturbation expansion (see
Notes and Remarks).

To fix notations, set Sn, 0
= Sn and scale S so that

IISIX,, - Sn11 < n/2.

Observation (1): The operator S,, - (n/2)I is bounded and dissipative on Xn.

PROOF. Since S Ix,, is closed, and hence bounded, it follows that S,, is bounded. Let
A E X,,\ 101. As S is dissipative there exists an f c- X* with 11 f 11 = I andf(A) A 11
such that Re f(SA) < 0. But then

n nRef((Sn -

2 1)A) = Re f((Sn - S)A) + Re f(SA) -

2
11AII

n n
:!! - 11AII + 0 - - 11AII = 0.

2 2

By Observation (1) we can replace Sn by Sn - (n/2)I and assume that all S,,
are dissipative and

IlSlxn - Snjj < n.

Then e"- is a norm-continuous semigroup of contractions on X,, for each n,
and we can define a version of the time-dependent perturbation expansion.

If A c- X, define inductively

a,"(A) A,
't

at(l)(A) ds e('- ")s- Sa"(A),fo S
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and

(n nat )(A) = ds e('- s)s"' (S - Sm + n - 1)Us (A)f
0

for n  : 2. Since the restriction of S to each Xn is bounded and SXn Si Xn + 11

these definitions make sense as Riemann integrals and t   ut(n)(A) is a norm-
continuous curve in Xtn+n for n = 0, 1,... .

If K = 11SIx,, 11, then the following
estimates follow by induction, using IISIX,, - Sn11 < n.

Observation (2).

jju,(')(A)jj < 11AII

and

jjU,(n)(A)jj
(m + n

tnKIIA11
n! m!

(m + n - I)mtnKIIA11

for n 1, 2,..., and t > 0.

Define
k

,r(k)(A) a,(n)(A).
n=O

It follows from Observation (2) that

Tt(A) = liM rt(k)(A)
k- co

exists in norm for t c- [0, 1>, uniformly for t in compacts. (At this point
T,(A) could depend on m in addition to A and t, and we assume that a fixed
m = m(A) is chosen for each A; a posteriori r,(A) is nothing but e'  A.)
Note that

U(n),,(A) _ U(n)(A)t+

+15

ds e(t+b-S)S-,n (n- 1)(A)t, (S - Sm + n - Oasf
t

+ ds (e(t + 6 - s)s,, e(t - S)S- + n (n- (A).)(S - Sm+n-1)Usf
0

(n)and as (S - Sin + n - 1) 1 x_ and Sm +,, are bounded, it follows that t Ut (A)
is differentiable with derivatives given by the following:

d
(0)

Ut (A) = 0;dt

d
c(l)(A) = Sat(o)(A) - Sm +I a,(1)(A);dt t
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and

U,(n)(A) (S - Sm + n - , ),,(n -')(A) + Sm + ndt

It follows by cancellation that

d
('rt(n S(,r(n S)U(n

dt
)(A)) - t )(A)) = (Sm + n t )(A).

But by Observation (2) we have the estimate

11(sm+n S)07(n)(A) (m + n)m + 1 tnKIIA11t

since U(n)(A) 6 Xm+n, and hence, integrating the relation above,

,(n
t

,(n (m + n)m + '

tn + 1 K I I A 11.t )(A) - A - S ds
S )(A)

As S is closed, and

Tt(A) = lim r,(")(A)
n- oo

exists for t c- [0, I>, uniformly for t in compacts, the following observation is
valid.

Observation (3).

ds,rs(A) G D(S)f
0

for t c- [0, I>, and

Tt(A) - A = S ds r,,(A) .

0
(f

We next deduce

Observation (4). t c- [0, I>  -4 11 Tt(A) 11 is nonincreasing in t.

PROOF. Define regularized elements

T,(A,) ds -r, +,(A)

for t e [0, 1 - E>. (Warning: at this stage the notation -r,(A,) should not be taken too

literally; t F-+ r,(A,) should only be viewed as a curve in X.) It follows that t  --* -r,(A,,)
is differentiable (with derivative

-r,(AJ = T,+E(A) - -rt(A).)
dt
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Furthermore, by Observation (3)

-r, f ds (T, + 6 JA) - r, JA))

= fods S f
+ 

du -ru(A)

= S ds f
t+,5+s

du 'r,,(A).(f
t+S

Dividing by 6, and letting 6 -3, 0, we use the closedness of S to derive

d

dt

But as S is dissipative it follows from Lemma 3.1.15 that

for all 6  !! 0, i.e.,

and hence

or

6S(-c,(A,))Il   ! 11,r,(AJ11

d
- -r,(A,) > 11,r,(A)
dt

jj,rt-6(A,)jj + o(b)  !! 11-rt(AE)JI,

)11 > 0(1).{jjTj(Ajjj - 11-r,(A,:

It follows that t 11,r,(AJ11 must be nonincreasing, and as

-r,(A) = lim r,(A,)
':-0 E

one also concludes that t --+ 11,r,(A)II is nonincreasing.
To finish the proof of Theorem 3.1.34, assume ad abstirdtim that R(AI - S) is not

dense for some A > 0. Then there exists by Hahn-Banach a linear functional f C- X*

such that 11 f 11 = I and

f((AI - S)B) = 0

for all B c D(S). In particular, Observation (3) implies that

Af ds -r,(A) J* S ds -rs(A)))
f(A),

or

f(,c,(A)) = f(A) + A fods j'(rs(A)).
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It follows that

f(-r,(A)) = e" f(A)

for t e [0, 1 >. But as U,, X,, is dense in X, we can find an A c- U, X,, such that

eA/2 Jf(A)j > 11AII

and hence

11T1/2(A)jj > 1f(T1/2(A))j = e-1/2 Jf(A)j > 11AII.

This contradicts Observation (4), and the contradiction finishes the proof ofTheorem
3.1.34.

Remarks. The differential equation

d
-r, Aj = S(-c,(A,))

dt

established during the proof, implies that -r,(A,) = e'SA, and by continuity
it follows that the perturbation expansion

oo

e'sA Y a,(n)(A)
n=O

is valid for t Ei [0, I>.
One can show by explicit counterexamples that Theorem 3.1.34 does not

extend to the case

SXn   Xn + 1, 11 S Ix,, - S, 0 11 :!! ; Mn2

even when S is a symmetric operator on a Hilbert space X.

By a much simpler, but less explicit, argument, one can prove the analogue
of the first part of Theorem 3.1.34 in the case

IISIX,, - Sn,011 < M

for n = 1, 2, . First, note that by Observation (1) we can assume that each
S,, = S, 0 is dissipative, and hence

11 (AI - S.) < A

for A > 0 by Lemma 3.1.15. Now let A > M, and let f c- X* be a functional

vanishing on R(AI - S). In particular, for A c- Xn we have

Jf(A)j = IMAI Sn)(AI Sn)-'A)j
= I MS Sn)(AI Sn)- 'A) I
:!! 11f JIMA- 1 11AII.

Since U,, X,, is dense it follows that

lif 11 < MA- I lif 11
and hence f = 0, and R(AI - S) is dense.
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3.1.5. Approximation Theory

In the previous subsection we examined the stability of semigroup generators
under perturbations and established stability for bounded perturbations.
Now if U is a Co-semigroup and U' the perturbed semigroup obtained by
adding a bounded perturbation P to the generator of U then Theorem 3.1.33
demonstrates that

11 U, - U, 0(t)

as t tends to zero.' The norm distance between two groups, or semigroups, is
a convenient measure of their proximity and this example shows that groups
which have neighboring generators have a norm distance which is small for
small t. We next examine the interrelationships between semigroups which
are close for small t. The first result states that the semigroups cannot be too

close without being equal.

Proposition 3.1.35. Let U and V be two u(X, fl-continuous semigroups
on the Banach space X. If

I U, - V, 11 = o(t)
as t -+ 0, then U = V.

PROOF. Let S and T denote the generators of U and V, respectively. Choose
A c- D(T) and note that

W ( (U, - I)A) - (0 (Vt - I)A 0(1)
t (i

for all co e F, as t - 0. Hence A e D(S), by definition, and SA = TA, i.e., S 2 T

Interchanging the roles of S and T one deduces that S - T and hence S = T. Now,
using the expansions U, = - tSIn)-"A, V, = - ffln)-A, which

are valid for A e D(S) = D(T) by Theorem 3.1.10, one concludes that U11D(S)
Vt I D(s) and hence U, = Vt by u(X, F)-continuitY.

The next result shows, however, that if two Co- or Co*-groups are moder-

ately close for small t then they are related in a particularly simple manner.

Theorem 3.1.36. Let U and V be two Co- or Co*-groups, on the Banach

space X, with generators S and T, respectively. Thefollowing conditions are

equivalent:

(1) there exist el > 0 and 61 > 0 such that

IIU1V_1 - III < 1

for 0 :!! t :!! 6 1;

11 U, - V,11 = o(t) means lim,_011 U, - V,111t = 0,
and

11 U, - V, 11 = 0(t) means lim sup,, 11 U, - V, 11 It < + oc
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(2) there exist '62 > 0, 62 > 0, and bounded operators P, W such that

W has a bounded inverse,

S = W(T + P)W

and

IIU,W-lU-,W - III < 1 - F2

for all 0 :!! t < 62 -

If these conditions are satisfied then W may be defined by

1 61

W = - ds Us V-sf61 0

and hence III - WII -< I - 81. Moreover,

Ut w- iU_tW - III = 11 Ut V_t - III + 0(t), t 0,

and

IIU,WV-, - WII = 0(t), t --+ 0.

PROOF. (1) => (2) Define W by

W ds U, V_

(where the integral is the strong integral of a strongly continuous function in the

Co-case and is the dual of a strong integral in the Co*-case). It follows that III - WII
< I - P.1, and hence W has a bounded inverse. Next introduce X, by

X, = W-1U'WV_'-
One calculates that

1
(Xt+h - X') =

I
W-1

61+h

ds U, V_, -

1
W - 1 'ds U,, V_- t.fh 6,h 61 b,h fo

This implies that X, is strongly differentiable in the Co-case, and weakly* differenti-

able in the Co*-case. The derivative in both cases is given by

dX, W-T,(Ub V-6, - IM,
dt

Next remark that

(U, - I)WA W(V, - I)A
+

W(X, - I) V, A

t t t

If A e D(T) and t --+ 0 then the right-hand side converges, either strongly or in the

weak* topology. Hence WA c D(S) and

SWA = W(T + P)A,

where

P
dX, W_ IMIV_6 -I)

dt t=0 61
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Similarly, if A c- D(S) then W-'A c- D(T) and

W-'SA = (T + P)W-'A.

Thus D(S) = WD(T) and S = W(T + P)W
Finally, one computes that

U'W-1U-'W- I = (U'V-' - I)(V'W-1U-'W- I)

+
61

W-1 ds Us(I - U6, V- 6 ) V-, V, W
- 'U

-,
W

+ (U, v-, - I).

Now note that t  -4 W - 'U, W is the group with generator T + P and hence

V, W- I U-' W - III 0(t), t , 0,

by Theorem 3.1.33. Thus

11 U, W- I U-1 W - 4 Ut V-1 - III + 0(t).

(2) => (1) Define Q by Q = - WPW One has T W -'(S + Q)W and if
CJ is the group generated by S + Q then Ot = WV, W - Another application of

Theorem 3.1.3 3 implies that I I U, CJ
-,
- I I I = 0(t) as t --+ 0. But the identity

U'v-, - I = U'W-1U-'(U'Cj-' - I)W+ (UtW-1U-'W- I)

then implies

11 U V-1 - III U, W- I U-' W- III + 0(t).

The last statements of the theorem follow from (*), (**), and (***).

PK((Ut V-
t
- U, V-,)A) ": PK'((V- t

- V-,)A) + PK((Ut - UjV-, A)
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Corollary 3.1.37. If U is a Co- or Co*-group, on the Banach space X then

thefollowing conditions are equivalent:

(1) there exist E > 0 and 6 > 0 such that

11 U, - III < I - .6

for all 0 < t < 6;
(2) lim'-0 11 U, - III = 0.

PROOF. This follows from Theorem 3.1.36 by setting V= I and remarking that

condition (1) then implies that the generator of U is bounded. The uniform continuity
of U then follows from Proposition 3.1.1.

Perturbation theory (Theorem 3.1.33) showed that two semigroups whose
generators differ only by a bounded operator are close in norm of order t

as t tends to zero. This characterizes bounded perturbations for Co*-
semigroups.

Theorem 3.1.38. Let U and V be two Co*-semigroups on the Banach

space X, with generators S and T, respectively. Thefollowing conditions are

equivalent:

(1) 11 U, - V,11 = 0(t) as t -+ 0;
(2) S = T + P where P is a bounded operator.

PROOF. (1) => (2) First note that it follows from Theorem 3.1.33, and its proof,
that S = T + P with P bounded if, and only if

U, - Vt = ds UsPV,-,.

Next remark that by assumption there are constants M, 6 > 0 such that

11 U, - Vt11 :!5:- Mt

for 0 :!! t < 6. But the unit ball of X is compact in the weak* topology, i.e., the

a(X, X*)-topology, by the Alaoglu-Bourbaki theorem. Thus there exists a net

t,, --+ 0 such that (U, - V,.)It is weakly* convergent, i.e., W((U,. - V,.)A)lt,, con-

verges as t,, -+ 0 for all A c- X and co c- X*. Consequently, there exists a bounded

operator P satisfying 11P11 < M such that o)((U,. - V,.)A)lt,, --* (o(PA). (In principle
P depends upon the net t,, but the subsequent argument shows that this is not the

case.)
Now using the semigroup property and a change of variables one finds, that

0fods co(U,,(U. - V.) V, - sA) =f"- Uds co(Us , u V, -,A) -f-uds co(Us , u V, -,A)

for each A e X and co c- X*. Therefore, replacing u by t,, and taking the limit one

deduces with the aid of u(X, X*)-continuity of V, u(X*, X)-continuity of U*, and

the Lebesgue dominated convergence theorem that

fods w(UsPV,_A) = co((U, - V,)A).
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Hence one obtains (*) and concludes that S = T + P. (Note that this then implies
that (U, - Y,)Alt in fact converges in the weak* topology as t --). 0 for all A C- X and
hence P does not depend upon the choice of the net t,,.)

(2) => (1) If A c D(S) = D(T) then Y,A c- D(S) and

o)((U, - Yt)A) fods o)(U,(S - T)Y,-sA)

ds co(U,PYA)

for each o-) c- X*. Therefore

11 U, - Vt11 < tilpil sup 11 U'11 11 Yt-sll-
0'!  s:5 t

But there exist M and P such that 11 U,11 :!  M exp fltj and 11 V,11 :!! M exp fltj by
Proposition 3.1.3. Hence

11 U, - Y, 11 t 11 P 11 M exp fltj = O(t) as t 0.

This theorem is not necessarily true for CO-groups, as the following example
demonstrates.

EXAMPLE 3.1.39. Let X = CO(R) be the continuous functions on the real line

equipped with the usual supremum norm. Let F be the operator of multiplication
by a real function f which is nondifferentiable at a dense set of points, and uniformly
Holder continuous in the sense that

If(s) - f(Ol :!! cis - tj.

Define W by W = exp{iFl. Next let U be the CO-group of translations,

(U, 0)W = kX - 0, t c- R, 0 e X,

and define a second CO-group by V, = W-'U, W. It is easily calculated that

11U, - V111 ! C16.

But the generator S of U is a differentiation operator, the generator T of V is W - 'SW,
and D(S) n D(T) = 101 because f is nondifferentiable at a dense set of points.

This example demonstrates that Theorem 3.1.38 is in general false for

C,-groups. It also demonstrates that the twist of Theorem 3.1.36 cannot

always be omitted. Nevertheless, if X is reflexive, i.e., if X = X**, then the
dual X* ofX is its predual and the weak* and weak topologies coincide. Thus

every CO-group U on X is a C*-group by Definition 3.1.2. Therefore two0

CO-semigroups U and V on a reflexive Banach space X satisfy

I U, - V, 11 = O(t) as t --> 0,

if, and only if, their generators S and T satisfy S = T + P where P is bounded.

Theorems 3.1.36 and 3.1.38 describe the basic relationships between two

groups that are close in norm for small t. It is also natural to examine weaker
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measures of proximity and in the Co*-case it is possible to characterize
relatively bounded perturbations of the type occurring in Theorem 3.1.32.

Theorem 3.1.40. Let U and V be C,*-semigroups, on the Banach space X,
with generators S and T, respectively. Thefollowing conditions are equiva-
lent:

(1) 11(U, - V,)All = 0(t), t --+ 0,

for all A c- D(T);

(2) 11(u, - V,)(I - ocT)-111 = 0(t), t --> 0,

for all cx in an interval 0 < a < 6;
(3) D(S) - D(T) and there exist constants a, b > 0 such that

JI(S - T)AII < allAll + blITAII

for all A c- D(T).

PROOF. (1) => (3) First note that A e D(S) if, and only if, 11 (U, - I)A 0(t) as

t -+ 0, by Proposition 3.1.23. Thus if A e D(T) then

ll(Ut - I)All< 11 (Vt - I)A 11+ll(Ut - V,)All
-0(1)

t t t

and A e D(S). Therefore D(S) 2 D(T). Next note that S and T are both weakly*
closed and hence strongly closed. Consider the graph G(T) = {(A, TA)j of T

equipped with the norm 11 (A, TA) 11 = 11 A 11 + 11 TA 11. The graph G(T) is a closed

subspace of X x X and the mapping

(A, TA) F--* SA

is a linear operator from G(T) into X. But this operator is closed because if (A_ TAJ
converges in G(T) and SA,, converges in X one has 11 A,, - All --* 0, for some A, and

IISA, - Bll ---* 0. Thus B = SA because S is closed. The closed graph theorem now

implies that this mapping must be bounded. Hence there is a constant such that

11 SA 11 < c(ll A 11 + 11 TA 11).

Finally,

11 (S - T)A 11 :!! c 11 A 11 + (c + 1) 11 TA

(3) ==> (2) If A c D(T) then V,A c- D(T) - D(S) and

co((U, - V,)A) ds w(U,(S - T) V, -, A)

for all co e X* .
One easily estimates that

11 (U, - V,)A 11 :!! t sup 11 U, 1111 V, (a 11 A 11 + b 11 TA
0:5  :5 t
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But there are constants M, # such that U, M exp fit I and V, I I < M expIflt 1,
and so one finds

11(U, - V,)AII :! tM2efl'(a 11 A 11 + bTA

Finally, if A = (I - aT)-'B then

11(U, - V,)(I - aT)-BIJ < tM2efl(all(I - (xT)-'BIJ + bot- I II(I - (I - otT)-1)BjJ)

Thus estimating the resolvent with Proposition 3.1.6, one finds for 0 < Ot < fl- I

11(U, - V,)(I - aT)-'Il < tM2efl(aM(l - afl) + ba - '(1 + M(I - cx#) -

= 0(t).

(2) => (1) This follows immediately because D(T) = R((! - cxT)-').



3.2. Algebraic Theory

In this section we principally analyze one-parameter groups of *-auto-

morphisms of C*-algebras and von Neumann algebras, and use the algebraic
structure to extend the results of Section 3. 1. In applications to mathematical

physics this analysis is useful for the discussion of dynamical development or

for the examination of one-parameter symmetry groups. In such contexts,
however, it is natural to first study more general forms of transformations
than *-automorphisms.

Symmetries of a physical system can be described in two complementary
but distinct manners. Either one may view a symmetry as an invariance of
the states of the system under a transformation of the observing apparatus
or as an invariance of observations under a transformation of the states. If

one adopts the position that the observables ofa physical system are described

by elements of an algebra W and physically realizable states are represented
by mathematical states w, over 91, then these two descriptions of a symmetry
are related by a duality. A symmetry can be described as a transformation of
the algebra W with the states E,, fixed or, by duality, as a transformation
of E., with 91 fixed. In either case a condition of. positivity plays an im-

portant role. The positivity of the states over the algebra of observables
is related to a probabilistic interpretation of the results of observations,
and the conservation of positivity under a symmetry transformation cor-

responds to a conservation of probability. Similarly, the spectral values
of selfadjoint observables correspond to the physically attainable values
of these observables, and transformations which send positive elements
into positive elements have a certain physical coherence. Thus we begin by
examining positive maps of algebras and characterize the special subclasses
of *-automorphisms. Subsequently we return to the examination of auto-

morphism groups.

3.2. 1. Positive Linear Maps and
Jordan Morphisms

In this subsection we examine the various types of positive linear maps (P of

C*-algebras and von Neumann algebras W alluded to in the introduction.
Particular examples of such maps are !.-automorphisms and *-antiauto-

morphisms. Other examples occur as duals of maps 9*; W* "91* which have

209
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the property that 9* maps states into states. We will describe in more details

these and other characteristic requirements on  p which are natural on

physical grounds, and show that they are equivalent. We also show that these

requirements imply that 9 splits into a morphism and an antimorphism.
This type ofgeneral study originated in mathematical physics with Wigner's

formulation of symmetries in quantum mechanics. The basic states of a

quantum mechanical system are represented by rays of unit vectors in a

Hilbert space .5. If  c- .5 and 11011 = I then the corresponding ray  is

defined as the set of vectors of the form e"O with a c- R. The numbers

P((p,  ) = I(q, 0) 12

are-obviously independent of the choice of representatives 9, 0 of the rays

0, 0, and they give the transition probability for the system to pass from the

state 9 to the state  . Wigner formulated a symmetry of the system as a

one-to-one map of the rays onto the rays which preserves the transition

probabilities p((o,  ). This notion can also be reexpressed in terms of pro-

jectors. If e(-5) is the set of all rank one projectors on ,5 then a Wigner
symmetry is a one-to-one map E c- (ff(.5) F-+ a(E) c- (ff(.5) such that

Tr(x(E,)oc(Eq,)) = Tr(E, E,#),

where E., and E , denote the projectors with 9 and  in their respective
ranges. The map a may be extended by linearity to all finite-rank operators
and then by continuity to the C*-algebra, of all compact operators
on b. Note that as a satisfies the invariance property (*) this extension is

coherent, i.e., if A = 0 then oc(A) = 0. Moreover, it follows that it maps the

density matrices p, described in Section 2.6.2, into density matrices. Moreover,
if P =  Pl + 0 - 42 with 0 :f _ A < I then a(p) = Acx(p,) + (1 - A)a(P2)-
Thus a defines a map of the states of the C*-algebra YIW(.5), or the normal

states of the von Neumann algebra Y(Sn ) of all bounded operators, by

a)(A) = Tr(pA)  -+ (a* co) (A) = Tr(x(p)^

and this map is affine, i.e.,

L't*( O-)l + (1 - 4)2) =  a*0)1 + 0 - 4C*(02-

Thus Wigner symmetries fall into the class of maps that we consider. In

fact, these symmetries   -4 cx have a very simple structure because it turns

out that

(4 = U '

where U is a unitary, or antiunitary, operator which is uniquely determined

up to a phase. This characterization results from the general theory, e.g.,
Theorem 3.2.8, and we discuss it as a particular example later in the subsection.

We begin with the formal definition of the various new forms ofmaps which

will be of interest.
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Definition 3.2.1. Let W, 0 be C*-algebras and 9; % F---+ 0 a linear map. We
introduce the following definitions:

(1) 9 is a positive map if 9(%,)  =- 0

(2) 9 is a Jordan morphism if

(p(A*) = (p(A)*,
q(JA, BI) = {9(A), q(B)J

for all A, B c- W, where JA, BI AB + BA;
(3) 9 is an antimorphism if

 o(A q(A)*
q(AB) q(B)q(A)

for all A, B c- W;
(4) 9 is an isometry if 11 q(A) A 11 for all A Ei

(5) 9 is an order isomorphism if q)-' exists and both 9 and 9' are

positive maps;
(6) 9 is a Jordan isomorphism if 9' exists and (p is a Jordan morphism

(and thus (p
- 1 is a Jordan morphism);

(7) 9 is an antiisomorphism if 9' exists and 9 is an antimorphism.

We also use some related concepts such as order automorphism, Jordan

automorphism, and antiautomorphism, whose definitions should be self-

explanatory. Some relations between these concepts are immediate, for

example, both morphisms and antimorphisms are Jordan morphisms. If

9 is a Jordan morphism and A c- W is selfadjoint, then q(A') = 9(A)', hence

9 is a positive map. Note that there is a close connection between anti-

morphisms and antilinear morphisms; the antilinear antiautomorphism
A F-+ A* transforms the former into the latter and conversely.
We next turn to a characterization of Jordan morphisms, showing that

they are obtained by "adding" a morphism and an antimorphism.

Proposition 3.2.2. Let W be a C*-algebra, 9; %  -+ Y(.5) a Jordan

morphism, and let 0 be the C*-algebra generated by 9(91). Itfollows that
there exists a projection E e 93' r-) 0" such that

A 1-4 q(A)E

is a morphism, and

A F- q(A) (I - E)

is an antimorphism.
In particular, if 7r is an irreducible representation of .0, 7r is either a

morphism or an antimorphism.

As the complete proof of this proposition is somewhat lengthy we only
indicate the main lines of the argument.
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Observation (1). If A, B c- W then

9(ABA) = 9(A)9(B)9(A).

This is established by remarking that (p((A + B)3) = 9(A + B)3' 9(A 3)
 o(A)3 , etc., and hence one computes that

9(ABA + BAB) = 9(A)9(B)9(A) + 9(B)9(A)9(B).

A similar computation using 9((A - B)3) = 9(A - B)3 gives

9(ABA - BAB) = 9(A)9(B)9(A) - 9(B)9(A)9(B)

and the desired result follows by addition.

Observation (2). If A, B, C c- W then

9(ABC + CBA) = 9(A)9(B)9(C) + 9(C)9(B)9(A).

This follows from the identity

ABC + CBA = (A + C)B(A + C) - ABA - CBC

and Observation (1).

Observation (3). If A, B Ei % then

[9(AB) - 9(A)9(B)] [9(AB) - 9(B)9(A)] = 0.

This follows from explicit multiplication and successive applications of
Observations (1) and (2):

[ p(AB) - 9(A)9(B)] [9(AB) - 9(B)9(A)]
= 9((AB)2) + 9(ABBA) - 9(A)9(B)9(AB) - 9(AB)9(B)9(A)
= 9((AB)2 + (AB)(BA)) - 9((AB)(AB) + (AB)(BA))
= 0.

Now using Observation (3) and manipulating with matrix units one can

prove Proposition 3.2.2 if % is a von Neumann algebra of the form W (& Mn,
where M,, are the n x n matrices and n > 2. In fact, this argument is of an

algebraic-combinatoric nature and one can prove the result for matrices
over more general rings than von Neumann algebras. Next if% is a general von
Neumann algebra, then there exists a sequence J. J,, of mutually or-

thogonal projections in the center W n %' such that J,, E,, = 1, %E1 is

abelian, and %E,, = M,, (& M, where 9N,, is a von Neumann algebra. This
establishes the proposition if W is a von Neumann algebra. Finally, if % is a

C*-algebra one first extends 9 to W**, where %** is the von Neumann

algebra generated by and then applies the von Neumann

algebra result.
We now come to the first major result of this subsection, a characterization

of Jordan automorphisms and their duals.
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Theorem 3.2.3. Let W, 93 be C*-algebras with identities and assume that 0

acts nondegenerately on a Hilbert space. Let 9, 91  -+ 0 be a linear map
such that T(1) = I and T-' exists. Thefollowing conditions are equivalent:

(1) T is a Jordan isomorphism;
(2) there exists a projection E c- F& r) 0" such that A T(A)E is

a morphism and A F-+ (p(A) (I - E) is an antimorphism;
(3) (i) if U c- % is unitary, 9(U) e- 93 is unitary,

(ii) if A = A * then T(I A 1) = I T(A) 1,
(iii) ifA is invertible then  o(A) is invertible and T(A)  p(A

(4) T is an isometry;
(5) T is an order isomorphism;
(6) the dual T*; 0*  --4 91* of 9 has the property that

9*(E43) = EA,

where EA and Es are the sets of states over W and 0, respectively.

We will prove this theorem with the aid of a series of propositions, some

of which are of interest in their own right. The first proposition is sometimes
referred to as the generalized Schwarz inequality because it reduces to the

latter in the case of states.

Proposition 3.2.4. Let %, 93 be C*-algebras with identity, 9; 91 F-+ 0 a

positive map such that T(1) = 1, and A c- 91 a normal element, i.e., AA*
A*A. Itfollows that

T(A*A) > T(A)*T(A).

PROOF. Because A is normal, we may assume that 91 is abelian. Then 91 = QX),
where X is a compact Hausdorff space (Theorem 2. 1.11). One may assume that the

C*-algebra 93 acts on a Hilbert space
We first prove that

Y ( i,  p(Ai*A) ) > 0
U

for any pair of finite sequences  1,  2, c -5; A, A2, ..., An c- 91. By the Riesz

representation theorem, there exist Baire measures du,,,  j on X of finite total variation

such that

(p(A) ) = fX dp4,,  j(x) A(x)

for all A c- 91 = QX). Let dy = Yj d I y4,,4j 1. Then p is a positive, finite Baire measure,

and by the Radon-Nikodym theorem there exists p-measurable functions h ,. j
on

X such that

dp ,, 4j(x) = h4,,  j(x) dy(x).

If A 1, An c- C, we have that

i Aj dy4,,4j = dp4,4,Y
ij
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where Ai i. The measure dy4,4 is positive, and

dp4,  (x) ( TiAjh4,,4j(x) dp(x).
J

It follows that

XiAjh ,,4j(x) > 0
ij

for all A, . . . , A,, c- C, and p-almost all x c- X. But this implies that

Y ( i, 9(Ai*A) ) = dy(x) I Ai(x)AJ x)h4,,4J(x) > 0
ij

f
ij

for all A,_., A,, c- %.

Now, equip the vector space tensor product W (9 .5 of W and .5 with the sesqui-
linear form

Ai 0  i, Bj 0 qj A).
i

) =
ij

,
( i, 9(Ai*B

This form is, in fact, well defined, and is a positive semidefinite inner product by the

inequality we just have proved. Let -4,' denote the set of null vectors with respect to

the form, and let R denote the closure of W (D S-').1,4. Then R is a Hilbert space, and

V defined by VO = 1 0 0 + -IV is a linear isometry of .5 into R. Let 7r be the rep-
resentation induced on A by the representation 7r' of W on defined by

7r'(A) Y Bi (Doi ABi (D Oi-

An easy calculation shows that 7r is a representation of 91 and that

9(A) = V*7r(A)V

for all A c- %. (Note that this is a generalization of the GNS construction.) Now, for

A c- % and V1 c-5 we have

(0, 9(A*A)O) = (0, V*7r(A)*7r(A)VO)
= 11 7r(A) V0112

11 V*7r(A)V 112

Hence

9(A*A) 9(A)*9(A).

Lemma 2.2.14 and its proof imply that if % is a C*-algebra with identity
then any element A c- W with 11 All < 1/2 is a convex combination of unitary
elements in W. More generally, it can be shown that any A e W with 11 All < I
is a convex combination of unitary elements. However, we need only the

following weaker result.

Proposition 3.2.5. If% is a C*-algebra with identity then the unit ball in %
is the closed convex hull of the unitary elements in %.
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PROOF. If A c- 91 and 11 All < I then I - AA* is positive and invertible, so the
element

f(A, A) = (T - AA*)- 1/2(j + AA)

exists in W and is invertible for all A c- C with I A1. We have

A*( - AA*)-' A* Y (AA*)"(n
 ! 0

(A*A)") A* = (T - A*A)-A*,

whence

f(A, A)*f(A, A) + I (T +  A*)(l - AA*)- 1( + AA) +

(T - AA*)-' + (I - A*A)-' A* + AA*)-'AA
+(I - A*A)- 1.

This expression is unchanged under the transformation A F--). A*, A F-4  , and we con-

clude that

f(A, A)*f(A, A) = f(A*,  )*f(A*,

It follows that the element

UA f(A, A)f(A*,

is unitary when I A 1.

The function

U(A) (I - AA*)- 1/2(AT + A)(1 + AA*)-1(1 - A*A)1/2

is analytic in a neighborhood of the closed unit disc and U(A) = AU when A 1.

Moreover,

U(O) = (T - AA*)- 1/2A(I - A*A)' /2

= (I - AA*)- 1/2(j - AA*)1/2A = A.

By Cauchy's integral formula,

A = (27r)- 1 U(e") dt,

where the integral exists as a Riemann integral. It follows that the open unit ball in
91 is contained in the closed convex hull of the unitary elements in 19, which establishes
the proposition.

Proposition 3.2.5 has the following corollary, which we have already
proved in the case of states (Proposition 2.3.11).

Corollary 3.2.6. Let T be a linear map between two C*-algebras W and!S
with identity and assume 9(11) = I. Itfollows that T is positive if, and only
if, 1IT11 = I.
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PROOF. If 11  o 11 = I and w is a state of 0, then w -  o(l) = I and 11 co -  p 11
11 (o 1111  9 11 = 1, hence (o o  o is a state on by Proposition 2.3.11. It follows that (P is

positive.
Conversely, if (p is positive and if A A * c- 91 we have - 11 A 111 < A < 11 A 111, and

-11A111 < 9(A) < IIA111. Hence 119(A)II :!! 11AII if A = A* and 119(A)II < 211AII for

general A by decomposition into selfadjoInt elements. This proves that  0 is continuous.

Now if U e % is unitary it follows from Proposition 3.2.4 that

g(U)112 jj9(U)*9(U)jj

119(U*U)11 = 1190)11

The continuity of 9 and Proposition 3.2.5 then imply that 11(p1l = 1.

PROOF OF THEOREm 3.2.3. (1) - (2) follows from Proposition 3.2.2. and

(2) => (3) is trivial. Next note that (311) implies 9 and 9
- '

are positive. Hence it follows

from Corollary 3.2.6 that 11 ojj :!! 1, 119`11 :!! 1, and 9 is an isometry. This establishes
that (3) => (4). The equivalence (4) ,--> (5) follows from Corollary 3.2.6, while (5).4--> (6)
is trivial. Finally, we prove (5) => (1). If A = A* c- W, Proposition 3.2.4 applied to (P
and 9' gives

(p(A 2) (p(A )2
9(9-'(9(A )2))
q)(9 - 1 9(A )2) =9(A 2).

Hence 9(A 2) = 9(A)2 if A = A*. For A = A* c- 91, B = B* c- W we use

to conclude that

(A + B)2
- A2- B2

= AB + BA = JA, BI

9QA, Bj) =   o(^ 9(B)j.

This relation for general A and B then follows by linearity.

Theorem 3.2.3 has various interesting consequences for affine maps of

states and for one-parameter groups of automorphisms. The rest of this

subsection is devoted to their deduction and illustration. Although the

deduction of these implications is basically straightforward it does need a

certain amount of extra technical machinery. First it is convenient for the

analysis of state maps to extend these maps to the whole dual, or predual. For
this purpose we need some information concerning a decomposition of
linear functionals on C*-algebras -and von Neumann algebras.
We begin by defining a functional q on a C*-algebra % to be hermitian if

q(A*) = q(A). It is clear that states are hermitian and that hermitian func-
tionals are uniquely determined by their restriction to the real space Wsa
of selfadjoint elements of W.

Proposition 3.2.7 (Jordan decomposition). If % is a C*-algebra and

q c- %* then q has a unique decomposition n, = 171 + iq2 into two hermitian

junctionals, where

.q,(A) = (q(A) + q(A*))12 and q2(A) = (q(A) - q(A*))12i.

If 91 = 9M is a von Neumann algebra, and q c- 9Y* then q 1, q 2 C_ 9y* *
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If 931 is a von Neumann algebra and q c- T1* is hermitian then there exists
a unique pair ofelements q I, q2 C_ 9X* + such that

q q I
- q2,

110 11q111 + 11q211

If W is a C*-algebra, set 91" = ((Dcoeft then any element
q c- 91* extends uniquely to a a-weakly continuous linear functional on the
von Neumann algebra W", and W" identifies with the bidual 91** of 91. If
q c- W* is hermitian then there exists a unique pair ofelements ?71, ?72 C_ 91+*
such that

q = 11 - q2,

110 = 11q111 + M211-

PROOF. The existence and uniqueness of the decomposition into hermitian func-
tionals is straightforward. In the case that q c- 931, we have that q(A) A i).
Thus tl(A*) = Ji ( i, A ). Consequently, q 1, q2 6 9X* -

Now, assume that q c- 9JI* is hermitian, and 11 q 11 = 1. Since 9W, is a-weakly compact
there exists an A c- M, such that q(A) = 1 = q(A*). Thus, replacing A by (A + A*)/2
we may assume A = A*.

Let W*(A) be the abelian von Neumann algebra generated by A and 1. Then
W*(A) is, by the Gelfand representation, an algebra of the form QX), where X
is a compact Hausdorff space. The set of B c- C(X)sl, I such that q(B) = 1 is nonempty
and a-weakly closed, thus u-weakly compact. By the Krein-Milman theorem this
set has an extremal point B. Using 11 q 11 = 1 it is easy to see that B is also extremal in
C(X)sa 1. Therefore the representative of B, in QX), can only assume values in the
extremal points of the interval [ - 1, 1]. Thus B = P, - P2, where P 1, P2 are

projections, P1 P2 = 0 and P, + P2
Next, define

ql(A) = q(P,A) q2(A) = -q(P2A)

for all A c- M. Then q 1, q2 are a-weakly continuous and q q, - q2. Furthermore,

(171 + q2)(1) = q(P1 P2) = 1

and

101 + q2)(A)l = lq((Pl - P2)A)l JJqJJ 11P, P211 JJAJJ

Hence 11 q, + q2 11 = 1, and q, + q2 is a state by Proposition 2.3.11.
Now the norm of q, on P,MP, is q(P,) because if q(Pl) < q(A), where

A c- (P, 9JIP 1), then 11 A - P2 11 :!! I and q(A - P2) = q(A) - 02)  ' q(P I
- P2) =

1, which is a contradiction. Hence by Proposition 2.3.11, q,  !! 0 on P,T?P,. Since
q1 = (q + 01 + q2))/2, q, is hermitian. Hence

q(API) = q(P,A*) = ql(A*) = ql(A) = q(PIA)
and

ql(A) = q(PIA) = q(pl2A) = q(PIAPI) = ql(PIAPI).
It follows that q, is positive on all of T1. Similarly, q2 is positive and llq211 = -q(P2)
= q2(P2). Hence 11 q 1 11 + 11 q2 11 = q(P1 - P2) = I

-
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For any co c- M, ,
let S(co) be the smallest projection in 9Y such that co(S(o))) = 11 Coll

(equivalently, S(o)) is the largest projection in IM such that o)(I - S((o)) = 0; S(W)
is called the support of co). To show uniqueness of the decomposition of q, set

 7 = Ill' -  72' = 171 - 112, llq I'll' + llq2'11 q 1', q2' C_ 9y* +

Then

qlM + q2M = 1 = 171'M + q2'(1),
qlM - q2M = 170) ql'M - q2'(1);

hence

qP) = qiM, 1, 2.

Since S(ql) < P, one has

il"(1) q,O) = llq,ll ll,(S(ql))

 I(S(ql)) = tlAS(ql)) - q2'(S(ql))-

Thus q2'(S(110) = 0 and S(t7l') S(ql). Hence

ill(A) il(S(q1)A) ql'(S(q,)A) -  72'(SOIOA)

ill'(S(ill)A) = ql'((S(1h) - S(ill'))A) + ql'(S(ql')A).

tl '(A).

Thus q, = q,', and so q2 = t/2'-
We now turn to the C*-part of the proposition. By Theorem 2.3.15, the set R2, of

positive linear functionals over 121 with norm less than or equal to one is weakly*
compact. Hence the set A of convex combinations of elements in R1, and -B, is

weakly* compact. If A - A* c- W it follows by a straightforward extension of Lemma

2.3.23 that

I All = sup  I co(A) 1; co c- E,,I,
= sup tq(A); il c- Alf-

We will show that any hermitian functional il such that ll il 11 < 1 lies in A. Assume the

contrary and then, by the Hahn-Banach theorem applied to the real space 'A,a,
there exists an A c- and an a c- R such that il(A) > a and 9(A) :! ; a for all  o c- A.

Since - A = Ax this implies that I 9(A) I :!! -Y. for all 9 c- A. Hence 11 A 11 < a. This con-

tradicts q(A) > a, and thus il c- A. We have thus shown that any hermitian functional

q on 911 is of the form il = ill - 172, where qi c- %*,. Now, clearly, q, and q2 have

(7-weakly continuous extensions 11, and  72 to  )A" = Thus 11 has a

a-weakly continuous extension 11. But this extension is unique because S21 is a-weakly
dense in 121", and llr1ll - llqll by the Kaplansky density theorem (Theorem 2.4.16).
The C*-version of the proposition now follows from the von Neumann version.

Now we return to the examination of the implications of Theorem 3.2.3.
We first examine affine maps of states and identify these as duals of Jordan

automorphisms. This duality reflects the two possible methods of describing
symmetry transformations in physical applications and the following result

proves the equivalence of these methods.
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Theorem 3.2.8. Let 9M be a von Neumann algebra and Nw, = Em r-) T1* the

normal states on M. Further, let 9* be an affine, invertible mapfrom Nw, onto

Ng)q, i.e.,

(P*(' O-)l + 0 - *)2) = 4*(0)1) + 0 - 4P*(0)2)

for all A c- [0, 11, 0)1, 0)2 e Na. Itfollows that there exists a unique Jordan

automorphism 9 of 9A such that

(9*co)(A) = 6o(g(A))

for all w c- N., A c- 9A.

PROOF. 9* extends uniquely to an invertible map of9R*, onto 9R*, by (p*(Aw)
A(p*(w), Ac-R+. The extended map satisfies (P*(A1W1+A2C02)=A1(P*(0)1)+
 2 (P*(0)2)- Using the Jordan decomposition of Proposition 3.2.7, 9* and q*- ' extend

uniquely by linearity to invertible linear maps of 931* onto 9M, and the extended

maps are positive and of norm less than two. Hence 9 exists as an invertible

map on 9W, and 9 and 9 are positive.
If w e Nm we have o)( o(T)) = (9* o)) (T) = 1 = w(T). Thus 9(1) = T and 9 is a

Jordan automorphism by Theorem 3.2.3.

Note that the result of Theorem 3.2.8 can be restated in a C*-algebra
version. Let W be a C*-algebra, 7r a representation of W and N,, the 7r-normal
states (see Definition 2.4.25). It follows that every affine, invertible map 9*
from N,, onto N,, defines by duality a Jordan automorphism 9 of the von

Neumann algebra generated by 7r. In particular, if 7r = ecoc-EW 7Z", we have

N,, = Ew so every affine, invertible map (p* of ET defines a Jordan auto-

morphism of W" = (( cueE% 7rw)(91)"- Our next aim is to demonstrate that
if one places extra continuity restrictions on 9* then the dual Jordan auto-

morphism 9 actually gives a Jordan automorphism of n(W). Thus if 7r is

faithful 9 corresponds to a Jordan automorphism of the abstract C*-algebra
W. The additional continuity conditions require that 9* map pairs of neigh-
boring states into pairs of neighboring states. The notion of neighborhood, or

closeness, is measured by the weakly* uniform structure. In a physical
interpretation, where the values taken by the states represent the results of

physical measurements, the continuity requirements demand that the sym-

metry transformation does not introduce radical differences between similar

systems.
In the C*-version of Theorem 3.2.8 that we just mentioned the initial state

map is only defined on the subset formed by the 7r-normal states. In many
applications it is also natural to consider special subsets of states, e.g.,

locally normal states over quasi-local algebras, and this motivated our

restriction to u(X, fl-continuous semigroups, etc., in Section 3. 1. If the

algebraic description is not to be partially redundant it is, however, necessary
that the subsets of states should be determining in a certain sense, for the

algebra. The following notion of a full set of states is natural in this context.
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Definition 3.2.9. Afullfamily of states S, over a C*-algebra W, is defined to

be a convex subset of the states E%, over 91, which has the property that if

(o(A) > 0 for all w c- S then A > 0.

Note, in particular, that the normal states over a von Neumann algebra
is a full set of states. Thus if 7r is a faithful representation of a C*-algebra W
then the 7r-normal states also form a full set.

The C*-generalization of Theorem 3.2.8 will be expressed in terms of

mappings of full sets of states. These sets have a simple characterization, which
is slightly complicated to deduce, as weakly* dense subsets of the set of all

states. As a preliminary we first derive this useful fact:

Proposition 3.2.10. Let S be a convex subset ofthe states over a C*-algebra
91. Thefollowing conditions are equivalent:

(1) S isfull;
(2) S is weakly* dense.

PROOF. (1) ==> (2) First we argue that if A > 0 then

sup w(A) = 11 All.
..S

Assume the converse and consider the states o) c- S as probability measures dft,, on
the spectrum o-(A) of the abelian algebra CO(o-(A)) generated by A (see Theorem

Z--,

2.1.1 1B). If co(A) < 11A 11 for all co c- S then the representing measures must have

a weight inferior to (IlAll -  )JIlAll - ;i,/2) < I on [IlAll - ) /2, IlAll] na(A). Thus

there exists a real function J' c- Co(u(A)) such that f(t) < 0 for t > ll All -  /2 but

(o(f(A)) = dp,,,(t) f(t) > 0f
for all (o c- S. But f(A) is not positive and this contradicts the fullness of S.

Secondly, we claim that if A A*, A c- a(A), and e > 0 then there exists an W C- S

such that I (o(A) - A I < g. If A 0 we choose a positive function f c- C,(,g(A)) with

11 f ll,,,, = I and f(t) = 0 for I t - A I > e', where E'(1 + 2 11 A 11) = i . By the previous

argument one may find an o-) c- S such that (off(A)) > I - e'. Thus the representing
measure must have weight superior to 1 - g on [,^t - E',  + P.]. Therefore

(o(A) - A fdp,..,,(t) (t - A)

f dp,,(t) (t - A)  + f dyjt) (t - A)
It - AJ:5 It - Al >

E'(1 + 211AII) = e.

Now ifW contains an identity then one may replace Qu(A)) by Qa(A)) and the argu-
ment also works for A = 0. Furthermore, if I  % but zero is not an isolated point in

a(A) then the claim follows by approximating zero with A c- a(A) \ 101. Finally, if

T  % and zero is an isolated point in a(A) we choose f c- Co(u(A)) such that f(t) = I
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for t c a(A)\ 101 and set P = f(A). Thus P c 91 is a projector and P :A  
-
Con-

sequently there is a B c- W such that BP - B 0 and hence C = (BP - B)*(BP -
B)IIIBP - B 112 is positive, IICII = 1, and CP 0 = PC. But for e > 0 the first part
of the proof established the existence of an o) c- S such that a)(C)  ! 1 _ '62 and if (D

is the extension of (o to il = CT + % one then has

I (O(p) 12 1 CO(p(j _ C)) 12
Oj(p)(D((T _ C)2)
III - C116(l _ C) < 'C2.

Finally, P was chosen such that

- IIAIIP :!! A < IIAIIP

and hence

I(o(A)I < elIA11.

We conclude the proof by assuming that the full set of states S is not weakly*
dense and then deriving contradiction.

It o) c E,, is not in the weak* closure of the convex set S then the Hahn-Banach

theorem, applied to the pair 91* and 91,a implies the existence of an A = A* C- W
sa

such that (o(A) > 1 and &(A) :!! I for all &c- S. Set e = o)(A) - 1 > 0 and let
A A+ - A

-

be the decomposition of A into positive, and negative, parts A+ and

A Let E
+
be the range projection of A, in

,all (W)"
E91

and let E_ = I - E, It follows that o-)(E+) + o-)(E-) = 1 and hence

0 :! ; o)(A o)(E + A + E < 11 A , 11 (o(EJ

Similarly,

0 < o)(A 11 A - 11 o)(EJ

But the sets l(o(A,); &c SJ are dense in the convex closures of a(A,), respectively,
by the preceding argument. Moreover, o_)(A+)1IIA+II lie in the respective convex

closures because of the above estimates. Hence there exist states 'CO + c- S such that

E

J(o(E,)co+(A,) - w(A+)i < -

2

Now set (o' = w(E,)co, + w(E-)w-. It follows that &c- S and

I (o(A) - co(A) I < e..

But since o)(A) = 1 + s and &(A) :! _ 1 this is a contradiction and hence S must be

weakly* dense.

(2) => (1) If S is weakly* dense and A = A* is not positive then there is certainly
an co c- S such that w(A) < 0. Thus S must be full.

After this rather lengthy preliminary examination of subsets of states we

return to the examination of affine state maps. The principal C*-algebraic
result is the following extension of Theorem 3.2.8.
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Theorem 3.2.11. Let S be afull set of states over a C*-algebra 91 and 9*
an affine invertible mapfrom S onto S. Further assume thatfor each A C- 91

there exists a a(%, 91*)-compact subset K, ofW such that

1((P*(0)1) - (P*(0)2))(A)l SUP 1(0)1 - 0)2)(B)l
Bc-KA

H
1((P* 1(0)1) - (P* 1(0)2))(A)l SUP I(C )l - 0)2)(B)l

BEKA

for all pairs o-),, 0)2 C- S- It follows that there exists a unique Jordan auto-

morphism 9 ofW such that

(9* o)) (A) = o-)(9(A))

for all o) c- S and A c- 9t.

PROOF. First note that the convex set S is weakly* dense in E, and hence it is

dense in the Mackey topology -c(%*, %) restricted to E,. Thus 9* and 9;', extend

uniquely by continuity to affine maps of Ez such that the continuity estimates (*)
extend to all pairs wj, (02c- E-. ,. Furthermore, one may use the Jordan decomposition
of Proposition 3.2.7 to extend  o* to a linear bounded map of W.

Next assume that A = A* c- W. 1f 0-) 1, (t)2c- EA then the difference (t)l - 0)2 is

hermitian and one has the estimate

W01 - 0)2)(B)l :! ; ((01 - (02)
(B +

2

+ (0)1 - (02)
(B

< 2 sup (Col - (-02)
(B +

, ((0 1
- '02) (B

2 2i j

for any B in the compact K,. By the successive replacements of K, by KA + KA*,
then by the selfadjoint part of KA, and finally by KA u (- KA), we may assume that

KA is a compact, balanced, subset Of 91sa and

((P*((Ol) -  0*(C02))(A) :!! SUP (C01 - 02)(B).
B. KA

Now let q e %* be any hermitian functional with q(1) = 0. If q q 1 q2 is the

Jordan decomposition of q then

q111 q10) = q20) = 11q211-

Applying the above inequality to (q 1 q2)/11 q 1 11 one obtains

+(9*q)(A) :!! sup q(B).
Bc-KA

Now if co, is a fixed state on 91 then any hermitian functional q, on has a unique
decomposition

AW, + q"
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where A = j(1) c- R and q' is a hermitian functional such that q'(1) = 0. We take

w, to be a weak* limit of a subnet of the sequence

(4)=
I n

k(4),n Y_
2n + I k=-n

where co c- EA. One has

 0* wo = (00

Now, for A = A* given, we may choose KA such that A c- KA. Then

(9*q)(A) A( o*coo)(A) + (9*q)(A)

Acoo(A) + sup q(B)
BeKA

sup Awo(B) + sup q'(B).
B. KA Bc-KA

Since KA is compact there exist operators B', B" c- KA such that

sup Aw,(B) = A(,o,(B'),
BeKA

and

sup q(B) = ij'(B").
B.KA

Now put

C' = wo(B')I, C' = B" - coo(B")I.

lf M = SUPBc-KA JIB 11, then

C' + C" c- K _= KA + 2M, 2M]I,

and K is still compact, and depends only on KA, not on q. Furthermore

Acoo(C) = Acoo(B),

?7,(C,) 0,

AWO(C") 0,

and the above estimate implies

(9*q)(A):!! Acoo(B) + q'(B")
= (A'600 + O(C' + C")
= q(C + C")

sup q(C).
C.K:4

Hence q F-+ (9* q) (A) is a W,,,)-continuous functional in 91s*a, the hermitiana

functionals on %, i.e., the dual of the real Banach space9lsa - By the Mackey-Arens
theorem there then exists a B E%- such that

q(B), q C- 91*
sa

We now define 9 by B = 9(A).
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A similar discussion of  o*-' shows that  p is invertible and hence 9(%) = 121. 9 and

 O are clearly positive maps. Now noting that

(0((PM) = (9*(0)M = I = co( )

one has  p(l) = I and (p is a Jordan automorphism of % by Theorem 3.2.3.

Up to this stage in our analysis ofpositive maps and Jordan automorphisms
we have concentrated on individual maps. We next consider one-parameter
groups of such maps. All the foregoing results have natural extensions, but
the next point we want to make is that continuity properties of the group can

strengthen the previous conclusions. In particular, a one-parameter group of
affine state maps with suitably strong continuity properties gives rise to a

group of *-automorphisms and not merely Jordan automorphisms. This is

part of the content of the following corollary.

Corollary 3.2.12. Let t  -4 a, be a strongly continuous one-parameter group
of maps of a C*-algebra % with identity 1, and assume that a,(I) = I for
all t c- R. Thefollowing conditions are equivalent:

(1) each a, is a *-automorphism of %;
(2) Ila, 11 :5:, 1 for all t c- R;
(3) oc,(% ) 9 % , for all t c- R;
(4) cx,*(E%) g E% for all t c- R.

PROOF. By Theorem 3.2.3 it suffices to show that a strongly continuous group
a, of Jordan automorphisms, of %, is a group of *-automorphisms. But if 7r is an

irreducible representation of % then n - a, is a morphism, or an antimorphism, of

W, for each t, by Proposition 3.2.2. Since t i--+ n(a,(A)) is continuous in t for each

A c W, it follows easily that the set V (respectively *) such that 7r - a, is a morphism
(respectively antimorphism) is closed (is closed). Hence V and 1/' are both open
and closed.

Because R is connected and 0 c- J& it follows that V = R and each 71 - a, is a

morphism. Since the direct sum of the irreducible representations of % is a faithful

representation (Lemma 2.3.23), it follows that each cx, is a *-automorphism.

The situation is similar for some special von Neumann algebras and a-

weakly continuous groups.

Corollary 3.2.13. Let t i--> a, be a a-weakly continuous one-parameter
group of maps of a von Neumann algebra 9M such that oc,(I) = I for each
t c- R. Assume that 9N is afactor or that TZ is abelian. Let Nm = T1* r-) Em
be the normal states on 9M. Thefollowing conditions are equivalent:

(1) a, is a *-automorphism of Tifor each t c- R;
(2) 11 a, I I :!! 1 for all t c- R;
(3) cx,(9J1,) - 9M, for all t c- R;
(4) a,*(Nm) 9; Ngnfor all t c- R.
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PROOF. (1) = > (2)  :> (3) is clear from Theorem 3.2.3. But condition (3) implies
that a,(9J1,) = 9W, oct '(9JI,) = 9W, Hence if A,,, is an increasing net in 9N, con-

verging to A then a,(A,,) converges to oc,(A). Thus (3) => (4) while (4) => (3) is trivial.
To establish (3) => (1) it suffices to show that a a-weakly continuous group of Jordan

automorphisms of 9W is a group of automorphisms. If 9R is abelian this is evident.
If 9W is a factor Proposition 3.2.2 implies that each a, is either an automorphism or an

antiautomorphism. By the connectedness of R and the argument in the proof of the

previous corollary it follows that each ot, is an automorphism.

Note that Corollary 3.2.13 is not true for general 931. It is possible to con-

struct counterexamples (see Notes and Remarks).
As an illustration of these results we classify all the Jordan automorphisms

of Y(.5) and thus all order automorphisms, or isometries, 9 with 9(1) = 1.
This classification then solves the problem of characterizing the Wigner
symmetries discussed in the introductory paragraphs of this subsection.
In the introduction we established that each Wigner symm;,-try defines an

affine invertible map 9, of the normal states of the von Neumann algebra
Y(.5). But Theorem 3.2.8 then implies that 9,, is the dual of a Jordan auto-

morphism 9 of Y(.5). The following example elucidates the action of 9 on

Y(.5), and the resulting action of the Wigner symmetry on .5.

EXAMPLE 3.2.14. The algebra Y(.5) of all bounded operators on the Hilbert

space -5 is a factor and any Jordan automorphism a is either an automorphism or an

antiautomorphism by Theorem 3.2.3. Assume first that a is an automorphism. Let.Q
be a fixed unit vector in .5, and E c- Y(.5) the orthogonal projection with range CK2.
Since E is a minimal nonzero projection in Y(.5), F = a

- '(E) also has this property.
Hence F.5 = C , where  is a unit vector. Next define an operator U on S_5 by

UA a(A)Q, A e Y(.5).

Then

11A 11 = JJAF 11 = 11AF11 = Ila(AF)II
= lloc(A)Ell = 11c((A)Ef211 = 11a(A)f211.

This shows that the definition of U is consistent and that U is an isometry. Since the

range of U is Y(fv)Q = .5 it follows that U is unitary, and U* = U` is given by

U*AK2 = oc-'(A) , A c- Y(.5).

Hence for A, B c- Y(.5),

UAU*BQ = UAa-'(B) = a(A)ffl,

i.e. a(A) = UAU*. It follows that the automorphisms of Y(.5) are just the inner

automorphisms, and the group Aut(Y(.5)) of automorphisms is isomorphic to the

group of unitary operators in Y(b) modulo the circle group JAI ; I A I = 11.
Let JEijJi,j be a complete set of matrix units in Y(.5) and define

ao(Eij) = Eji -
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Then by straightforward computations co extends to an antiautomorphism of

Y(.15) such that U02 = i. Now if a is an arbitrary antiautomorphism of Y(.5) then
a o co is an automorphism. Thus there exists a unitary U c- Y(.5) such that

a(A) = Uco(A)U*.

This classifies the antiautomorphisms of Y(.5).
One can also exploit this construction to classify the continuous groups Oct of

*-automorphisms or *-antiautomorphisms. For each t one chooses a vector

in the range of a -,(E) and then defines U, by

UtA t = at(A)E2.

But the choice of  , is arbitrary up to a phase and consequently the U, only form a

group up to a phase, i.e., U, U, U_, = exp{iT(s, t)J for some function T(s, t) C- R.

Nevertheless, one may argue that if at is weakly*-continuous then the phases of the

 , can be chosen in a coherent way which ensures that the corresponding U, form a

one-parameter group which is weakly, and hence strongly, continuous in t. This result
will actually be derived by a slightly different method in the following subsection

(Example 3.2.35).

As a final description of Wigner symmetries of the Hilbert space f). we
remark that each such symmetry a extends to either an automorphism or an

antiautomorphism 9 of and the action of a on .5 is then determined by
the action of T on the rank one projectors in Y(.5). One always has

40 = UC
where U is either unitary or antiunitary, and is uniquely determined up to a

phase. The discussion of the action of one-parameter groups of Wigner
symmetries will also be given in the next subsection (after Example 3.2.35).
We now leave these illustrative examples and return to a further discussion

of Jordan automorphisms of a von Neumann algebra U. For this purpose it
is useful to consider 9Y in standard form. Thus in the rest of this subsection
we assume that T1 has a cyclic and separating vector Q and let A, J, 9, denote
the corresponding modular operator, modular conjugation, and natural
positive cone. Recall that-41 is defined as the closure ofthe set {Aj(A)Q; A C- 9XI,
where j(A) = JAJ; it can alternatively be characterized as the closure of the
set {A'I'AQ; A c 9Y I (Proposition 2.5.26). It is also of importance that an

element  6 1-41 is cyclic, and separating, for 9N if it is either cyclic or separating.
Moreover, if  c _1P is cyclic and separating then the conjugation J , cor-

responding to the pair IM,  J, is equal to J and the corresponding positive
cone 6-0, is equal to _91 (Proposition 2.5.30).
The cone 341 was used in Section 2.5 to establish that each *-automorphism

a of 9N could be unitarily implemented, i.e., there exists a unitary U(Cx)
such that a(A) = U(a)AU(a)* for all A c- 9R. We now use this to derive a

characterization of the Jordan automorphisms of 9A.

Theorem 3.2.15. Let 9R be a von Neumann algebra with a cyclic and

separating vector Q and let A, J, denote the associated modular operator,
modular conjugation, and natural positive cone. If U is any unitary operator
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such that U-41 = 9, then there exists a unique Jordan automorphism a of9A
such that

a(A) ) UAU* )

for all A c- 9M and  c- 80.

Conversely, ifa is a Jordan automorphism of9N then there exists a unique
unitary operator U such that U-9 = _9 and relation (*) is again valid.

If, in either of these cases, E c- 9)? n 9M' is a projector such that A E 9W

a(A)E is a morphism, and A c- 9W  --4 a(A) (I - E) is an antimorphism (see
Proposition 3.2.2) then

UAU* = a(A)E + Jcx(A*)J(l - E).

The proof essentially relies upon the earlier results of Section 2.5 and some

further analysis of the geometry of the cone -9. In particular, one needs the

following invariance properties of -9.

Lemma 3.2.16. Let 931 be a von Neumann algebra with a cyclic and separat-
ing vector 0, and let A, J, _9 denote the associated modular operator, modular

conjugation, and natural positive cone. IfA c- TZ r-) 9M' one has

A"AA-" = A, JAJ = A*.

IfE c- 9JI r) 9JI' is a projector and we set 91 = 9YE + 9JI'(1 - E) then % is

a von Neumann algebra and 92 is cyclic and separatingfor %. The associated

A0, J0, and 90 satisfy

A0 = AE + A-'( - E), JO = J, _90 = _'9'.

PROOF. Assume that E e 9W r-) 9Y' is a projector. Then with the notation of Section
2.5 we have for all A c- 9W, A'c- 9A',

SEAQ A*EQ = EA*Q = ESAQ,
FEA'Q EFA'92.

Hence by closure, using Proposition 2.5.11, one has

JA 1/2E = EJA1 /2' A' /2JE = EA 112j.

Next note that

AE = A1/2JJAI /2E = EA' /2JJA 1/2
= EA.

Since E is bounded, it follows that E commutes with A", and then with A1/2. Thus

EJA 1/2
= jAl/2E = JEA1 /2.

It follows that JE = EJ. The first statement of the lemma now follows by approxi-
mating A with linear combinations of projections.
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The set % = ME + M(1 - E) is clearly a von Neumann algebra with 91'

9X'E + 9JI(I - E), and an easy argument establishes that.Q is separating and cyclic
for %. Now note that EQ is cyclic and separating for ME on ES5. It follows readily
from Propositions 2.5.11 and 2.5.26 that

JO = JOE + JO(I - E) = JE + J( - E) = J,

AO = AE + A-'(1 - E),
90 = E-90 + (I - E)90 = E-01 + (I - E)-01 = -91.

PROOF OF THEOREm 3.2.15. Let us now return to the proof of Theorem 3.2.15.
We begin with the second statement of the theorem. Remark that Proposition 3.2.2

guarantees the existence ofa projector E c- 9N r) M'such that A  -4 cx(A)E is a morphism
and A  -* a(A) (I - E) is an antimorphism. Now define a map P; M F-+ 91 =- ME +

M'(1 - E) by

#(A) = a(A)E + Jcx(A*)J(T - E).

If F c- M r) M' is another projector with the same properties as E it follows readily
that P = E + F - EF has the property that PM = PM' is abelian; thus 91 is

uniquely determined by a and so, by Lemma 3.2.16, is uniquely determined. # is a

morphism, e.g.,

fl(AB) = ((x(A)E)(oc(B)E)
+ Ja(A*)oc(B*)(T E)J

= fl(A)P(B),

where we used JE = EJ. Since P maps Mot - '(E) (resp. Ma - '(1 - E)) isomorphically
into ME (resp. 9X'E) # is an isomorphism. The natural cones associated with the

pairs 1931, QJ and 1%, QJ are identical by Lemma 3.2.16. Thus by Corollary 2.5.32

there exists a unique unitary U =- U(a) such that U-,"P = 9 and #(A) = UA U*.

Finally, the connection between U = U(x) and a is established by remarking that

for  c- 9 one has J =  (Proposition 2.5.26(4)), and

UAU* ) fl(A) )
a(A)E ) + (oc(A*)(T - E) ,

ot(A)E ) + ( ,,Y(A)(T - E) )

This simultaneously establishes the last statement of the theorem. To prove the first

statement, we need the following characterization of the faces of 9.

Lemma 3.2.17. Let 9Y be in standard form and take  Ei-9. The following
conditions are equivalent:

(1)  is cyclic and separating;
(2) the set Q4 = fil c- -9; Aq :!!  Jbr some A > 01 is dense in -OP.

If these conditions are satisfied then q  f, and only if q = AV'A Jbr
someA c-M, with 11A11 < 1.
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PROOF. (1) => (2) If  is separating the final statement of the lemma has been

established in Lemma 2.5.40. Moreover, this lemma yields Q,- = A!"9JI,  , which
1:

is dense in .01, = J1, by Propositions 2.5.26(l) and 2.5.30(2).
(2) => (1) Assume Q is dense but  is not separating. Thus there must exist a

nonzero projector E c 9)1 such that E = 0. But then Ej(fl = 0, and because

E j(E)  P 9 -91 (Proposition 2.5.26(5)) One also concludes that Ei(E)q = 0 for all

q <  . It follows from the density of Q in .9 and Proposition 2.5.28(4) that Ej(E)
0 = j(E)E. Next let F denote the projector with range [9J19J1'E.5] or, equivalently,

,D]. One has F c 9JI r-) 9R' and F > E. But 0 = 9JI'Ej(E)TIwith range [WIV?j(E)S 
E9W'9J?j(E) and hence EF = 0. Thus E = EF = 0 which is a contradiction. Therefore

 must be separating and then it is cyclic by Proposition 2.5.30.

PROOF OF THEOREm 3.2.15. Let us now return to the proof of the first statement
of Theorem 3.2.15. Let  c -,J'P be any separating and cyclic vector and set q = U * .

By Lemma 3.2.17 one has  >A,"'A /JlAll for all AcDl, Therefore

q   U*A' /4A 111All for all Ac-937, and q is cyclic and separating by another

application of the lemma. Moreover, for all A c 9W, there must exist an a,(A)
a(A) c- 9JI, with 11 oc(A) 11 < 11 All such that

UA14A = A1/4a(A) .

The map a can now be extended by linearity to the whole of TI, and the uniqueness
of the hermitian and orthogonal decompositions ensures that this extension is well

defined. Thus one arrives at a positive map ot of 9Y such that oc(l) = T. Repeating this
construction with U replaced by U*, one establishes that g

- ' exists and is a positive
map. Thus ot is an order isomorphism of 931, and since (5) => (1) in Theorem 3.2.3,
cx is a Jordan automorphism. Let U(oc) be the unitary element associated to a by the

second part of Theorem 3.2.15. We have

A 1 /4a(A) )
UA 11/4Aq)

(q, Aq).

It follows that U(a)* = q = U* . Hence, by Theorem 2.5.31 and Proposition 2.5.30,

U(cx)A 1/4Aq = A ' !4a(A) = UA,/4Aq

and so, finally, U((x) = U. This shows that a is independent of  , and the relation
between U and a follows from the second statement of the theorem, which was

established above.

The characterization of Jordan automorphisms provided by Theorem
3.2.15 has certain drawbacks insofar as it involves the natural cone 8P.
This cone consists of the closure of the set A' /49jl+ Q and although 9N and Q

are primary objects in the theory the modular operator A is a derived object
which is not always easy to construct. Thus the utility of the criterion
U-O? = 3? for Jordan automorphisms is limited by the lack of access to the
modular operator A, and hence to the cone -9. It is natural to ask whether
the cone 9A , Q, or its closure, could be substituted in the foregoing criterion,
and this is the next object of our investigation. The next theorem establishes
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that the primary cone TI, 0 can indeed be used to distinguish Jordan

automorphisms if these automorphisms satisfy subsidiary invariance
conditions.

Theorem 3.2.18. Let 931 be a von Neumann algebra with a cyclic and

separating vector 92 and let a, denote the associated modular automorphism
group. If U is a unitary operator such that UQ = Q and

UTZ, 0 - 9A, -Q, U*9X' Q - TI, Q

then there exists a unique Jordan automorphism a of9N such that

UAQ = a(A)Q

for all A c- 9N, and a has the invariance properties

(fl, AQ) = (K2, cx(A)n), u,(oc(A)) = oe(a,(A))

for all A c- 9A and t c- R.

Conversely, if a is a Jordan automorphism satisfying the conditions
then there exists a unique unitary U such that UQ = R

UTZ, f2 g; M, K2, U*9X' K2 g; 9N, f),
and

UAf2 = a(A)K2

jbr all A c- 9JI. Furthermore, the U obtained in this manner is identical with
the U of Theorem 3.2.15.

The first essential ingredient in the proof is the relationship between U
and a and for this it is necessary to prove that U maps the cone M, 92 into
itself This is established by the following lemma.

Lemma 3.2.19. Let 931 be a von Neumann algebra with cyclic and separating
vector Q and T a bounded operator such that TO = f2 = T*f2 and

T9M fl 9 M f2.

Itfollows that

T9X Q S:- 9Y 0.

PROOF. We first establish that

T*9N', Q  =-

Assume A'c- 9JI'+ and A c- 91, One then has

(T*A'Q, AQ) = (A'92, TA92) > 0

because TA92 e 9W + Q. Choose An C- 9X +such that

AnQ --+ TAQ
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and then one finds

(T*A'n, A)) lim(A 1/2n, A'A 1/2f2)n n

IIA'11 lim(K2, AJ2)

IIA'11(92, TAQ)

IIA'11(Q, AD).

Hence by Theorem 2.3-19 there exists a B'c- 9JI', such that JIB'11 :!! IIA'11 and

(T*A'Q, A92) = (B12, AK2)

for all A c- TZ, Therefore T*A'fl = B'D and T*9JI', Q 9 9V, Q. Applying the same
argument but with 9W and T?' interchanged one concludes that TT?, Q g; 9y, 92.

PROOF OF THEOREm 3.2.18. Now let us return to the proof of the theorem.
If A c- M,

then Lemma 3.2.19 establishes the existence of a unique a(A) c- T? , such
that

UA92 = a(A)CI

and a(l) = 1. Since U* also maps 9W, K2 into TI, Q the linear extension of a to M is
an order automorphism and hence a Jordan automorphism by Theorem 3.2.3.
Now clearly

(0, A92) = (0, UAK2) (K2, a(A)92).

Next, if S = JA1/2 then

USA92 = UA*92

= oc(A)*K2 SUAK2.

It follows by closure that

UJA 1/2
= JA' /2U

and by the uniqueness of the polar decomposition

Uj = JU, UA 1/2
= A' /2 U.

Since U is bounded, it follows that U commutes with all bounded functions of A 1/2

and hence

a(a,(A))f2 = UA"AQ

= A"UAK2 = u,(ot(A))Q.

As 92 is separating, a and a, must commute.

To prove the second statement we first invoke Theorem 3.2.15 to establish the
existence of a unitary U such that U-9 = -9, etc. But the invariance condition

(K2, AQ) = (Q, cx(A)92) = (U*Q, A U*Q)

and Theorem 2.5.31 imply that UK2 = Q. Finally, the action of U derived in Theorem

3.2.15, UA'/'AK2 = A'/'cx(A)Q, and the commutation of a and u, give

UA"A' /4AK2 = A' 140C(u,(A))K2 = A' /4u,(a(A))Q = A'WA1 /4AQ.

1/49nflBut A
.

is dense by Propositions 2.5.26 and 2.5.28. Therefore U commutes

with A". Finally, choosing A to be an entire analytic element with respect to the
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modular group a, one easily deduces that UA1 /4AQ = A','4UAQ. Therefore
A1/4UAQ = A1140C(A)Q and hence

UAf2 = a(A)Q.

By density of the entire elements and Kaplansky's density theorem (Theorem 2.4.16)
one finally concludes that

U", f2 -_ gy, Q

and similarly for U*.

The criterion provided by Theorem 3.2.t8 will be useful in Section 3.2.5
for the description of automorphism groups in the presence of invariant
states.

Note that the second invariance condition in (*), a, , a = a - at, is necessary
for the theorem to be true because there exist unitary elements U such that
U92 = Q, U-60 = _0'A, but U9JI

,
Q 9 9JI

, Q. A simple example is given by
defining 9JI  9JI', Q, = Q  Q, and

0 t
U

t 0

One then has U91U* = R, UQ% Q91 and hence U_, 'P = 80 for the natural
cone corresponding to 191, 0911. But U91 +

0 = 9Z'+ Q = A' /291+ Q and this
latter cone is usually distinct from 91

+
Q.

To conclude this subsection we remark that there are other interesting
positive maps which we have not examined. Corollary 3.2.12 established
that each strongly continuous one-parameter group of positive, identity-
preserving maps ofa C*-algebra is automatically a group of*-automorphisms.
This is not necessarily the case if one considers semigroups instead of groups.
There exist strongly continuous semigroups {(Xt}tc-R., of the above type,
which satisfy the generalized Schwarz inequality

a,(A*A) > a,(A)*at(A)

and which do not extend to groups of *-automorphisms. The following
example, which occurs in the theory of diffusion, illustrates this structure.

EXAMPLE 3.2.20. Let % be the C*-algebra QR) + CI of bounded, continuous,
complex-valued, functions over the real line, equipped with the supremum norm.

Define t c- R i--+ at by

(at f ) (x) = (27rt) -1/2 fdy e- (-y)212If(y)' t > 0,
= f(A t = 0.

By standard reasoning this is a Co-semigroup with infinitesimal generator -d2ldt2.
Because the kernel of ot is positive the semigroup is positivity preserving and because %
is abelian the generalized Schwarz inequality is valid by Proposition 3.2.4.
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3.2.2. General Properties of Derivations

In the previous subsection we characterized one-Parameter groups of
*-automorphisms of C*- and von Neumann algebras by various properties of
positivity preservation. We next discuss the characterization of these groups
in terms of their infinitesimal generators. In the Banach space discussion of
Section 3.1 we saw that there are several types of groups which naturally
occur. The various groups differ in their continuity properties. Now, however,
there is also a possible variation of algebraic structure. Our discussion is
aimed to cover uniformly, strongly, and weakly* continuous groups of both
C*- and von Neumann algebras W. Note, however, that the concept of a

Co*-group, i.e., a weakly* continuous group, of an algebra 91 is only defined
when 91 has a predual. But in this case W is automatically a von Neumann
algebra by Sakai's theorem (Section 2.4.3). Moreover, one may demonstrate
(see Example 3.2.36 for the Y(.5) case) that a Co-group, i.e., a strongly
continuous group, of *-automorphisms of a von Neumann algebra 9A is
automatically uniformly continuous. Thus Co-groups are appropriate to

C*-algebras, Co*-groups to von Neumann algebras, and uniformly con-

tinuous groups to both structures.

In this subsection we principally derive algebraic properties of the in-
finitesimal generators of automorphism groups. These properties are of two
types. One may derive conditions for closability, etc., and one may also
develop a functional analysis of the domains of generators. Both these
facets are ofinterest and use in the subsequent characterizations ofgroups and
the analysis of their stability. The main tool in this investigation is the
derivation property of the generators which reflects, infinitesimally, the
property

cx,(AB) = oc,(A)a,(B)

of the automorphism group t c- R i--* a, The continuity of the group affects
the topological properties of the generator but most of the results of this
subsection are based on the analysis of generators of Co-groups, i.e., norm-
closed, norm-densely defined operators.
The definition which is basic to the analysis of generators is the following:

Definition 3.2.21. A (symmetric) derivation 6 of a C*-algebra W is a linear
operator from a *-subalgebra D(b), the domain of 6, into W with the properties
that

(1) b(A)* b(A*), A c- D(b),
(2) b(AB) b(A)B + Ab(B), A, B c- D(b).

Often the term derivation is used for operators with property (2) but
without the symmetry property, b(A)* = b(A*). We will only be interested
in symmetric derivations and we sometimes drop the qualification symmetric.
Obviously a nonsymmetric derivation with a selfadjoint domain can always
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be decomposed as a sum 6 6 1 + ib 2 of symmetric derivations, e.g., 6 (A)
(6(A) + 6(A*)*)12, 62(A) (6(A) - b(A*)*)12i. Hence from the structural

point of view it suffices to a certain extent to examine the symmetric deriva-
tions. Note that if the identity I c- D(b) then 6(11) = 0 because of the relation

6(j) = 6(j 2) = 26(1).
Derivations arise as infinitesimal generators of continuous groups of

*-automorphisms, t c- R, A c- W  -4,r,(A) c- %. The two defining properties
originate by differentiation, in the topology dictated by the continuity of -r,
of the relations

,r,(A)* = T,(A*), r,(AB) = T,(A)T,(B).

Of course, generators have many auxiliary properties which stem from the
Banach space structure of W. These properties, closedness, dissipativeness,
etc., have already been extensively discussed in Section 3. 1. Our first aim is to
establish a property which ensures the dissipativeness of a derivation. In

fact, we will discuss a wider class of operators which can be regarded as

prototypes of generators of positivity preserving semigroups (see Example
3.2.20 and the remarks preceding this example).

Proposition 3.2.22. Let W be a C*-algebra with identity I and 6 an oPerator
ftom a *-subalgebra D(b), of %, into % such that

(1) 1 c- D(b),
(2) ifA c- D(6) and A >- 0 then A 1/2 c- D(b),
(3) ifA c- D(b) then b(A)* = b(A*) and 6(A*A) > b(A*)A + A*6(A).

Itfollows that 6 is dissipative.

PROOF. If A c- D(b) then A*A c- D(6). Let q be a tangent functional at A*A and for
convenience normalize q so that IIqII = 1. We first claim that q is positive and, by
Proposition 2.3.11, it suffices to show that q( ) = 1. But if q(T) = ot + ifl we use the
fact that III - 2A*AIIIA 11211 :!! I to deduce that

062+ #2
= I q(T ) 12 < 1,

(oc 2)2 + fl2 = I q(T - 2A*AIIIA 112)12 <

Therefore a = I and fl 0.

Next define q, c %* by qA(B) = q(A*B), for B c W, and note that IIqAII < IIA 11 by
the Cauchy-Schwarz inequality. But one also has

IIAI12 = q(A*A) = qA(A) < MAII IIAII

and hence qA is a tangent functional at A. Now as q is positive one has

qA(B) q(A*B) = tj(B*A).
Therefore

2 Re qA(b(A)) q(A*6(A)) + q(b(A*)A)
< q(b(A*A))
= - q(b(B2)) + IIA 112 q(b(l
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where B = (11A 1121 _ A*A)112 .
But

6(j) = b(T2)   6(j)j + I b(T) = 26(T)

and hence b(T) < 0. Moreover,

- q(b(B2)) - q(b(B)B) - q(Bb(B)) = 0,

where the last equality follows from another application of the Cauchy-Schwarz
inequality, e.g.,

I q(b(B)B) 12 q(b(B)2)q(B2)
q(6(B)2)(jjAjj2q( ) _ q(A*A))

= 0.

Combining these estimates gives Re q,(b(A)) < 0 and 6 is dissipative.

The property ofdissipativeness was discussed in Section 3.1.2 in connection
with Co-semigroups. It is of interest because it has several immediate

implications. For example, a norm-densely defined dissipative operator 6 is

norm closable and satisfies

JI(I - oeb)(A)II > JJAJJ

for all A c- D(b) and a > 0, by Propositions 3.1.14 and 3.1.15. The only
problem with Proposition 3.2.22 is that the domain of a derivation is not

generally invariant under the square root operation. If 6 is norm closed then

the functional analysis that we derive later in this subsection can be used to

establish that D(6) is invariant under the formation of square roots of positive
invertible elements. Nevertheless, one can show that if 6 is norm closed and

D(b) is invariant under the square root operation of positive elements then 6

is automatically bounded. We will not prove this last statement but instead

consider the related case that D(b) = %. In this situation the domain does

have the required invariance and one immediately has the following:

Corollary 3.2.23. Let 6 be an everywhere defined derivation from a C*-

algebra % into a larger C*-algebra 0. Itfollows that 6 is bounded.

PROOF. If W does not have an identity then extend 6 to q1 = C1 + W by setting
6(ocl + A) = b(A). In both cases 6 satisfies the conditions of the Proposition 3.2.22

and Proposition 3.1.14 implies that 6 is norm closable, hence norm closed. But an

everywhere defined norm-closed operator is automatically bounded by the closed

graph theorem.

This last conclusion can be strengthened in the case of a von Neumann

algebra. If 6 is a derivation of a von Neumann algebra and there exists a

C*-subalgebra W of 91 such that 91 = D(b), and 91 is weakly dense in 9JI,
then 6 has a bounded extension to 9W. This follows directly from Corollary
3.2.23 and the following extension results.
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Proposition 3.2.24. Let W be a C*-algebra of bounded operators on the
Hilbert space Further, let 6 be a derivationfrom W into the weak closure
9N of W, i.e., = D(6) and 6(%) - 931. It follows that 6 has a unique a-

weakly closed bounded extension 5 to U and 3 is a derivation of T1 with
11311 = 11611.

PROOF. Firstly, note that 6 is bounded by Corollary 3.2.23. Secondly, remark that
if A is a positive element of % then

I (t)(6(A 1/2 )A 1/2 + A1/26(A 1/2))l
2116 11 (11 A I I w(A)) 1/2

for each normal state over 9JI. Moreover, if A is a positive element of " then the

Kaplansky density theorem implies the existence of A,, c- W such that A,,  ! 0,
11 A, 11 < 11 A 11, and A

_,
--+ A a-weakly, i.e., 'in the a(9Y, 9jl,)-topology. Therefore the

above inequality and the Jordan decomposition (Proposition 3.2.7) establish that

b(A,,) converges a-weakly. We define b(A) by b(A) lim 6(Aj. Next note that each

A c- IYA has a decomposition A = A, - A, + i(A 3 A,) in terms of four positive
elements Ai with IlAill :f _ 11AII and hence 6 extends by linearity to an operator 3 on

9R. It follows immediately that 5 is a derivation of 9N but 11611 by another

application of the Kaplansky density theorem.

There are other applications of Proposition 3.2.22 which go beyond the
realm of bounded derivations. Many derivations of UHF algebras also have
domains which are invariant under the square root operation. We illustrate
this by the following example.

EXAMPLE 3.2.25. Let 91 denote a UHF algebra as introduced in Example 2.6.12.
Thus W is the norm closure of a family MAIAIp of full-matrix subalgebraS %A,
where If denotes the finite subsets of an index set I. If A, r-) A2 0 then k,
and %A2 commute. Now let be any increasing family of subsets of If such
that U,, A,, = I and choose elements H,, = H,,* C_ %A, such that H,, - H,, -, com-

mutes with SAA_ ,
One can define a symmetric derivation 6 of IR by

D(5) = U  )AA
A If

and

b(A) = i lim [H_ A], A c- D(6),

because the comi-nutativity condition for H,, - H,, ensures that the limit exists.

But D(6) is invariant under the square root operation because each NA has this

invariance.

It is interesting to note that this construction has a converse. If 5 is a derivation with

D(5) U S21A
A E If

and eij is a set of matrix units for SAA then

b(A) = i[H,, A]
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for all A C_ 21A, where

HA Y 6(ej,)e,j.

Next we consider other criteria for closability of derivations which have
wider applicability than Proposition 3.2.22 or Lemma 3.1.27.

Proposition 3.2.26. Let 6 be a norm-densely defined derivation Qf a C*-

algebra W. For 6 to be norm closable it sqffices that there exists a state (o,

over W, such that

(1) 1 o_)(6(A)) I :!! L 11 A 11 for all A c- D(b) and some L > 0,
(2) the representation 05, of W, associated with (o isfaithful.

PROOF. Lemma 3.1.9 establishes that the norm-densely defined operator b, on

W, is norm closable (i.e., a(T, 121*)-closable) if, and only if, the dual 6*

on 91* is weak*-densely defined. Thus we concentrate on proving this latter property
of P.

First note that by definition co e D(P) and

(Pw)(A) = (o(6(A)).

Moreover, the derivation property gives the identity

w(Ab(B)C) = w(6(ABC)) - (,,)(6(A)BC) - w(AB6(C))

for all A, B, C c- D(6), and hence

I (o(Ab(B)C) I :!! 11 B 11 (L 11AC 11 + 11 co b(A) C 11 + 11 Ab(C)

Therefore the functional co,., defined by

Bi--* COA.c(B) = co(ABC)

is also in the domain of P. Thus D(6*) contains the subspace of 121* spanned by the set

f
 (OA. c; A, C c D(6)1.

But this set is u(91*, W)-dense because if this were not the case the Hahn-Banach

theorem would imply the existence of a nonzero B c- W such that

WA. c(B) = 0

for all A, C c D(b). The density of D(b) and representation theory would then imply
that 7r.(B) = 0, which contradicts the faithfulness of (S-),,,, 7r,,,). Thus D(b*) is u(91*,
dense and 6 is norm closable.

Note that the proof of Proposition 3.2.26 depends upon a duality argument
which is not restricted to the norm topology. If W is a von Neumann algebra
one can apply exactly the same argument to the weak* topology to obtain the

following result.
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Corollary 3.2-27. Let 6 be a aMl, 9N.)-densely defined derivation of the
von Neumann algebra T1. For 6 to be a(M, 9JI,)-a(9Y, T1,)-closable, it

suffices that there exists a normal state co over T1 such that

(1) co - 6 extends to a bounded a-weakly continuous functional on 9JI;
(2) the representation 7r,,,), of 9Y, associated with (o isfaithful.

If one replaces the norm continuity property

Jco(6(A))J :!E LIJAII,

which ensures closability of a derivation, by a stronger form of continuity
then one can deduce a more detailed description of the action of 6 on the
representation (.5,, nj.

Proposition 3.2.28. Let 6 be a symmetric derivation defined on a *-sub-

algebra Z of the bounded operators on a Hilbert space 5. Let 0 c- .5 be a

unit vector cyclicfor Z in S_,- ) and denote the corresponding state by o), i.e.,

(o(A) = (0, AQ), A c- Z.

Consider the.following conditions:

(1) J(o(5(A))J < L(o-)(A*A) + (o(AA*))'I'

fior all A c- Z and some L > 0;
(2) there exists a symmetric operator H, on 5, with the properties

D(H) = ZQ,
6(A)o = i[H, A]o

for all A c- Z and 0 c- D(H).
Itfollows that (1) =:> (2) and if Z contains the identity 1, then (2) => (1) and

H may be chosen such that

11 HQ 112 <
L

- 2

PROOF. (2) => (1) Assume that I c Z and thus Q c D(H). For A c- Z one has

I o)(6(A)) II (M2, AQ) - (A *92, HQ)

JJHQJJ(JJAQJJ + IIA*011)

by the Cauchy-Schwarz inequality. But then

12 < I I Hf211 2 (
" ------0-w(b(A))

- / co(A *A) + \/ _)(A A*))2

< 211HQ 112(co(A*A) + o_)(AA*)).

(1) => (2) Consider the Hilbert space

-5 (D

where 3; is the conjugate space of .5 (see footnote on page 70). Let S, denote the

subspace of 5+ spanned by vectors of the form JAQ, A*01, with A c Z. Define a

linear functional q on  , by

qQAQ, A*K2J) = io-)(b(A)).
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One has

I qQAQ, A*01) 1 < L 11 {AQ, A *92111

by assumption. Hence q is well defined and jjqjj L. The Riesz representation
theorem then implies the existence of a vector in the closure of such that

ia)(b(A)) qQAQ, A*Qj)

(fq, 01, fAQ, A*Qj)

(9, AQ) + (A*Q,

Next, using the symmetry of 6 one finds

iw(b(A)) ko(b(A*))
A*Q) + (AQ,
AQ) + (A*Q,

Taking the average of these two expressions one finds

F'w(b(A)) (Q,5, AQ) - (A*Q, Db),

where

(P

2

Next define the operator H by D(H) = Zn and

HAQ = i b(A)K2 + AQ6, A c- W.

One calculates that

(HAQ, BQ) - (AQ, HBO)
i -(o(b(A *)B) - i -w(A*6(B)) + (Q6, A*BQ) - (Q, A*BQ

i -(o(b(A *B)) + i -(o(b(A *B)) = 0.

Because ZQ is dense in b this shows that H is well defined, i.e., AQ 0 implies
HAQ = 0, and that H is symmetric. But for A, B c- Z one has

6(A)BQ = b(AB)Q - Ab(B)Q
= iHABQ - ABK26 - AiHM + ABQ6
= i[H, A]BQ.

Finally, the bound on 11HQ11 follows from 6(1) = 0 and the calculation

JJHQ 112 = IIQ '5 112

<

2
+ 119 + 0112
4

11 0112 + 110112
2

11 112 L2

2 2
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Proposition 3.2.28 is particularly useful for the discussion of invariant
states. If t c- R  -+ a, is a one-parameter group of *-automorphisms of the

C*-algebra 91 and (o is a state then (o is invariant under ot whenever

(o((x,(A)) = a)(A)

for all t c- R and A c- W. If the group a is strongly continuous with generator 6
then this invariance condition is equivalent to the infinitesimal condition

o)(b(A)) = 0

for all A c- D(b). Thus the proposition applies to 6 acting on the representation
(.5., 7r, ,, Q.) associated with (o. Note that in this case the automorphism
group a is implemented by a one-parameter group of unitary operators
U, on .5,,, in the form

7r.(x,(A)) = U,n,,(A)U,*.

This follows from Corollary 2.3.17. The same corollary establishes that the U

may be chosen such that U, Q. = Q. for all t c- R, and then the simple
estimate

U, 7r.(A)f2. - 7r.(A)f2. 11 < oc,(A) - A

shows that JUj,R is in fact strongly continuous. If H is the selfadjoint
generator of U one then has 9; D(H) and

njb(A)) = i[H, 7r,,,,(A)] 

for all 0 c- Thus the symmetric operator H occurring in condition

(2) of Proposition 3.2.28 can be chosen selfadjoint. This is not the case,

however, for a general 6.
In analogy with the foregoing example of a generator 6 we will say that a

state w, over a C*-algebra W, is invariant under a derivation 6, of W, whenever
the infinitesimal condition (o(b(A)) = 0, for A c- D(b), is satisfied.

After this discussion of closability criteria we now examine various domain

prop .rties of closed derivations which are of a purely algebraic nature.

These properties have many subsequent applications in the general analysis
of derivations. For orientation let us begin by examining the case, of an

abelian algebra.
If 6 is a norm-closed derivation of the abelian C*-algebra 91 and A

A* c- D(b), the domain of 6, then for any polynomial P one has by simple
computation P(A) c- D(b) and

b(P(A)) = 6(A)Y(A).

The prime denotes a derivative. Now letfbe a once continuously differentiable
function. One may choose polynomials P,, such that P,, --), f and P,,'  f
uniformly on the spectrum of A. Thus by the foregoing b(P,,(A)) = 6(A)P,,'(A)
converges to b(A)f'(A). Hence, because 6 is closed,f(A) c- D(6), and

b(f(A)) = b(A)f'(A).



Algebraic Theory 241

Now we wish to examine domain properties of this type for a general C*-

algebra and establish sufficient conditions on functionsfsuch thatf(A) C- DO)
whenever A = A* c- D(b). There are two approaches to this type of functional

analysis, Fourier analysis, or complex analysis, but the following result is
useful in both cases.

Proposition 3.2.29. Let 6 be a norm-closed derivation of a C*-algebra %
with identity I

- If A = A* c- D(b) and A 0 a(A), the spectrum of A, then

A(Al - A) 1
c- D(b) and

b(A(Al - A)-') = A(A - A)-lb(A)(Al - A)-'.

If, moreover, I c- D(b) then (Al - A)-' c- D(b) and

6((Al - A) (Al - A) - '6(A) (Al - A)

PROOF. Set A, = A(AT - A) If A I is larger than the spectral radius of A then
the Neumann series

A,z (AIA)"+
n 0

converges in norm and A,, A A - 11 A But A" +
C- D(b),

n

b(An+1 AP6(A)An-P
P=O

and the double series

A-1 A)P6(A) P

Y_ Y_
n2:0 p=O

also converges in norm. Thus A,, c- D(6) because 6 is norm closed. Moreover, one has

A-1 Y ( )P6(A) Y_ )n
P !o

A
n  O ,

A(AT - A) - 16(A) (Al - A) - 1.

Next assume A0 > 11 A 11, A),. c- D(6), and

A - A0
< inf I y(A, - y)

A
Y.,(A)

One then has

0A
A O)n +A,k Y_ ((L--)A

n:?: 0

By the same argument Ak c- D(6) and the action of6 is calculated in an identical manner:

0 'I)A ,O)n)AA0)Pb(Ak,) Y ((A0 A
P 0 n  !O

- A) (Al - A) b(AA) (A01 - A)(A - A)-'0) (10-) ('10 1
A (io-)

A(A - A) - 1 b(A) (AT - A)
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An analytic continuation argument then allows one to conclude that A(Al - A)-' G

D(b) for all A  a(A).
The second statement of the proposition follows by a similar but simpler argument.

This proposition has an immediate corollary which concerns the identity
element.

Corollary 3.2.30. Let 6 be a norm-closed derivation ofa C*-algebra % with

identity 1. Thefollowing conditions are equivalent:

(1) there is a positive invertible A c- D(b);
(2) 1 c- D(6).

In particular, if 6 is norm-densely defined then 11 e D(b)

PROOF. (2) => (1) This follows by taking A = 1.

(1) => (2) It follows from Proposition 3.2.29 that A(el + A) c- D(b) for all
E > 0 and

b(A(EI + A)-') -E(eI + A)-'6(A)(EI + A)-'.

Now A(EI + A)-' converges in norm to I but

limII6(A(eT + A)-')Il < lim eIIA- 1112 116(A)II = 0.
 -o -0

Thus I c- D(6), because J is norm closed, and 6(T) = 0. If J is norm-densely defined,
choose B c- D(J) such that B = B* and III - B 11 < 1. This is possible because D(6)
is norm dense. But it follows easily that B is positive and invertible.

Corollary 3.2.30 simplifies the analysis of norm-closed, norm-densely
defined derivations 6 because it implies that one may always assume the
existence of an identity I such that  e D(6). If the C*-algebra W does not

contain an identity then the derivation 6 may be extended to a norm-

closed derivation 3 of the algebra  ft = C1 + 91 by setting D(S) = C1 + D(b)
and

6(Al + A) 6(A), A c- D(6), A c- C.

Thus in both cases, I c- % or W, one can reduce the situation to that of
T e D(6) - W.
Now we examine more detailed domain properties. We always examine

norm-closed derivations 6 of a C*-algebra but of course this automatically
includes weakly *closed derivations of von Neumann algebras. There are two

different approaches. If A = A* c D(6) and z c- C   f(z) c- C is a function
analytic in an open simply connected set If containing a(A) then one may
formf(A) by use of the Cauchy representation

f(A) = (27ri) -' fcdA f(A) (Al - A)
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where C is a simple rectifiable curve contained in If with a(A) contained in

its interior. The integral is defined as a norm limit of Riemann sums

N

Y-N W = (27ri) (Ai - Aj - 1)f(A) (Ai I - A)

Now by Proposition 3.2.29 one has AY-N(f) c- D(6) and

N

b(AY'N(f)) = (276) - 1 (Ai - Aj - 1)f(Aj)Aj(Aj I - A) b(A) (Ai I A)

But this latter sum converges in norm. Hence Af(A) c- D(b) and

b(Af(A)) = (27ri) dA f(A)A(AT - A) b(A) (AT - A)
C

Similarly, if I c- D(6) one concludes thatf(A) c- D(b) and

6(f(A)) = (27ri) f dA f(A) (AT - A) - '6(A) (AT - A)
c

In particular, this type of argument shows that if A c- D(b) is positive and

invertible then A' /2 c- D(b).
The second approach, which is more efficient, proceeds by Fourier analysis

and the following lemma is basic.

Lemma 3.2.31. Let 6 be a norm-closed derivation of C*-algebra 91 with

identity I and assume I c- D(b). If A = A* c- D(b) and U, = expjzAj for
z c- C then U, c- D(b) and

6(u.') = z dt U, b(A) U(j - t)zf
0

PROOF. First remark that the exponential function may be defined by power

series expansion and thus the integrand U,z6(A)U(,_,)z of the above integral is

norm continuous. Thus the integral may be understood in the Riemann sense.

Next it is useful to define Uz by the alternative algorithm

lim Uz _ (I _ zA) 0,
n-.

ti

which may be established by manipulation with norm-convergent power series.

Next choose n > I z 111 All and note that (I - zAln) c- D(b) by Proposition
3.2.29; further,

nzA - zAzA -n+.+lzA6( T _ ) 6 )) )11 -0 17 11 17

Z
n- I - 'zA zA -n+,

-= ( ) E  - b(A) (I)(n -0
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The second equality follows from a second application of Proposition 3.2.29. Now
the usual estimates associated with the Riemann integral show that the right-hand
side of this last equation converges in norm to the integral

z dt U,.,6(A) U(j - t)z

and the statement of the lemma follows because 6 is norm closed.

Note that we could have dropped the assumption I c- D(6) in the lemma
and nevertheless arrived at the weaker conclusion A Uz C- D(b). This remark
is also valid for the following theorem which develops the Fourier analysis of

D(b).

Theorem 3.2.32. Let 6 be a norm-closed derivation ofa C*-algebra W with

identity I and assume I c- D(6). Further, letfbe ajunction ofone real variable

satisfying

If I = (27r) - 1/2 fdp I j(p) I I p I < co,

where f is the Fourier transform off It follows that if A = A* C- D(b) then

f(A) c- D(b) and

1/2 ipAf(A) = (27r) - fdp j(p)e

/2 UpA - 1)pA6(f(A)) = i(27r) - fdp j(p)p dt e 6(A)e'('f
Hence

6(f(A)) 11 < I f 111 b(A) 11.

PROOF. First assurnef to be continuous. One may approximate f(A) by Riemann
sums

N

'N(f) = (27r) - 1/2 (pi - pi - j)j(pj)e'piA

and then 'N(f) c- D(6) and

N 1
- 1/2 (Pi _ Pi J)f(pi)lpi p A - t)piAJ(y dt e" 6(A)e('N (2 7r) fo

by Lemma 3.2.3 1. Both these sums converge in norm and as 6 is normclosed the
desired domain property, and action of 6, follow directly. The norm estimate

6(f(A)) 11 :!! I f 111 6(A) 11 is evident and the result for general f then follows by a

continuity argument using this estimate.

This result almost reproduces the result obtained for abelian C*-algebras
at the beginning of this subsection because the class of functions over the
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spectrum a(A), of A, which have extensions f to R with I f I < co is almost the
set ofonce-continuously differentiable functions. In fact this class contains the

twice-continuously differentiable functions.

Corollary 3.2.33. Let 6 be a norm-closed derivation of a C*-algebra 91
with identity I and assume I c- D(b). Take A = A* c- D(b) and let f be a

function of one real variable which is twice-continuously differentiable with

compact support. Itfollows thatf(A) c- D(b) and

2 1/2

116(f(A))Il < 116(A)II
7r

dx
d2f

(X) -
d
f(x)

2 f dX2 dx

PROOF. By Theorem 3.2.32, f(A) e D(b) and

116(f(A#1 116(A)11(27r)- 1/2 fdp Jpjjj(p)j

jjb(A)jj(27r)- 1/2 fdp lp + ij-1jp2 + iPjjj(P)j

1/2

< 116(A)II ( 2 fdp I (P2 + ip)I(P) 12) ,

where the last step uses the Cauchy-Schwarz inequality. Application of Parseval's

equality for square-integrable functions gives

9 d2f d 2 1/2

16(f(A))Il :! 116(A)II - dx y--xj (x) - - f(x)
2 dxf

Although the functions covered by Theorem 3.2.32 almost include the
functions which are once-continuously differentiable on c(A) this is not

quite the case. What is perhaps more surprising is that the result of the
theorem cannot be extended to all such functions. It is possible to construct

a norm-closed, norm-densely defined derivation 6 of a C*-algebra 91 for
which there exists an A = A* c- D(b) and a function f which is once-con-

tinuously differentiable on an interval containing the spectrum of A but for
which f(A) 0 D(b). The construction of this example is, however, quite
complicated. It illustrates that the properties of derivations of general
C*-algebras differ radically in structure from those of an abelian C*-algebra.
To conclude this subsection we will use the above techniques to discuss

derivations and automorphism groups of the algebra Y(.5) of bounded

operators on the Hilbert space .5. There are two perturbation techniques
which are useful in this respect and are of a general nature.

First let ot, be a Co-group, or Co*-group of *-automorphisms of the C*-

algebra % with generator 6. If 6, is a bounded derivation of % then 6 + 6, is
the generator of a C,- or Co*-group cx,' of *-mappings of the Banach space %
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by Theorem 3.1.33. But (x,' is actually a group of *-automorphisms because
for A, B c- D(6) one calculates, with the aid of the derivation property, that

d
0cP,((xP(A)Lx,P(B)) = 0.

dt
-

Hence a,P(AB) = ocP(A)cx,P(B).
Secondly, let 6 be a derivation of a C*-algebra and assume there is a

projector E c- D(b). One can then define a bounded derivation 6E by

6E(A) = i[HE, A], HE = ib(E)E - iEb(fl,

for all A c- %. Now consider the SUM 6E = 6 + 6E on D(b). One has

6E(E) = 6(E) + 2E6(E)E - 6(E)E - Eb(E)
= 6(E - E2) + 2E6(E)E
= 0,

where we have used E2
- E = 0 and hence E6(E2

- E)E = Eb(E)E = 0.
Thus if 6 is the generator of a group of *-automorphisms a, then 6E is the

CZ
Egenerator of a perturbed group ,
which satisfies CXtE(E) = E.

Now we turn to the examination of

EXAMPLE 3.2.34. Let 6 be a norm-closed symmetric derivation of the algebra
Y(b) of all bounded operators on the Hilbert space 5. Assume that D(6) is dense
in the weak (strong) operator topology on Y(.5) and D(b) r-) YW(.5) =A {01. We first
claim that D(6) contains a rank one projector. To establish this we choose a nonzero

B e D(6) r-) YW(.5) and form C = B*B. Now if C has an eigenvalue c and if Ec is
the associated finite-rank projector it follows that

Ec = (27rci) - ' fdA C(Al - C)

where the integral is around a closed curve which contains the isolated point c of
the spectrum of C. Now by Proposition 3.2.29 and the subsequent discussion

Ec c- D(b). Next let P be a rank one projector such that Ec PEc = P and choose A,, C- D(b)
such that A,, = A,,* and A,, --+ P strongly. It follows that IlEcA,,Ec - EcPEJ1 --* 0
and hence 11 Ec A,, Ec - P 11 --+ 0. Thus for n sufficiently large Ec A,. Ec C- D(b) has a

simple eigenvalue in the neighborhood of one. If E is the associated spectral projector,
then E c- D(b) by a second contour integral argument. Let Q be a unit vector in the

range of E and consider the vector state w = wn. One has

I w(b(A)) I I (o(Eb(A)E) I
I w(b(EAE)) - w(b(E)AE) - co(EA6(fl) I
I o_)(6((o(A)E)) I + I w(b(E)A) I + I w(A6(E))
3JJ6(E)JJ{w(A*A) + (o(AA*)J 1/2.

Therefore Proposition 3.2.28 establishes the existence of a symmetric operator H
such that D(H) = D(6)Q and

b(A) = i[H, A]
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for all A c- D(b). In particular, every weakly* (norm-) closed, weakly* densely
(norm-densely) defined derivation of Y(S-')) with D(6) n YW(.5) =A 101 has this
form. In the next example we will see that this class contains all the generators of
weakly* continuous one-parameter automorphism groups.

A variation of the above argument shows that if 6 is a derivation of Y16(.5) such
that D(6) contains a finite-rank operator, then 6 is norm closable and extends to a

a-weakly closed derivation of Y(.5). To prove this, one first exploits that D(b) is a

dense *-algebra in YW(.5) to produce a one-dimensional projection E in D(b), and
then uses the estimate on o_)(b(A)) derived above together with Corollary 3.2.27.
The same type of argument shows that any derivation of Y(-5) with a finite-rank
operator in its domain is a-weakly closable.

This discussion of the derivations of Y(S) .) allows us to complete the
characterizations of one-parameter groups of *-automorphisms begun in

Example 3.2.14. In this example we showed that every group of this type is

represented by a family of unitary operators U, on .5 in the form

cx,(A) = U,A U,*

but it remains to show that continuity of at implies that the U, may be chosen
to be a continuous one-parameter group.

EXAMPLE 3.2.35. Let oc, be a weakly* continuous one-parameter group of
*-automorphisms of and let 6 denote the weak* generator of a, It follows that
6 is weakly* closed, hence norm-closed, and D(b) is dense in the weak operator
topology on Y(S5). Now = Y16(.5) for all t by Example 3.2.14, and the
restriction of t F--+ at to YW(.5) is weakly continuous by Proposition 2.6.13. Hence
D(b) r-) YW(.5) is norm dense in Thus by the arguments of Example 3.2.34
there is a rank one projector E c- D(b). Again form 6E = 6 + 6E in the manner

described prior to Example 3.2.34 and remark that 6E is the generator of a perturbed
Egroup, a,', of *-automorphisms by the same discussion. Moreover, a, (E) = E.

Let Q be a unit vector in the range of E and define operators UtE on .5 by

UtEAQ = ottE(A)Q.

One easily checks that this is a consistent definition of a unitary group, e.g

(UtEAQ, U EBQ) = C ),,((XtE(A *CXE (B)))S_

= (AK2, LXEt(B)Q) = (AK2, UE BQ),S_

where we have used the invariance of wn, under (X E' which follows from LX
tE(E) = E.

But UtE is strongly continuous because

11(U'E _ I)AQ 112 = 2o_)n(A*A) - (on(A *OC,E(A)) -Con((XtE(A*)A).
Let HEdenote the self adjoint generator of U'E and define H = HE

- HE, where HE
was given prior to Example 3.2.34. The operator H is selfadjoint and if U, = e"
one checks that a,(A) = U, A U, *, e.g., the generator of t i--+ Ut A U,* is 6E _ 6E = 6-

Thus we have established that each C,*-group of *-automorphisms a, of Y(.5),
has the form at(A) = U,AU,*, where U, is a strongly continuous group of unitary
operators on .5.
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Let us now return to the discussion of Wigner symmetries of the Hilbert

space S5. Let  denote a ray in .5 and   - 6,( ) a one-parameter group of

Wigner symmetries. It follows from Example 3.2.14 and the associated
discussion that i, induces a one-parameter group of *-automorphisms, or

antilinear *-automorphisms a, of Y(.5) and that these maps are implemented
as

cx,(A) = U, A U,

where the U, are unitary, or antiunitary, operators which are determined
uniquely up to a phase. Now if the symmetry group i, is continuous in the
sense that

p( -  - i,(O)) = Tr((Ep - L-t,(E0))2)t---)1 0,
=0

where EV, is the projector with  in its range, then it is easily checked that a,
is weakly* continuous. Thus each a, is a *-automorphism by Corollary
3.2.13, and Example 3.2.35 implies that the phases of U, may be chosen so

that the U, are strongly continuous and satisfy the group law

U.1u, = U.1+1.

Thus all continuous one-parameter groups of Wigner symmetries are imple-
mented by strongly continuous one-parameter groups of unitary operators.
We conclude with a discussion of Co-groups a, of *-automorphisms of

4-5).

EXAMPLE 3.2.36. Let a,(A) = UAU,* be a one-parameter group of *-auto-

morphisms of Y(.5) and assume that a, is strongly continuous, i.e.,

lim lla,(A) - All = 0, A c- Y(.5).
t-0

Next let H denote the infinitesimal generator of the group U,, and EH the spectral
family of H. Assume that the spectrum of H is unbounded. If e > 0, 6 > 0 it is easily
argued that one may choose JanIn > 0 and a such that the intervals I,, = [an, an + a]
are disjoint, E is nonempty, andHUn)5'

i(a,, -a,,+ I)t i1a
<suple 11 > 2 - J, I e 2

n

for all I t I < e. Now choose unit vectors On e EH(IJ5 and define V by

VO 1 0"(0111 11 0).
n  : 0

One has 11 V 11 = I and

(ei(a,, -a,,, I)t _')On = (10) V)On+1 - (U, - ei""Nln(On+l U-tOn+1)
- e

a,,tOn(On + 1, (U - t
- eia.+.tVn+ 1)

and hence

2 :!! llat(V) - V11 + I + 6
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for all It I < E, which is a contradiction. Hence H must have bounded spectrum and

a, must be uniformly continuous because 11 oc,(A) - A 11 < 2 11 A 11 (exp{ I t 111 H 11 1).

3.2.3. Spectral Theory and Bounded Derivations

In the next three subsections we study the characterization of those deriva-

tions which are generators of automorphism groups of C*-algebras and von

Neumann algebras. In the corresponding Banach space study of Section 3.1

we began with the simplest case of uniformly continuous groups and estab-
lished that this continuity property was equivalent to the boundedness of the

generator. Thus it is natural to begin with an examination of bounded
derivations. We have already seen in Corollary 3.2.23 that an everywhere
defined derivation of a C*-algebra W is bounded and one of the principal
results of this subsection is to establish that the most general bounded

derivation 6 of a von Neumann algebra T1 is of the form b(A) = i[H, A] for

someH c- 9Y. Our proofofthis fact will use the so-called spectral theory ofone-

parameter groups of automorphisms of 91, or 9R. This use of spectral theory
has the disadvantage that the proof of the derivation theorem is rather

protracted but it has the great advantage that it allows the deduction of more

general results for groups whose generators are semibounded in a suitable

sense.

An automorphism a of W, or 9M, is called inner if there exists a unitary
element U c- iff, or U c- 9M, such that cx(A) = UA U*. If t  -+ a, is a one-param-
eter group ofautomorphisms then the set of t such that a, is inner clearly forms
a subgioup of R. Spectral theory is of importance for the analysis of this

subgroup and is generally of use for the analysis of inner automorphisms. The
derivation theorem mentioned in the previous paragraph illustrates one

aspect of this analysis and the examination of automorphism groups

cx,(A) = U,A U,*

for which the unitary group has a positive generator illustrates another aspect.
(For further results, see Notes and Remarks.) For later applications to

gauge groups we develop spectral theory for general locally compact abelian

groups.
Throughout the rest of this section we will use the following notation.

G is locally compact abelian group with Haar measure dt;
0 is the dual group of G, i.e., the character group of G with the topology
introduced in Section 2.7.1.

L'(G) is the group algebra of G, i.e., the set of L'-functions on G with

algebraic operations defined by

f * g(t) fds f(t - s)g(s),

f *(t) f(- 0.

f * g is called the convolution product offand g.
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It is well known that there is a one-to-one correspondence between the
characters of L'(G) and characters t t) of G given by the Fourier
transform

f c- L'(G) i--+ f(T) f dt f(t) (T, t).

Thus the Gelfand transformation coincides with the Fourier transformation
in this case, and realizes L'(G) as a dense *-subalgebra of the C*-algebra
C001).
There is a bijective correspondence between closed ideals 3 in CO(d) and

closed subsets K 0 given by

K = f7; f(y) = 0 for all f c- '31.
Thus there is a mapping from the closed *-ideals 3 c- L'(G) onto the closed

subsets K r-- 6 given by

K = 1y; f(y) = 0 for all f c- 31.
This correspondence is not one-to-one in general, but by the Tauberian

theorem there is only one ideal corresponding to K = 0 or to one-point
sets K (and for other special choices of K). A result we will often use is that
given a compact set K (-- 0 and an open set W2 K, there exists a function
f c- L'(G) such that j(y) = 1 for y c- K andf(7) = 0 for T c- G_ \ W.

It is known by the SNAG (Stone-Naimark-Ambrose-Godement)
theorem that there is a one-to-one correspondence between continuous
unitary representations {.5, U1 of G and projection-valued measures dP on

with values in .5, given by

U, = (y, t) O(y).f
01

When G = R, this is simply Stone's theorem. In this section we consider
partial extensions of the SNAG theorem to u(X, fl-continuous representa-
tions U of G on the Banach space X, where we assume 11 U,11 < M for all t c- G
(for a suitable constant M), and the pair (X, F) satisfy the requirements
(a), (b), (c) stated at the beginning of Section 3.1.2. By Proposition 3.1.4,
such a representation U of G defines a representation U of L'(G) as U(X, F)-
u(X, fl-closed, norm-bounded operators on X, by

Uff dt f(t)U, f c- L 1 (G),f
i.e., Uff * g) = U(f) U(g). We also occasionally use the notation Uf = Uff
Now the basic concepts for the partial development of a spectral theory for U
are introduced as follows.

Definition 3.2.37. Let t  --+ U, be a u(X, fl-continuous representation of G
such that 11 U,11 :!! M for all t c- G. Let Y be a subset of X. Define

3yu = ff c- L'(G); Uff)A = 0 for all A c- YJ.
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Then 3y' is a closed *ideal in L'(G). Next define the spectrum of Y as the
following closed subset of C;:

au(Y) = {y c- 6;f(y) = 0 for allf E -'3yu}.
The spectrum of U is defined by

U(U) = UUM.

The spectral subspace Xu(E) corresponding to a subset E 9 C is defined by

Xu(E) = fA c- X; au(A) - E},

where the bar denotes closure in the c(X, fl-topology. Finally, we define
the associated subspace Xou(E) as the a(X, fl-closed linear span of elements
of the form Uff)A, where supp j 9 E and A c- X.

Let us now illustrate these various concepts with two examples. First
consider a continuous representation of a one-parameter group by unitary
operators U, on a Hilbert space .5. The unitary group has the spectral
decomposition

U, = fdP(p) e
- "P

and for any closed, or open, set E R

Thus one has
.5u(E) P(E).5.

a(U) = support of P = a(H),

where H is the selfadjoint generator of U. Furthermore if,  c- .5 then U( )
is the smallest closed set E c: ft such that P(E) =  . We have used the
identification of R with R in which p c- R corresponds to the character
t  --+ (p, t) = e'P'. The results we have stated are easy to derive and will be
consequences of Lemma 3.2.39 and Proposition 3.2.40.
Although the foregoing example amply illustrates the nature ofthe spectrum

it does not fully illustrate the important algebraic aspect of the spectral
subspaces. For this let us specialize to the case that U, is the group of trans-
lations on L2(R),

(U'0)(X) = O(X - t), 0 c- L2(R),
and consider the algebra L'(R) acting by multiplication on L2(R). The group
of translations also act on L'(R) and one can consider the related spectral
subspaces. If E is closed, then Xou(E) is the closed subspace of L'(R) formed
by the f c- LOO(R) with supp f c E. Now for f E Xou(E) and  c- .5u(F)
consider the productf . One has

(f ) (x) = f(x)VI(x) = f dp(j:'O') (p)e'P'fo
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where

(f ) (p) f dq j(p - q) (q).

In particular, suppf0 E- E + F. Thus the spectrum of 0 is augmented by
multiplication by f and the augmentation corresponds to the addition of
values in E. Operators that have this property of increasing spectral values are

familiar in various domains of mathematical physics and are called creation

operators in field theory, shift operators in various settings of group theory
and functional analysis, and occasionally raising and lowering operators.
This type of property is the fundamental motivation for the introduction of

spectral subspaces and these characteristics of raising spectral values will be

developed further in Proposition 3.2.43.
The foregoing example not only illustrates the nature of the spectral

subspaces but also introduces one of the basic techniques for their analysis,
the convolution product.
We next state some elementary properties on the spectrum of an element.

Lemma 3.2.38. Let U be a u(X, fl-continuous uniformly bounded repre-
sentation of G, and let A, B c- Xj c- L'(G). Itfollows that:

(1) au(U, A) = au(A), t c- G;
(2) au(cxA + B) g au(A) u qu(B);
(3) au(U(f)A) 9; supp f n cu A);
(4) iffJ2 c- L'(G) andf, = f2 in a neighborhood of au(A) then

U(f,)A = U(f2)A.

PROOF. (1) U(f)UA = U(ft)A, where f,(s) = f(s - t). Since !,(y) = (y, ff(y) it

follows that AY) = 0 if and only if f(y) = 0.

(2) Clearly, au(oA) = au(A), so we may assume ot = 1. If y  ar,(A) u au(B),
then we can find f c- -3AU 3BU A+B

with f (y) 1 and g c- - with 0(y) = 1. Now f * g c- -3 u

since

U(f * g) (A + B) U(f) U(g) (A + B)

U(g)U(f)A + U(f)U(g)B
= 0.

But (f * g) (y) (y)o(y) = 1; thus y Ogu(A + B)
(3) If U(g)A = 0 then U(g)U(f)A = U(f)U(g)A 0, hence au(U(f)A) g

qu(A). On the other hand, if 0 vanishes on supp f thenf * g0; thus U(g)U(f)A = 0.
Thus cu(U(f)A) 9 supp f.

(4) Set g = f, - f2. We must show that U(g)A = 0. But 0 vanishes on a neigh-
borhood of au(A); hence, by (3),

cu(U(g)A) g; supp 0 r-) au(A) = 0.

It follows that U(g)A = 0.

We next turn to properties of the spectral subspaces Xu(E) and Xou(E).
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Lemma 3.2.39. Let U be a u(X, fl-continuous uniformly bounded repre-
sentation ofG, and let E be a subset of Cy. Itfollows that:

(1) Xou(E) 9 Xu(E);
(2) UXou(E) = Xou(E),

G;
U,Xu(E) = Xu(E),

(3) ifE is closed, then

Xu(E) = JA e X; qu(A) - Ej

(without closure);
(4) 1VE is open, then

Xu(E) = Xou(E) V fXu(K); K c: E, K is compact},

where V denotes a(X, fl-closed linear span;
(5) if E is closed and N ranges over the open neighborhoods of 0 in (3,

then

Xu(E) n Xou(E + N).
N

PROOF. (1) follows from Lemma 3.2.38(3).
(2) follows from Lemma 3.2.38(l) and the fact that supp supp

(3) We have to show that the right-hand set is u(X, fl-closed. Assume that A

is in the u(X, fl-closure of this set. If y 0 E, pick f c- L'(G) such that I(y) = 1 and I
vanishes in a neighborhood of E. By Lemma 3.2.38(4) we have then that U(f)B = 0

for all B in this set. Since U(f) is a(X, F)-a(X, fl-continuous, U(f)A = 0. Hence

qu(A) - E.

(4) Clearly, Xu(E) V K.-E Xu(K). Conversely, assume ut,,(A) - E. It is known

that L'(G) has an approximate identity consisting of functions whose Fourier trans-

forms have compact support, thus X = VKS=-,d X"(K). Now A can be approximated
by elements of the form U(f)A, where I has compact support K. But by Lemma

3.2.38(3), au(U(f)A) 9 supp In au(A), which is a compact subset of E. Thus

Xu(E) 9 V K9 E Xu(K).
Finally, to see that VK9E Xu(K) g Xou(E) we remark that if au(A) g K E it

is possible to find an f c- L'(G) such that I = 1 on a neighborhood of K and 0
on O\E. Then U(f)A = A by Lemma 3.2.38(4).

(5) It follows immediately from the definition of Xu(E) that

Xu(E) = n Xu(E-_+N)
N

if E is closed, and since, by (4),

Xu(E) 9 Xu(E + N) = Xou(E + N) - Xu(-E_+N)

property (5) follows.

The Tauberian theorem implies that qu(A) = {y} if and only if U,A
(y, t)A. We next prove a more general result on spectral concentration.
For unitary groups this result is sometimes referred to as the Weyl criterion,
and it gives an intuitive explanation of the spectrum.
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Proposition 3.2.40. Let U be a u(X, fl-continuous uniformly bounded

representation of an abelian locally compact group G. The following con-

ditions are equivalent:

(1) To C- a(U);
(2) for all neighborhoods E around To

Xou(E) :A- {01;

(3) for all e > 0 and all compacts K 9 G there exists a compact neighbor-
hood E around To such that Xu(E) 0 101 and

JIU,A - (TO, t)AII :!! ellAll

for all A c- Xu(E), t c- K;
(4) there exists a net (sequence if G is separable) of elements A,,, C- X

such that 11A 11 = 1 for all a and

lim U, A,, - (To, t)A,,, I I = 0
01

uniformlyfor t in compacts;
(5) for all f c- L'(G) we have

lj(yo)l --!! 11U(f)11_'(X)-

IfG = R and U, = exp(tS), then these conditions are equivalent to:

(6) - i7o c- a(S),

i.e., U(S) ic(U).

PROOF. (1) => (2) If Xu(E) = 0 for some open neighborhood E of yo, pick an

f c- L'(G) such that (yo) = 1 and supp E. Then U(f 0 by Lemma 3.2.39(4);
thus f c- .3,u and 70 a(U).

(2) => (3) Let E, be a compact neighborhood of yo, and choose an f C- L'(G)
such that j(T) = I for y c- E, For s c K define F(s) c L'(G) by

F(s) (t) = f(t - s) - (yo . s)f(t).

Then

F(s) (y) (-Y0-'SV(Y)-

Now F(s)(yo) = 0, 11 F(s) 11 1
is bounded uniformly for s c- K, and for any 6 > 0 there

is a compact subset E - G such that

fG\Edt I F(s)(t) I < 6

for all s c- K. Therefore, by a standard argument of Fourier analysis (see Notes and

Remarks), one may, for each E > 0, find a g c- L'(G) such that 11 g 11 1 :!!  1 +1 in

a neighborhood of yo, supp 0 = E
,
and 11 F(s) * g 11 1 < e for s c- K.
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Let E be a compact neighborhood of yo contained in the interior of El r-) E2
and let h be a function such that h(y) = I in a neighborhood of E and supp
El r-) E2. Then U(h)A = A for A c- X(E) (Lemma 3.2.38(4)) and we have for

y c- El r-) E2 and s c- K that

F(s) * g h(y) = ((,/,, s) - (yo, s))f(y)O(y)h(T)

= ((T, s) - (T,, s))h(y),

which implies, for s c- K,

U(F(s) g * h) = (U, - (yo, s))U(h).

Hence, for A c- Xu(E) and s c- K,

U,A - (yo, s)A (U, - (yo, s)) U(h)A
U(F(s) g)U(h)A

< F(s) * g U(h)A
:!! slIA11.

(3) => (4) This is evident.

(4) => (5) For each compact K 9 G we have

11 U(f)A. - j(yo)A. f dt f(t) (U, A,, - (yo, t)A,,)

sup 11 U, A,, - (yo, t)A. 1111 f 11, + (M + 1) dt If(t)j.
K

f.
K

Thus, for all E > 0 there exists an A such that 11 Uff)A,, 11 > I 1(yo) I - S.

(5) => (1) If f c- 3x' then U(f) = 0 by definition, hence f(yo) = 0 and yo c- U(U).
We conclude by showing the conditions (l)-(5) are equivalent to (6) in the special

case.

(6) => (4) If - iyo c- u(S) then iy, + S is not invertible. Now, for any 'S > 0,
- iyo + s - S is invertible and

(-iYO + E - S)-' f e'YO'- "' U, dt
0

by Proposition 3.1.6.

It follows that lim.-Oll(-iyo + e - S)-111 = oo. Thus there exist A,, such that
A. c- D(S), 11A,11 = I and lim,-O(- iyo + e - S)A, 0. Thus lim,-O(- iyo - S)A, = 0.
We then have

d
JIU,A, - e-'YO'All ds U,e 'YO(l-s)A,

0 ds

ds U,(S + iyO)e-'YO(`)A,fo,
M I t 111 (S + iyo)A , 11.
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(4) =:> (6) If A,, is as in (4) we have, for e > 0,

I
i o + E - S)_ 'A,, - - A,,

dt e'10'-"U,A,, - fo,dt e'A. 0

as a  oo. Thus ll(-iyo + e - S)'11   ! I/e. Hence (-iyo S)-1 cannot exist as a

bounded operator.

In Proposition 3.1.1 we proved that a one-parameter group is norm

continuous if, and only if, its generator is bounded. A similar result involving
the spectrum is given as follows:

Proposition 3.2.41. Let U be a u(X, fl-continuous uniformly bounded

representation of G. Thefollowing conditions are equivalent:

(1) a(U) is compact;
(2) U is norm continuous.

PROOF. (1) => (2) Assume a(U) compact, and choose an f c- L'(G) such that

f = I on a neighborhood of a(U). Then by Lemma 3.2.38(4), U(f)A = A for all
A c- X. Hence

11(U, - I)AII = 11(U, - I)U(f)AII
= ll(U(f,) - U(f))AII
< M11f, - f 11 1 IJAII.

Since 11 f, - f 11 0 as t --> 0, the norm continuity follows.

(2) => (1) When G = R, i.e., U, = exp(tS) then it follows from Proposition 3. 1.1

that 11 S 11 < co, and since u(S) 9 [ - 11 S 11, 11 S 11 ] condition (1) follows from Proposition
3.2.40(6). For general G, one notes that if Jfj is any approximate unit for L'(G) then

11 U(f,,) - III --* 0 in this case. Thus if 121 is the abellan Banach subalgebra of Y(X)
generated by U(L'(G)), one has I c- % and so Iff has compact spectrum. Now if

7 c- a(U) it follows from Proposition 3.2.40(5) that

z,(U(f)) = AT)

defines a character on W. Conversely, each character X on W defines a character on

L'(G) by composition with U, i.e., there is a y c- C; such that

Z(U(f)) = i(y),
and since

Y(Y)i = IX(U(f))I :!! liumil

it follows from Proposition 3.2.40(5) that y c- a(U). Hence c(U) = u(91), so a(U) is

compact.
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We next apply the general spectral theory developed in the preceding
pages to groups of automorphisms of operator algebras. Lemma 3.2.38 then

has an extension due to the richer structure of these algebras.

Lemma 3.2.42. Let oc be a representation of a locally compact abelian

group G in the automorphism group of a C*-algebra W or a von Neumann

algebra 9M. Assume that a is weakly (strongly) continuous in the C*-case and

a-weakly continuous in the von Neumann case. Thefollowing statements are

valid (with 91 W or 91 = 9JI):

(1) u,,,(A *) - ajA);
(2) 91"(E) 91'( - E), E
(3) 910'(E 1)910'(E2)   930'(E 1 + ED ifE 1, E2 are open subsets Qf G;
(4) %`(Ej)9P(E2)   91"(El + E2) if El, E2 are closed subsets of G;
(5) ajAB) g; a,(A) + ajB).

.:t

PROOF. (1) follows from suppf = -suppf and Lx(f)(A)* = a(f)(A*). Property
(2) follows from (1). To prove (3), note that by Lemma 3.2.39(4), it is enough to

prove that if f, g e L', with supp 1 and supp 0 compact in El, E2, respectively, and

A, B c- 91, then off) (A)a(g) (B) - V(E 1 + E2). Thus it suffices to show that if

h c- Ll (G) with supp h n (E 1 + ED = 0 then oc(h)(ocff)(A)oc(g)(B)) = 0. But

a(h) (aff) (A)cx(g) (B)) = fffdr ds dt h(r)f(t)g(s)a,. + t(A)o ,, +,(B)

= fffdu dv dw h(u)f(v - u)g(w + v - u)_o(jA)a,,+",(B)-

Now,

fdu h(u)f(v - u)g(w + v - u) = h * (f - gj (v),

where gjv) = g(v + w). The Fourier transform of the latter function of v is
h - (f * 0j. But supp(f * Ow) c suppf + supp 0 9 E I + E2 -

It follows that
h-- Y * 0,j = 0; thus

a(h) (a(f) (A)a(g) (B)) = 0

by an application of Fubini's theorem. Finally, (4) follows from (3) and Lemma

3.2.39(5), while (5) follows from (4) and Lemma 3.2.39(3).

Next, we relate the spectral subspaces of a unitarily implemented auto-

morphism group with the spectral subspaces of the unitary group. In par-
ticular the next proposition identifies elements of certain spectral subspaces
as "creation" operators or "shift" operators on the spectrum of the unitary
group.

Proposition 3.2.43. Let U be a strongly continuous one-parameter group

of unitary operators on a Hilbert space .5, with the spectral decomposition
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U, = f e
- "' dP(T). Let #,(A) = U, A U,* be the a-weakly continuous one-

parameter group of* *-automorphisms ofY(.5) implemented by U. Thefollow-
ing conditions are equivalent,for all A c- Y(.5) and y c- R:

(1) a#(A) - [Y, IDO >;
(2) AP([A, oo>).5 - P(EA + y, oo>).5 for each A c- R.

PROOF. We first remark that it is easily verified that P(E).5 = .5"(E) for all closed
sets E - A = R.

(1) => (2) By Lemma 3.2.39 it is enough to show that

flf(A)U(g)o c- PQA + ), - 2g, oo>)-5,

where 0 c- .5, f, g c- L'(R), and supp f 9 <T - e, oo >, supp 0 s  <A - e, oo >, i.e., we
have to show

U(h)flf(A)U(g) = 0,

wheref and g are as above and supp h < - oc, A + y - 2g>. But

U(Ii)flf(A)U(g) =  ffdt ds dr h(t)f(s)g(r) U, , A U
-,, -

After the change of variables u = t, v = s + t, w = r - s, and an application of
Fubini's theorem, one finds

U(h)flf(A) U(g) ff k,,,(v) Uv A U,,, dv dvv,

where kv(v) = h * (f - g,,,,), g,,(s) = g(s + w). Then But

i - supp gw = supp 0 -_ <A - F" 00 >;

thus

supp(f * 9, suppf + supp 0

<y +

But the last set is disjoint from supp h, and so 'kw\ = 0, i.e., U(h)flf(A)U(g) = 0.

(2) => (1) Assume (2) and take A0 < y. Set E = (y - Ao)/5, and let f c- L'(R)
be such that. (),O) = 1, supp I c- < , - s,  , + e>. We have to show flf(A) = 0. But

by Lemma 3.2.39 it is enough to show that fif(A)U(g)o = 0, where g c- L'(R) is any
function such that supp 0 lies in an interval of the form <A, - g, A, + E>. But since

a. U(& - [A, - e, A, + e] g [A, - e, oo >, it follows from assumption (2) that

a,, flf(A) U(g)O S [,I, - e + y, oo >. Thus it is enough to show that U(h)#f(A) U(g) =
0 for any h such that supp h  _ [A I

- 2e + y, oo >. Using the transformation ofvariables
used in the proof of (1) ==:> (2) and keeping the same notation, one finds

supp(i * 9'.) - <A0 - 'S' A, + '6 > + <A, - .6, A, + E >
= <A, + A, - 2-s, A, + A, + 2e>,

which is disjoint from [y + ),, - 2E, oo>. Therefore k,,, = 0 and fif(A) = 0.



Algebraic Theory 259

We next derive a result for comparison of two groups of automorphisms.
This comparison states that the inclusion of the spectral subspaces of one

group within the corresponding spectral subspaces of the second group
ensures the equality of the groups. Although we state and derive this result in
the von Neumann algebra case, a similar result is also true for strongly
continuous one-parameter groups of *-automorphisms of C*-algebras, by
essentially the same proof

Proposition 3.2.44. Let a, # be two a-weakly continuous one-parameter
groups of *-automorphisms of a von Neumann algebra T? and assume that

M'[A, oo> S 9JV[A, oo>for all A c- R. Itfollows that a, = #,for all t c- R.

PROOF. For A c- 9M, q c 9JI* + consider the function

f(t, s) = q(#, ot,(A)), t, s c- R.

We will show that there exists a continuous function g on R such that f(t, s)
g(t + s). It then follows that f t, t) = f(0, 0), i.e., a,(A) = A, or, equivalently,
a,(A) = #,(A) for all t.

First introduce the notation f(h) by

f(h) = ffdt ds h(t, s)f(t, s)

for all h c- L'(R'). Now if h 1, h2 c- L'(R) with supp h, g (A, oo > and SUPP  2 9
< - oo, A> then

f(hlh2) = WhIC42(A)) = 0

because OCh2(A) c- 9R'[A, oo > g TIO[A, oo >. Also

ffdt ds  AtA I (S)f(t, S) = ffdt ds h2(t)h I (s)f(t, s-)

= ffdt ds h2(t)h 1 (s)q(flt as(A

0

by the same reasoning. But supp h, g < - oo A>, supp h2 E- < - A, oo > and hence

one deduces that

hjjh2 0

for all pairs h1j, h2i such that supp h, r) supp h2i = 0. But because

Jf(h)j < Jjfjjjhjjj

it easily follows that

f(h) = 0
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for all h c- L'(R2) such that the Fourier transform h(p, q) is infinitely often differenti-
able with compact support in the region p :A q.

The proof of the proposition is completed by a change of variables, to s + t and

s - t, and an application of the following lemma.

Lemma 3.2.45. Letfbe a bounded continuousfunction oftwo real variables

andfor h c- L'(R2) definef(h) by

f(h) = ffds dt f(s, t)h(s, t).

Assume that f(h) = 0 for all h such that the Fourier transform h(p, q) is

infinitely often differentiable with compact support in the region q :A 0. It

follows that

f(S' t) = g(s)

for some bounded continuous function g.

PROOF. Firstly, note that

where

f(h) = f(h,),

h,;(p, q) = h(p, q)2,:(q)

and  , is an infinitely often differentiable function of compact support which takes the
value one for I q I < e. Secondly, remark that

If(h) I :!! 11 f11 h 11

Next let h(s, t) be differentiable in t with differential h'(s, t) = ah(s, t)10t c LI(R2).
One then has

If(h') I !:_ 11 f11 hE'Ij 11 f 11,,, 11 h 11 1 11 X,'Ij

where we have used

h,'II = ffds dt I h,'(s, t) I

= ffds dt  fdt'h(s, t')X,'(t - < JjhIj,IjX,'jj,.

Next choose X such that 2 is infinitely often differentiable with compact support
and 2(q) = I for I q I < 1. If one defines 2,(q) = 2(qlF,) then 2, satisfies the above

requirements and one easily checks that

Taking the limit of e to zero one deduces that f(h') = 0.

Finally, if h is a function whose Fourier transform is infinitely often differentiable
with compact support and if h,, is defined by h,,(s, t) = h(s, t + a) one has

f(h,,) - f(h) = fadb f(hb') = 0-
0
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This last relation can be alternatively expressed as

ffds dt (f(s, t) - f(s, t + a))h(s, t) = 0

and as f c- L'(R2) and h ranges over a dense subset of L'(R') one has

f(s, t) = f(s, t - a) = f(s, 0).

After these extensive preliminaries on spectral analysis we return to the

topic discussed at the beginning of the subsection, the characterization of

uniformly continuous one-parameter groups of automorphisms of von

Neumann algebras. Proposition 3.2.41 establishes that these groups are

characterized by the condition of compact spectrum and we now approach
the problem from this point of view. The next theorem, which is the principal
result of this section, gives a description of groups whose spectrum has a

serniboundedness property and the norm-continuous groups are contained
as a special case. The theorem gives information of several different types.
Firstly, it implies that each group whose spectrum has the serniboundedness
property is automatically implemented by a group of unitary operators.
Secondly, it establishes that the unitary operators may be chosen in the
algebra, and thirdly, it demonstrates that the unitary group has a semi-
bounded spectrum and that the spectral subspace of the unitary group is

intimately related to the spectral subspaces of the automorphism group.

Theorem 3.2.46 (Borchers-Arveson theorem) -
Let t  -4 a, be a a-weakly

continuous one-parameter group of *-automorphisms of a von Neumann

algebra 9A. Thefollowing conditions are equivalent:

(1) there is a strongly continuous one-parameter unitary group
t F-+ U, c- with nonnegative spectrum such that

oc,(A) = U,AU,*

for all A c- 9JI, t c- R;
(2) there is a strongly continuous one-parameter unitary group t  -4 U, in

931 with nonnegative spectrum such that cx,(A) = UAU,* for all
A c- 9JI, t c- R;

(3) n igivit, oo>-5i = m.
t e R

Moreover, if these conditions are satisfied, one may takefor U the group

00

U, = f
00

e -'tPdP(p),

where P(.) is the unique projection valued measure on R satisfying

Pit, oo>.5 n iTris, oo>.5i.
S < t
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PROOF. (2) ==> (1) is trivial.

(1) =:> (3) Let P be the projection-valued measure associated with U. Then

P([t, oo >) = I when t :!! 0 and

n Pat, oo >)-5 = m-

t C- R

But by Proposition 3.2.43, one has

9RIEt, OC) >SV;' W[t' OC) >PE0' 0c >5

PU' 0c) >5.

Condition (3) follows immediately.
(3) => (2) For each t c- R, define

Q, n i9ris, oo-5i.
S<t

Then Q, is a decreasing family of projections which is left continuous in t and such that

Q, --), 0 strongly as t --3, oo. Moreover, Q, = I for t :!! 0. Thus there is a unique projec-
tion-valued measure P on R such that P[t, oo> = Q, for all t.

Now since [W[t, oo >15] c- 9X" 9N it follows that P[t, oo > c- 9W for all t. Therefore

U, fe
- "I' dP(p) c- 9A.

But U has nonnegative spectrum because P[O, oo > = t Next define an automorphism
group fl, of 9W by &A) = U,A U,*. By Lemma 3.2.42 one has

9W[S' 00>9ml[t, 00> g WEt + S, 00>

for all t c- R. Therefore

W[S' 00 >P[t, 00 >.5 g PES + t' 00 >.5

for all t c- R. It then follows from Proposition 3.2.43 that

9X'[S' 00> g W[S' 00>

for all s c- R. But then Proposition 3.2.44 implies oc, = fl, for all t c- R.

As an immediate corollary ofTheorem 3.2.46 we get the so-called derivation

theorem, which we state both in a von Neumann and in a C*-version. In the
C*-case the result can be strengthened under suitable auxiliary conditions

(see Notes and Remarks).

Corollary 3.2.47. Let 6 be an everywhere defined, hence bounded, sym-
metric derivation ofa von Neumann algebra M. Itfollows that there exists an
H = H* c- T? with 11HIJ :!! 11611/2 such that

b(A) = i[H5 A]

for all A c- 931.
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PROOF. The derivation 6 is bounded by Corollary 3.2.23, and one may introduce
the norm-continuous group (x, of *-automorphisms of 9M by

a,(A) = e'6(A)
t

&(A).
n!

It follows from Proposition 3.2.40 that

a(a) ia(b)

and then it follows from an application of condition (3) of the same proposition
that W[t, oo > = 101 whenever t > 116 11. Thus the Borchers-Arveson theorem implies
the existence of a strongly continuous one-parameter group of unitary operators
U, with a positive self adjoint generator Ho c- 9J? such that

oc,(A) U, A U,

for all A Ei M. Hence by differentiation

b(A) i[HO, A].

But the explicit construction of U, in the Borchers-Arveson theorem establishes
that a(HO) - [0, 11611]. Introducing H Ho - 116111/2 one has 11HIJ < 11611/2 and

b(A) i[H, A].

One C*-algebraic version of this result is the following:

Corollary 3.2.48. Let 6 be an everywhere defined, hence bounded, sym-
metric derivation ofa C*-algebra W. Itfollows thatfor any representation 7r

ofW there exists an H = H* c- n(W)" such that 11 H 11 < 116 11 /2 and

7r(b(A)) = i[H, 7r(A)]

for all A c- W.

PROOF. First we show that if -1 = ker 7r then 6(3) g 3. It is enough to show that
b(A) - .3 for A c- 3, But then A = B2 with B c- 3, Hence b(A) = b(B)B +
W(B) - -1 since -3 is an ideal. Hence 6(3) g 3' and one may consistently define a

map 3 of 7r(91) by J(7r(A)) = n(6(A)). 3 is a derivation of 7r(121) and, by Proposition
3.2.24, 3 has a unique a-weakly closed extension j to 7r(91)" such that 113 11 = 11 j 11 < 116 11.
The corollary now follows from Corollary 3.2.47.

Although we have only given the infinitesimal generator description of
groups with compact spectrum one can also draw similar conclusions from
Theorem 3.2.46 for groups with the semiboundedness property of the
spectrum. These groups have generators of the form

b(A) = i[H, A],

where the selfadjoint operator H may be chosen to be positive and also
affiliated to the von Neumann algebra 931. We conclude by remarking that this
choice of H which ensures that the implementing group U, = e

itH is con-

tained in 931 is not always the most natural choice. If T1 is in standard form
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it follows from Corollary 2.5.32 that there exists a second unitary group V,
such that

,x,(A) = VAV,* = UAU,*.

The group V, is introduced by the aid of the natural cone 60 and is uniquely
defined by the requirement V,_,"P s; _61P. The "inner" group U, and the "natural
cone

"

group V, are, however, distinct. One has in fact that t  -* U, J U, J is a

unitary group such that UJUJ_`1P = -,P and UJU,JAJU_,JU, = a,(A),
hence

V, = Uju,j,

which means that the generator K of V, is

K = H - JHJ.

3.2.4. Derivations and Automorphism Groups

The principal interest of symmetric derivations, and the main motivation for
their analysis, arises from the fact that they occur as the generators of one-

parameter groups of automorphisms. In this subsection we examine the
characterizations of those derivations which are generators of automorphism
groups. The simplest criterion of this sort comes from Proposition 3.i.1
and Corollary 3.2.23 and identifies the generators ofnorm-continuous groups.

Corollary 3.2.49. Let 91 be a C*-algebra, and let 6 be a linear operator on

91. Then thefollowing conditions are equivalent:

(1) 6 is an everywhere defined symmetric derivation of W;
(2) 6 is the generator of a norm-continuous one-parameter group t  --* Tt

Of *-automorphisms of W.

In this case, if7r is any representation of% there exists an H = H* c 7r(91)"
such that

7r(Tt(A)) = e"'7r(A)e- UH

for all A c- W and t c- R.

The last statement of the corollary follows from Corollary 3.2.48.
Thus in the special case of norm continuous groups, the algebraic structure

ensures that the automorphisms are unitarily implemented in all representa-
tions 7r. Moreover, the implementing unitary group U, can be chosen as

elements of 7r(W)". This last property is, however, very particular and cannot

be expected to be generally valid. For example, if W is abelian the corollary
implies that there are no nontrivial norm-continuous groups of auto-

morphisms and no nontrivial bounded derivations. It is nevertheless easy
to construct examples of strongly continuous groups with unbounded
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derivations as generators, e.g., translations on CO(R) are generated by the
operation of differentiation. For such general derivations we can obtain
criteria which characterize generators by combining the Banach space theory
of Section 3.1.2 with the theory for positive maps of Section 3.2.1. We first
state the resulting twenty three criteria for C*-algebras with identities.

Theorem 3.2.50. Let 91 be a C*-algebra with identity  , and let 6 be a

norm-densely defined norm-closed operator on W with domain D(b). Itfollows
that 6 is the generator of a strongly continuous one-parameter group of
*-automorphisms ofW if, and only if, it sati fies at least one of the criteria in
each of the families (A), (B), and (C) with the exception of the four
combinations ((A2), (B2), (C2)) and ((A3), (Bj), (C2)) for j = 1, 2, 3:

(Al) D(6) is a *-algebra and 6 is a symmetric derivation;
(A2) I Ei D(6) and 6(l) = 0;
(A3) I e D(6) and b(I) is selfadjoint;
(B 1) (1 + a6)(D(6)) = W, a e R\101f;
(B2) 6 has a dense set of analytic elements;
(M) The selfadjoint analytic elementsfor 6 are dense in 91sa;
(C 1) 11 (1 + a6)(A) 11 > 11 A 11, cx c- R, A e D(6);
(C2) (I + a6)(A) > 0 implies that A > Ofor all a c- R, A c- D(6);
(C3) 6 is conservative.

After removal of the conditions (A2), (M), and (C2), the statement of the
theorem remains valid when W does not have an identity.

PROOF. Assume first that 6 is the generator of a strongly continuous one-

parameter group t F-+ -c, of *-automorphisms of 91. Then (At), (A2), and thus (A3),
follow from the discussion in the introduction to Section 3.2.2. Each -r, is an

isometry by Corollary 2.3.4 and hence the conditions (BI), (B2), (Cl), (0) follow
from Theorems 3.1.16 and 3.1.17. The condition (B3) follows from (B2) since 6 is a

symmetric operator. Since each -c, is positivity preserving, (C2) is a consequence of
the Laplace transform formula of Proposition 3.1.6:

(I + oc6) - '(A) f dt e
- tT _,(A).,

We next prove the sufficiency of any triple ((Ai), (Bj), (Ck)) of conditions with the
four exceptions mentioned in the theorem, when % has an identity 1. First note that
(At) =:> (A2) by Corollary 3.2.30 and (A2) =:> (A3) trivially, so we may assume i = 3

except for ((At), (B2), (C2)), ((A2), (Bl), (C2)) and ((A2), (B3), (C2)). Since
(B3) => (B2) trivially, and (C 1) ::::--. (C3) by Proposition 3.1.14, any of the six pairs
(Bj, Ck), where j = 1, 2, 3, k = 1, 3 suffices for 6 to be a generator of a strongly
continuous one-parameter group -rt of isometries, by Theorem 3.1.19. But (A3)
implies that -c,(I) = I + tb(T) + o(t), and as 11-it(I)II = 1 and 6(l) is selfadjoint it
follows by applying spectral theory for small positive t that U(6(1)) c- < - 00, 0], and
correspondingly small negative t gives u(6(1)) c [0, + oo >. Thus u(6(1)) = 0, and as

b(l) is selfad oint it follows that  (I) = 0, i.e., (A2) is valid. But this implies that
-c,(I) = T for all t, thus each -ct is a *-automorphism by Corollary 3.2.12.
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We now consider the triple ((A2), (Bl), (C2)). If (C2) holds and (I + 00) (A) 0
then +A > 0. Consequently, A = 0. Thus (BI) implies the existence of (I +
The resolvent (I + Lxb)-' is positivity preserving by (C2) and (I + ab)'(1) I

by (A2). Hence JI(I + ab)'11 :s- 1 by Corollary 3.2.6, and (CI) is true. But we have
seen above that ((A2), (Bl), (Cl)) implies that 6 is a generator.
We next consider the triple ((At), (132), (C2)). Let D(6),, be the analytic elements

in D(6). For A c- D(6), define

tn t )n'r,(A) Y - 6"(A) = lim I + - 6 (A)
 ,O n!

.-.
( n

for I t I < tA, where tA is the radius of convergence of the series

I
t.

I I 6"(A)
n !O n!

If -r,(A) -e 0 for some t then for any e > 0 there is an n such that (I + (t1n)6)"(A + 81)
> 0. Here we have used (A2). But then (C2) implies A + el > 0 and we conclude
that A  !: 0. Next note that since 6 is a symmetric derivation, D(6)a is a *-algebra
(and one has tAB = inf{tA, tB1, tA- W. Further, one finds

A*A -r,(-r_,(A*A)) > 0

for I t I < tA*A12 = tA12. Therefore one may conclude thatr (A*A)  ! 0 for I t I < tA12.
Applying this argument to the positive analytic element I A*A111A 112 and using

I one deduces that

0 < r,(A*A) :!! IIA 1121 ItI <
tA

2

Since 6 is a symmetric derivation one has that -c,(A*A) 'r,(A)*T,(A) within the

range It I < tA/2 and one concludes

11'r,(A)II < 11AII, ItI <
tA

2

Finally, this contractive property and the group relation imply the isometry condition

jj,r,(A)jj = 11AII, ItI <
tA

2

Reasoning as in the proof ofTheorem 3.1.19, one deduces that'r, extends to a strongly
continuous group of isometries of W with generator 6. Calculating with analytic
elements, one deduces that -r, is a group of *-automorphisms.
The only remaining combination is ((A2), (B3), (C2)). This can be dealt with by a

slight modification of the discussion of the previous combination, i.e., if A = A* is

analytic and al < A :!! fl , then al < o6t(A) :!! #1 for It I < tA12, hence _C, is isometric

on the selfadjoint elements in D(6), etc.

Using Theorem 3.1.19 and calculating with analytic elements, one establishes the

sufficiency of all the conditions ((A 1), (13j), (Ck)), i = 1, 2, 3, k = 1, 3, when W does

not have an identity.
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Theorem 3.2.50 of course has an analogue for von Neumann algebras and
a-weakly continuous groups.

Theorem 3.2.51. Let 931 be a von Neumann algebra, and assume that 931

is abelian, or that M is a factor. Let 6 be a cr(K 9JI,)-densely defined,
a(931, 9J1,)-a(T1, 931,)-closed, operator on 9N with domain D(6) containing 1.

It follows that 6 is the generator of a a-weakly continuous one-parameter
group of *-automorphisms ofM if, and only if, it satisfies at least one of the
criteria in each of the families (A), (B), and (C) with the exception of the
combination ((A2), (B2), (C2)):

(Al) D(6) is a *-algebra and 6 is a symmetric derivation;
(A2) 6(1) = 0;
(Bl) (I + ab)(D(6)) = 931, a c- R\f0j;
(B2) the unit sphere in the space of analytic elementsfor 6 is a-weakly

dense in the unit sphere of 9X;
(C 1) 11 (1 + ocb) (A) 11 > 11 A 11, a c- R, A c- D(b);
(C2) (I + ocb) (A)  !! 0 implies that A > Ofor all a c- R, A e D(b).

For general von Neumann algebras 9Y, the theorem remains true if(A2) is
removed and (B2) replaced by the weaker condition

(B2') the set of analytic elementsfor 6 is a-weakly dense in 931.

PROOF. First note that an automorphism -r of a von Neumann algebra is auto-

matically a a-weakly continuous isometry, by Corollary 2.3.4 and Theorem 2.4.23.
Therefore a a-weakly continuous group of automorphisms of a von Neumann

algebra is automatically a Co*-group of isometries, in the sense of Definition 3.1.2.,
because M is the dtial of 9JI* by Proposition 2.4.18. Thus the general theory of C*-

groups of isometries, and in particular Theorem 3.1.19, is applicable. Using Corollary
3.2.13 the proof of the von Neumann theorem now goes approximately as in the case

of a C*-algebra and we omit the details. The only additional remark of relevance is
that if 6 is a derivation, then the analytic elements for 6 form a *-algebra. Hence (B2')
implies (B2) in this case because of Kaplansky's density theorem (Theorem 2.4.16).

After this description of generators and groups for general algebras, we

illustrate the structure by examination of a particular class of algebras.
In the remainder of this subsection we continue the study of derivations on

UHF algebras initiated in Example 3.2.25. It can be shown, using functional

analysis on the domain as in Example 3.2.34, that if 6 is a closed derivation
of an UHF algebra W, then there exists an increasing sequence IW,,} of full
matrix subalgebras of W with the same identity as 91 such that U,, 91,, -z D(b)
and U,, W,, is dense in W. If 6 is a generator U,, 91,, may even be chosen such
that U,, %,, consists of analytic elements for 6, but it is not known if U" 91"
can be chosen to be a core for 6 in this case. This motivates the following
proposition.
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Proposition 3.2.52. If 91 = U,   0 91, is a UHF algebra and 6 is a deriva-
tion of W with domain D(6) = U, 91n then 6 is closable and there exist
elements Hn = Hn* c- W such that

6(A) = 6JA) =- [iHn, A]

for all A C- 91n, n = 1, 2,...
IfY + 6) (Un Wn) are dense in 9f then the closure j of6 is the generator ofa

strongly continuous one-parameter group 'r, of *-automorphisms of W.
Moreover,

Tt(A) = lim e'-(A)
n-c)o

for all A c- W, where the limit exists in norm, uniformlyfor t infinite intervals.

PROOF. The existence of Hnwas shown in Example 3.2.25, while + 6, and thus +
are dissipative by Proposition 3.2.22. Lemma 3.1.15 then implies II(I + 'YMA)II
11 A 11 for all A c- D(3), a c R. Using the closedness of j one deduces (I + 3) (D(6)) = %;
thus (I + a5)-' exists and II(I + aj)'11 :!! I by the usual Neumann series argument.
By Theorem 3.2.50 ((A 1), (B 1), (C 1)), 6 is a generator of a group -r, of *-automorphisms.
Since U. %n is a core for j and 6,,,(A) -4 b(A) for A c- U %_ it follows from Theorem
3.1.28 that

T,(A) = lim e"nA

for all A c- W, uniformly for t in compacts.

We next study a condition on the sequence H,, in % which ensures that
(I + 6) (U, %n) is dense. The physical interpretation of this condition is that
the surface energy of the finite subsystems grows linearly with the subsystem
(see Chapter 6).

Theorem 3.2.53. Adopt the same notation as in Proposition 3.2.52, and
assume that there exists a double sequence

Kn,. C_ %n+m

n = 1, 2,..., m = 0, 1, and constants M, Y. > 0 such that

IIHn - Kn,.11 < Mne"'.

Itfollows that (I + 6)(Un %n) is dense in 91, and hence the closure j of 6
is the generator of a strongly continuous one-parameter group -r of *-auto-

morphisms of %. Moreover,

'r,(A) = lim e'tH Ae - itHn

n oo

for all A c- %, where the limit exists in norm, uniformlyfor t infinite intervals.

This theorem is an immediate consequence of Proposition 3.2.52, Theorem
3.1.34 and the estimate

116 191,, 6
iKn,  11,, 2 11 H, - K, '
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3.2.5. Spatial Derivations and Invariant States

The discussion of bounded derivations of a von Neumann algebra 9N in
Section 3.2.3 established that each such derivation has the form

b(A) = i[H, A]
for some bounded operator H and H could even be chosen to be an element of
9R. More generally if t c- R F--+ U, is a strongly continuous one-parameter
group of unitary operators and U,931U, 9 9N for all t c- R then the family
of mappings

A E 931  --> cx,(A) = U,A U,*

is a weak *-continuous group of *-automorphisms of 9JI whose generator
6 is of the form

b(A) = i[H, A].

In this latter case H is the selfadjoint generator of the unitary group U,
The Borchers-Arveson theorem (Theorem 3.2.46) demonstrated that if H
is semibounded then it can be arranged that H is affiliated with 9R.
These examples motivate the study of general derivations of the form

We call such derivations spatial.

Definition 3.2.54. A symmetric derivation 6 of a C*-algebra of bounded
operators on a Hilbert space .5 is said to be spatial if there exists a symmetric
operator H, on .5, with domain D(H) such that D(6)D(H) g D(H) and

b(A) = i[H, A], A c- D(b),

on D(H). We say that H implements 6.

Note that Proposition 3.2.28 already established a criterion for a derivation
to be spatial. It suffices that there exist a state co(A) = (92, Afl), over W, such
that 92 is cyclic for W and

I w(b(A)) 12 -< Lfw(A*A) + co(AA*)j

for all A c- D(b) and some L  !! 0. In particular, this criterion applies if (0 is
invariant under 6, i.e.,

w(b(A)) = 0

for all A c- D(b). If, however, w is invariant then 6 is not only spatial but H may
be chosen so that 92 c- D(H) and

HO = 0.

Invariant states are ofparticular importance in physical applications and they
provide the second topic of this subsection.
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In general, there are several inequivalent ways of defining a spatial deriva-
tion 6. The different possibilities occur because the commutators [H, A], with
H unbounded, are not unambiguously defined and various conventions can

be adopted to give meaningful definitions. Each of these conventions leads to

a distinct definition of a spatial derivation. If, however, 6 is implemented by a

selfadjoint H then there is no ambiguity as the following result demonstrates.

Proposition 3.2.55. Let H be a se fadjoint operator on a Hilbert space .5
and let

a,(A) = e
MAe-M

,
A c-

be the corresponding one-parameter group of automorphisms of Y(.5).
Denote by 6 the infinitesimal generator of a. For A c- Y'(.5) given, thefollow-
ing conditions are equivalent:

(1) A c- D(b);
(2) there exists a core Dfor H such that the sesquilinearform

 , T c- D x D F- i(Ho, Aq) - i(o, AHT)
is bounded;

(3) there exists a core Dfor H such that AD S; D and the mapping

0 c- D  - i[H, A]o
is bounded.

If condition (2) is valid the bounded operator associated with the sesqui-
linearform is 6(A). Similarly, the bounded mapping of condition (3) defines
6(A).

PROOF. A closure argument shows that conditions (2) and (3) imply the cor-

responding conditions with D = D(H), while the converse is trivial. Thus we may
assume that D = D(H) in the following.

(1) => (2) Assume A c- D(6) and 0, 9 c- D(H); then

6(A)g) lim eMAe-M9) - (0, A p)j
t-0 t

lim
'
(e UH

_ 1)0, Ae- M O

+ lim A I(e-M _ J)(p
t-0 t

iHo, Aq) + (0, A(- iH)9).

(2) => (3) Assume that there exists a bounded operator B such that

(HO, A(p) = (0, AH(p) - i(o, Bq)
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for c- D(H). This relation demonstrates that

0  -+ (HO, Aq)

is continuous for fixed 9 c- D(H). Hence A p c- D(H*) = D(H) and, further, (HO, Aq)
= (0, HA9). Therefore one has

(0, B p) = i(o, [H, A]9).

The implication (3) => (2) is trivial and the proof is completed by the following:
(2) => (1) Assume that A satisfies condition (2) and that B is the corresponding

bounded operator. Using the technique of the first part of the proof one verifies, for

 o c D(H), that

lim
t-0

Hence

(a,(A) - A)(p) = fsdt cx,(B)9).
0

Therefore one has

ocs(A) = A + fsdt cx,(B)
0

and from this relation it follows that A c- D(b) and b(A) = B.

Next remark that a spatial derivation of a von Neumann algebra which is
implemented by a selfadjoint operator H has an extension which generates a

weak *-continuous group oct of *-automorphisms of Y(15). Explicitly,

oc,(B) = e
MBe-M

for all B c- _T(.5). Using the characterizations of generators given in the
previous subsection, e.g., Theorem 3.2.51, one can then deduce some of the
typical properties of generators.

Corollary 3.2.56. Let 6 be a symmetric, spatial, derivation ofa von Neumann
algebra 9% on a Hilbert space .5, i.e.,

b(A) = i[H, A]

for all A c- D(b). Assume that H is selfadjoint. Itfollows that 6 is a(TI, M*)-
closable and

II(I - cxb)(A)II  !! IJAII

for all A c- D(b) and a c- R.

After these preliminary remarks we devote the rest of this subsection to the
analysis of invariant states. Thus we examine spatial derivations b(A) =
i[H, A] of an operator algebra 9JI with cyclic vector f2 such that HO = 0.
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The characterizations of generators obtained in Section 3.2.4 are consider-

ably simplified by the existence of an invariant state. A typical C*-algebraic
result is the following:

Corollary 3.2.57. Let 6 be a symmetric derivation of a C*-algebra W
and assume there exists a state o) such that w(b(A)) = O,for all A c- D(b), and,
furthermore, the associated representation (.5, -g, Q) isfaithful. Also assume

either R(I 6) = %,

where the bar denotes norm closure,

or 6 possesses a dense set of analytic elements.

It.follows that 6 is norm closable and its closure 5 generates a strongly
continuous one-parameter group of *-automorphisms of %.

PROOF. The derivation 6 is norm closable by Proposition 3.2.26 and its closure is

spatial by Proposition 3.2.28. If H denotes the symmetric operator which implements
j then HQ = 0 and hence 7r(j(A))f2 = iH7r(A)Q for all A e D(j). Either of the two

assumptions then imply that H is essentially selfadjoint (see Example 3.1.21). Thus

applying Corollary 3.2.56 one concludes that 11 (1 + 6) (A) A 11 for all A c- D(6)
and then Theorem 3.2.50 establishes that  is a generator.

The last corollary has a quasi-converse. If W is a simple C*-algebra with

identity and a, is a strongly continuous one-parameter group of *-auto-

morphisms with generator 6 then there exists a oc,-invariant state, co(a,(A)) =
o)(A), A c- 9A. The representation 7r,,, is automatically faithful, because % is

simple, and w(b(A)) = 0, A c- D(b). The existence of w follows by taking a

mean value of a family of states w,(A) = (o0(x,(A)) and this exploits the

weak *-compactness of the states of %
This corollary has an obvious analogue for von Neumann algebras but in

this latter case one can obtain even stronger results.

Proposition 3.2.58. Let 6 be a spatial derivation ofa von Neumann algebra
TZ implemented by a symmetric operator H and assume that 9Y has a cyclic
vector Q such that HK2 = 0. Further assume there exists a *-subalgebra
Z 9 D(b) such that

(1) Z is strongly dense in 9R,
(2) b(Z) 9 Z,
(3) M consists of analytic elements for H.

Itfollows that H is essentially se?/adjoint and its closure F1 satisfies

e"t'9Xe-"ff = 9Y, t c- R.

PROOF. The set ZQ is a dense set of analytic elements for H and HIM - ZQ.

Therefore H is selfadjoint (see Example 3.1.21). Next note that the automorphism
property follows from
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because one then has

tH UH M itH RH M 0e' Ae-
, A] = e [A, e- A'e ]e-[

for all A c- 9JI and A'c- 9JI'. Now for A, B, C e Z and A'c- 9JI' define g by

g(t) = (BO, [A, e-" A'e"ff]Cn).

By cyclicity of K2 and the density of Z it suffices to Prove that g(t) = 0 for all the pos-
sible choices of A, B, C, and A'. But

g(t) = (e" 7A'IBQ, A'e" 'M) - (e" IBQ, A'e" 'ACQ)

and hence g is analytic by the special choice of A, B, C. One now calculates

d"9 - (n) )k -kCQ)- (0) = Y_ ((iH A*ffl, A'(iH)ndt' k=0 k

(n) ((iH)n - kBQ, A'(iH)kAM)kk=O

(n) (A'*Q, 6k(B*A)b" - k(C)Q)
k

(n) (A'*Q, 6-k(B*)bk(AQK2)
k=o k

(A'*Q, 6"(B*AC)Q) - (A'*K2, 6"(B*AQK2)

= 0.

Thus g(t) = 0 by analyticity and the automorphism property is established.

The above proposition emphasizes properties of the analytic elements of
the implementing operator H but in the remaining analysis of spatial
derivations and invariant states the properties of the ranges R(I + iH) will
be of greater importance.
There are two cases of particular significance in physical applications to

the description of dynamics or the description of symmetries.
The first case typically occurs in connection with ground state phenomena.

The operator H is interpreted as a Hamiltonian, or energy, operator and is
positive either by assumption or construction. The eigenvector K2 then
corresponds to the lowest energy statb of the system, i.e., the ground state.
The second case does not necessarily involve the interpretation of H as a

Hamiltonian and it is no longer supposed to be positive. One assumes,
however, that the eigenvector 92 is both cyclic and separating for the von

Neumann algebra. This situation occurs in the usual description of finite
temperature equilibrium states in statistical mechanics.
We next examine these two cases and derive various criteria for the deriva-

tions to be generators of automorphism groups. Although both cases have
their own special characteristics the f6llowing result emphasizes a unifying
feature.
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Theorem 3.2.59. Let 9A be a von Neumann algebra, on the Hilbert space

.5, with cyclic vector Q and 6 a spatial derivation of 9Y implemented by a

selfadjoint operator H such that Q c- D(H) and HO = 0.. Let D(6) denote
the set

D(b) = {A; A c- 9JI, i[H, A] = b(A) c- 9RI

and assume that D(6)Q is a corefor H. Further assume that

either H > 0

or Q is separatingfor M.

Thefollowing conditions are equivalent:

(1) e
UHMe-M= 931, t c- R;

(2) eitHgy + Q g9N
, Q, t c- R;

(3) eitHgA + Q- 9A+ Q, t c- R;
(4)
(5)
(6) (1 + iH) - 'M

+
0 g 9JI +

(The bar denotes weak (strong) closure.)

PROOF. Several of the implications are obvious and independent of the particular
assumption. For example, (2) =:> (3) and (4) =:> (5) => (6) trivially. But HKI = 0

implies eitHQ = Q and condition (1) ensures that

eitH9N
-, e-

UH 9jj
+

Therefore (1) => (2). Condition (1) also gives

dt e-'e T- itH9A e+ UH -- D(3),

and application of this relation to Q gives

(I + iH) - 19R
,
Q g D(j) ,

Q.

Thus (1) => (4). Next note that condition (6) and a simple application of the Neumann

series for the resolvent U + iocH)- 1
ensures that

(I + bxH)-1TI+Q - 9JI+Q

for all a c- R. Therefore one has

itHgn
+
fj =e lim (I - Mln) - n9X

+
Q 9; 9N + 0,

n-.

i.e., (6) => (3).
The proof is now completed in both cases by establishing that (3) =:> (1). This is

the only point at which the core assumption is important. The two cases are handled

by distinct arguments and we first consider the case H > 0.
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Case H  !! 0, (3) => (1). Let A C- 9ka, A' c- and define a function g by

g(t) = (A'Q, U, AD),

where U, = eitH
.
The positivity of H ensures that g has an analytic extension to the

upper half-plane.
9(tl + it2) = (A'92, U,,e- t2HAn).

Further, one has for t c- R

g(t) = (A'n, U, An)

= lim (A.Q, B, Q)
n-oo

= Iim (B,, Q, AQ)
11 - 1'1 

(U, An, A'10) = g(t),

where the B. C- 9Rsa are chosen such that B,, Q converges to U, An. Such a choice is

possible by condition (3). Thus g is real on the real axis and the Schwarz reflection

principle assures the existence of an entire function (b such that (5(z) = g(z) 0(f)
for Im z > 0. One now has

I O(z) T9(f An A'Q

for Im z > 0 and hence T9 is constant by Liouville's theorem. In particular, g(t) g(O)
gives

(AQ, U -, A'Q) = (AQ, A'n)

for all A C- 9ka and A' c- 9R',,,. But each element A c- 91, or M, has a decomposition
of the form A = B + iC with B, C c- 9W,_ or 9Rs'a. Thus this last relation is valid for
all A c- 9R and A' c- W, and the cyclicity of 0 for 9W then yields

U
- t
A'Q = A'Q

for all A'e 9JI'. In particular, A'n c- D(H) and HA'Q = 0. Now if A c- D(b) and

 c- D(H) then A0 c- D(H). Thus AA'Q c- D(H) or, equivalently, A'AQ c- D(H). It

follows that

HA'AQ = HAAn

= [H, A]A'Q
= A'[H, A]Q
= A'HAQ.

Now A' is bounded and D(3)Q is a core for H. Therefore one *has

HA'0 = A'Ho

for all 0 c- D(H) and hence

(eitHA' - A'eUH) ds e
i H [H, A']e'(' -  )H = 0.

This implies U, c- 9W and consequently U, 9WU,* = 9W.
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Case Q separating, (3) => (1). We will establish the desired implication indirectly
by arguing that (3) => (6) => (5) => (4) => (1). The first step again uses the Laplace
transform

(I + iH)-'M,92 dt e 'e T itHgA +0   - 9N, K2.

The second step follows immediately from application of Lemma 3.2.19 to the

operators T+ = (I + iH) - 1. The crucial third step in this proof is to deduce that

(5) => (4). For this we first remark that by decomposing a general A C- 9W as a super-

position of positive elements one deduces that

(I + iH) AQ BQ

implies that

(I + iH) - 'A *Q B*Q.

Next choose A c- 9JI+ and C = C* c- D(6). Introduce B by

(I + iH)-'AE2 = BQ

and remark that

Thus CBQ c- D(H) and

where

Hence it follows that

i.e., BCQ c- D(H) and

6(C)BQ + C(I + iH)BQ = (I + iH)CBf2.

(I + iH) - 'FK2 = CBQ,

F = 6(C)B + CA.

(I + iH)-'F*K2 = BCQ

(I + iH)BCQ = ACQ + B6(C)Q.

This last relation may be rewritten as

i(HB - BH)CQ = (A - B)M.

This last equation extends linearly_ to nonselfadjoint C c- D(6) and then it follows
from Proposition 3.2.55 that B c- D(6) +, i.e., (I + iH) - 'M

+
Q g D(3) +

Q.

Applying an identical argument to (I - iH)-' one concludes the validity of
condition (4). Now to deduce condition (1) we again remark that each element
of T1 is a linear superposition of four positive elements and hence (4) implies

I + iH) - '9JI0 D(6)Q
Therefore

9AK2 g (I + iH)D(6)92 = (1 3) (D(3))Q 9 M.

As Q is separating this last condition is equivalent to

(I + 6) (D(6)) = 9R.
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But by Corollary 3.2.56 the spatial derivation 6 is a(9W, M.)-closable and

I(I + 0)(A)II  !! 11AII

for all A c- D(S) and ot c- R. Combining these conditions one first concludes that the
resolvent (I + is u(931, 9JI,)-continuous, therefore 6 is U(9w, 9w*)-closed, and
then condition (1) follows from Theorem 3.2.51.

In the course of the above proofwe actually established somewhat more for
the case H  ! 0.

Corollary 3.2.60. Adopt the general assumptions of Theorem 3.2.59 and
further assume H > 0. Thefollowing conditions are equivalent:

(1) e
itH9JIe -UH = 9W, t c- R;

(2) e'tH C 9jj' t c- R;
(3) e'tHA'Q = A'-Q, A' e W, t e R;

(4), (4) e'tHgjq
sa

92 c (e'tHgjlsa Q  9JIsa Q), t e R.

PROOF. Clearly (1) => (4) => (4) but in the proof of the implication (3) => (1) in
Theorem 3.2.59 we actually established that (4) => (3) =:> (2) =:> (1).

The conditions given in this corollary are typical of the ground state
situation H > 0 and conditions (2) and (3) are certainly not true in the case

that 92 is separating.
Next remark that if we assume that Q is separating in Theorem 3.2.59

then the equivalences (1) -:::> (4) and (2) -t> (3) <,> (5) -t> (6) do not use the
assumption that D(6)Q is a core for H. Moreover, without this assumption
any of the equivalent conditions (2), (3), (5), (6) implies, by Theorem 3.2.18,
that the mapping A e TI, => a,(A) c- 9W, defined by

eUHAK2 = a,(A)n

extends to a one-parameter group of Jordan automorphisms of 9W. If M is a
factor, or if 9W is abelian, then these automorphisms are automatically
*-automorphisms by Corollary 3.2.13 and one has

a,(A) = e
UHAe- UH

For general 9W the core condition is, however, crucial in the deduction that
at is a group of *-automorphisms. One can indeed establish, by construction
of counterexamples, that the core condition cannot be omitted. On the other
hand, the following theorem (Theorem 3.2.61) demonstrates that the core

condition is almost sufficient to establish the automorphism property without
the assumed invariance of 931 , Q under e

itH
.
The theorem extends Theorem

3.2.59 in the case that K2 is separating. Note that it is not explicitly assumed
that 6 is a-weakly densely defined.
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Theorem 3.2.61. Let M be a von Neumann algebra, on a Hilbert space Sn',
with a cyclic and separating vector Q. Let H be a se fadjoint operator on .5 such
that H92 = 0 and define

D(6) = JA c- 9X; i[H, A] c- 9XI.

Let A be the modular operator associated with the pair (9X, 0), and let .5#
be the graph Hilbert space associated to A 112

. Thefollowing conditions are

equivalent:

(1) e'tHMe -M
= 9N, t c- R;

(2) (a) D(6)Q is a core for H,
(b) H and A commute strongly, i.e.,

A"HA -'s
= H, s e R;

(3) the restriction ofH to D(b)Q is essentially selfad oint as an operator
on

Remark-The graph Hilbert space S-)# is defined as the linear space D(A' /2)
equipped with the inner product

(0, (p) = (A 1/2 0, A1/2 (p) + (0, 9).

Since 9XQ 9 D(A 1/2), it follows that the restriction of H to D(6)Q is a bona

fide operator on .5# because

D(6)Q

iHD(6)Q 6(D(b))K2 - 9XQ 9

where 6(B) = i[H, B] for B c- D(6). This restriction is a symmetric operator
on .5#, because if J is the modular involution associated with Q and S
jA1/2 then

(AQ, HBQ)# = (AQ, HBO) + (A 1/2AQ, A1/2(_ i6(B))Q)
= (HAK25 BK2) - i(Sb(B)Q, SAK2)
= (HAQ, BQ) - i(b(B*)f2, A*K2)
= (HAQ, Bf2) - (HB*Q, A*Q)
= (HAQ, BK2) - (B*.Q, HA*Q)
= (HAQ, BQ) + (A 1/2HAQ, A1/2BQ)
= (HAK2, BK2)#

for all A, B c- D(b). Hence statement (3) makes sense.

PROOF. We will prove (1) => (3) => (2) => (1). The hard part of the proof, (2) => (1),
will require some results on modular automorphism groups which will be derived

subsequently in Section 5.3.

If (1) holds then it follows from Proposition 3.2.55 and Theorem 3.2.51 that

(I + iaH)D(6)K2 = R(I + ocb)K2 = 9JIQ

for a c- R\{01. But 9JIQ is a core for S = JA 1/2 and hence 9JIQ is dense in .5,. As the

restriction of H to D(6)Q is symmetric on .5#, by the preceding remark, it follows

from Example 3.1.21 that H is essentially selfadjoint on D(b)Q as an operator on .5 # .
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(3) => (2) Condition (3) implies that (I + iocH)D(6)n is dense in .5, for oc c- R\{01,
and then (I + iaH)D(6)Q is dense in S5. with respect to the usual norm, i.e., D(6)K2
is a core for H. Since b(A*) = b(A)* for A c- D(b), we then obtain

(I + iaH)S = S(I + iaH) 

for  e D(6)Q and a c- R\ f01, where S = JA 1/2
.
Thus

S(I + iaH) - 'q = (I + ioW) - 'Sq

for all q c- (I + iocH)D(b)fl. But condition (3) implies that (I + i(xH)D(6)t2 is dense
in D(A' /2) = D(S) with respect to the graph norm of A1/2

.
Hence

S(I + icxH) q (I + icxH) - 1 Sq

for all ?7 c- D(A' /2), i.e.,

S(I + RxH) (I + iocH) - 'S

for any a c- R\ f0}. Thus S commutes both with (I + icxH) and its adjoint
(I - iLxH)-', and hence the components J and A 1/2 of the polar decomposition of
S commute with (I + iaH)-'. In particular, A commutes strongly with H.

(2) =:> (1) If 3 is the generator of the one-parameter group t F-+ T, on Y(.5)
defined by

itH itH, - Y(.5)5 t c- R,T,(A) = e Ae- A c-

then it is enough to show that

for all a e R\{Oj, because

(I + 'Xj) - 1

t
Tt(A) = lim I - - (A)5.-.( n

where the limit exists in the u-weak topology by Theorem 3.1.10, and this implies
that Tt(M) g M for all t c- R. As 6 is a-weakly closed, it is therefore enough to show
that

R(I + ocb) -= (I + a6) (D(b))

is a-weakly dense in M for all ot c R\ f01. If t F-+ a,' is the modular group associated
with M we define the centralizer 931,, of the state (o(A) = (Q, Afl) as follows:

M. = JA c- M; u,(A) A, t c- RI
= {A c- M; w(AB) (o(BA), B c MI.

(The equivalence of the two definitions of 931,, is easy to establish but for systematic
reasons we defer the proof to Proposition 5.3.28.)
The theorem is now a consequence of the following lemma in the case that 0-) is a

trace state, i.e., a)(AB) = a)(BA) for all A, B c- M.

Lemma 3.2.62. Adopt the hypotheses of Theorem 3.2.61, together with
Condition (2), parts (a) and (b). Itfollows that

9W. g R(I + a6), a e R\101.
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PROOF. We start by proving that (9X,, r) R(I + ab))Q is dense in 9R,,Q. Since

D(6)Q is a core for H, the space

R(I + ocb)n = (I + i(xH)D(6)Q

is dense in .5. Let A c- M,,, and let e > 0. Choose B c- R(I + a6) such that

JlBQ - AQll < e.

Let M be an invariant mean on the continuous, bounded function QR) from R to

C, i.e., M is a state on QR) which is invariant under translations. Then there exists

(see remark to Proposition 4.3.42) a net f Ai', ti'; i = 1, . . . , n,,I,, such that Ai'   ! 0,
Ai' = 1, ti'c- R, and

n,,

M(f) = li!n Y Ai'f(ti.)
i=1

for all f c- CJR). Now, M defines a projection (D from 9JI onto the centralizer 9JI,,, by

(P((D(C)) = M(9(a'(0))

for all C c- 9JI,  o c- 9JZ* .
The existence of (D(C) follows because 9  --* M(9(a'(Q) is a

continuous linear functional on the predual 9X* of 9JI, and 9JI = 9JI**.
Now as A'tHA - "

= H for all t c- R, it follows that R(I + ab) is invariant under

c,', and as R(I + a6) is a-weakly closed it follows that

n,,

(D(B) lim A,'a,".(B) c- R(I + ab).

Moreover,

n,,

Ai'a,7(B - A)Q

Ai'A"4(B - A)Q

II(B - A)Qll < e

for all a, and hence

II(D(B)O - Anil < e.

Therefore (9Y,, n R(I + a6))Q is dense in 9JI.Q.
Next let A A* c- 9JI,,. We can find a sequence An c- R(I + ocb) n 9N. such that

ll Ann - An ll 0. But as Q is a trace vector for 9JI,_ we also have

A *n - Anil = IlAn*n - A*nll = IlAnn - Anil --), 0-

Hence, replacing An by (An + An*)/2, we may assume An = An* c- R(I + a6). Let

Bn = Bn* EE D(6) be such that

An = (I + a6) (Bn).

As A and H commute strongly, we have a,' o 6 = 6 o u,' and therefore Bn c- Tl,,, . Also,

Bnn = Y + iocH) - 1 Ann _+ 0 =_ (I + iotH) - 1 An.
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Since n is separating for Tl,,, it is cyclic for 9J(,', and for each A' c- 9W.' one has
B,, A'92 = AB,, 92 --+ A'O. Thus the graph limit of the sequence fB,, I has dense domain.
But because B,, is selfadjoint ll(I + iB,,)-'Il < 1, and Lemma 3.1.27 establishes that
the graph limit is an operator B.

Now, define 92,, (1 + iB,,) - 'n and note that

11 (1 + iB,,) - 1 (B,, - B(I + iB,,) - 'f2

I I (B,, - Bj(I + iB,,,) 192 11

= 11 (1 T iB )- '(B,, - B )Qll
< I I (B,, - B,,,)D 11,

where the third step uses the trace property of 92 on M,,,. This implies that K2,, is a

Cauchy sequence and hence the identity

(I + iB,,)A'f2,, A12,

which is valid for A'c- implies that R(I + iB). But it then follows from
Theorem 3.1.28 that B is selfadjoint, and e"'- -+ e"' strongly, uniformly for t in
compacts. Hence if X is an infinitely differentiable function with compact support, it
follows from the expansion

(X(B,,) - X(B)) fdt 2(t) (eitB,, _eUB) 

that X(B,,) -4 X(B) strongly. Let f be a function such that f X. As B,' C- D(b) it
follows from Theorem 3.2.32 that f(B,,) c- D(b) and

6(f(B.)) dp 2(p) dr eirpB,,b(B,,)e'(1 - r)pB,,.

The trace property of Q on M,, then implies

0 (B,,))Kl)

= 0, f dp 2(p)eipB,,6(B,,)Q

= (0, X(B,)b(B,,)L1)-

But because A,, = (I + ab) (B,,), this implies

(92, X(B,,)A,,f2) = (K2, X(B,)Bj2).

Hence, taking strong limits,

(f2, X(B)AK2) = (K2, X(B)Bn).

If X is positive, we get the estimate

I (f), X(B)BQ) I = I (X(B) 1/2Q, A (B) 1/2Q) I
I I All (92, X(B)Q).

But as K2 is separating, one deduces from spectral theory that

JIBIJ :!! IlAll.
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Hence we have proved that if A = A* c- 9W,, there exists a B = B* c- 931. such that

BQ = (I + icxH) - 1 AK2.

But as (I + iaH)-' commutes with All' it follows easily from the relation

iHJA1/2C.Q = jAl/2iHCQ,

1/2which is valid for C in the core D(6)Q ofH, that (I + icxH) commutes with S = JA
But then it follows that B c- D(6) and A = (I + ab) (B) by the reasoning used to

prove (3) => (1) in the case that Q is separating in Theorem 3.2.59.

We now extend the previous lemma to general eigenelements for the
modular automorphism group.

Lemma 3.2.63. Adopt the hypotheses of Theorem 3.2.61, together with
Condition (2), parts (a) and (b). IfA c- 9Y and there exists a A > 0 such that

a,'(A) = A"A

for all t c- R then itfollows that

A c- R(I + ab)

for all a c- R\{0j.

PROOF. Let M2 be the von Neumann algebra of 2 x 2 matrices acting on the
212 of 2 x 2 matrices with Hilbert-Schmidt norm I I All 2

Hilbert space S; = jij I Aij 12.
The von Neumann algebra 9'4 0 M2 acts on the Hilbert space 4,62. Let

{Ejjj j, j = 1, 2 be matrix units for M2 and define

fn = K2 (& (Ell + Al/2E22) C_ -5 0 '52

Then n is cyclic and separating for M 0 M2, and the vector functional Co associated
with n is given by

(0(YBjj&Ejj =o)(Bll)+A(o(B22)
ij

for B = Yij Bij (& Eij c- 9M 0 M2
If a ' is the modular group associated to Co, it is easy to compute

(B11 B12) u,'(B 11) A - "a,'(B 12)
B21 B22 Pc,'(B21) a,'(B2 2)

for Bij e M. This computation will be carried out explicitly under more general
circumstances in Theorem 5.3.34. In particular, when u,'(A) = A"A we get

a,0'(A & E12) = A (& E12,

i.e., A (D E12 is in the centralizer for Co. Let now 3 be the derivation Of M & M2
implemented by H = H (& L Clearly,

D(R) Y  jj (& Ejj;  jj c- D(H)
ij
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and

 jj 0 Ej) H jj (& Eij
'j 'j

for  jj c- D(H). From this one easily verifies that

D(J) = B Y Bij Ejj; Bij c- D(b)
ij

and

Bij (9 Ejj) b(Bij) (D Eij.
'j 'j

Clearly, n c. D(FI) and RM = 0. Moreover,

D(J)fl = D(6)0 0 '52,

which proves that D(J)fl is a core for FI. From the form of a ' given above one com-

putes that o a, = at 3 and hence iHA" = A"iH, where A is the modular operator
associated to the couple PA 0 M2, KI). Application of Lemma 3.2.62 to 9JI 0 M2,

now gives that A (& E12 c- R(I + A) or, equivalently,

A c- R(I + ocb)

for a c- R\f01.

We now prove (2) <* (1) in the special case that UT'o is inner for some T 0 0.

Lemma 3.2.64. Adopt the hypotheses of 7heorem 3.2-61, together with
condition (2), parts (a) and (b). Assume in addition that there exists a T > 0
and a unitary element U c- 931 such that

UT'(A) = UAU*, A c- T1,

and assume that U c- D(b) with

6(U) = 0.

Itfollows that

e
itHMe- itH

= 9jj

for all t c- R.

PROOF. We first assume U i.e., OT'(A) = A for all A c- TI. Since a' is periodic
it follows from Lemma 3.2.39(4) that the eigenspaces

9JI,, = {A c- 9JI; u,'(A) = e -i(2-IT)tAj, n c- Z,

span a a-weaklY dense subalgebra of 931. By Lemma 3.2.63,

U A - R(I + ab).
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Hence R(I + a6) is dense, and it follows from (*), page 279, that

eitH9Xe -itH
= 9N, t c- R.

Assume next that 07T'(A) = UAU* with 6(U) = 0. Since

(o(UAU*) = ()(6T'(A)) = w(A)

for A c- 9N, it follows that U belongs to the centralizer 9JI. for co. As 9jz,,, is a von

Neumann algebra, there exists an A = A* c- 9A. with A :!5:, 7r such that U = eiA. put

B = e
AIT

Then B is positive with bounded inverse, BiT
= U, and B c- 9N.. Moreover, as

[H, U] = 0, we have [H, Bfl] = 0 for all # c- C. In particular, BO c- D(b). Put

0' = B- 1/2Q.

Since B 1/2 and B- 1/2 are bounded, it follows that Q' is cyclic and separating for 931.

Put w'(A) = (fY, AQ'). As a,'(Bfl) = BO for all t c- R and # c- C, it is easily verified

that

o!,(A) = B-"a,'(A)B't

defines a one-parameter group of automorphisms of 9A, and that w satisfies the KMS

condition with respect to this group in the sense of Definition 5.3.1. It follows from

Theorem 5.3.10 that a = a" is the modular group associated to (0'. But then

'7T"'(A) = B- iT'7T'(A)BiT
= U*(UAU*)U = A

for all A c- M, i.e., u" is periodic. Since B' /2 B- 1/2 c- D(b) we have D(6)Q' = D(6)Q,
and hence D(6)KY is a core for H. As b(B - 0 for all t, and 6 -,7,' = 'g,' - 6 it

follows that 6 - or," = a," - 6, and hence HA` = A"'H, where A' is the modular

operator associated with the pair (9R, Q'). But now it follows from the first part of

the proof of this lemma that

e
itH9Re - itH gy.

We need one more lemma to prove (2) (1) in Theorem 3.2.61. Adopting
parts (a) and (b) of condition (2) of that theorem, let T > 0 be a fixed real

number, and consider the discrete crossed product % = W*(9R'7T-), where

o)(A) = (K2, AQ), A c- 9R. Let 6 be the Hilbert space
oo

n= - x

where S5, n c- Z. Then it follows from Definition 2.7.3 that 91 is the von

Neumann algebra generated by the operators ir(A), A c- D1, and U defined

on .5 by
(7r(A)On = 0'a-) nT(A) n i

WOn =  n-l,

where A c- 9JI and ( Jn C_ 6. Note that U7r(A)U* = 746TAA)) for A c- T1.

Consider the vector c- .5 given by

nn fQ, n 0,

 0, n 0,

and let Co be the positive vector functional on 91 defined by  2.
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Lemma 3.2.65. Let 931 be a von Neumann algebra with a separating and
cyclic vector Q, and define 91,.5, 7r, U, K), and Co as above. Itfollows that

(1) n is cyclic and separatingfor %,
'Fol(2) The modular automorphism group a associated to (D is given by

at"'(7c(A)) 7r(Cto(A)), A e 931,

ut `(U) U,

(3) CTi (B) = UBU*, B c- 91,
(4) The modular operator A associated with K) is given by

(Ai'On = A" n, ( Jn C- 6-
PROOF. (1) Any element A in the algebra %0 generated algebraically by n(V)
and U has the form

A Y_ Un7r(An),
n= -p

where An C_ 9X, Since the maps A e 91, ---), An are a-strongly continuous, and %0 is
a-strongly dense in 91, it follows that any A e 91 has an expansion

A - Y Unn(An), An e T?,
n=-.

which converges in the sense that

A Un7r(AX
n=-.

for all  e 5 with finite support. In particular,

An= U"7r(An)n.
n=-x

Hence (An)n = Anfl, and therefore JjAnjj1 = En =_, JjAn Q112 This proves that
is separating for 91. As 91n contains all vectors ( Jn C_ with finite support for which
 n c- W2 it follows that n is cyclic for 91.

(2) Let t  -4 V, be the strongly continuous one-parameter unitary group on

given by

(VI On A't n.
It is trivial to check that

V,7r(A)V,* n(a,'(A)),
V, UV'* U.

Hence V implements a a-weaklY continuous one-parameter group a of *-automorph-
isms of 91. Now one easily checks that (-o is KMS with respect to a on 91, (see
Definition 5.3.1 and Proposition 5.3.7). But then it follows from Theorem 5.3.10
that a is the modular automorphism group associated with Co.

(3) For A c- 9W we have by (2) that

aT'(7r(A)) = 7'(aT'(A)) = U7r(A)U*

Moreover,

TT(' (U) = U = UUU*-(
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Hence

'7TAB) = UBU*

for all B c- 91.

(4) Let A c- %0, A JP,, P U'7r(A,,). Then, as (An)n = AnQ_ we have by (2)

(A"An)n (6,0'(A)n)n u,'(A,,)Q = A"AnK2.

Hence

 A'f.
n= -   

END OF PROOF OF THEOREm 3.2.61. (2) => (1) Define a selfadjoint operator
FI on 6 by

D(R) = (Qn C- R;  n c- D(H), 1] 11 H n 11 2 < + 00
,

n

(fl )n = H n *

Let be the derivation on 91 implemented by R. We shall prove that 91,
n, ft, 3 and U satisfy the hypotheses of Lemma 3.2.64. Clearly, 0. Since

6 o a," o 6 by (2), condition (b), one has 7r(A) c- D(3) and

3(7r(A)) = 7r(b(A))

whenever A c- D(b). Moreover UF1 = FIU, and hence U c- D(S) with

3(U) = 0.

Therefore D(5) contains all operators of the form

P

Y Un7r(An), An c- D(b).
n=-p

In particular, D(3)n contains all vectors ( ,J c- .5 of finite support for which

 n c D(6)0. Hence D(5)n is a core for fl. Since H commutes with Ai', it follows from

Lemma 3.2.65(4) that R commutes with ail. The same lemma also implies that

is implemented by U, and as [H, U] 0 it follows from Lemma 3.2.64 that

e"'F'91e-"" = 91, t c- R.

Now, let P be the projection from .5 = ( n -5'n onto the zeroth component
.50 = 5. Then for A c- 91, A -Y.

_ c'c'
Un7r(An), we have

-n =

PAP* = Ao.

Moreover,

eitHp = Pe"".

Now choose A c 9JI. Put B = e"hn(A)e - "14
c 91 and let

j Un-

-
7r(Bn), Bn C- 9-0,B

n=-.
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be the expansion of B. Then

eitHAe- itH
= ei1HP7r(A)P*e- itH

= Pe""'7r(A)e -'tRP*
= PBP* = B, c- 9W.

Hence

M itH qj1e Me-

for any t Ei R, ending the proof of Theorem 3.2.61.

Remark 3.2.66. One corollary of Theorem 3.2.6 1, indeed of Lemma 3.2.62,
is that if,

(1) 931 is a von Neumann algebra on a Hilbert space .5,
(2) 92 is a cyclic vector defining a trace on T1, i.e.,

(f), AM) = (Q, BAK2), A, B c- 931,

and,

(3) 6 is a spatial derivation of T? implemented by a selfadjoint operator
H such that H92 = 0 and D(b)fl is a core for H, then it follows that

e
MMe- UH

= 9JI

for all t c- R. Remark that 92 is automatically separating for 9N in this case,
because if A0 = 0 and B c- T? one has

11 AB92 112 = (92, B*A*AB92)
= (92, BB*A*AD) = 0

and the cyclicity of K2 implies A = 0. As A = I in this case, this corollary
follows already from Lemma 3.2.62. The definition of a derivation used in
this corollary can be weakened to allow a mapping A c- D(b) C-- 9A I-

b(A) c- %, where % is the set of operators affiliated with 9W and having 0 in
their domain. For this generalization it is essential to remark that % is
a selfadjoint space such that %9N 91. The selfadjointness follows by ex-

ploiting the trace condition. If X c- and X = U I X I is its polar decomposi-
tion then U c- 931 and I X I is affiliated with 931 by Lemma 2.5.8. But if E,, is
the spectral projector of I X I corresponding to the interval [0, n] then

JJXEJ211 = 111XIEJ211 = 1JEJXJU*Q11 = IIE,,X*Qll

by the trace property of fl. Hence n c- D(X*) and JJX*QJJ = JJXQJJ. Thus 91
is selfadjoint. But it is trivial that 931% -- 91 and hence %T1 c % by self-
adjointness. Therefore the derivation properties

b(AB) = b(A)B + Ab(B), b(A*) = b(A)*
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are well defined. The proof of this consequence of Theorem 3.2.61 needs a

slight extension of Theorem 3.2.59 to establish that the automorphism
property is equivalent to the positivity preserving property

(I + iH)-'9N+Q 9 9N,Q

and in the proof of Lemma 3.2.62 one must calculate 6(f(B)) directly in the
vector state given by Q.

If in Theorem 3.2.61 the algebra 9A is abelian then the conclusion is really a
statement of global existence for a class of first-order differential equations of
the type that occur in the Hamilton-Liouville description of classical me-

chanics. We illustrate this with the following example.

EXAMPLE 3.2.67. Let X be a locally compact Hausdorff space and Y a probability
measure on X. For example, X could represent the phase space of particles in classical

mechanics and p the probability distribution describing their positions and momenta.

If t  --+ T, is a continuous measure-preserving group of homeomorphisms of X then

T, determines a strongly continuous group of *-automorphisms of CO(X) by

(Y., f)W = f(T X)

for f e CO(X). Now realizing CO(X) as a C*-algebra of multiplication operators on

the Hilbert space L'(X; dy) one has

'X'(f ) = U, f U,*,

where t t--+ U, is the strongly continuous unitary group given by

(UM(X) = W'X)

for 0 c- L2(X ; dy). Next choosing Q to be the unit function one has

(off) = (Q, fQ) = f dli(x) f(x)
X

and the invariance condition

Uto = Q.

If 6 is the generator of the group ot, then D(6)  - CO(X) -= L2(X ; dp) and D(6) is

invariant under U, Hence identifying D(6) and D(6)Q one deduces that D(6)Q is a

core for the self-adjoint generator H of U, -

More generally, if t i--+ T, is a group of measure-preserving Borel automorphisms
such that

t F__+ fXdy(x) f(T, x)g(x)

is continuous for all f c- L'(X; dy) and g c- L'(X; dy) then

(a, f)W = f(T X)
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is a a-weakly continuous group of *-automorphisms of the von Neumann algebra
L'(X; dy). As before one has

04f U, fU,

and the generators 6 of cx, and H of U, are such that D(6) (= D(6)0) is a core for H.
Theorem 3.2.61 and Remark 3.2.66 now give a converse statement. If - ib is an

essentially selfadjoint operator from a domain D(b) g; L'(X; dy) to L2(X ; dy) with
the properties

(1) 6(fg) 6(f)g + fb(g)' f, g E D(b),
(2) 6(f) 6(f), f c- D(b),
(3) Q c- D(b)

then the theorem implies the existence of a a-weakly continuous group cx, of *-auto-
morphisms of L'(X; dy). Now considering the Borel sets in X as projections in
L'(X; dy) the group a, determines a measure-preserving automorphism group T,
of X such that

(a, f)W = f(T X)

for all f c- LI(X; dy). Thus Theorem 3.2.61 potentially plays a role in the integration
of the equations of motion of classical mechanics.

Finally, we remark that both (a) and (b) of condition (2) in Theorem
3.2.61 are necessary for the automorphism property. Although the formal
calculation

iHJA' /2A92 = WA*92 = 6(A)*K2 = jAl/2WAK2

indicates that H and A commute the domain problems which arise when
both H and A are unbounded invalidate this conclusion. In fact, if one

drops (b) of condition (2) in the statement of the theorem then the conclusion
is incorrect as the following example shows.

EXAMPLE 3.2.68. Let DO be a unit vector in a Hilbert space .50 and assume the
existence of two von Neumann algebras %, and 912 on .50 such that 91,   912,
911 :A 912, and 0, is cyclic and separating for both algebras. (Examples of this type
abound in quantum field theory where one encounters quasi-local algebras with a

ground state vector which is cyclic and separating for each of the local algebras.)
Let T = R/Z be the circle group equipped with Haar measure and define an action
of T on the von Neumann algebra YQ50) (DYI(T) = L'(Y(.50); T) by

(r'f)(S) = PS - 0

for all f c- LI(Y(.50); T). Let 9J? be the sub-von Neumann algebra consisting of
c- L'(Y(.50); T) such that

%, if 0:!! S <
AS) C-

2t912 if 21 -< S < I

and realize 9A as an algebra of multiplication operators on L2 (f, T) bygo;

UO(S) = f(SX(S)



290 Groups, Semigroups, and Generators

for f e L'(Y(.50); T),  c- .5. Let Q c- .5 be the element given by

92(s) = 920

for all s c- T.. Then Q is separating and cyclic for 9A. Moreover, U(t) (s) =  (s - t)
defines a unitary representation of IF on 5 such that

T'(f U, fU,

forf e L'(Y(.50); T) and U,Q = Q. Let 3 be the infinitesimal generator of 'r, and
iH = 1 0 (-dldt) the generator of U, Then D(S) consists of the Hblder-continuous
functions from T into Y(.5), where -99(-5) is equipped with the norm topology.
Define 6 on 9JI as where

D(b) = ff; fc- D(S) r) M, 3(f) c- 9A 1.

Then 6 is a a-weakly densely defined derivation on 9A such that

6(f [iH, f
for f c- TZ.

Now D(6)Q contains the set D of all of the form s F--+ f(s)Q,, where s  -4 f(s) is
H61der continuous and f(s) e 911. As U(t)D = D, D is a core for H by Corollary 3.1.7,
and hence D(6)n is also a core. But clearly, U, T?U,* 0 T? unless t e Z.

3.2.6. Approximation Theory for

Automorphism Groups

In Section 3.1 we distinguished between three different aspects of stability
of one-parameter groups of automorphisms. We discussed convergence
theory, perturbation theory, and approximation theory. All the results of
Section 3.1 apply to one-parameter groups of *-automorphisms oftopological
algebras and the algebraic structure contributes no essentially new feature
to the first aspect ofstability, i.e., convergence. In Section 5.4 we discuss various
algebraic refinements of the time-dependent perturbation series and in this
section we show how the results ofSection 3.1.5 can be considerably sharpened
for a-weakly continuous one-parameter groups of *-automorphisms of von
Neumann algebras. Recall that these groups are CO*-groups of isometries,
by Corollary 2.3.4 and Theorem 2.4.23. In particular, Theorem 3.1.38 can be
applied for the comparison of two such groups that differ in norm by O(t).
The next result strengthens the conclusion of the latter theorem.

Proposition 3.2.69. Let ot, fl, be a-weakly continuous one-parameter
groups of *-automorphisms of a von Neumann algebra 9N, with generators
6,, and 6p, respectively. Thefollowing conditions are equivalent:

(1) Ila, - #jj = O(t) as t -+ 0;
(2) D(6,,) = D(bp) and there exists a bounded derivation 6 of 9Y such that

6,,(A) - 6p(A) = b(A)

for all A c- D(6,,) = D(bfl).
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Remark. From the proof of this proposition and Corollary 3.2.47, it follows
that I 16 11 = lim, 0 11 oe, - fl, I I / I t 1. Moreover, there exists an H = H* C- 9W
such that IIHII 11611/2 and b(A) = i[H, A]. Note that an elaboration of

Example 3.1.39 shows that the theorem is false for C*-algebras, even for

simple C*-algebras with identity.

PROOF. It follows from Theorem 3.1.38 that (2) = > (1) and that (1) implies
D(6,,) =1 D(6p) and 6,, - 6# is norm bounded on D(bj. But 6,, - bp then extends by
continuity to a bounded derivation 6, from the C*-algebra _b_R,)11'11 into 9R Prop-
osition 3.2.24 then states that 6, has a a-weakly closed extension 6 to 9Y with 11611
116011.

We will now consider more general approximations than the 0(t) case,
and we first study the case of unitary groups on Hilbert spaces. In this case

Theorem 3.1.36 can be improved.

Proposition 3.2.70. Let U, = expfitHj and V, = expjitKj be strongly
continuous unitary groups on a Hilbert space .5. Thefollowing conditions are

equivalent:

(1) there exists el > 0 and 61 > 0, such that

U, - V, /2 - 61

for 0 :!! t :!! 6 1

(2) there exists '62 > 0, 62 > 0, a bounded se4Wjoint operator P, and
a unitary operator W such that

H = W(K + P)W*

and

W* U, W - U, ,/2- - '62

for all 0 < t < 62 -

If these conditions are satisfied, then W may be chosen as the unitary part
of the polar decomposition of

ds U, V,f,61 0

and W satisfies the estimate 11 W - III < /2- - el. Moreover,

W* U, W - U, V, - U, 11 + 0(t)

and

W* U, W - V, 0(t)

as t -, 0.



292 Groups, Semigroups, and Generators

PROOF. First note that (2) => (1) follows essentially from Theorem 3.1.36.

(1) => (2) Some results on the numerical range of an operator are needed. We recall
that if A is a bounded operator on a Hilbert space .5 then its numerical range W(A)
is the subset of C given by

W(A) A c- q1 I I = t 1.

It can be shown that W(A) is a convex subset of C whose closure contains the spectrum

a(A) of A, and if A is normal, i.e., if A*A = AA*, then W(A) is just the convex closure
of a(A). The sector S(A) of A is defined as the closed cone generated by W(A), i.e.,

S(A) =  (O, A 0); 0 c- -51.

For bounded A it is also known that if the partial isometry U in the polar de-

composition A = U I A I is unitary then a(U) g S(A).
Now, assumption (1) implies by spectral theory that

W(U, Vj g jz; z c- C, I z I < 1, Re > /2 r, r,2/21

when 0 < t < 6, Define

Q ds U, V_ -

As the last set above is convex, it follows that

W(Q) z; z c- C, I z 1, Re z   !  /2 e E 2/21.

In particular, 0  W(.Q) 2 a(Q), i.e., Q is invertible with bounded inverse Q By
the proof of Theorem 3.1.36 one has

Hence

I U, K2 V_' - K2 0(t) V, f2* U Q*

11 V'f2*QV_' - Q*f2II jj(VtK2*U_')(U'QV_') - Q*QII

IIVtQ*U_' - Q*11 IIU,QV-,Il + IIUQV-, - QII = 0(t).

By Proposition 3.1.23, it follows that I Q 12 lies in the domain of the derivation which

generates the automorphism group, of Y(.5), implemented by V, It then follows

from Corollary 3.2.3 3 that IQ I - ' lies in the domain of this derivation. Hence

VtIQI_1V_t - IQI_111 = 0(t).

Now, defining W as the unitary part of the polar decomposition of Q, one has

W= QIQI-' and

1IU1WV_t - Wil = 1I(U1f2V_XV1IQI_1V_) - QIQI_111
= IIUIQV-l - QII IIA-111 + 1IQII 11V1IQI_1V_1 - K21-111
= 0(t).

Next introduce WV, W* and note that

Ilut - C11 = 0(t).

It follows that the generators iH and WiKW* differ by a bounded skew-adjoint
operator (Example 3.1.40). This establishes the relation between H and K.
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Next note that

W* U, W - V, 0(t)

since W*iHW - iK = W is bounded. Moreover, the relation

Ut - Vt = Ut - W*Utw+ W*Utw- vt

allows one to conclude that

Ut - V, U, - W*U, W + 0(t).

Finally, since

S(O) g; Iz; z c- C, Re z > (,/2-81 - e,2/2)1 Im z I I

it follows that S(W) is contained in the same cone. Hence a(W) is contained in this

cone,and

W - III :!! /2- - e,

Our next aim is to derive an analogue of Proposition 3.2.70 for a-weakly
continuous automorphism groups of a von Neumann algebra. The above
result for unitary groups will be necessary for this derivation but we will also

need three other types of preliminary information of which at least two have
interest in their own right. Firstly, we consider the relation between two

automorphisms ofa von Neumann algebra which are close in norm. Secondly,
we derive a measure theoretic result, and thirdly, a cohomological result,
for joint unitary implementability of two groups of automorphisms.

Since an automorphism of a von Neumann algebra 9M is an isometry
we have Ila - flII = Ilafl' - ill for any pair of automorphisms a, fl. Hence
it suffices to consider the single automorphism afl' when studying implica-
tions of closeness in norms. Clearly 11 a - 111 :!! 11 a 11 + 11111 = 2 and it is

remarkable that if Ila - ill < 2 then a is inner. As a consequence the set

Inn(931) of inner automorphisms of 9N is just the connected component of 1

in the set Aut(9JI) of automorphisms of 9JI, when Aut(TI) is equipped with the

norm topology.

Theorem 3.2-71. Let a be an automorphism of a von Neumann algebra 9JL
and assume that

Ila - ill < 2.

Itfollows that a is inner.

Moreover, there exists a unitary operator U c- 931 implementing a such that
the spectrum of U is contained in the hay--plane

Iz;Rez> -2"(4- Ila- ill 2)1/21,

i.e., one has the bound

U - I f2(1 - .,/l - 11 ot _ 1 Il2/4)11/2.
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Remark. The condition on the spectrum, or on the norm, of U can be re-

interpreted more geometrically as saying that a(U) lies on the arc of the unit
circle symmetric about 1 with endpoints midway between I and the points
at distance a - i from 1. In fact the estimate on U - I is the best

possible.

We will not prove Theorem 3.2.71 here, but only remark that if a - I < '/3-,
one can show, using Lie algebra techniques, that 6 = log a, defined as a

contour integral, is a derivation of 9A. It follows by Corollary 3.2.47 that
b(A) = [H, A] for some H c- 9Y and hence a(A) = exp(b) (A) = eAe

- ". If
U is the unitary part of the polar decomposition of e" one then shows easily
that a(A) = UAU*.
To prove the theorem for lla - ill < 2 and to obtain the estimate on

U - 111 a less straightforward approach is needed (see Notes and Remarks).
If a, # are u-weakly continuous one-parameter groups of automorphisms

of a von Neumann algebra 9Y, and lla, - fl,11 < 2 for small t, then it follows
from Theorem 3.2.71 that y, a is inner for small t, and hence by iterating
the cocycle identity,

Yt + S Yt(at YS a - t),

y, is inner for all t. Thus for each t there exists a Wt c- 9Y such that fit(A)
W, at(A)Wt*, A c- 931. We would like to choose t  --+ Wt in such a way that if
t  --> U, is a strongly continuous unitary representation implementing a

then t F-> Wt Ut is a strongly continuous unitary representation, which
automatically implements fl. In particular, we want

Wt + " Ut + Wt U, WS U.,

or, equivalently,

wt+s Wtat(ws.)-

As a first step, we prove that t i--> Wt can be taken to be a Borel map.

Proposition 3.2.72. Let at, fl, be a-weakly continuous one-parameter groups
Of *-automorphisms of a von Neumann algebra 9A with separable predual
9X* . Suppose that there exists 0 :!! s < 2 and 6 > 0 such that

lifit - atll < B

whenever I t I < 6. Itfollows that there exists a Borel mapping t 1-- Wtfrom R
into the unitary group 'W(9ft of 9N, such that

flt(A) = Wt at(A) Wt* A c- T1, t c- R,

and

Wt - 111 < {2(l "IF1 _ E2/4)11/2
for Itl <
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PROOF. The existence for each t of a W, with the given properties follows by the
remarks before the proposition, and we must explore the Borel property. RecaIl
that a topological space is called Polish if it is homeomorphic to a complete separable
metric space. A subset of a Polish space is analytic if it is the continuous image of a
Polish space. We will need the following two results:

(1) if X, and Y, are analytic Borel spaces, andf, is a one-to-one Borel map of X,
onto Y, then f, is a Borel isomorphism;

(2) if X2 is a Polish space, Y2 a Borel space, and f2; X2  _" Y2 is a function onto

Y2 such that

(i) the inverse image byf2 of each point in Y2 is a closed set in X2
(ii) f2 maps open sets into Borel sets,

then it follows that there exists a Borel function g; Y2  __' X2 such thatf(g(y))
y for all y c- Y

(see Notes and Remarks). The function g defined by the second statement is called a

Bore] cross section.
We will apply these theorems to X2 equipped with the strong* topology

(which is equivalent with the weak, and the strong, topology by a simple argument).
As 9N* is separable it follows immediately that X2 is a Polish space. As any auto-

morphism of 931 has an adjoint in 9JI* (Theorem 2.4.23), we may view the group
Inn(M) of inner automorphisms of 931 as a subset of the bounded linear
operators on 9M, Equip Y(9JI*) with the topology of pointwise norm convergence
and then the canonical map f2; X2  _4 Y2 =- Inn(M) is continuous, so (i) of condition
(2) is satisfied. To establish (ii) of condition (2) consider first the quotient map
f3; &(931)  -4 11&(9M)/,1&Q), where VQ) is the group of unitary operators in the center

3 = 931 r-) 9JI'. We equip 0&(9J1)/,1&(3) with the quotient topology; f3 is then continuous
and open. In particular, X, is an analytic Borel space. As Y, a Y, EE

Inn(TI) = f2(1W(9J1)), the set Yj is an analytic Borel space. As the canonical map fl;
X 1

= 1&(9M)/11&Q3) F-+ Yj -= Inn(TI) is continuous and one-to-one, it follows from
(1) thatf, is a Borel isomorphism. Sincef3 maps open sets into open sets andf, maps
open sets into Borel sets, f2 = f, - f3 maps open sets into Borel sets. Hence J2 satisfies
(i) and (ii) of (2). As t  --+ a, is a-weakly continuous, t i-+ a,* G is weakly, and
hence strongly continuous by Corollary 3.1.8. Thus o-4(fl,aj* = a*,#,* is con-

tinuous in the topology of pointwise norm convergence in Hence, by state-
ment (2) above, it follows that there exists a Borel map t c- R F-+ W,c- V(Tz).such that

fl, a (A) = W,'A W,*, A c- 9N, t c- R.

To obtain the estimate on W, we repeat the reasoning above with

Y2 = Yj = Inn,(M) = fcl;a c-Aut(9ft Ila - ill :!! sj,
X2 = '&J9-n) U; U C_'&MO, 11 U - Ill :!! - El,

where s' = {2(l -  ,/l - .62/4)1 1/2
.
Then Y2 is a closed subset of Inn(TI), X2 a

closed subset of 'W(M), and by Theorem 3.2.71 and the subsequent remark one has

Y2 = J2
*

V2). Applying statement (2) once more, we find a Borel map t C-

W
. C such that W," implements for each t. Definingt

W,
Wt" for Itl < 6

W,' for It I > 6,

the proposition follows immediately.
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We next aim to modify the map t  -, W, obtained in Proposition 3.2.72

so that after the modification, t  -* W, satisfies the one-cocycle relation

W, , "
= W"X'RD-

We have encountered a similar result earlier in Theorem 2.7.16, and there

exist other versions of this theorem, which are also interesting when a, = i

for all t (see Notes and Remarks).

Theorem 3.2.73. Let 9M be a von Neumann algebra with separable predual
9JI*, and let ot, # be two a-weakly continuous one-parameter groups of
*-automorphisms of 9M. Assume there exists 6 > 0 and 0.47 ,/71/18 >
e > 0 such that

11flt - a,11 < e when Itl < 6.

It follows that there exists a a-weakly continuous map t c- R F, c- 0&(931)
such that

11,,x,(1Fs), t, s e R,

#,(A) 1F,a,(A)F,*, t c- R, A c- 9J1,

111F, - 111 < 10{2(l _ /I _ g2/4)1 1/2

= 5e + 0(g2) for I t I < 6/4.

PROOF. By Proposition 3.2.72, there exists a Borel map t c R F-+ W, c '&(M) such

that

flt(A) = Wtat(A)Wt*1 A c- 9A, t c- R,

and

11w, - III < E,

for I t 6, where 8,2 = 2(1 - /1 0/4). Now, define

Z(S' 0 W'74W'K' 

Then

z(s, t)Az(s, t)*
= A.

Hence z(s, t) e VQ), where 3 = TZ r- 9JI'. Also, by a straightforward computation,
(s, t) c- R2  _4 Z(S' _t) C 0&(3) is a two-cocycle, i.e., satisfies the identities

Z(S' 0) = Z(0' t) = 1,

Z(S' t)z(s + t' U) = ots(z(t' U))Z(S' t + U)

for all s, t, u c- R. Note in passing that t  -* W, is a one-cocycle if, and only if, z(s, t) = I

for all s, t. We are going to modify W, to obtain this condition.

From the definition of z we immediately obtain the estimate

z(s, t) - 111 < 3E' for Isl + Itl < 6.
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Define t c- R F-4 A, c-1&(3) inductively by

 6/2-(t+.)  6/2-,.z(6/2 - n, 6/2 - t)

for 0 < t < 1, n c- Z. Next define z(s, t) by

AS, 0 = A."X.'R)z(S' OAS+'t

for s, t c- R. It follows that z' is a two-cocycle, and s, t  -+ z(s, t) is Borel. Now
z'(6n12, bt/2) = 402 OC6./2( bt 12)A nl ,

but 4/2 = I for 0 < t < 1. Hence6n12I

Ap, t) = I for 0 < t < 6/2, p c-
6
Z.

2

If 0 :!! s, t < 6/2 and s + t < 6/2 then z(s, t) = z(s, t). If 0 :!! s, t :! 6/2 but s + t >

6/2 and A, + t
= z(6/2, s + t - 6/2) and z'(s, t) = z(s, t)z(612, s + t - 6/2) There-

fore 11z(s, t) - 111 :!! 3E' for 0 :!! s, t < 6/2 implies

z'(s, t) < 6s' for 0 :!! s, t < 6/2.

In order to proceed we need the following lemma.

Lemma 3.2.74. (a) If z is a two-cocycle such that

z(s, t) = I for 0 :!! t < 1

then

z(s, t) for s, t c- R.

(b) If z is a two-cocycle such that

z(n, t) = I for 0 < t :!! 1, n C- Z,

thenfor each t c- R. s.  -+ a -,(z(s, t)) is periodic with period 1.

PROOF. From the cocycle identity in the form

z(n, 1)z(n + 1, 0 = CX,(Z(l, t))z(n, I + t)

we deduce by iteration in both cases covered by the lemma that z(n, t) I for t > 0
and n c- Z. From the cocycle identity in the form

z( - n, n) = ot -,,(z(n, - t))z(- n, n - t)

it follows that z(n, - t) = I for t :!-< n c- Z, and in particular z(n, - 1) 1 for n C- Z,
n > 0. Hence it follows from the cocycle identity in the form

z(n, - I)z(n - 1, 0 = OC?t(Z(- 1. t))z(n, t - 1)

by iteration that z(n, t) = I for n c- Z. n > 0, t c- R. However, the previous form of the
cocycle identity now implies that z(- n, n - t) = I for n c- Z. n  !! 0. Hence z(n, t) = I
for n c- Z, t c- R. Using this argument for sZ instead of Z, statement (a) follows. To
finish the proof of (b) we exploit the cocycle identity in the form

z(n, s)z(n + s, t) = ajz( , t))z(n, s + t)
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and then use z(n, s) = z(n, s + t) = I to deduce

a-. -,(z(n + s, t)) = a -,(z(s, t)).

Hence (b) follows.

Now let us resume the proof of Theorem 3.2.73.

Note that z'(p, t) I for 0 < t < 6/2, p c- 6/2Z and so statement (b) of Lemma

3.2.74 implies that s a -,(z'(s, t)) is periodic with period 6/2. Hence the estimate

11 z(s, t) - T 11 < 6c'

is valid for all s when 0 :!! t :! 6/2. Now, let log denote the principal value of the

logarithm on the complex plane with a cut along the negative real axis. Since P, <

,,/-71/18 it follows that 6s' < /2-, and by the estimate on z' we can consistently define

Y(S' t) = log (Z'(S' t))

for 0 :!! t :! 6/2. The cqcycle properties of z' then yield the relations

AS, 0) = Y(O' 0 = 0,

AS, 0 + AS + t' U) = X"(Y(t, U)) + AS, t + U)

for 0 :!! t, u, t + u, :!! s. The .,/2--estimate on z' is needed for the last identity. Also, s,

t 1-4 y(s, t) is a Borel map. Define a Borel map c; t c- [0, 6/2]  -4 c(t) c- 3,a by

2 2

C(t) = - - ds a-,(y(s, t)).

From the periodicity of s  - a -,(y(s, t)) we have

2 6/2 + u

C(t) ds cx-,(y(s, t))

for all u c- R, and a simple computation, using the relation for y derived above, shows
that

C(S + 0 - (X"(C(0) - C(S) = AS, 0

when 0 :!! s, t, s + t :!! 6/2. Hence, defining A'; t c- [0, 6/2]   A,' e W(3) by

exp(c(t))

we find

Z'(S' t)

for 0 :!:- s, t, s + t < 6/2.
From the estimate z'(s, t) - I 6s' for 0 s, t < 6/2 we then obtain by spectral

theory the estimates

Ily(s, t)II < arc cos(l - (68')2/2), 0 t < 6/2,
c(t) I I :!! arc cos(I - (6E')2/2), 0 t :!! 6/2,

and, finally,

< 6.6'
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for 0 :!! t < 6/2. We now extend the map t c- [0, 6/2]  -4 A,' c- O&Q) to a Borel map from

all of R into '&Q), and define -

Z"(S' t) = A,'-,,'z'(s,

Then z" is a two-cocycle, and

Z"(S' t)

for 0 :!! s, t :!! 6/4.
Now, replacing 6/2 by 6/4 and E' by 0, we next define z from z" in the same manner

that z' was defined from z. First, define

Ab"(t + n)/4
= Abn/4 z"(6n14, bt/4)

for 0 :!! t :!! 1, n c- Z, and then

Z Anx(S' 0 S S(A"')Z"(S' OA" '+'

As earlier, we deduce that z is a two-cocycle satisfying

z (p, t) = I for 0 < t < 6/4, p c- 6/4Z,

and

z (s, t) = I for 0 :!! s, t < 6/4.

Hence statement (a) of Lemma 3.2.74 implies that z (s, t) for all s, t. Defining

we thus have

Z(S' 0 Z (S' OA.' " qs(A""

Now if F, = A,"' Ws then Fs is a one-cocycle,

FS + I Fs IX.10F),

and

#,(A) F, a,(A)I-t*-

But t t-+ F, is Borel, and 9X* is separable. Therefore t F, is continuous by the

following reasoning. Since 9A* is separable, 9JI has a faithful, normal state (0. If --0? is the

natural positive cone in the corresponding representation on .5 = .5. (see Definition

2.5.25) and 9 c- M* +
 --+  ( p) c- 9 is the associated map defined by Theorem 2.5.3 1,

then it follows from the estimate

11 2 <  021IMPO - MP2)
_

1191

and the separability of M* +
that 9 is a separable subset of .5. As 69 - 1-0 +

i(-9 - 80) (Proposition 2.5.26) it follows that .5 is separable. Now if t   U, is the
canonical unitary implementation of t  -4 a, (Corollary 2.5.32) then t  -* V, F, U,
is a unitary representation of R, because of the cocycle property of F, As t Vt is

Borel and SV is separable, it follows by a regularization argument similar to the one

used to prove that weak continuity implies strong continuity in Corollary 3.1.8 that

t F-+ V, is strongly continuous. Hence t i--+ Ft = Vt U -,
is strongly continuous.
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Finally, we derive the estimate on F, by summing up the estimates already derived:

W, - I ell ItI < 6;

At - I 3e% 0 < t < 612;

IIA,' - III :!! &', 0 < t < 612;

IIA" - 111 =01 0 < t < 614.
It follows that

11 F, - III :!! e' + 3e' + 6e' = 10e'

for Is I < 614.

We have now developed the necessary tools to give a sharpened version
of the main theorem of approximation theory, Theorem 3.1.36, in the von

Neumann case.

Theorem 3.2.75. Let 931 be a von Neumann algebra with separable predual,
and let a, # be two a-weakly continuous one-parameter groups of *-auto-

morphisms of T1 with generators 6,, and 6#, respectively. The following
conditions are equivalent:

(1) there existssl, 0 _< el < ,/199/50 - 0.28, and 6, > 0 such that

Ila, - All < '61

for It I < 6,
(2) there exists 82, 0 ! 82 < /199/50, and 62 > 0, an inner auto-

morphism 7 of 9N, and a bounded derivation 6 ofM such that

6# +

and

0 t o 0  X
-

< '62

for It I < 62-

If these conditions are satisfied then

11 A - cx 11 = Ila -, - T -X, - T 11 + 0(t)

and there is a unitary element W e 931 implementing T which satisfies the
estimate

11 W - T 11 < 10f2(1 612/4)11/2.
Thus JIT - 111 :! 10e, + 0(81 2).

PROOF. (1) => (2) By Theorem 3.2.73 there exists a strongly continuous map
t c- R F-+ F, c- W(M) such that

F, + s
= T, 'Y'(FA s, t c- R,

flt(A) = Ft (xt(A)Ft* A c- 9N, t c- R,

F, - III < E' = 10f2(1 - /I _ '612/4)11/2 < /2, It I < 6/4.
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We may assume that 9M is in a standard representation and hence by Corollary
2.5.32 there exists a unitary implementation t  --+ U, of a on .5:

oc,(A) = U,AU,*, t c- R, A c- V.

Define V, = F, U,. The cocycle property of F, implies that t  -4 V, is a unitary rep-
resentation of R, and

&A) V, A V, *, t c- R, A c 9N.

We have

V, U T I", - T 11 < v/2-
for I t I < 6/4, and 0 = 46 dt V, U -,

c- 9N. Hence, by Proposition 3.2.70, there0

exists a unitary Wc- 9Y such that

11 V, - wulW* 0(t).

Defining,y(A) = WAW* and i, = yot,y` we then have

11 fl, - i, 11 < 2 11 V, - WU, W* 11 = 0(t).

Hence by Proposition 3.2.69 there exists a bounded derivation 6' of 9JI such that

bi + 6'

yb.y-, + 6' = TO. + OY-11

where 6 = y
- Wy.

It follows immediately that

at - yoc, y exp(t6j - exp(t6#) + exp(t6p) - exp(t(b, - 6'))

and hence

Ila_'Yoc' - Y11 = 110c, - YXY-,Il
= 110c, - #111 + 0(t).

Thus the estimate in (2) follows from the estimate in (1), and conversely, the estimate
in (1) follows from (2).

The estimate on 11 W - 111 follows from Proposition 3.2.70 and the estimate on

IT, - U.

We conclude by remarking that the two analogous approximation results

(Proposition 3.2.70 and Theorem 3.2.75) can to a certain extent be understood
in terms of two special cases. First consider the comparison of the two unitary
groups U, V on the Hilbert space .5. If

11 U, - V'11 = 0(t), t --+ 0,

then Theorem 3.1.38 implies that the generators of U and V differ by a

bounded operator. If, however,

11 U, - V,11 < /2 - s,

for all t c- R then we claim that

U, = WV, W*
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for some unitary W. To prove this one chooses an invariant mean M on R (see
Section 4.3.3 for the definition and discussion of invariant means) and then
defines Q by

Q = M(UV-1).
If % is the von Neumann algebra generated by {U, V_,; t c- RI then it follows
that 0 is a well-defined operator in % which does not contain zero in its
numerical range. Hence the partial isometry W in the polar decomposition
0 = W I t2l is actually unitary. Moreover, the relation

U. U, V-1 = U111 V-1-1 V,

establishes that

U'n = QV"
and it follows by a simple argument that

U, W = WV'.

A similar result is true for two a-weakly continuous groups Lx, # of *-auto-
morphisms of a von Neumann algebra 9N. If condition (1) of Theorem 3.2.75
is satisfied for all t c- R, i.e., if 6 1

= oc, then

fit = T( CtT_l
for an inner automorphism 7 of 9N. This is established by combination of the
proof of Theorem 3.2.75 with the foregoing discussion of the unitary groups.
Thus in both the foregoing approximation theorems, the boost, i.e., the

bounded perturbation, can be understood as arising from 0(t) behavior,
and the twist, i.e. the automorphism, arises from norm comparability for all t.



Notes and Remarks

Sections 3. 1.1 and 3.1.2

The standard reference for semigroup theory is the book by Hille and

Phillips [[Hil 1]] which describes the theory to 1956. The following books

also contain chapters on the theory and describe aspects which are more

recent than 1956: [[But 1]], [[Kat 1]], [[Ree 2]], [[Rie 1]], [[Yos 1]].
In [[Hil 1]] the definition of a semigroup differs from ours insofar that the

condition UO = I is not imposed and this then leads to an exhaustive in-

vestigation of the behavior of U at the origin under various conditions of

continuity away from the origin. Nevertheless, the major objects of investiga-
tion in [[Hil 1]] are CO-semigroups as we have defined them. The notion of

a CO*-semigroup, or a(X, X*)-continuous semigroup is due to de Leeuw

[Lee 1], and is described in [[But 1]]. It should be emphasized that this notion
does not coincide with the concept of dual semigroup discussed in [[Hil 1]].
If U is a CO-semigroup on the Banach space X and one introduces the CO*-
semigroup on X* by duality then U* is strongly continuous in restriction to a

weakly* dense subsPace XO* of X*. The restriction of U* to XO* is then a

CO-semigroup which is defined to be the dual semigroup of U in [[Hil 1]].
The theory of uniformly continuous semigroups is contained in [[Hil 1]]

and is attributed to Nagumo [Nagu 1].
The equivalence of weak, and strong, continuity, and differentiability,

of CO-semigroups, Corollary 3.1.8, was first proved by Yosida [Yos 1] who
has also developed a theory of equicontinuous semigroups which has' much
in common with the u(X, fl-continuous semigroups which we describe.
The CO-semigroup version of Theorem 3.1.10 was proved independently

by Hille and Yosida in 1948 [[Hil 2]], [Yos 1]. The first exponentiation
algorithm in this theorem is due to Yosida and the second to Hille. Lemma

3.1.11, which allows the passage from one algorithm to the other, is much

more recent and was first given by Chernoff [Che 1]. The full characteriza-
tion of generators of CO-semigroups, i.e., the strongly continuous version of

Corollary 3.1.12, was derived almost simultaneously by Feller [Fel 1],
Miyadera [Miy 1], and Phillips [Phi 1] in 1953.

The notion of a dissipative operator was introduced by Lumer and Phillips
[Lum 1 ] in 196 1. These authors proved the basic properties of these operators,

303
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Propositions 3.1.14 and 3.1.15, and characterized C,-semigroups of contrac-

tions by Theorem 3.1.16. A version of Theorem 3.1.19 is also contained in

[Lum 1]: if S is a closed, dissipative operator on a Banach space X and

I I S"A I I 'I" = o(n) as n --+- c)c and all A in a dense subset of X then S generates a

CO-semigroup of contractions. Another version of this theorem was proved
for unitary groups on Hilbert space by Nelson [Nel 1].
The interesting characterization of the domain of the generator of a CO*-

semigroup, Proposition 3.1.23, is due to de Leeuw [Lee 1] but is based on

earlier results of Butzer [[But 1]]. This proposition is of particular interest in

approximation theory where it provides solutions to the so-called saturation

problem (see [[But 1]] Chapter 2).

Section 3.1.3

The CO-version of Theorem 3.1.26 is often called the Trotter-Kato theorem.

It was first proved by Trotter [Tro 1] and the proof was subsequently clarified

by Kato [Kat 1].
Theorem 3.1.28 is due to Kurtz [Kur 1] although Glimm and Jaffe

[Gli 5] independently obtained the same result for the special case of unitary
groups on a Hilbert space.
The algorithm contained in Theorem 3.1.30 is due to Chernoff [Che 1] and

is a direct generalization ofproduct algorithms first studied by Trotter ETro 2].
These algorithms, which occur in Corollary 3.1.3 1, are often referred to as the
Trotter product formulae. Chernoff's article EChe 2] discusses their use in
the definition of the sum of unbounded operators.

Section 3.1.4

The standard reference for perturbation theory is the book of Kato [[Kat 1]].
Reed and Simon [[Ree 2]], Riesz and Nagy [[Rie 1]], and Hille and Phillips
[[Hil 1]] also contain partial discussions.
Theorem 3.1.34 is due to Bratteli and Kishimoto [Bra I I], while the counter-

example alluded to in the related remark can be found in Jorgensen [Jor 1].

Section 3.1.5

The comparison of groups in the manner we describe generalizes in one

direction certain results of approximation theory, e.g., Proposition 3.1.23.

The subject was initiated by the work of Bucholz and Roberts [Buc 1] and a

subsequent paper by Robinson. Proposition 3.1.35 and Theorems 3.1.38,
3.1.40 are taken from [Rob 6], but Theorem 3.1.38 includes a refinement due

to Johnson [Joh 1]. Theorem 3.1.36 is due to Brattell, Herman and Robinson

[Bra 4].
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Section 3.2. 1

For the original account of Wigner symmetries and the proof given in

Example 3.2.14, see [[Wign Ifl; a more updated account can be found in

[Sim 1]. The original algebraic version of Proposition 3.2.2 was proved by
N. Jacobson and C. Rickart [Jac 1], while the C*-version is due to Kadison

[Kad 4], [Kad 5]. The inequality in Proposition 3.2.4 is known as Kadison's

inequality when A is selfadjoint [Kad 6], and the present version was proved
by Stinespring [Sti 1], using ideas which go back to Naimark [[Nai 1]].
Stormer proved in 1963 that the same inequality is true under the assumption
that 9(A) is normal [Sto 1]. Proposition 3.2.5 is due to B. Russo and H. A. Dye
[Rus 1], while the fact that the convex hull of the unitaries contains the open
unit sphere was shown by A. G. Robertson [Rober 1]. The short proof used
here is due to G. K. Pedersen [[Ped 1]]. An excellent survey of positive maps
can be found in ESto 2]. As for the classification of general positive maps, it is
an enormous task to do this even when W is the 2 x 2 matrix algebra and
0 is the 4 x 4 matrix algebra [Wor 2].
The Jordan decomposition of hermitian functionals in the dual of a C*-

algebra, Proposition 3.2.7, originates with Grothendieck [Gro 1]. Kadison
introduced the concept of a full family of states, Definition 3.2.9, and proved
Proposition 3.2.10 and Theorem 3.2.11 in [Kad 51. Our proofs of 3.2.10 and
3.2.11 are different from the original ones. Versions of Corollaries 3.2.12
and 3.2.13 appear in the same paper. An example showing that Corollary
3.2.13 is not true for general von Neumann algebras can be found in [Bra 3].
The fact that all automorphisms of Y(.5) are inner is a special feature of

60(.5) which it shares with no other factor. The automorphisms of the hyper-
finite III and 11. factor have been classified by A. Connes [Con 5], [Con 6].
He has also constructed a surprising example of a factor which is not anti-

isomorphic with itself [Con 7]. Note that a von Neumann algebra in standard
form is antfisomorphic with its commutant by the antiisomorphism A! )

JA*J. Connes'example is a factor which is not isomorphic with its commutant
in a standard representation; thus it cannot be antiisomorphic with itself.
The characterization of Jordan automorphisms of von Neumann algebras

in standard form as unitary mappings ofthe natural cone onto itself, Theorem
3.2.15, was found independently by A. Connes [Con 1] and U. Haagerup
[Haa 1, 2]. Theorem 3.2.18 has not appeared earlier, but similar ideas, and
Lemma 3.2.19, were given by Bratteli and Robinson [Bra 3].

Section 3.2.2

The theory of bounded derivations of C*- and W*-algebras was essentially
initiated by Kaplansky [Kap 3], who showed, in 1953, that each derivation 6
of a type I von Neumann algebra 9W is inner, i.e., b(A) = i[H, A] with H C- wt.
Nevertheless, no great progress took place until 1965 when work of Kadison
[Kad 7] instigated a swift development. Most of the results up to 1970 are
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described in the book of Sakai [[Sak 1]] and we return to specific references
in the notes to Section 3.2.3.
The investigation of unbounded derivations occurred much later and was

principally motivated by problems of mathematical physics and in particular
the problem of the construction of dynamics in statistical mechanics. An

early result in this context was due to Robinson [Rob 7] who, in 1968, used
an analytic vector technique to construct a CO-group of isometries of a

UHF algebra from a given generator. The main developments of the subject
took place, however, after 1975 and were largely inspired by papers of
Sakai [Sak 2] and Brattell and Robinson [Bra 5].

Proposition 3.2.22, and the idea ofapplying dissipative operator techniques
to derivation theory, are both due to Kishimoto [Kis 1]. The boundedness
of an everywhere defined derivation, Corollary 3.2.23, had previously been

proved by Sakai [Sak 3], in 1960, by an ingenious calculation which also used
a square root technique. The improved result which gives the boundedness
of each norm-closed derivation 6 with domain D(b) invariant under the

square root operation was established by Ota [Ota 1] in 1976. Ota's proof
relied upon a result of Cuntz [Cun 1]. Cuntz proved that a sernisimple
Banach *-algebra with identity is a C*-algebra in an equivalent norm if,
and only if, it is closed under the square root operation of positive elements,
i.e., selfadjoint elements with nonnegative spectrum. (A Banach *-algebra
is called semisimple if it has a faithful *-representation on a Hilbert space.)

Proposition 3.2.24 is adapted from Kadison [Kad 7]. The construction of

HA in Example 3.2.25 was first made by Elliott [Ell 2]. The closability
criterion, Proposition 3.2.26, is due to Chi [Chi 1] and the analogous
implementability criterion, Proposition 3.2.28, to Bratteli and Robinson

[Bra 3].
It should be emphasized that there exist norm-densely defined, nonclosable

derivations of C*-algebras. The first examples were given by Bratteli and
Robinson [Bra 5] and were based on differentiation on the Cantor subset of
the unit interval [0, 1]. This operation defines a derivation of the continuous
functions over the set which is nonclosable and can be used to construct

examples of nonclosable derivations of UHF alg -,bras. In fact, if % is a

UHF algebra generated by an increasing sequence of matrix algebras W,,
one may find a norm-densely defined derivation such that 91,, c- D(b) for each

n, 6 1 U ",a"
= 0, but 6 :0 0. Subsequently, Herman [Her I] has constructed

an extension of the usual differentiation on QO, 1) which is a nonclosable
derivation of QO, 1). It is unclear whether there exist nonclosable derivations
of YW(b) (see [Bra 5] or Example 3.2.34 for an analysis of derivations of

YW(.5) and
Functional analysis of the domain of a closed derivation was initiated by

Sakai (see Bratteli and Robinson [Bra 5], Powers [Pow 2], and Sakai

[Sak 2]). Powers obtained Lemma 3.2.31 concerning the exponential
operation and Sakai and Bratteli-Robinson obtained an analogous result
for the resolvent operation. It appears, however, most efficient to approach
the subject via the modified resolvent as in Proposition 3.2.29. In particular,
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this immediately yields Corollary 3.2.30 which had previously been obtained

by Bratteli and Robinson by a tedious calculation technique [Bra 6]. Theorem
3.2.32 is mentioned in [Bra 6] but it is essentially contained in [Pow 2].
This last reference claimed that if  is normclosed, A = A* c- D(b), and f is

once-continuously differentiable then f(A) c- D(6), but McIntosh disproved
this result with an explicit counterexample [McI 1]. As A is bounded the

question whether f(A) c- D(b) depends only on the properties of f on an

interval containing the spectrum of A and, in fact, essentially reduces to the
behavior off at the origin. McIntosh's example is a function which behaves
like

f.(x) = I X I (log I log I X 11)

for 0 :! ; (x < 1, in a neighborhood of the origin. McIntosh has also remarked
that if g,, has compact support, is twice differentiable away from the origin, and

g.(X) = 1X11log1X11-10og1log1X1D-'

in a neighborhood of the origin then

dp I  jp) I I p I
< + 00 if ot > If
= + 00 if 0 < a < 1.f

Thus 9,,(A) c- D(6) for a > 1 by Theorem 3.2.32. This delineates rather sharply
the possible behavior off.
Examples 3.2.34 and 3.2.35 are drawn from the analysis of derivations of

Y(.5) and YW(.5) given by Bratteli and Robinson [Bra 5]. The method of

modifying 6 by a bounded derivative so that the perturbed derivation 6'
satisfies 6'(E) = 0 dates back to Kaplansky [Kap 3]. The conclusion con-

cerning Wigner symmetries which follows from these examples can be stated
in a different manner-we have concluded that the cohomology of R is
trivial through a priori estimates on unbounded derivations.

Example 3.2.36 is a special case of a result of Elliott [Ell 7], which general-
ized earlier theorems by Kallman [Kal 1], [Kal 2]. The proof of this result is
based on a generalization of the ideas used in Example 3.2.36.

Theorem. Let 9Y be a von Neumann algebra, and let {Cn1n  ! 1 be a sequence

Of *
-automorphisms of 9W converging strongly to a *-automorphism T, i.e.,

"M 11'rn(A) - -c(A)II = 0
n -.c

for all A c- 9JI. Itfollows thatrn converges to T in norm, i.e.,

lim sup JIT,(A) - T(A)IIIIJAII = 0.
n- o AeTl\(O)

One can use functional analysis on the domain to study closed derivations
6 on a UHF algebra. The following theorem was proved for generators by
Sakai in his original paper on unbounded derivations [Sak 2] and the
extension to general closed derivations was noted in [Bra 5].
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Theorem. Let 6 be a closed derivation of a UHF algebra %. Then there
exists an increasing sequence J%,J of matrix subalgebras of % such that

Un Wn 9 D(6) and Un 91n is dense in 91. If 6 is a generator, Un %n can be
chosen to consist of analytic elementsfor 6.

This theorem has led several authors to study so-called normal derivations
of UHF algebras, i.e., derivations 6 with a core of the form Un 91n, but it is
still an open problem whether all generators are normal (see in this context

Propositions 3.2.52 and 3.2.53).
Another more special consequence of the functional analysis on the domain

is that the only closable derivation of the continuous functions on the Cantor

set is zero. This is because the projections in the domain of a closable

derivation on this algebra must be dense in all projections, and the derivation

applied to a projection must be zero as a consequence of abelianness.

There are two recent developments in the theory of unbounded derivations

which have not been treated in this text. The first is the classification problem
of derivations on abelian C*-algebras. Here Kurose has obtained a complete
classification of all closed derivations on the algebra QI), where I = [0, 1]
is the unit interval. One surprising byproduct of this classification is that

any nonzero closed derivation on QI) has a proper closed extension! See

[[Tom t]] for a review of these developments. The second is the theory of

derivations associated with C*-dynamical systems. Typically one considers a

Lie group G acting as a group of *-automorphisms -c on a C*-algebra 91, and
then tries to classify the set of all derivations defined on a class of smooth

elements for the action. A typical result is that such a derivation is a linear

combination of an approximately inner, or inner, derivation and a linear

combination of the generators of the one-parameter subgroups of the action -C

with coefficients affiliated to the centre of %. However, there are examples
where the above decomposition fails, and for the moment the theory consists

of a large number of special results, and the general pattern is not yet clear.

See [[Bra 1]] for a survey of these results.

Section 3.2.3

Spectral theory for abelian groups of automorphisms on operator algebras
is old folklore known to many mathematical physicists. For example,
regularization by functions with appropriate support properties in momentum

space has long been a standard procedure. The form of the theory presented
here, however, was developed at a rather late stage by Arveson [Arv 1],
Borchers [Bor 4], and Connes [Con 4]. Proposition 3.2.40 can be found in

[Con 4], except point (6), which has been noted independently by several

authors, the first of whom seem to be Ikunishi and Nakagami [Iku 1].
The Fourier analysis argument alluded to in the proof of (2)=>(3) can be

found in the book by Rudin EERud 3]]. If K is a one-point set the result

corresponds to Theorem 2.6.3 in this reference, and the proof readily extends
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to general K. Proposition 3.2.41 is due to Olesen [Ole 1]. The method of

proving the Borchers-Arveson theorem (Theorem 3.2.46) via Propositions
3.2.43 and 3.2.44 is due to Arveson [Arv 1] and Borchers [Bor 4]. We have
made some simplifications in this proof. Borchers' original proof of the
theorem [Bor 2] made use of. the derivation theorem, Corollary 3.2.47,
together with a complicated approximation argument. In the case where the

unitary group U of Theorem 3.2.46 has a ground state, [Bor 2] gives a very
simple argument for the theorem (see Corollary 3.2.60). Borchers' fheorem in
its general form, as given in [Bor 2], involves representations of Rn +' rather
than R, and instead of assuming that the spectrum is positive, he assumes that
the spectrum is contained in the positive lightcone. A complete treatment of
results of this nature can be found in Chapter 8 of [[Ped 1]]. For conditions

ensuring that Lorentz boosts are also in the algebra, see Streater [Str 1].
The derivation theorem, Corollary 3.2.47, is due to Kadison [Kad 7] and

Sakai [Sak 4]. The original proof is much shorter, but less intuitive than the
one given here. It should be pointed out that the derivation theorem was

proved a long time before the mathematical theory of spectra of auto-

morphism, groups was worked out. Derivations of C*-algebras need not be
inner, even when the algebra has an identity. Problems in this connection have
been studied by several authors, but the most satisfying result in this direction
is due to G. Elliott [Ell 3] and C. A. Akemann and G. K. Pedersen [Ake 1].
An extra complication in this case is that the algebra does not necessarily
have an identity, and the appropriate notion of innerness is therefore that
the derivation 6 is implemented by an element H in the so-called multi-
plier algebra M(W) of the C*-algebra W. Recall that the double dual 91** of
W can be viewed as a von Neumann algebra containing W as in Section 3.2. 1.

M(91) is then defined as the set of B e %** such that B% 9; % and %B 9 %.
Note that M(91) is a C*-algebra such that W 9 M(W) - W**, W = M(W) if
and only if W has an identity. An example is M(YW(.5)) = Y(.5). As a

multiplier clearly defines a derivation of the algebra, the following theorem of
Elliott, Akemann and Pedersen is the best possible.

Theorem. Let W be a separable C*-algebra. Then the following three
conditions are equivalent:

(1) every bounded derivation of 91 is implemented by a multiplier;
(2) every summable central sequence in W is trivial;
(3) W has the form W = W1  W2 where 'A, only has trivial central

sequences, and 912 is the restricted direct sum ofsimple C*-algebras.

A central sequence {B,,j in a C*-algebra 93 is a uniformly bounded sequence
such that 11 [B, A] 11 W;7t 0 for all A e Z. A central sequence is summable ifn = o

Y,, B,, converges in the strong operator topology on 91**, and it is trivial if
there exists a sequence  Z,j in the center of M(O) such that 11(Bn - ZI)AII

0 for all A c- 93. Earlier it was proved by Sakai [Sak 5], that deriva-
tions of simple C*-algebras W are determined by multipliers, without any
separability condition on W.
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In the analysis of C*- and W*-dynamical systems, Definition 2.7.1, there

is another notion of spectrum which differs from the Arveson spectrum and

which is more useful. For simplicity, consider a W*-dynamical system
19N, G, al where 9Y is a factor, and G is a locally compact abelian group. The

F-spectrum (sometimes called the Connes spectrum) of a is then defined as

]F(a) = '7( X 'Md'
E e ONO))

Here E ranges over all nonzero projections in the fixed point algebra 9W(101).
It is then not hard to show that F(a) is a closed subgroup of 6. To prove this

one uses techniques such as those used to prove spectral properties of

ergodic systems in Section 4.3.3 (see Theorem 4.3.33). The following theorem
is a generalization of the derivation theorem, Corollary 3.2.47, and is due to

Connes [Con 4].

Theorem. Let G be a locally compact abelian group acting as an auto-

morphism group a on a factor 9%, and assume that u(a)1F(a) is compact. It

follows that the complement

IF(cx)' = {t c- G; (7, t) = I for all T c- F(a)j

of F(a) consists ofjust those t c- G such that a, is implemented by a unitary
element in 9JI'(101).
An immediate corollary is that if a is a single automorphism of 9W such

that F(a) -0 T, then some power an, n > 1, of a is inner.

Properties of F(a) can give a lot ofinformation about the fixed point algebra
T?'Q0J) and the crossed product W*(9JI, ot). Connes [Con 4] has proved the

following:

Theorem
- Let G be a locally compact abelian group acting on a factor 9Y

such that F(a) is discrete. Itfollows that a(a) = F(a) if, and only if, W(101)
is afactor.

The next theorem is due to Connes and Takesaki [Con 2].

Theorem. Let G be locally compact abelian group acting on afactor 9M.

Itfollows that W*(9JI, a) is afactor if, and only if, F(a) = 6.

The three theorems above have natural generalizations to vor, Neumann

algebras which are not factors, and also to C*-algebras. In the C*-algebra
setting the natural replacements of factors are not simple C*-algebras, as

one might initially expect, but prime C*-algebras, i.e., C*-algebras such that

any two nonzero closed two-sided ideals have nonzero intersection. If a

C*-algebra admits a faithful irreducible representation, it is easily seen to

be prime; the converse is also true for separable C*-algebras [Dix 1]. For

various other versions of the three theorems above, see [Iku 1], [Ole 2],
[Ole 3], [Ole 4], [Kis 2], [Kis 3], [Bra 10]. For an exhaustive treatment of

these results, see Chapter 8 of [[Ped 1]].
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Section 3.2.4

Theorems 3.2.50 and 3.2.51 stem from various sources. The nonalgebraic
aspects are covered by the Banach space theory of Section 3.1. Among the
fresh algebraic elements the positivity-preserving properties of the resolvent,
condition (C2), was first discussed by Bratteli and Robinson [Bra 6] and the

property 6(1) = 0, condition (A2), was suggested as a replacement of the

derivation property by Kishimoto [Kis 1].
The first statement of Proposition 3.2.52 is due to Elliott [Ell 2] and the

remaining statements follow from the work of Powers and Sakai on UHF

algebras [Pow 3] [Pow 4], or that of Bratteli and Robinson [Bra 5]. Theorem
3.2.53 was proved by Bratteli and Kishimoto [Bra 11]. It is an application of

time-dependent perturbation expansion techniques to the construction of

dynamics for quantum spin systems.

Section 3.2.5

Spatial derivations arising from invariant states occurred in the work of
Bratteli and Robinson [Bra 5], [Bra 6] and Powers and Sakai [Pow 3],
[Pow 4] but the general theory outlined in this section was first proposed in

[Bra 3]. A generalization of Proposition 3.2.58, in which analytic elements are

replaced by quasi-analytic elements, was given by Bratteli, Herman, and
Robinson [Bra 7]. Theorem 3.2.59, for Q separating, was given in [Bra 3].
The discussion of the alternative H > 0 uses the type of argument associated
with the early proofs of the Borchers-Arveson theorem [Bor 2] (see also
Kadison's expository article [Kad 8]).
The general version ofTheorem 3.2.61 was proved by Bratteli and Haagerup

[Bra 9], while the trace state version, which is essentially contained in Lemma

3.2.62, was derived earlier by Bratteli and Robinson [Bra 8]. The last paper
was preceded by a paper of Gallavotti and Pulvirenti [Gal 1] in which the
theorem was proved for abelian von Neumann algebras. The latter authors

were motivated by problems in classical statistical mechanics as outlined in

Example 3.2.67, and modeled their proofon the proofofthe Tomita-Takesaki
theorem. There is indeed an analogy between Lemma 2.5.12 and some results
in the proof of Lemma 3.2.62. Lemma 3.2.65 is a special case of results on dual

weights derived by Digernes [Dig 1] and Haagerup [Haa 4]. The con-

clusive example, Example 3.2.68, appears in [Bra 9], where it is even proved
that 9W can be taken to be a type I von Neumann algebra.

Section 3.2.6

All the results of this section are taken from the work of Bratteli, Herman, and
Robinson [Bra 4]. The basic problem of comparison of neighboring auto-

morphism groups was proposed by Buchholz and Roberts [Buc 1] who
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obtained a version of the main theorem, Theorem 3.2.75,with,6,, e2 replaced
by o(l) as t --+ 0. The line ofreasoning based on cohomology and the smoothing
of cocycles, Theorem 3.2.73 and Lemma 3.2.74, are due to Buchholz and

Roberts.

The use of numerical range techniques to derive the improved version,
Proposition 3.2.70, of Theorem 3.1.35 for unitary groups follows a suggestion
of Haagerup.
The results on numerical ranges used in the proofcan be found in [[Bon 1]],

except the result on the sector of the unitary part of a polar decomposition,
which was proved by Woronowicz in [Wor 3].
Theorem 3.2.71 is due to Kadison and Ringrose EKad 9]. For a nice account

of this theorem, see Section 8.7 of [[Ped 1]]. Here one can also find a proofof a
result of Borchers [Bor 3], which relates the spectral radius p(l - i) to

Ila - ill -specifically:

Theorem. Let Y. be a *-automorphism ofa C*-algebra 91. Ifp(a - i) < /3-
orifla - ill < 2,then

P(,X- ')= Ila- ill.

The constant ,/3- is the best possible here; Sakai [Sak 6] has produced an

automorphism a of a von Neumann algebra 9W such that p(a - i) = ,,/3-,
but a is outer. In this example, a is the cyclic change of 9N = 91 91
where % is a factor not of type 1, i.e.,

a(A & B & C) = C & A & B

Then a(a) is equal to the three cube roots of 1 hence p(oc - i) = '/3.
The measure theoretic results (1) and (2) used in the proof of Proposition

3.2.72 can be found in EEArv 1]]. The result (2) is essentially due to Dixmier

[Dix 2].
Another version ofTheorem 3.2.73, due to Connes [Con 4], is the following:

Theorem. If9M is afactor with separable predual 9JI*, and t c- R  -, a, fl, is

a pair ofu-weakly continuous representations ofR in the automorphism group
of 9A such that fl, a -,

is inner for each t c- R then there exists a a-weakly
continuous unitary cocycle t  -* F, c- M connecting a and fl.

A slight generalization of this result can be found in [Han 1]. Another

variation of the theorem, where one needs neither that 9M is a factor nor that

9JI* is separable, is that if 11 ot, - fl, 11 = o(l), t0, then there exists a norm

continuous cocycle t F-+ F, connecting a and [Buc 1]. A little warning:
theorems of this sort are very sensitive to whether the group in question is

R or a cyclic group. The following is an instructive example. Let 9N = M2
be the 2 x 2 matrices, and G = Z 2 X Z 2. Let a, b c- G be the generators of G

such that a2 = b2
= e, ab = ba, and let U, V be the matrices

0 1 1 0
U = (1 0), V = (0 -1)*
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Then

UV + VU = 0, U2 V2

It follows that

a,,(A) = UAU*5 (Xb(A) = VA V*

defines a representation of G in Aut(9J?) which is pointwise inner. But if there
were a unitary representation t c- G i-- U, of G implementing a, then it follows
from

(XXJ = U, U., U - U.,

that U, would be contained in the fixed point algebra T1' for each S c- G.
But an explicit computation shows that 9JI' = C1. Hence no such unitary
representation exists.
The use of invariant means to establish the uniform approximation results

stated at the end of the section originates in a paper by Fujii, Furuta and
Matsumoto [Fuj 1].
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4.1. General Theory

4. 1. 1. Introduction

The aim of decomposition theory is to express a complex structure as a

superposition of simpler components. There is no general rule for what is
meant by simpler component and this is determined by the particular
application. In an algebraic setting it is usual to examine two complementary
forms of decomposition, the decomposition of states and the decomposition
of representations. In this chapter we principally describe the theory relating
to states, but the intimate connection between states and representations
allows us to develop and exploit properties of the representations.

Let 91 be a C*-algebra with identity  . The states Es, of W, form a convex

subset of the dual 91* and E% is compact in the weak*, or a(W*, 91)-, topology
(see Theorem 2.3.15). Generally, we are interested in decomposing a given
state co as a convex combination of states which are extremal points of some
closed convex subset K of Ew. The set K might be given directly by some

physical requirement, e.g., K could be the set of states which are invariant
under some group of *-automorphisms of 91, or K might be given indirectly,
e.g., if 0 is an abelian von Neumann subalgebra of the commutant 7r.(W)'
of the representation (.5., n., n.) associated with w then K could be the
weak* closure of the set

KO =-- {(I)T; OT c- Es, O)T(A) (Tn., ir.(A)Q.), T c 01.

We will consider various possibilities:

(1) extremal decomposition, i.e., K Ew and one attempts to decompose
a state into pure states;

(2) central decomposition, i.e., 93 = 7r.(91)" r-) 7rjW)', the center of

7r.(9f)", and the aim is to express a) as a superposition of factor states;
(3) decomposition at infinity: if w is a locally normal state of a quasi-

local algebra one can introduce the algebra at infinity 3.' --

r-) n.(W)' (see Definition 2.6.4 and Theorem 2.6.5) and then

try to decompose a) as a combination of states with trivial algebra at

infinity;
317
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(4) ergodic decomposition: if g c- G  -* T9 c- Aut % is a group of *-auto-

morphisms of 9f and K is the set of cg-invariant states,

K = Ico; co c- E,,, w(,rg(A)) = co(A), g c- G, A c- %J,

then K is a closed convex subset of E,, and the decomposition of an
invariant state into extremal invariant states is called ergodic
decomposition. Various related decompositions naturally occur,

decomposition into states invariant under a subgroup, etc.

In each of the above situations one considers a state o-) c- K and attempts to

find a measure y which is supported by the extremal points S(K), of K, and
which decomposes w in the form

w(A) = fdy(o)) &(A).

This type of investigation involves geometric, measure-theoretic, and

algebraic aspects but the various aspects can be separated to a certain extent.

Firstly, we ignore the underlying algebraic structure and examine the

decomposition of points co in a convex compact subset K of a locally convex
topological Hausdorff vector space. Geometrically, this corresponds to

barycentric decomposition of co into extreme points or, alternatively stated,
the examination of measures supported byff(K) with a fixed center of mass W.

Such decompositions are of greatest interest when the barycentric measure is

unique.
The general theory of barycentric decomposition can be divided into two

parts. Firstly, one introduces an order relation -< among the positive
measures on K by specifying v -< y if, and only if, v(f) < y(f) for all convex
continuous real functions on K. If v, y have the same barycenter then v -< y
indicates that the support of y is further removed from this barycenter, i.e.

the support of the larger measure is nearer the boundary of K. Thus, as an

initial step toward constructing extremal decompositions, one attempts to

find maximal measures with a fixed barycenter o_). Such measures always
exist and they can be characterized essentially by geometric properties.
Similarly the existence of a unique maximal measure for each W c- K is

equivalent to a geometric property of K, the set K must be a simplex (see
Section 4.1.2). After analysis of maximal measures the second important
step is to determine in which sense these measures are supported by the

extreme points ff(K). As a first guess it appears reasonable that measurability
of 9(K) would be sufficient to ensure that p(&(K)) = I for all maximal

probability measures. One of the mild surprises of the theory is that this is

not the case. If 9'(K) is a Borel set and the probability measure y satisfies

p(&(K)) = I then y is maximal but, conversely, there exist examples for

which off(K) is Borel, y is maximal, and y(,ff(K)) = 0. Nevertheless, one can

show that each maximal probability measure p is pseudosupported by S(K)
in the sense that y(B) = I for all Baire sets B such that B  ? S(K). In particular,
if iff(K) were a Baire set then y would be supported by 60(K). Unfortunately,
9(K) is a Baire set if, and only if, K is metrizable (see Notes and Remarks)
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and hence this last criterion is rather special. However, the study of the
supports of the probability measures with a fixed barycenter W can often be
reduced to the study of a face F. of K and metrizability, etc., of F. usually
suffice to ensure that p is supported by 6'(K).' Thus analysis of the measure-

theoretic structure of the faces ofK plays a role in the examination of maximal
measures.

Next let us sketch the algebraic aspects of decomposition theory which
enter when K is a subset of the state space E,, of the C*-algebra W. For
motivation it is useful to first examine the decomposition of a given state 0)

as a finite convex combination of states wi,

n

o)(A) Ai wi(A), A c- W.

To reexpress this in measure-theoretic language we define the affine functions
A over E% by

A(o-)) = (o(A)

for all A c- W and introduce the Dirac, or point, measure b.. One then has

n

A(o-)) = y(A), P 6,

Next note that Ai (oi < (o and hence

Ai wi(A) = (Ti Q., 7r.(A)f2,J

for some positive Ti in the commutant by Theorem 2.3.19. Thus the
decomposition of w corresponds to a finite decomposition of the identity,

n

Ti

within the commutant Intuitively, the more general integral de-
compositions ofw correspond to analogous, but continuous, decompositions
of I in 7r.(91)' and in this manner the theory is intimately connected with
operator decompositions.
The simplest form of finite decomposition occurs when the Ti are mutually

orthogonal projections, Ti = Pi, in 7r.(W)'. In this case one easily sees that
the representation n.) is a direct sum of the representations (.5, 7r.).
Thus the decomposition is in this sense a decomposition into orthogonal, or

independent, components. The family JPiJ generates a finite-dimensional
subalgebra 93 of and the finite orthogonal decompositions of this type
are in one-to-one correspondence with the algebras 0. It is enlightening to

I A face F of a compact convex set K is defined to be a subset of K with the property that
if w Yni =I Ai wi is a finite convex combination of elements in K such that 0) C- F then (0i C- F
for i I, .. .,

n. In this book we will not assume that a face is closed subset of K, contrary to
the standard usage of this term.
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reexpress the decomposition of (o in terms of the projection operator P

[0Q,J. One has

n

P Y Ai '(PiRl" Opin",

and

Ai = (Q., Pi Q.), Aiwi(A) = (P,Q,,,, 7r,JA)Q,,).

Using the orthogonality of the Pi and Pi c- 7r.(W)' one then computes that
the associated measure y satisfies

n

p(A,A2 A,,,) Y Aiwi(A,)o,)i(A2) wi(A
i=1

n

= Y Ai 7r.(A,)PiQ,,,)
i=1

x n,,(A2)PAo) ... (n,, 7r.(An)PiQ,,,)
n n

= 1: ... 1: A- I
...

.' il rn - ,
7r,,)(A I ) Pi, K2,,,)

i1=1 i"-1 = 1

x (Pi, Q., 7r,,(A 2)pi2 Q.) ... (Pi_ -,
Q,,,, 7r.(An)Q.)

(Q, 7r.(A,)Pn.(A2)P * - - Pn,,)(A )Q,J.

Among other things this calculation shows that JPn,,,(A)P; A c- 911 generates
an abellan algebra on P.5.. Moreover, it provides an algorithm for con-

structing more general measures y from the projections P such that PQ. = Q.
and Pn.(%)"P is abelian. Given such a P one can show that the relations

y(A, A 2
* * * AJ = 7rJA 1 )P7r,,,(A 2)P ... P7r.(An)f1w)

determine a measure y with barycenter w. In fact, this class of measures, the

orthogonal measures, is in one-to-one correspondence with such projections
and also in one-to-one correspondence with the abelian von Neumann

algebras 0 -- 7r,(%)'. The corresponding entities are connected by various

rules such as (*) and

P = [00.], 0 = {7r.(%) U PJ', etc.

It is also of interest that the ordering -< on the orthogonal measures cor-

responds to the ordering by inclusion of the related abelian algebras 0 and the

ordering by increase of the related projections. In particular, measures which
are maximal among the orthogonal measures arise from maximal abelian
von Neumann subalgebras 0 of the commutant by spectral decomposition of
0. Under suitably good circumstances, e.g. suitable metrizability properties,
the maximal orthogonal measures are also maximal among all measures with
the given barycenter.
The algebraic structure also allows one to obtain good measure-theoretic

properties even if % is not separable and E , nonmetrizable. There are two
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approaches. One is to look -at suitable faces of E. with nice separability
properties, for example, locally normal states over quasi-local algebras for
which the local subalgebras are isomorphic to Y(S);,) for some .5. We discuss
this point of view throughout Sections 4.2 and 4.3. The second approach
relies more strongly on the representation structure underlying the state W
which one is decomposing. Metrizability of E,,, can essentially be replaced
by separability of the representation space S);.. This point of view is discussed
in Section 4.4. The representation structure also appears indispensable for
the discussion of the decomposition at infinity.

4.1.2. Barycentric Decompositions

In this subsection we examine barycentric decompositions of points in a

convex compact subset of a locally convex topological vector space. The
classic geometric result is the theorem of Carath6odory-Minkowski which
establishes that every point of a convex compact subset K ofthe v-dimensional
Euclidean space Rv can be written as a convex combination of at most v + I
extreme points of K. Thus each point is the barycenter of a finite number of
point masses distributed over the extreme points of K. The theorem also
asserts that the decomposition into extreme points is unique if, and only if,
K is a simplex, i.e., if K is affinely isomorphic to the set with projective
coordinates 44 4- - -, A, 1); Ai   ! 0, 1] Ai = 11. Our purpose is to derive
an analogue of this theorem in more general, infinite-dimensional, spaces.
First, we introduce some notation which will be used throughout the sub-
section and recall various generalities.
Let K denote a convex compact subset of a real locally convex topological

vector space X and 9(K) the set of extreme points of K. We use C(K) to
denote the real continuous functions over K, S(K) the real continuous
convex functions, and A(K) the real continuous affine functions, i.e., S(K) =
ff c- C(K); f(Aw, + (I - A)0)2) :!! APCO 1) + (1 - A)f(O-)2) for all CO 1, 0)2 c- K
and 0 :!! A < 11 and A(K) = If c- C(K); f(Aco, + (I - A)0)2) = Af(W1) +
(I - AMC02) for all 0) 1, (02 c- K and 0 < A :!! I I = S(K) n (- S(K)). If

f g c- C(K) then f  ! g is understood to mean f(w) - g((o) > 0 for all w c- K.
The set M + (K) of positive Radon measures over K forms a subset of the

dual of C(K) which can be equipped with the weak *-topology, i.e., the

a(C(K)*, C(K))-topology. We denote the positive Radon measures with
norm one, i.e., the probability measures, by M,(K).

Next note that as K is compact the Borel sets of K are unambiguously
defined as the elements of the a-algebra 18 generated by the closed, or open,
subsets of K. The positive regular Borel measures are then the positive
countably additive set functions y over 0 which satisfy

y(B) = supfy(C); B =) C, C closed

= inffy(C); B c-_ C, C openj.
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The Riesz representation theorem establishes a one-to-one correspondence
between the positive regular Borel measures and the Radon measures

M,(K) such that y(K) = Ilyll. We use a standard integral notation,

Y(f) = fdy(o))f(co), f c C(K),

which implicitly identifies these descriptions.
The Borel sets of K contain all countable unions of closed sets and all

countable intersections of open sets. These two types of sets are called F, and

G,, respectively. The Baire sets of the compact K are defined as the elements
of the a-algebra 00 generated by the closed G.-subsets, or the open F,-
subsets, of K. 00 is the smallest u-algebra of subsets of K such that all the
continuous functions on K are measurable. A measure yo on 00 is called a

Baire measure. A Baire measure is automatically regular, and has a unique
extension to a regular Borel measure on 0. Since the restriction of a Borel
measure to 00 is a Baire measure we have a one-to-one correspondence
between Radon measures y, regular Borel measures dy, and Baire measures

dpo given by

y(f fdy(o))f((o) = fdpo(o-))f(o)), f c- C(K).

In the sequel, the term measure will be used interchangeably to denote these
three concepts.
The support of a measure y c- M,(K) is defined as the smallest closed

subset C g K such that p(C) = y(K). This subset exists due to the regularity
of y. Analogously, one says that u is supported by a Borel set B g K if

M(B) = y(K). Moreover, the measure y is said to be pseudosupported by an

arbitrary set A g; K if y(B) = 0 for all Baire sets B such that B n A = 0.
Although these latter notions are superficially similar we emphasize that this

similarity is rather misleading. There exist examples in which

(1) A is a Borel set,
(2) y is pseudosupported by A,
(3) y(A) = 0.

If y is supported by A we call A a supporting set and a pseudosupporting set is

defined in an analogous manner. The stronger notion of a supporting set is

of the greatest use but the weaker notion enters naturally in the general
theory to follow.
The Dirac, or point, measure with support w is denoted by b,, Thus

6.(f f(w) for all f c- C(K). Each [t with finite support f(o 1, (0,, . . . ,Wj is

a superposition

n

Aj 6,
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of Dirac measures with coefficients Aj  ! 0. One has

n

y(K) = 111t1l Y Aj.

Finally, we remark that the measures M,(K) form a positive cone which
has a natural order defined by y > v if y(f) > v(f) for all positivef c- C(K).
This cone has an interesting geometric property which will be of subsequent
significance. It is a lattice with respect to the order ; !. By this we mean that
each pair ft, v c- M,(K) has a least upper bound y v v and a greatest lower
bound y i, in M,(K). Explicitly, one has

Y V V = (It - V) , + V, Y A V = V V)-,

where (y v)+ denote the positive and negative parts of the signed measure

/I - V.

After these preliminaries we now introduce the concept of the barycenter
b(p) of a measure y c- M,(K) by

b(p) fdy(o)) co,

where the integral is understood in the weak sense. The set M.(K) is then
defined as the subset of M,(K) with barycenter (o, i.e.,

M.(K) = 1y; y c- Mj(K), b(p) = w

The existence of the barycenter of a general measure is not quite evident but
is given by the following result which also establishes a useful approximation
procedure.

Proposition 4.1.1. Ify c- M,(K) then there exists a unique point b(p) C- K,
the barycenter Qfy, such that

f(b(y)) = y(f fdy((o')f((o)

for allf c A(K).
Moreover, there exists a net y,, c- M, (K) of measures with finite support

which is weakly* convergent to y and is such that

b(p,,,,) = b(p).

PROOF. If ft has finite support, i.e.,

n

with Aj  !! 0 and I Aj = 1, then b(u) exists and is given by
n

b(p) Aj coi.
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As K is convex b(p) c- K. But each y e M 1 (K) may be approximated in the weak*
topology by a net of measures y c- M I (K) with finite support (this is just the Riemann
approximation of the Integral). The barycenters b(yj of the p,, must Ile In K and as K
is compact there exists a convergent subnet Let b(p) C K denote the limit of
this subnet; then

Ilm.f(b(ft,))

= lim P.kf) = Kf)

for all f c A(K). But b(p) is certainly unique because the elements of A(K) separate
the points of K by the Hahn-Banach theorem. Thus the barycenter b(p) of ft exists.

Next consider all finite partitions I& = I Uil 1::5 i:5,, .
of K in terms of Baire sets Uj.

These partitions form a directed set when the order 0?1 -< Y" is taken to mean that
each Vi c Y,,- is a subset of a Uj (E V. Let Zi denote the characteristic function of Uj
and define Aj, and pi, by Aj = y(Ui) and Aj dp i Zi dp. Let coi = b(pj) and introduce
the measure y, c M, (K) by

This measure has finite support and

n

b(p,) Aib(pi) b Y Ajyj b(p).

Moreover, forf c- QK) one has

I P,"U) - tt(f) I < Ai I f((Oi) - yi(f) I
i=1

sup sup I Poji) - Pa)) I
i -Ui

Finally, for E > 0 choose a finite family of open sets Gi such that I f(x) - f(y) I <
for x, y c- Gi and such that

K g U Gi.

Defining Uj by

Uj = Gi - U Gj
j<i

one has

I P,&(f) - tt(f ) I < F.

Therefore y,ff) ---> y(f) for each such f and p, converges weakly* to P.

Now we turn to the problem of barycentric decomposition, i.e., the problem
of associating to each (o c- K a measure y c- M.(K) which is supported by
the extremal pointsg(K). We follow the program outlined in the introduction
and first introduce an order relation on M , (K).
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Definition 4.1.2. The order relation >- is defined on M,(K) by specifying
/i >- v if, and only if,

Y(f V(f

for allf c- S(K).

It is not immediately evident that the relation >- is a genuine partial order
on M,(K). Clearly, >- is reflexive (y >- y) and transitive (Y >- v, v >- p
imply y >- p) but one must prove that it is antisymmetric, i.e., that ju >- v,
v >- y imply y = v. The following proposition establishes that >- is a partial
ordering and that each w e K is the barycenter of a maximal measure,
where maximality of y means that v >- y implies v = y.

Proposition 4.1.3. The relation >- on M,(K) is a partial ordering. If
y >- v then Ilyll = Jjvjj and if, further, Ilyll = jjvjj = I then b(p) = b(v).
Moreover, y e M,,,(K) if, and only if, y >- 6..
Each oj c- K is the barycenter of a measure y c- Mj(K) which is maximal

for the order >-.

PROOF. Ifp >- v and v >- y then y(f v(.f) for allf e S(K). It follows immediately
that y(f - g) = v(f - g) for all pairs J'l g e S(K), and to conclude that y = v it

suffices to show that S(K) - S(K) is uniformly dense in QK).

Lemma 4.1.4. The set S(K) - S(K) is uniformly dense in QK), i.e., any
real continuousfunction over K may be uniformly approximated by differences
of real continuous convexfunctions.

PROOF. The Hahn-Banach theorem establishes that the continuous affine functions

A(K) separate points of K. Consequently the Stone-Weierstrass theorem implies
that the real polynomials of elements of A(K) are uniformly dense in QK). But

every real polynomial whose arguments take values over a compact convex subset
of Rn can be decomposed as the difference of two convex functions over this subset,
e.g.,

P(X " X" .. . , 17n) = P(X 1, X2, - - - X.) + 1 Y_ Xi2 _ 'Z Y- Xi2I
i=1

-

i=1

with A sufficiently large. Combination of these observations completes the proof.

END OF PROOF OF PROPOSITION 4.1.3. Lemma 4.1.4 implies that > is anti-

symmetric and hence a partial order. Next remark that iff C- A(K) thenf e S(K) and

-f e S(K). Hence p > v implies y(f) = v(f). In particular,

11 y 11 = fdy(co) = fdv((o) v 11

and for pt, v e M I (K) one also has

b(p) = fdp(w) w = fdv(w) w b(i),
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where the last integrals are interpreted in the weak sense. In particular, Y >- 5.
implies y e M.(K). Conversely, if y c M.(K) then Proposition 4. 1.1 establishes that

y is the weak* limit of a net y., e M,,,(K) of measures with finite support. Thus if

f c- S(K) then

f(w) = f(b(p,)) :! _ p,,(f

by convexity. Taking the net limit one deduces that u(f) or, equivalently,
It >- 6. -

Finally, the existence of a maximal 6,,, follows from Zorn's lemma if one can

show that each set Jy,,j of measures which is totally ordered by the relation >- has

an upper bound. But forf c- S(K) the set Jjt,,(f)j is monotonic increasing and, more-

over, 11 M,, 11 is independent of a. Therefore M,,(f ) converges and M,(g - h) converges for all

g, h c S(K). But from Lemma 4.1.4 one concludes that jy, converges in the weak*

topology. The limit is clearly a positive Radon measure which majorizes all the P_

The partial characterization of the order >- given by Proposition 4.1.3 can
be greatly extended. If v c- M 1 (K) is a measure of finite support,

n

V Ajb",

and v then one can show that

n

Y_ Ai Pi

with yj >_ b.,. A similar type of comparison result is true for general 1, and

can be used to completely characterize the order. As we do not at present
need such detail we postpone this characterization to Section 4.2, Proposition
4.2.1.

Proposition 4.1.3 establishes the existence of maximal measures, and the

geometrical intuition motivating the order relation indicates that the maximal

measures should in some sense be supported by the extremal points. In order

to localize the support of maximal measures we exploit the geometric
properties of convex functions, by use of their upper envelopes.

Definition 4.1.5. Iff c- QK) then its upper envelopefis defined by

f(a)) = inffg(o-)); - g c- S(K), g f 1.

Iff c S(K) the associated boundary set Of(K) is defined by

Of(K) o); w c K, f(w) f(w)

Note that the upper envelope f can be discontinuous even although f is

continuous. Nevertheless, as f is the lower envelope of a family of concave

continuous functions it is both concave and upper semicontinuous. The

boundary set comprises the points where the convex function f meets its

concave upper envelope f and should contain the maxima off The ele-

mentary properties off and Of(K) are summarized as follows.
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Proposition 4.1.6. Iff e C(K) then the upper envelope f is concave, upper
semicontinuous, and hence measurable. Moreover, ify c- M , (K) then

y(f infjy(g); - g c- S(K), g  !! f 1.

Iff c- S(K) the associated boundary set Of(K) is a G6 and, in particular, a

Borel set.

PROOF. The concavity and upper sernicontinuity follow by definition. The upper
semicontinuity is equivalent to the condition that the sets {(O; f((0) < al are open
and the Bore] measurability of f follows immediately.

If S'f = jg; - g e S(K), g  !! f I then for each pair g, 92 c- Sf one has g, A 92 6 Sf,
where g, / 92 is the greatest lower bound of g, and 92. Thus Sf forms a pointwise
decreasing net of continuous functions with limit f The identification of 11(f) then
follows from the monotone convergence theorem.

Finally, as f is continuous, f - f, is upper semicontinuous and the sets

Sn = jw; w c- K, f(o)) -.f(w) < 11nj

are open. Butf and hence

Of(K)= n sn -

n ! 0

The following theorem gives the fundamental characterization of maximal

measures. Basically, the theorem substantiates the intuition that a maximal
measure is supported by the sets for which the convex functions attain their

maxima, i.e., the sets wheref = f.

Theorem 4.1.7. Let K be a convex compact subset of a locally convex

Hausdorffspace X and let y c- M , (K). Thefollowing conditions are equiva-
lent:

(1) y is maximalfor the order >- on M,(K);
(2) y is supported by every boundary set Of(K), i.e.,

y(af(K)) = Ilyll, f c- S(K);

(3) It(f) = y(f) for allf Ei C(K).

Note that condition (2) is by definition equivalent to y(f y(f) for all

f Ei S(K).
The equivalence of the three conditions follows from a more detailed

analysis of the upper envelope of elements of C(K). The necessary informa-
tion is summarized in the following two lemmas.

Lemma 4.1.8. Iff is the upper envelope off c- C(K) then the set

S = I ((o, t); (w, t) c- K x R, t f(w) I

is the closed convex hull S' qf the set

{((o, t); (w, t) c- K x R, t :!! f(w)j.
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PROOF. The function f is concave, upper sernicontinuous, and J'> f Hence S

is convexl closed, and S' E- S. Next assume there is a (wo, to) c S such that ((0,, to)  S'.

The Hahn-Banach theorem implies the existence of a continuous linear functional

g over X x R such that g((oo, to) > I and g(w, t) :!! I for t :!! f(w). Now g must

have the form g(co, t) = h((o) + At where h is a continuous linear functional on X.

Thus

h((oo) + Ato > t and h((,)) +  f(w) <

for all o-) c- K. Choosing co = wo and subtracting one finds to) < 0. But

since wo c- K and to > J'((oo) one must then have A > 0. This implies that W F-4

(I - h(w))IA is an affine continuous function which majorizes f and satisfies

to > (I - h(wo))IA f(wo). This contradicts the assumption to :!  f(wo) and hence

S' = S.

Lemma 4.1.9. Iff is the upper envelope off c- QK) then

f(co) = suply(f); y >- 6,, y hasfinite supportl.

Thereforefor each pairf, g c- QK), one has

(J' + g) (03) f(0j) + Y(W).

PROOF. If p >- 6,, and p has finite support then

n

Aj 6",

for some Ai > 0 such that

n

Y Aj Y Ai(Oi (1).

But then

n n

P(0) Ai A(0) Aif((Oi) = Y(A

where the first inequality uses the concavity of

Next, by Lemma 4.1.8 there exist Aj' > 0, (oi" c- K, ti' c- R, and n,, > 0 such that

n,,

Aj' = 1, ti, <-

n n,,

Jim Y Ai"wi, = ('0' lim Y Ai'ti' = f(co).
2

Define ft by
n

Y Ai'k.
i=1

and pass to a weakly* convergent subnet {yj. If p denotes the limit of this subnet

one has

b(p) = lim b(p,,) = (o
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and

Y(f) = HT Y Jf)
a

Im f((0).

But by Proposition 4.1.1 one can then approximate p in the weak* topology by
measures with finite support, barycenter b(p), and norm unity. Thus f((o) is smaller
than the supremum of the lemma. The observation of the previous paragraph estab-
lishes that it is also larger and hence equality is established.
The second statement of the lemma follows from the first by observing that the

supremum of a sum is less than the sum of the suprema.

PROOF OF THIEOREm 4.1.7. Let us now return to the proof of Theorem 4.1.7.

(1) => (2) Define p(g) = p(q) for g c- C(K). One has p(Ag) = Ap(g) for all A  ! 0
and g c- C(K). Moreover, by Lemma 4.1.9 one finds p(g + h) p(g) + p(h) for

g, h c- C(K). Thus by the Hahn-Banach theorem one can find a linear functional
v over C(K) such that vff) = y(f) for one fixed fc- S(K) and v(g) < p(g) for g C- C(K).
Now if g :!! 0 then j < 0 and v(g) < p(g) :!! 0. Thus v c- M + (K). Moreover, if
- g c- S(K) then g = g and v(g) :!! p(g) = y(g), which implies v >- y. By the assumed

maxima!ity of y one concludes that v y and therefore

Y(f) VU) = 14f)

for the prescribed f c- S(K), i.e., y is supported by af(K).
(2) => (3) The map f c- C(K) i--+ M(f) is subadditive by Lemma 4.1.9. Therefore

Y(f) - P(9-) :!5; Af - g) < W) + W- g))

for all f, g e C(K). But g(f) = y(f) for f c- S(K) by assumption and g) g
for g c- S(K) by definition. Thus

Y(f) - I-t(g) :!! Pff - g) < Y(f) - Y(g)

for all f, g c- S(K) or, equivalently,

lAf - g) = yff - g)

for f, g c- S(K). It follows from Lemma 4.1.4 that

y(h) = y(h)
for all h c- C(K).

(3) => (1) Assume v >- It. If h c- C(K) then by Proposition 4.1.6

v(h) infj v(g); - g e S(K), g > h I
inf{p(g); - g c- S(K), g > h I

Therefore as h > h

v(h) < v(h) :! It(h) = y(h).

Thus v(h) < y(h). But replacing h by -h, one has v(h)  !! y(h) and hence y v, i.e.,
y is maximal.
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Theorem 4.1.7 establishes that the maximal measures are supported by
each of the boundary sets Of(K). We next demonstrate that the set (ff(K) of
extremal points of K is exactly equal to the intersection of the af(K). This
shows that the maximal measures are supported in some weak sense by
off(K) but some care must be exercised in this form of interpretation because

off(K) is not necessarily measurable. We return to a more detailed discussion
of this point after establishing the identification of S(K).

Proposition 4.1.10. Let K be a convex compact subset of a locally convex

Hausdorff topological vector space. The extremal points S(K) of K and the

boundary sets Of(K) are related by

S(K)= n Of(K).
f e S(K)

Therefore if B - iff(K) is a Borel set and y(B) = Ilyll for some y c- M,(K)
then y is maximal.

PROOF. If (o c- K but w 0 S(K) then o) = (w, + (o,)/2 for some pair C01, (02 G K

with a), 0 (02. Let J* be any affine continuous function with J*((.O,) :A f((02)- One has

f2 (01 + (-02 M(01) + f(('02))2
2 4

f2((01) + f2(W2) M(01) - P(02))2
2 4

Thus if - g c- S(K) and gj'2 then

X(0)  !:
9((01) + 9((02)>f2((0I) + f2((02)

> f2((O).
2 2

Therefore

f2((01) + f2
f2(W)

((02)
> f2(0)).

2

In particular, (0 0 Of2(K) and hence

S(K) 2 n Of(K).
f.S(K)

Conversely, if (t) 0 Of(K) for some f c- S(K) then f(w) > f(w) and by Lemma 4.1.9

there is a y c- M I (K) with finite support, and barycenter (t) such that y(f) > f(w).
Thus if

n

one has

b(p) = 1: Aicoi = OJ

i=1
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and

n

Yff) Y_ Ai AW) > Pa)).
i=1

It follows from these two conditions that (t) 0 S(K) and hence

tff(K)- n Of(K).
f.S(K)

These two inclusions establish the desired equality.
The final statement of the theorem follows by noting that if f e S(K) then

p(af(K)) = Jjjtjj and y is maximal by Theorem 4.1.7.

Each ofthe boundary sets Of(K) is a Borel set, and even a G,5, by Proposition
4.1.6, but S(K) is not necessarily Borel because it is the intersection of a

nondenumerable family of af(K). One can in fact construct examples in
which 9(K) is not a Borel set. Thus the sense in which a maximal measure is

supported by off(K) is not immediately evident and it is at this point that the
notion of a pseudosupporting set naturally enters.

Theorem 4.1.11. Let K be a convex compact subset of a locally convex

Hausdorfftopological vector space. Itfollows that each maximal P c- MI(K)
is pseudosupported by the extremal points iff(K) of K. Therefore y(B) = I

for every Baire set B containing off(K).
If, moreover, K is metrizable then the Baire sets and the Borel sets coincide,

off(K) is a GI-subset, and thefollowing conditions are equivalent:

(1) v c- M,(K) is maximal;
(2) v(&(K)) = 1.

The proof of the first statement relies on two lemmas which are of inde-
pendent interest. In particular, the first of these establishes a maximum

principle which will be reapplied in Chapter 6 in the discussion of variational
principles for equilibrium states.

Lemma 4.1.12 (Bauer maximum principle). Letfbe a convex upper semi-
continuous function over the compact convex set K. Itfollows thatf attains
its maximum at an extremal point ofK.

PROOF. Let

a = sup f(W) < + 00

and define

F = {(o; f(co) = a 1.

It follows from compactness and sernicontinuity that F is closed and nonempty.
Moreover, F is stable in the sense that if y e M.(K) and w e F then y is supported by
F. The set of closed subsets of F which are stable in K is directed when ordered
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with respect to inclusion. Thus by Zorn's lemma and compactness F must contain
a minimal nonempty stable subset F,. Now assume F, contains two distinct points
(ol and (02. The Hahn-Banach theorem implies the existence of a continuous linear
function g such that g(w,) > 9((02). Let

G = co; g((o) = sup g((o) n F,f
.'E F0

I
and then G is stable as a subset of F, and hence as a subset of K, since F0 is stable
in K. Since (02 0 G this contradicts the minimality of F0 and hence F, = jW,j for
some point wo c- K. But because F0 is stable one must have wo e&(K).

Lemma 4.1.13. Let y be a maximal measure and fn cs QK) a decreasing
sequence ofpositivefunctions which converges pointwise to zero on S(K). It

follows that

IiM 11(fn) = 0,
n oo

PROOF. Firstly, we argue that for each n there is a gn c- S(K) such that 9,, < fn and

P(fn) - P(9n) < 8-

This follows by remarking that p(f by Theorem 4.1.7, and that

/,t(( - fn) = 1nf{p( - g); g c- S(K), g :!! fn I

by Proposition 4.1.6.

Secondly, we claim that the gn can be chosen to form a decreasing sequence.
We argue by induction. Choose g,, such that 0 :!! gn + Ign A fn and such that

Y(9n A f. + 1) - P(gn + 1) < + P(9.) P(f.)-

This is possible by the preceding argument. Now one has

Xgn) + PUn + I) = P(gn fn + I) + Agn V fn + 1)
< P(gn fn + 1) + Y(fn)*

and hence

Y(J + I) - P(gn + I) <

Thirdly, suppose f, converges to f and g,, converges to g. It follows that

0 < Yff) < Y(g) + E.

Now f = 0 on O(K) by assumption and hence g = 0 on &(K). But g is convex and

upper semicontinuous and hence by Lemma 4.1.12 one has g = 0 on K and

0 :!! Af) < E.

Let us return to the proof of the theorem.

PROOF OF THEOREm 4. 1. 11. As y is regular and the a-algebra of Baire sets is

generated by the compact G,-subsets of K it suffices to prove that Y(Q = 0 for each

compact G,5 such that C r-)&(K) = 0. But by Urysohn's lemma there is a bounded
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sequence of positive functions L c QK) such that Jj(o) = I for W c- C and such that

lim f,,((O) = 0
n-

for (o 0 C. Therefore

0:  - Y(C)   liM P(.fn) = 0
n-.

by Lemma 4.1.13.

Next assume K is metrizable and let C be any closed subset of K. Define Cn by

w; d(w,
I

CO) < for some (o'c- C
n

where d is a metric on K. The Cn are open and

C n Cn,
n !! I

i.e., C is a Baire set. Thus the Baire sets and the Borel sets coincide.
We will prove that S(K) is a Borel set by establishing the stronger result that

S(K) = Of(K) for a suitable f c- S(K).
As K is metrizable it is automatically separable and replacing the metric d by

dl(I + d), if necessary, one may assume that d(w', (o") :!! 1 for all pairs w, w" c- K.
Now let jwnj be a dense sequence of points in K and define f c- QK) by

f(w) 1] 2 - n d(a)., (0)2.
n : I

It follows that f e S(K) but for (d, co" c- K and co' :A co" there is an ii such that (On IS

closer to w' than to o)" and therefore d(o)., (0)2 ,
and hencef is strictly convex on the

segment (w', w"). The first calculation of the proof of Proposition 4. 1. 10 then gives

CO, + 0), (0' + ('011).f
2 2

This establishes that if (o c- K but (o 0 S(K) then (o  Of(K). Therefore

&(K) 2 af(K).

But from Proposition 4. 1. 10 one then concludes that

,ff(K) = af(K)

and S(K) is a G -subset by Proposition 4.1.6.

Finally, (1) => (2) by the first part of the theorem and (2) => (1) is contained in
Proposition 4.1.10.

Remark. One may obtain a weaker form of the second part of Theorem 4. 1.11
for special subsets of K. A Borel subset F is called a stable face of K if W G F
and y >- 6. imply that It is supported by F. Ifthe stable face F ofK is metrizable
and separable then the foregoing argument can be used to establish that
S(F) = Of(K) n F = ff(K) r-) F for a suitable f c- S(K). One clearly has
9(F) = S(K) r-) F but iff is constructed as above with the aid of points
w,, c- F then the same argument shows that w c- F, but w 0 &(F) implies



334 Decomposition Theory

(o  Of(K). Therefore e(F) - Of(K) n F and equality again follows from

Proposition 4. 1. 10. Thus if y >- 6,, for (t) c- F then y is maximal if, and only if,
,u(61(fl) = 1. Similar considerations on stable faces will occur in Section 4.1.4.

Theorem 4.1.11 together with Proposition 4.1.3 establish that each 0) c- K

is the barycenter of a maximal probability measure and the maximal measures
are pseudosupported by 6'(K). In the best cases, e.g., K metrizable, the
maximal measures really are supported by S(K). We next derive conditions
which ensure that each co c- K is the barycenter of a unique maximal measure.

In order to formulate the uniqueness conditions it is convenient to assume

that K is the base of a convex cone with apex at the origin.' This can always
be arranged by replacing X by R x X, identifying K with I I I x K, and

taking C to be the cone generated by I I I x K. Although there are many
methods of realizing K as the base of a cone C all such cones are linearly
isomorphic because each point of the cone is specified as Aw with A -2! 0 and
o) c- K. Thus the affine properties of C depend only on the affine properties
of K and are independent of the method of embedding.

There is a natural ordering on the cone C defined by  > q if, and only if,
- q e C and C is defined to be a lattice if it is a lattice with respect to this

order. Moreover, the compact convex set K which forms the base of the cone
C is defined to be a simplex whenever C is a lattice. Note that this definition
of a simplex agrees exactly with the usual definition in finite dimensions.
The v-dimensional simplex 44 12, - I

 0, 1 Ai = I I is the base
V + 1); Ai   ! I

of the v + 1-dimensional cone V1, 22- .., A,,+,); Aj > 01. A more general
example of a simplex is provided by the probability measures M, (K). This set

is the base of the cone C = M
+ (K) and we noted at the beginning of the

subsection that C is a lattice. A slightly less obvious example is provided by
the following.

Proposition 4.1.14. Let K be a convex compact subset of a locally convex

Hausdorff space and define M to be the subset of M + (K) formed by the

measures which are maximal with respect to the order >-. Itfollows that M
is a convex subcone ofM + (K) and every sum, or integral, of measures in M

is contained in M. Moreover, if y c- M and v then v c- M. Consequently,
M is a lattice.

PROOF. Theorem 4.1.7 established that a measure It is maximal if, and only if,
y(f - J) = 0 for all f c- S(K). it immediately follows that sums, and integrals, of
maximal measures are maximal and that the maximal measures form a subcone of

M,(K). But if f c S(K) then 0 and v < It, together with Y(f - J) = 05
implies that i,(f - f) = 0, i.e., v is maximal.

Now if It A v is the greatest lower bound of It, v c- M one has It A v :!! It and
hence It /\ v c- M. Furthermore, if p c M,(K) and p :!! It, p :!!- i, then p c- M and

I A base of a convex cone P with apex at the origin is a convex subset K of P such that 0  K
and each nonzero 9 c- P can be written uniquely as  o = Aw, where A > 0 and (o c- K.
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because y A v - p < y A v e M one has /,I A v - p c- M. Thus y /\ i, is the greatest
lower bound of y and v with respect to the natural order of the cone M. But P v v

it + V - /I A v :!! y + v c- M and hence p v v e M. Thus M is a lattice.

This proposition is of use in deriving the following characterization of

uniqueness for barycentric decompositions by maximal measures.

Theorem 4.1.15. Let K be a convex compact subset of a locally convex

Hausdorff space. Thefollowing conditions are equivalent:

(1) each w c- K is the barycenter ofa unique maximal measure;

(2) K is a simplex;
(3) the upper envelopefofeach f c- S(K) is affine.

PROOF. (3) => (1) If y c- M.(K) we first show that

11(f).

Let {y I be a net of measures in M.(K), each with finite support, such that Y converges
to y in the weak* topology. The existence of fyj is assured by Proposition 4.1.1.
Now if g c- - S(K) and g > f then one has

A(0) = Y.Y) < Y"(g) :!! g(-),

where the first equality uses the affinity of f. Hence

f((0) :!! 11(g) :! g(CO).

Taking the infimum over g and applying Proposition 4.1.6 one finds

A(0) :!! PY) = f(0j).

Now assume that Y,, 92 are maximal measures with barycenter co. Thus

/I IM = Y 1(A 122(f) = 02(f)

for all f c- S(K) and it follows that

PI(f) = 1-11(f) =ACO) = t12(f) = P2(f)-

Thus 111 (f) = Y2(f) for all f c- S(K) or y I (g - h) = P2(9 - h) for all g, h C- S(K).
Therefore yj = Y2 by Lemma 4.1.4 and the maximal measure is unique.

(1) => (2) The maximal measures M form a lattice by Proposition 4.1.14 and so

the maximal measures p c- M, (K) form a simplex M, But the mapping Y  -+ (0 = b(p)
is a linear isomorphism from M, to K. Thus K is a simplex.

(2) => (3) To prove this last implication it is convenient to extend each f C- C(K)
to the cone C, with base K, by homogeneity, i.e., one sets f(Aw) = Af((D) for W C- K,
A -2! 0. Note that convexity off then corresponds to subadditivity

f(X + Y) :!! fW + f(y), X, Y C- C,

and concavity to superadditivity,

f(X + A  ! f(X) + f(y), X, Y E C.
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Now if f c- S(K) then f is concave and its extension is automatically superadditive.
Thus to deduce that f is affine it suffices to prove that its extension is subadditive
and hence linear. This proof relies upon the following decomposition property of a

lattice.

Lemma 4.1.16. Let C be a cone which is a lattice with respect to its natural
order. Let x, y c- C and assume

n

X + Y Y, zj
i=1

where zj, Z2, Zn C C- It follows that there exists xi, yj c- C such that

xi + yj = zi JOr i = 1, 2, . . . , n, and

n n

X xj5 Y yi.

PROOF. Assume to start with that ii = 2 and define xi, yj by

X, = Z, A X, Yj = Zj - Zj A X,

X,=X-Z, AX, Y2 = Z2 - X + Z, A X-

It is easy to check all the desired relations with the possible exception Of Y2 C- C-

But this follows by noting that the translate of a least upper bound is the least upper
bound of the translates. Explicitly,

Y2 ZI A X + (Z2 - X)

(Z 1 + (Z 2
- X)) A (X + (Z2 - X))

Y A Z, G C.

Now the general case n > 2 is completed by an iterative argument. One applies the

n = 2 case to

n

x+y=zl +Y-zi

to obtain z, = X I + y, and

n

zi t + t"

where x, + t = x and y, + t' = y. Then one reapplies the special case to

n

t + t' = Z2 + Zi

After n - I steps one obtains the general result.

Now let us return to the proof of (2) ==> (3) in Theorem 4.1.15. By Lemma 4.1.9

one has, for f c- C(K),

i C- C
n

Z X + YAx + Y) = sup f(zi); Z
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and by Lemma 4.1.16

n n

AX + A = sup Y_ f(Xi + Yi); Xi, Yi G C' E Xi = X, Y_ Yi Y

Specializing tof c- S(K) the convexity gives

 n

f(X + Y) :!! sup Y f(xj); Xi c C' Y Xi = X

+ sup Y YY_ PY); Yi C- C' Y_
i=1 i=1

AX) + f(j).

Thus f is both subadditive and superadditive on C, i.e., f is additive on C and affine

on K.

There are other characterizations of the uniqueness of the barycentric
decomposition which are not covered by Theorem 4.1.15 and which are useful

in applications. A simple and useful example is given by the following:

Corollary 4.1.17. Let K be a convex compact subset of a locally convex

topological Hausdorffvector space. Thefollowing conditions are equivalent:

(1) each a) c- K is the barycenter ofa unique maximal measure y,';
(2) there exists an affine mapping a) c- K  - v. c- MJK) ftom a) c- K

to a measure v. with barycenter (o.

If these conditions are satisfied then y. = v..

PROOF. (1) => (2) If 0) 1, (02 c- K and 0 < A < 1 then Att,,,, + (I is maximal

because the maximal measures form a cone (Proposition 4.1.14). But

b(Ay,,, + (I - A)yj = Ab(ft,,) + (I - Affi(Y'112) = AO-)' + (1 - A)W2-

By uniqueness Ay, + (I - A)Y-I = 91(l) 1 +0 - 1),1)2 and the mapping (0 F---). I't. is affine.

(2) => (1) To deduce that v. is a unique maximal measure in M.(K), we have to

prove that if v c- MJK) then v -< v.. First remark that v may be approximated in the

weak* topology by a net of measures with finite support, by Proposition 4. 1. 1. Now if

V Y_

with Aj' 0, and iff c- S(K), then

VV Aif(0-)i,)

because v,,, >- 6,,, 9 by Proposition 4.1.3. But by affinity of the map a) v(, one con-

cludes that

"V) < "'-ig I "i,- (f VJf

Finally, by limiting, v(j) vjf), i.e., v -< v,
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Remark. It should perhaps be emphasized that the problem of deciding the

sense in which a maximal measure is supported by S(K) is not simplified
by the assumption that K is a simplex. In fact, it is possible to construct a

simplex K with a point w such that

(1) .9(K) is a Borel subset of K;
(2) the unique maximal measure p,,,, e M.(K) satisfies M.(60(K)) = 0.

Even if the unique maximal measure y. is supported byg(K) this does not

mean that there cannot exist other measures y e M.(K) which are pseudo-
supported by ff(K) but such that /i =A y,,,. One can indeed find a simplex K
and point w with the following properties:

(1) 9(K) is a Borel subset of K;
(2) the unique maximal measure y. e M,,,(K) satisfies (K)) = 1;
(3) there exists a y c M.(K) such that p(60(K)) - 0 and y(B) = 0 for

every G, -subset B with B n 60(K) = 0.

The type ofdecomposition that we have analyzed in this subsection assures,

by definition, a representation of the form

f(b(p)) = fdjt(w)f(a))

for allf e A(K), where M e Mj(K). It is natural to ask to what extent the con-

tinuity properties off may be relaxed without affecting this representation.
We conclude this subsection by remarking that the barycentric representation
remains valid for affine semicontinuous functions, or for sums and differences

of such functions.

Corollary 4.1.18. Let K be a convex compact subset of a locally convex

topological Hausdorff vector space and J'an affine upper semicontinuous

function over K. Ify e M,(K) has barycenter b(p) then

f(b(ft)) = fdy(o)) f(a)).

PROOF. Firstly, remark that f is equal to its own upper envelope:

f(a)) = infjg(o)); - g c- S(K), g > f 1.

This fact is established by the argument used to prove Lemma 4.1.8. Secondly, by
use of the same approximation technique used to prove (3) => (1) in Theorem 4.1.15

one has

f(b(p)) = pjf M,,,(g) :!! g(b(p))

for all 9 c- - S(K) with g Hence

f(b(y)) :!:_ p(g) :! :, g(b(y)).

Taking the infimum over g and reapplying Proposition 4.1.6 then givesf(b(p)) = y(f).
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4.1.3. Orthogonal Measures

In the previous subsection we discussed the general theory of barycentric
decomposition and in this subsection we consider certain aspects of this

theory in application to the state spaces of C*-algebras. Throughout the
subsection Eq, will denote the convex weakly* compact set of states over the

C*-algebra W with identity. Most of this section is devoted to the examination
of a certain subclass of the set of measures M,,,,(Ew) with barycenter w. These

special measures, the orthogonal measures, were already briefly discussed in
the introduction to this section. They are in one-to-one correspondence with
the abelian von Neumann subalgebras of the commutant 7r.(W)' of the

cyclic representation associated with w. Moreover, there is a one-to-one

correspondence between these measures and the projections P on S5. such
that PQ. = Q,, and Pn.(%)P generates an abelian algebra on P.5.. The first
main result of this subsection is the establishment of the correspondences and
the second is to show that the correspondences respect the natural orderings
of each of the three classes. In particular, maximal abelian subalgebras of

7r.(W)' give rise to measures which are maximal among the measures

M,,(E,,). This result will be established in Section 4.2.1. As a preliminary we
prove in this section that the measures are maximal among the orthogonal
measures with barycenter w.

Throughout the subsection we adopt the standard algebraic notation

introduced in Chapter 2 together with the extra notation introduced in the

previous subsection. Moreover, we associate to each element of the C*-

algebra W an affine continuous function A over the state space E,, by the

definition

A(o)) = (o(A).

Note that the Hahn-Banach theorem implies that all affine continuous
functions over Ew have this form.

In order to introduce the notion of an orthogonal measure y over E," it is
first necessary to examine the concept of orthogonal states. There are various

possibilities of definition which are equated by the following result.

Lemma 4.1-19. Let (01, (02 be positive linear fiinctionals over the C*-

algebra 91 and let w = o), + 0)2. Thefollowing conditions are equivalent:

(1) if co' is a positive linear fiinctional over 91 satisfying w' < w, and
W' < W2 then o-)' = 0;

(2) there is a projection P c- 7r.(91)' such that

(ol(A) = (Pn., 7r,,(A)K2,J, (02(A) = (( - P)Q,,,, 7r,,(A)Q,,);

(3) the representation associated with w is a direct sum ofthe representa-
tions associated with (o, andW2,

'510 =_ '5(01 (1) '5U)21 n(o = 7r
(0 1
 n(02' 0(0 == OW

I
(D n(D2 *
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PROOF. (1) => (2) By Theorem 2.3.19 there exists a T such that 0 :!! T <- T,
T e 7rJ%)', and

(,),(A) = (TO,_ 7z.(A)QJ.

Introduce T' = T(I - T); then 0 :!! T'c- 7r,,,(%)' and the linear functional W' defined

by

o)'(A) = (T(I - T)f2., 7r,,(A)Q,,)

is positive. But T' :! :, T and T' <- T - T. Hence ( )' < ( )1 Cl)2, and condition

(1) together with cyclicity of Q,,, imply that T(I - T) = 0, i.e., T is a projection.
(2) => (1) Theorem 2.3.19 again ensures the existence of a positive T'c- 7rJ%)'

such that

(o'(A) - (T'Q., 7zJA)QJ.

Now if co' :!! co, and (t)' :5:' C02 then T' :!! P and T' < T P But then one has

0 PT'P < P(I - P)P = 0 and 0 :!! (I - P)T(1 - P) (I P)P(l - P) = 0.

Hence (T')112p = 0 = (T) 1/2(l - P) and so (T) 1/2
= 0. Thus co' 0 and condition

(1) is satisfied.

(2) => (3) If one sets (.51, 7c, Q1) = (P5,_ P7r., PQ,,,) then it follows from the

uniqueness statement ofTheorem 2.3.16 that (.51, 7r, Q1) 7r., Q,,). Similarly,
05-21 7E-2' K111)2)W - fl.5,_ (I - P)7r., (I - P)Q,,).

(3) => (2) Let P be the orthogonal projector on .5. with range It follows

immediately that P c- 7r,J91)' and (o, (o, are given in the correct relationship to 0).

Each of the conditions of Lemma 4.1.19 indicates a certain independence
of the functionals w, and 0)2 which we take as our definition of orthogonality.

Definition 4.1.20. If 0)1, (02 are positive linear functionals over W which

satisfy any of the three equivalent conditions of Lemma 4.1.19 then they are

said to be orthogonal and we write w, -L 0)2
If y is a positive regular Borel measure on E, and for any Borel set S - E N

one has

 sdy(w) w' -L f,
91 \
Sdp((o) (o'

then y is defined to be an orthogonal measure on E,. The set of orthogonal
probability measures on E, with barycenter o-) is denoted by (9,,,(E,), or

simply C".

Theorem 2.3.19 established that if two positive linear functionals 0) and (0,
over %, satisfy w, :!! w then there is a positive Tenj%)' such that

wl(A) = (TQ,,, 7u,,(A)QJ

for all A c- %. We next establish a continuous analogue of this result which

provides the first essential tool in linking the orthogonal measures in (9.
with abelian subalgebras of 7r.(%)'.
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Lemma 4.1.21. Ify c- M.(Ew) then there exists a unique linear map

f c- L'(y) F- K4(f) G 71,,(%)'

defined by

(Q., Kl,(f)7r.(A)Q(0) fdp((o')f(co')w'(A)

which is positive and contractive.

IfL'(y) is equipped with the a(L'(y), L'(p))-topology and 7r,,)(91)'with the
weak operator topology then the mapf i-+ K,(f) is continuous.

PROOF. For each f c L'(y) define the linear functional bf over % by

bf(A) fdl-t(o-)') f(&)&(A).

If A  0 then one has

I bf(A) I < 11 f 11,,,, fdp((o') w(A) = 11 f 11 . co(A).

Moreover, if f  ! 0 then bf is positive. Thus for f  !! 0 Theorem 2.3.19 asserts the

existence of a positive K,(f) G 7r.(%)' such that

bf(A) = K,(f)7r.(A)Q,,), IIK,,(f)ll < 11f1j..

But each f c- L'(y) is a linear combination of four positive elements of L'(Y) and
hence the existence Of K,,(f) follows by superposition. The bound 11 Kjf) 11 < 11 f I!,")
follows from the general estimate on bf,

Next note that

(7r.(A)Q,_ Kjf)7r(jB)Q.) fdp(w) f(co')&(A *B).

Since 7r.(%)Q. is dense in .5. and 11 K,,(f) 11 < 11 f 11 . it follows that f F-+ ( , K'jf)9)
is continuous in the a(L', L')- topology on the unit ball of L'(/.I) for all 0,  0 e.5..
The general continuity property then follows from the Krein-Smulian theorem,

Now Lemma 4.1.19 provides three equivalent ways of describing the

orthogonality oftwo functionals. The second ofthese is essentially a condition
on the map introduced in Lemma 4.1.21 and the following proposition shows
that orthogonality of a measure y is in fact expressible by means of an

algebraic condition on K
P '

Proposition 4.1.22 (Tomita's theorem). Let y be a nonnegative regular
Borel measure on E,. The following conditions are equivalent:

(1) /-t is an orthogonal measure;
(2) the mapf F-+ K,(f) is a *-isomorphism ofL'(y) into 7r.(%)';
(3) the mapf F--+ K,(f) is a *-morphism.
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If these conditions are satisfied then

0 = {Km(f); f c- L"(y)l

is an abelian von Neumann subalgebra of 7r.(%).

PROOF. (1) => (2) Assume ft orthogonal. By Lemma 4.1.21 the map f" K,(f) is

linear and positive. If f is a pr jection there exists a Borel set S g E, such that01

f the characteristic function of S. Now by assumption'S

dy(w) (o' + fE 11\Sdy(w') w' = co

and

fSdy(w') w' -L fE.N
\
Sdy(co') (o'.

Hence, by Lemma 4.1.19, K,,(J') is a projection. If f and g are orthogonal projections
then f < - g. Hence K,,(J') ! -  - K,(g) and K,(f)K,(g) 0. Now if f and g are

arbitrary projections in L'(y), then each of the pairs If(I g), fgJ, {fg, (T - f)gJ,
and If(I - g), (I - f)gJ is orthogonal. Thus it follows from the decompositions

f =fg+f(I -g) and g=gf +g(l -f)

that

K4(fg) = KM(f)KJg).

Now any elements f, g c- L'(p) can be approximated in norm by linear combinations

of projections, so by the estimate 11 KP(f) 11 :5:, 11 f 11,,, the relation

KJJ ) = KJf)KM(g)

extends to all f, g c- L'(y), i.e., K, is a *-morphism. Now we have

K,,(f)Q. 112 = (Q,,, K,(fJ)Q,,))

= fdy(o)') I f((,),) 12

for f c L'(ft), and this shows that K. is faithful.

(2) ==> (3) Trivial.

(3) => (1) Assume K. is a *-morphism. If S is a Borel set in E, we have that

K,,(ZS) and Kl,(ZE,.\s) are mutually orthogonal projections of sum 1; thus by Lemma

4.1.19,

fS f-I'M
\S

i.e., y is orthogonal.
Finally, let B,, be a uniformly bounded weakly* convergent net of elements of

0 with limit B. Since K. is an isometry K,-,'(B,,) is uniformly bounded in L'(y)
and hence it has a weakly* convergent subnet with limit f. But by continuity Of KM
one must have K,(f) = B. Hence the unit sphere of 0 is weakly* closed by Theorem
2.4.11.
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The foregoing proposition allows us to partially isolate the orthogonal
measures (9.(E.) among the measures M,,(E,).

Corollary 4.1.23. Ify c- (9.(E9,) then ft c- 6(MJE,,)).

PROOF. Assume y  61(M.(E,,)) then (Y I + Y2)/2 with It , it, c MJE.) and

Y1 0 92. Because 0 < p I < 2p one must have y, = hit with 0 < h e L'(p) and

because y, :A y one has I h > 0. But then

K,(l h)7rJA)Q.) = fdp((d) (I - h((o')),4(u))

= t10) - 'U' 0) = 0

for all A c- W and hence K,,(l - h) = 0. This implies, however, that h = 0, which
is a contradiction.

The measures which are extremal in MJE91) are usually called simplicial
measures. It is an easy exercise to show that a finite support measure Y =

Ai6., c- M,,,,(E,) is simplicial if and only if the states (1!)1, W2, (.0, are

affinelY independent. A more general characterization of simplicial measures

along this line will be derived later (Lemma 4.2.3). Corollary 4.1.23 shows that

orthogonal measures are simplicial, but the general relations between the

notions of orthogonality, maximality, and simpliciality are rather weak.

If there are two distinct maximal measures Y1, Y2 c M,JE.) then (y, + P2)/2
is maximal in M,,,(E,,) by Proposition 4.1.14 but it is not simplicial. If,
however, there is a unique maximal y,, c- M,,(E,,) then it is simplicial because

v c- MJEa) and Av < tt,,, implies that v is maximal by another application of

Proposition 4.1.14. In Section 4.2.1 we will demonstrate that the uniqueness
of the maximal measure y. implies that it is orthogonal and hence simplicial.
Next note that if a)  6(E,,) then the point measure 6,,, is orthogonal, simplicial,
but not maximal. Finally we give an example of a simplicial measure which

is maximal but not orthogonal.

EXAMPLE 4.1.24. Let M2 be the algebra of 2 x 2 matrices on a two-dimensional

Hilbert space -52 and choose three unit vectors 0, 02, 03 such that each pair of these

vectors is linearly independent. Define states (ol, W2, (03 on M2 by Wi(A) = (0i, AO)
and a measure ft with barycenter (t) ((ol + 0)2 + W3)/3 by

+ + 61113

it follows immediately that p is not orthogonal but Proposition 4.1.10 implies that

it is maximal; it is supported by the pure states AW over M2 - Moreover, p c-

6'(M.(EM2)) because the contrary assumption would imply the existence of a

y I c- MJEM2) such that 0 < p, < 2p, which is impossible since the states

1(01, 0)2, 0)31 are affinely independent.

After these preliminaries we now come to the main characterization of

orthogonal measures in terms of abelian algebras and projections.
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Theorem 4.1.25. Let % be a C*-algebra with identity and w a state over %.
There is a one-to-one correspondence between thefollowing three sets:

(1) the orthogonal measuresp c- M.(E,,);
(2) the abelian von Neumann subalgebras 93 g
(3) the orthogonal projections P on .5. such that

P0. = K2"" p7r"'(91)p   f'P7r.(%)P'1-'.

If p, 0, P are in correspondence one has the.following relations:

(1) 0 17TJ%) U PJ';
(2) P

(3) P01'42 -41) = (Q-1 7TAA1)P71JA2)P P7 co(An)nco);
(4) 93 is *-isomorphic to the range ofthe mapf c- L'(p) 1--+ K, (f) C 7[.(%)'

defined by

(Q., K4(f)7r.(A)Q,,) = fdp((o) f(o_)')A(o)')

and.for A, B c- W

K,(A)7r.(B)Q. = 7r.(B)P7rJA)Q..

Remark. In addition to the four relations stated in the theorem there also
exists a direct way for constructing ft when 0 is given which will be de-

scribed in Lemma 4.1.26. Moreover, the correspondence between the 0 and P
is valid even if % does not have an identity because one can always adjoin
an identity.

PROOF. Proposition 4.1.22 associates to each orthogonal measure the abelian
von Neumann subalgebra 0 of 7r,,(121)'given by

93 = I K (f);.f c- L

If P = [OQ.] and B = B* c 0 then

BP = PBP = (PBP)* PB

and hence 0 - P'. Moreover, if f c- L'(p) and A c- 91 then

Y(fA)
(Q(,), K Jf)7rJA)Q.).

Therefore

P7r,,(A)Q,,

and by iteration, using K,,(A)P = PK,(,4), one has

K4(A 1) ... Km(A,,)Q. = P7r(,,(A I)P ... P7r(,,(AJ,0,,
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This gives the relation

y(A, A 2
... AJ K1,(A I A2AJQ,J

= (Q,_ K,,(,i 1)KJA 2) ... KM(An)nw)
= (Q,,, 7r,,,(A I )Pir,,,(A 2)P * , * P7r,,(A.)Q,.),

i.e., properties (3) and (4) of the theorem are valid with the appropriate choice of P
and 0 g 17r.(W) u PJ'.

Next assume an abelian von Neumann subalgebra 0 - n.(W)' is given. If
is a finite-dimensional von Neumann subalgebra of 0 then it is generated

by a finite family P, P2- * I Pn of mutually orthogonal projections and one

may associate to % an orthogonal measure It, by the definitions, already used
in the introduction,

Ai = (Q., PiK2.), Aicoi(A) = (PiQ.,
If

YM Y_ ;,ib.i.
i=1

Note that as 91,,, is cyclic for it is separating for 7T.(W)' by Proposition
2.5.3 and hence Ai > 0. Now the calculation given in the introduction
establishes that

ym(A1A2 ... AJ = (Qco 5 7r(O(A JP91 7rco(A 2)P91 P,7r.(An)Q.)
for all A, A21..., A. c- W, where P, = Note that this formula implies
that the Pq17r.(A)Pq1 commute. We will establish a similar property for the

P.7r,,(A)P, by an approximation argument involving the second statement

of the following lemma.

Lemma 4.1.26. Let % be a C*-algebra with identity, a) a state over an

abelian von Neumann subalgebra of 7r,,(%)', and M, 91 finite-dimensional
von Neumann subalgebras ofO. Let p,,, yqq denote the associated orthogonal
measures introduced above. If9l - TZ then itfollows that y% -< Mm.

The subalgebras %form a directed set when ordered by inclusion and the
net y9l converges in the a(C(EA)*, C(Ew))-topology to an orthogonal measure
It,, such that

y93(A I A 2
... An) = (0, 7r.(A 1) Pt,5 7r,,)(A 2) P93 ... P93 7r.(AnPeo) H

for all A, A2, An c- 91, where P1,

PROOF. The algebras 91 and 9W are generated by finite families P,, P2, P"
and Q 1, Q2, Qn of mutually orthogonal projections. If 91 - T1 then each Pi e 91
has the form

Pi Qi.

Setting Ai = (K2., PiQ.) and Aj' Qjf2.) one has

'Ili

Ai I A;
j=mi_l+1
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and the discussion of the measures p,, /t, which precedes the lemma gives the

representations
n

j=1

where the states wi and o)j' are related by

Aj,.j,-

Thus a simple calculation using convexity and the definition of the order relation

establishes that pl
Next note that

pg,(A, A 2
... AJ = (Q., 7r.(A I)Pgi 7r,,(A 2)P ... P91

with P, = ETKU. But P,, converges weakly, hence strongly, to P, = [00.].
Therefore

lim pg,(A,A2 ... AJ = (Q., 7r.(A I )PO 7r.(A 2)P93 ... P93 7rJAJK2.).

But the Ai separate points of E, and hence the polynomials of the Ai are norm dense

in C(E,) by the Stone-Weierstrass theorem. Thus M, converges in the weak* topology,
i.e., the a(C(Eq1)*, C(E-g))-topology, and weak* compactness of M.(E'W) ensures that

the limit is a measure p93 c M,)(E,) which satisfies the required relations (*). But

because

p,3(A,A2A3A4) = p93(A,A3A2A4)

one concludes that the PQ37r,,,(A)P,3 commute on P93.5..
Note that this establishes a correspondence between 93 and a projection

P, of the type considered in the third set of Theorem 4.1.25. Next we argue that if P
is an arbitrary projection of this type then the relations

1101A 2
' * * 4.) = (Q., 7r.(A )P7r.(A 2)P ... P7r.(A,,)Q.)

determine an orthogonal measure. This establishes the third correspondence of the

theorem and simultaneously completes the proof of the lemma.

To show that (**) consistently defines a continuous, positive linear functional

on C(EN), consider the Gelfand representation C(K) of the abelian C*-algebra gener-
ated by P7r,,(%)P. If F(zl, Z2, ..., z,,) is a polynomial, we have

(Q., F(P7r.(A,)P, . . . , P7r.(A,,)P)Q.) I

< 11 F(P7r.(A I)P, . . . , P7r.(A,,)P)

sup I F((P7r.(A I)P) ( o), (P7r,,,(A,,)P)
p.K

sup I F(A I ( p), 'in(O) I
p . EA

The last estimate is true since A  - (Pn.(A)P)( p) is a state on for each  o c- K.

The Stone-Weierstrass theorem now implies the existence of a linear function P on

C(E,) such that

y(F(A 1, . . . , AJ) = (Q., F(P7r,,,,(A,)P, . . . , P7r.(A,,)P)K2.)
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for polynomials F. Since p(l) = (Q., P0.) = 1 and 11pil :!! 1, by the estimate above,
p is a positive Radon measure by Proposition 2.3.11. It remains to prove that Y is
orthogonal.

First one remarks that if K. is the map introduced in Lemma 4.1.21 then

M(Aj,i2) = (Q., 7r.(Aj)Pn.(A2)Q.)

and so, by cyclicity,

KJA)Q. = Pnw(A)f2w
for all A c- 91. But then one has

(Q., 7r.(A I)K,,(42)K,,(4 3)Q.) = (Q., 7r.(A 2)P7r.(A I)P7r,,,(A 3P.)
= POViV43)
= (D., ir,,,(Aj)K,,02-A3)f2.)-

Hence

K,,('!2)Kj,("3) = Km('4243)
and

KjA2A3)na, = P7r.(A2)P7r,,(A3)n.
for all A2, A3 6  1- Iterating this argument then yields

KJAI"2 * * ' Aj = KJAI)KJ112) ... KJAJ
and consequently for any polynomial 9

Kj,(9(A 1, A 2, Aj) = 390(KJA 1 ), KJA 2), KJAJ).
But 11 K,,(f) 11 < 11f 11,,. for all f e L'(p) and thus another application of the Stone-
Weierstrass theorem and the Kaplansky density theorem gives

K,jfg) = K,(f)K,(g)
for all f, g c- L'(p). Thus p is orthogonal by Proposition 4.1.22.

END OF PROOF OF THEOREm 4.1.25. Now if p, 93, P are elements of the three sets

considered in the theorem we have defined successive correspondences p - 0,,
0 F-+ P0 and P  -* pp. For consistency we must show that the initial and final measures
in this chain of correspondences are identical. But by the argument at the beginning
of the proof

P01 A2 (92., 7r.(A I )P93,,7r.(A 2)PZ,, P93,,7r,,,(A,,)Q.)
and from Lemma 4.1.26

YP S,01'42* 'A.) = (92., 7r.(A I)P93. 7r.(A 2)PS, Pz,,
A final application of the Stone-Weierstrass theorem establishes the required
equality and places the three sets in one-to-one correspondence.

The only relation in Theorem 4.1.25 which remains unproved is the first.
We showed at the beginning of the proof that 0 s; 17r.(91) u Pj'. Moreover
if C c- {7r.(W) u Pj' then

CQ"" = CX2. = PCK2" C- [0Q.].
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Hence C c 0 and  7r.(%) u PJ' g 0 by the following lemma.

Lemma 4.1.27. Let 9JI be a von Neumann algebra on a Hilbert space
with a separating vector Q c- .5. Let 91 be an abelian von Neumann subalgebra
ofM. Itfollows that ifA c- M and AQ c- [91Q] then A c- N.

PROOF. If P = [%Q] then B c- 911--+ BP is a *-isomorphism, and Q is separating
and cyclic for 91P on [91Q]. By Proposition 2.5.9 there exists a closed operator Q
affiliated with 91 such that Q c- D(Q) D(Q*) and AQ = QQ. Then, for any
A' c- 9N' - 91' we have

AA'Q = A'AQ A'QQ QAQ,

i.e., A - Q Jm,n. As Q is cyclic for 9R' (Proposition 2.5.3) and Q is closed it follows

that Q is bounded and A = Q.

Theorem 4.1.25 places the set of orthogonal measures Cff ,) in direct

correspondence with the set of abelian von Neumann algebras 0 9 71,,,(%)'
and the set of projections P - [00,J. Each of these families has a natural

ordering and we next show that the previous correspondences respect these

orderings.

Theorem 4.1.28. Let ft and v be orthogonal measures on E, with barycenter
(o and 0, P, and 0, P, the abelian subalgebras of 7E,J%)' and the or-

thogonal projections given by the correspondences of Theorem 4.1.25. The

following conditions are equivalent:

(1) Y >- V;

(2) Op Q 0,;
(3) PA > Pv;
(4) /,( 1,4 _ ft('4) 12) > V( 1 V(,4)12), A C

PROOF. We will prove (1) => (4) => (3) => (2) => (I).
(1) = ,- (4) This is evident because y(,i) = v(A) = A((o) and A*A is convex.

(4) => (3) One has

(Q., 7r,,JA*)PP7r.(A)Q,,))
(7r,,)(A)Q,,), P,7rJA)Q,,).

Now p(A*,4) > v(A*,4) and hence

(7rJA)Q,_ P,7r,,)(A)Q,,)   - (7rJA)Q_ Pv7z.(A)Q,,)

for all A c- 91. Since Q,,, is cyclic for nj%) it follows that P, > P_
(3) => (2) Since Q. is cyclic for nj%) it is separating for 7r.(%)' by Proposition

2.5.3. It follows from Lemma 4.1.27 that

 3,, - I B; B c- n,J91)', BQ,,, c- P, -51

and similarly for Ov. Hence P, > P, implies 0, 2 93,
(2) => (1) By Lemma 4.1.26 the set of y, where 91 ranges over the finite-

dimensional subalgebras of 0, forms an increasing net, with respect to the order -<,
with weak* limit y. Therefore we may choose 91 - 0, and M Ov such that

p9l >- y., and M, --* y, ft, --+ i% Thus by limiting one concludes that >- v.
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Theorem 4.1.28 not only identifies the orderings of the sets considered in
Theorem 4.1.25 but it also shows that the ordering -< on orthogonal measures

is equivalent to the ordering of their root mean square deviations A, A,
where

Al,(A) = /y( JA - y(A) F).

The set A, gives a natural measure of the distribution of y about its mean
values y(A) = a)(A); the larger measure has the larger spread. As we are

considering measures y, v with a fixed barycenter, y(A) = w(A) = v(A), the

ordering A,(A)  ! AJA), A e W, is equivalent to

p(A*A)  !! v(A*A)

for all A c- W. Further, if A = A, + iA2 with A, A2 selfadjoint then

= y(AJ2) + 902 2)

and hence the ordering is equivalent to

tt('42) V(,42)

for all A = A* e W. As the set JA; A A* c- Wj is exactly equal to the set of

real affine continuous functions over Ea it is natural to ask whether the

ordering >- is always characterized in this last manner. But this is not the

case as will be seen in Example 4.1.29. Thus the coincidence of the ordering >-
with the ordering of the root mean square deviations is a special property of

orthogonal measures.

EXAMPLE 4.1.29. Let K be a hexagon formed by superposition of two equilateral
triangles placed symmetrically in the manner shown in Figure 1. If Y is the probability
measure concentrated on the points A, B, C with ft(A) = y(B) y(C) and v is the

probability measure concentrated on D, E, F with v(D) = v(E) v(F) then y and

v have the midpoint 0 ofthe equilateral triangles as common barycenter. If the distance
from the midpoint of the segment BC to the vertex F is sufficiently small then one

calculates that Y(f2)  !! V(f2) for all f e A(K). Nevertheless, y and v are not com-

parable in the order >- because they are both maximal.

A

E

\
7

D

//(\ .0 // \

B C

F

Figure 1
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Finally, we remark that Theorem 4.1.28 also has the obvious implication
that y is maximal among the orthogonal measures OJEu) if, and only if, the
corresponding abelian von Neumann algebra  3 g; 7z.(%)'is maximal abelian.
In Section 4.2.1 we will establish that the measures p corresponding to

maximal abelian von Neumann algebras 0 g; are in fact maximal in

M,,,(E ,).

4.1.4. Borel Structure of States

The discussion, in Section 4.1.2, of barycentric decomposition of points in a

convex compact set K illustrated that the measure-theoretic properties of the

extremal points (ff(K), of K, are offundamental importance. In this subsection

we discuss some of the measure-theoretic properties of the state space E,,,
of a C*-algebra W with identity and its extremal points S(Ea). The states E,,
form a convex weakly* compact subset of the dual %*, of %, and the extremal

points of E. are just the pure states over W.

First remark that if 91 is separable then EA is metrizable. In fact, if {A'J" is

a uniformly dense sequence in the unit sphere of 91 one can define a metric d

on E,, by

d(o),
KC01 - 0)2)(An)l

2 Y_
2n

n : 1

Since E,, is a uniformly bounded subset of W* it follows immediately that the

weak* topology on E,, is equal to the topology defined by this metric.

Consequently, one may conclude from Theorem 4. 1.11 that the pure states

oO(E,,) are a G6-subset of E..
For a general C*-algebra W the set of pure states may be as pathological

as the set of extremal points of a general convex compact set. We first give
some examples. The first example illustrates a situation in which the pure
states have the advantageous property of being closed.

EXAMPLE 4.1.30. Let 91 be abelian. Then S(E,) is the set of characters on % by
Proposition 2.3.27. Hence S(E.) is a closed subset ofE,, and, in particular, the extremal

points form a Borel set. Although oO(E,) need not be a Baire set, the Riesz representa-
tion theorem applied to W = C(6'(E,)) gives a unique decomposition of any state 0)

over % into pure states

w(A) fdyo(co') A(w).

Since,ff(E,) is a Borel set one can identify the unique regular maximal Borel measure

in MJE.) with the Riesz measure through

y(B) = yO(B r-) S(E,,))

for all Borel sets B  -: E,,.
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The foregoing example has a generalization. A C*-algebra is called n-

dimensionally homogeneous if all its irreducible representations are n-

dimensional. For example, a C*-algebra is abelian if, and only if, it is

one-dimensionally homogeneous. An n-dimensional homogeneous C*-

algebra is locally of the form M,, & QK) = QM, K) for compact sets K
where M,, is the full matrix algebra of n x n matrices. The set of pure states

of an n-dimensionally homogeneous C*-algebra 91 is closed in Ew and,
conversely, it is almost true that if S(E.) is closed in E. then W is a finite
direct sum of n-dimensionally homogeneous C*-algebras. The qualification
almost is necessary because of examples of the type

f; f C_ QM2; 10, 11), f(O) C_ C
1 0

0 1

It is true, however, that ifff(E,,) is compact and the subset of S(E.) consisting
of characters is open in off(E.), then 91 is a finite direct sum of dimensionally
homogeneous C*-algebras (see Notes and Remarks).
The next example gives a further illustration of the fact that the pure

states do not have to be closed and, in fact, they can be dense within the state

space.

EXAMPLE4.1.31. Let W bea UHF algebra (see Example 2.6.12 and the subsequent
remark). Thus W has the form

U
n t

where 191n In is an increasing sequence of full-matrix algebras all with the same

identity. We claim that the pure states S(E,) are weakly* dense in E,,. To prove the

density it suffices to show that the restriction of a given state (t) to any one of the %n
has an extension to a pure state on W.

If Wn = M[n] = the algebra of [n] x [n] matrices, there exists by Theorem 2.4.21
a positive operator P C_ M[n] with Tr(p) = I such that

w(A) Tr(pA), A C- M[n1-

Choose tn > n so large that Eml [n]2. Since M, I and M[n] have the same identity
[in]/[ii] must be an integer and M,., = M[mll[n] 0 M[n]. Let  tnj be an ortho-
normal basis for 12(1,.. ., [n]) such that p j. = Aj j and ql_., q[m]l[n, an orthonormal
basis for 12(l'...' [m]/[n]). Then

M[m]
= y(12(1'... 5 [n])) & y(12(1'... 5 [m]/[n])).

Consider the vector state wl of M[m] defined by the vector

[n]
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For A = A 0 1 c M,,,, we have

A1/2AI/2( i qj, A j qj)
i=1 j=1

Aj( j, A j)

Tr(/)A) - (i)(A).

Hence (o, is an extension of (1) to M['n] A. But (t), is a pure state over M[,,,, and it

then has an extension to a pure state on by Proposition 2.3.24.

The foregoing example is not atypical. In the proof of Proposition 2.6.15

we saw that if a C*-algebra % has a faithful, irreducible representation 7E

on a Hilbert space -5 such that

Y16(5) n 7u(%) =  O 
then the vector states in this representation are dense in Ew. Hence S(EW) is

dense in Ew. More generally, S(E.) is dense in E, if no irreducible representa-
tion of % contains the compact operators on the representation space.
Algebras of this type are called antiliminal. The quasi-local algebras occurring
in mathematical physics, of which the UHF algebra is an example, are always
antiliminal.

After these preliminary examples we next examine a situation in which
the subsets of the states have good measurability properties. The assumptions
of the following definition are essentially motivated by the structure of the

locally normal states over quasi-local algebras which were studied in Section

2.6 and are the basis of the first approach to the measure-theoretic difficulties

occurring in the decomposition of states. The second approach to these

problems is based upon the weaker assumption of separability of the repre-
sentation space associated with the state in question. This will be discussed in
Section 4.4.

Definition 4.1.32. Let E be a C*-algebra with identity, and F a subset of the
state space E.. F is said to satisfy separability condition S if there exists a

sequence of sub-C*-algebras of (E such that U.> 1 En is dense in E,
and each (En contains a closed, two-sided, separable ideal 3,, such that

F = I (t); (t) e E,, I I o) 13n I I = 1, n > 11.

The simplest application of this definition occurs if E is separable and

3n = (E for all n  ! 1. In this case the state space E. is metrizable and the Borel
and Baire structures on Ez coincide. We intend to study these structures for
subsets F - E. satisfying condition S but as a preliminary we need the

following lemma.

Lemma 4.1.33. Let 91 be a C*-algebra, and 3 9 W a closed, two sided
ideal in %. If w is a state on 3 there exists one and only one state Co on W
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which extends o-). Furthermore, if 7r,3,, Q, ,) is the cyclic representation of
W associated to this state (b, 7rj3) is strongly dense in

PROOF. We may assume that 91 has an identity 1. The existence of an extension 0-)

of (o to 91 follows from Proposition 2.3.24. By Proposition 2.3.11 there exists an

approximate identity {E,j for 3 such that

lim (o(E"2) lim w(E I = Co(T).

If A c- % it follows that

(D(E,, A - A) I Co((l EJA) I
6(( E,,)2)1/2(7)(A * A)' /2

-+0

as ot --* oo. Hence

(b(A) = lim Co(E,, A) = lim w(E,, A)

and this formula shows the uniqueness of the extension 6.

Now by the limit property of {E,,l it follows that lim 7rj,-(E,)Qj-, Qj,-, thus

lim 7z, ,(AE )Qz = nj (A)Q, ,-, for all A c- and hence is dense in If

A c- W and B c- 3 we have

as a --+ oo. It follows that 7r,3,(AE,,) converges strongly to 7rj-,,(A) and hence

We are now ready to study the separability condition S.

Proposition 4.1.34. Let E be a C*-algebra with identity 1, and assume that
F g; EE satisfies the separability condition S. Itfollows that

(1) F is a stablejace of EE;
(2) F is a Baire set;

(3) the extremal points S(F) of F form a Baire set and there is a convex

continuous functionfover EE such that

S(F) = af(EL,) r-) F,

where Df(E(,) is the boundary set associated with f ;

(4) if (o c- F, the Hilbert space .5. of the corresponding representation is

separable.

PROOF. We first prove property (2). Let {An,klk :, be a countable dense subset of

the unit ball of the selfadjoint elements of 3n, n > 1. The state w c- F if, and only if,

sup (t)(An,k) =: 1, n = 1, 2.... .

k ?: 1
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Therefore

F = n Vn,,,,
n, m

where

Vn, m = U Vn, m, p

and

Vn, m, p= n (o; oj c- E,, (o(A , P) > I
q ! I

 M q 
(o; o) e Ec, o)(An. p) > I

Thus Vn, m, P
is closed and it is also a countable intersection of open sets, i.e-, Vn' P

is

a compact G,5. Hence F is a Baire set.

Next we prove,property (1). The notion of a stable face was introduced in the

remark following the proof of Theorem 4. 1.11. The set F has this property if, and
only if, the conditions co c- F and y >- 6,,, imply that the measure p is supported by F.

But if y = yj + y, wherep, is supported by Vn, and ft, by its complement then one

has

o)(An,k) ftl0n,k) + P20n,k)
(I 11Y211) + 412110 - 110
1 11Y211/tn.

Since SUPk (o(An,k) = I one must have lIP211 = 0 and it follows that Y(F) = 1.

We now turn to the proof of property (3). Let R 2be the linear space of real double

sequences equipped with the topology of pointwise convergence and define a map t,-

EL, F--* RN2 by

t(O)) = 1'4n,k((0)1n,k !1-
The map t is affine and continuous and hence the range t(E.) of t is a compact convex

subset of 1, I]N2 .
The latter space is metrizable and separable and therefore these

properties are shared by t(E,,). One could, for example, equip t(Ec) with the metric

d(t(o),), t(0)2)) = 1 2 -k-n On,&')l - 0)2)1-
n, k  : I

Now from Theorem 4. 1.11, and the remark after its proof, it follows that 6(t(E,)) is a

Borel set. But metrizability and compactness of t(E,,) ensure that the Borel and Baire

sets coincide. Therefore S(t(E(,)) is a Baire set. Since t is continuous and E', is compact
one concludes that t- 1(6(t(Ec))) is a Baire set. Next we argue that

t
- '(6'(t(E,,))) n F = 6'(E,,) n F

and hence establish that 6(F) = g(E,,) n F is a Baire set. For this latter equality it is

first essential to note that t(F) is a face of t(EL,). But t(F) consists of the double sequences
which attain values arbitrarily close to one when k varies, for each n, and the facial

property is immediate. It is also important to remark that t restricted to F is faithful.

For this, note that  An, k1n, k  : 1 separates the restrictions of the states (o G Ea to Un '3n
But any (o c- F is uniquely determined by its restriction to Un 3,, by Lemma 4.1.33 and

the assumptions in Definition 4.1.32. Hence t IF is faithful.
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Now if w c-,ff(E,) r-) F then w is extremal in F and t((o) is extremal in t(F) because

t is faithful in restriction to F. But t(F) is a face of t(E,) and hence t(w) c 9(t(Ee)),
i.e., 60(E,) r) F c; t

- '(&(t(Ee))) r) F. Conversely, if o-) EE t
- 1 (60(t(E,,))) r-) F then

t(w) c- 60(t(Ec)) r-) t(F) = &(ff)) since t(F) is a face. But because t is faithful in

restriction to F one has t(61(fl) = &(ff)) and therefore t
- '((ff(t(E'E))) r-) F g S(EZ) r-) F.

Finally, the metrizability and separability of t(Ee) imply the existence of a strictly
convex, continuous function g over t(E,,). A constructive procedure for obtaining g
is given in the proof of Theorem 4. 1.11. Now if f is defined over E,, by

f(a)) = - g(t(w)), (o c- E(,,

then one concludes that f is convex continuous and, moreover, it is strictly convex

over F because t is an affine isomorphism on F. Once again this implies that if W C- F

but (o  &(F) then w  af(Ec), i.e.,

60(F) 2 Of(E,) n F.

But equality of the latter sets then follows from Proposition 4.1.10 and the relation

S(F) = S(E,) r-) F.

It remains to prove property (4). If o) c- F then 7r.(3,jQ. is dense in 7r",(EjQ. by
the last statement in Lemma 4.1.33. As U,, E,, is dense in E it follows that (U,, 7r.(3"))Q.
is dense in -5., and hence .5. is separable.

The simplest application of Proposition 4.1.34 occurs if E is separable and
F = E.. The foregoing result is then contained in Theorem 4.1.11 and its

proof. Less trivial applications are contained in the following example.

EXAMPLE 4.1.35. If 931 is a von Neumann algebra, let N. = Ej r-) 91. be the

normal states on 9R.

(1) N, is a face in E,,.
We must show that if 9 c- E, and 9 < Aw for an (o c- Nn then 9 c- N uj. But by

Theorem 2.3.19 there exists a T c- 7r.(931) ,such that 9(A) = (TQ, 7r.(A) To.). As

7r. is a normal representation of 9R, (1) follows.

(2) Nm is dense in Em.
This follows from Proposition 3.2.10.

(3) Nw, is closed in the norm topology, and N, is sequentially complete in'the
weak* topology.

Since 9JI is a Banach space, the first assertion is clear. We will not prove the second
assertion (see Notes and Remarks).

(4) If 9JI is a factor on a separable Hilbert space, the following conditions are

equivalent:

(i) Nm is a stable face in E.;
(ii) 9N is type 1, i.e., 931 - Y(.5) for some Hilbert

If these conditions are satisfied, then &(N.) is a Baire subset of E,,. If these
conditions are not satisfied, there exists a Borel subset G - E, such that

(a) G supports all maximal measures in M,(E,,),
(b) G r) N. = 0.
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PROOF. (11) => (1) If 9N = Y(.5), we have that

N, (t) c- E,; 11(t) I,,,")JI = l')

by Proposition 2.6.14. Hence N, is a stable face and e(N.) is a Balre set, by Proposi-
tion 4.1.34. In this case it is easy to see that 6"(N,) isjust the vector states on 9N = Y(.5).

(1) => (11) Since IN is a factor on a separable Hilbert space, the unit sphere M, is

metrizable in the weak topology, and since M, is compact, the positive part 9A,
of 9N, contains a countable, dense sequence But then separates the

points in Ng,, and it follows that the functiorif e S(E,,) defined by

f(o)) 2 -'(,,)(A ")2

is strictly convex when restricted to N.. Hence

af(E,_n) r-) N, - 6(Ngw) = (5 (EN) r) Nj),,

where the last equality follows since N,,,, is a face in E,)N. But if 9N is not a type I factor,
9N has no normal, pure states as a consequence of Proposition 2.4.22 and Theorem

2.4.24. In fact, if (o is a normal, pure state ofIM then 7r.(M) -- M, 7r,,(M) = 7r,,,(M)", and
7r,,)(M)" = thus M - Hence 6(,(E,,) n N., = 0. Furthermore,
G = af(Em) supports all maximal probability measures on Em by Theorem 4.1.7, and
since G n NDj - 0, No, cannot be a stable face.

From the fourth property, one derives the following.
(5) Let 121 = U,, %,, be a quasi-local algebra, where each %,, has the form %,,

and the  5,, are separable Hilbert spaces. Then the locally normal states on W

form a Baire subset of E,.., and a stable face, If each 'I% is a factor on a separable Hilbert

space not of type 1, then the set of locally normal states is not a stable face, and is, in

fact, contained in a Borel set which has measure zero for all maximal measures.

All the foregoing considerations were aimed at the characterization of

properties of the pure states over a C*-algebra. Such properties are funda-
mental for the discussion of the barycentric decomposition of a state into

pure states. One is interested, however, in other types of decomposition and

one might wish to express o) as a superposition of factor states, i.e., states for

which the associated von Neumann algebra is a factor. Thus it is also

necessary to study properties of the factor states over %. One method of

obtaining information about this latter set is by embedding % in a larger
C*-algebra ( which is chosen such that the pure states over (i are factor

states when restricted to %. The information obtained concerning pure
states on E is then translated into information concerning the factor states

over %. In order to exploit this method it is, however, necessary to introduce

some additional measure-theoretic concepts.
Let K be a compact Hausdorff space and y a positive Radon measure on

K. A subset E S K is said to be M-negligible if there exists a Borel set F such
that E - F and y(F) = 0. Alternatively, a set E - K is said to be p-meastirable
if there exists a Borel set F such that (E u F)\(E r F) is p-negligible. It is

clear that the p-measurable sets form a a-algebra and u can be extended to a

measure on this a-algebra by setting y(E) = y(F).
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Next define a subset of K to be an F,, if it is the countable intersection of
countable unions of closed sets. A subset E 9 K is then defined to be analytic
if there exists a compact Hausdorff space G, an F,,,-subset B - G, and a

continuous mapf ; B i--+ K such thatf(B) = E. The set -4 of analytic subsets

of K contains the Borel sets and is closed under countable unions and count-

able intersections. But d is not closed for the operation of taking comple-
ments. In fact if E c- -4 and K\E c- d then E is a Borel set. A useful property
of analytic sets is that they are p-measurable for all regular Borel measures

y on K. Moreover, the corresponding measure of the analytic set E satisfies

y(E) = infly(U); E g U, U is openj
= suply(V); V g E, V is compactl.

Since y(K) < + oo it follows from this that there exists a Gb-set G and a

F,-set F such that F - E - G and p(G\F) = 0, i.e., G\E and E\F are

p-negligible.
Finally, if y is a positive Radon measure and E is p-measurable we say that

It is supported by E if y(E) = M(K). This extends the previous notion of a

supporting set by allowing more general sets than Borel sets.

The above concepts will be used in the context of mappings of states of a

C*-algebra into states of a C*-subalgebra. The following lemma summarizes

some of the most obvious facts.

Lemma 4.1.36. Let W be a C*-subalgebra of the C*-algebra E and assume

that W and (E have a common identity element. Define the restriction map r;

E,E i--> Ew by (r(o) (A) = w(A) for all A c %. It follows that if F is a Baire

(resp. Borel) subset of E,.1, then r-'(F) is a Baire (resp. Borel) subset of Ee.
Conversely, if G is a Borel subset of E, , then r(G) is an analytic subset ofEA.

Next, let P be a positive regular Borel measure on EE and define y on the
Borel subsets F - E,, by

ft(F) = P(r-'(F)).

Itfollows that y is a regular Borel measure on E%. IfF 9 E. is p-measurable
then r

- '(F) - E. is P-measurable. Moreover, ifG is a Borel subset ofEE then

jt(r(G)) > P(G).

Hence iffi is supported by G then y is supported by r(G) and y is also supported
by an F,-subset of r(G).

All statements of the lemma follow from the preceding remarks and the

continuity of the map r when E. and E, are equipped with their respective
weak* topologies.
To conclude this subsection we describe a specific form of the restriction

mapping considered in Lemma 4.1.36. The relation between the algebras W
and E is arranged so that r provides a connection between the pure states over

E and the factor states over %. The following proposition will be of use in the
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subsequent discussion of extremal decompositions and central decomposi-
tions of a state.

Proposition 4.1.37. Let W and 0 be C*-subalgebras of the C*-algebra E.
Assume that %, 0, and E have a common identity, % 9 0', and % u 0

generates E as a C*-algebra. Define the restriction map r; E.  --* E, by
(ro)) (A) = (o(A) for all A c- %. It follows that r is weakly*-weakly* con-

tinuous and maps EQ: onto EA. Moreover,

&(E%) g; r(.g(E,)) ! ; Fa,

where F% denotes the factor states of %. If 0 is abelian then iff(E,)
r(&(E,)).

PROOF. The continuity of r is obvious. It follows from Proposition 2.3.24 that r is

onto and &(E.) g r(6(E )).
Let co be a pure state of (E and (.5., 7r,,,, Q.) the associated cyclic representation.

Now 7r.(91) and 7r.(0) generate the irreducible set n.((S) and hence

J7Z,,)(%) U 7r.(0)J" =

Let P c 7r.(%)" n 7r,(%)' be a projection. Since 7r.(%)" g; 7r",(0)' it follows that
P c- 7r.(!0)' and therefore P c- {7r.(%) u 7r.(0)J' = 7z((E)' = C1. It follows that

r-) 7r,(qff)' = C1 and hence 7r.(%)" is a factor. But A  -4

is the representation of 91 associated to rw and hence r(t) is a factor state of %.

Finally, if 0 is abelian it follows that 0 is contained in the center of (S. Hence for

o) c S(E,,) one has

nw(fl 9 7r.(E) n 7r.(E)' = CT.

Since 7r,,((E) is the C*-algebra generated by 7rJW) and 7r,J93) it follows that

7E,,,(%) = 71.(E)

and consequently 7r.(%) is irreducible. Thus r(o is pure and r(.O(E,,)) g 9'(E,). The

reverse containment, however, has already been proved and hence r(6,(EE)) = of(EN).



4.2. Extremal, Central, and Subcentral
Decompositions

4.2. 1. Extremal Decompositions

In this section we apply the general theory developed in the previous section
to some specific decompositions of states of a C*-algebra % with identity.
We begin by examining extremal decompositions of a state w over %, i.e.,
decompositions of w into pure states.

The extremal decompositions of w will be constructed with the aid of the
orthogonal measures of Section 4.1.3. Theorem 4.1.25 associates with each
abelian von Neumann subalgebra 0 of 7r.(W)" an orthogonal measure

yg3c- Offq,) and Theorem 4.1.28 asserts that if0 is maximal abelian then go is
maximal in OJE.). This latter result is not optimal and our first aim is to

prove that g,3 is indeed maximal in M,,,,(E.). Subsequently we deduce that
there is a unique maximal probability measure on E., with barycenter 0-) if,
and only if, n.(W)' is abelian. The proof of these results involves the
comparison of orthogonal measures with general measures and this intro-
duces a number of new difficulties. To overcome these difficulties one needs a

deeper understanding of the order relation >-.
The following result gives a characterization of the order relation in the

general setting of convex compact sets. It shows that two measures Y, v are

comparable if, and only if, they are comparable component by component.

Proposition 4.2.1 (Cartier-Fell-Meyer theorem). Let K be a convex

compact subset of a locally convex Hausdorff space and M, v c- M.(K)
measures with barycenter w. Thefollowing conditions are equivalent:

(1) V -< g;
(2) for every convex combination

n

V Ai Vi

with vi c- M.,(K) there exists a corresponding convex combination
n

Y_

with /.ti c- M.,(K);
(3) condition (2) is valid and, moreover yj >- vi.

359
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PROOF. (3) => (2) is evident.

(1) => (3) First define a map p from C(K)' to R by

Pff Y_ Ai "i(fi),

wheref = (fl, f2,. . ., fj. It is evident that p is homogeneous but it is also sub-
additive by Lemma 4.1.9.

Next let Y be the subspace of C(K)" formed by the vectors f (f f f, . . . , f) and
define a linear functional 9 on Y by 9(f) = y(f). As v -< y one has from Proposition
4.1.6

11(f) > MY bU).
Therefore

(P(f) :! VY) = Y_ Aivi(f) = P(A
i=1

It follows from the Hahn-Banach theorem that 9 has a linear extension, which we also
denote by 9, to C(K)" such that 9(f) :!5 , pff). Explicitly, one has

n

- Y_ AiVA-fi)) < 9(f):! - Y_ Ail'i(fi)-

Now iffi  !! 0 then - -fi) > 0 and one concludes that 9 is a positive functional with

19(f)l :!! max Jjfjjj,,_
1:! i:5 n

Next define y, by

 kllkff) = (P(fk-)

where.fk is the vector with kth component equal to fand all other components zero.

From (*) one deduces that y,(1) = 1, where I is the identity function and hence A
is a probability measure. More generally, one has

AM   Vk(f)-

But iff c- S(K) then (-f) = -f and one has

Yk(f)  !! Vk(A

Thus A >' Vk. Finally, choosing f (f J_., f) one has

n

P(f) Pi(f).

(2) => (1) Next let f c S(K) and consider all finite partitions 1Ui'J1_<i_<n, of

K, in terms of Baire sets Uj. Let denote the characteristic function of Uj and
define Aj and vi by Aj = v(Ui) and Aj dvi = Zi dv. Thus

n

V = I Ai Vi
i=1

and by assumption there is a decomposition
n

Y Y, Ai N
i=1
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such. that the pi and vi have the same barycenter wi. Now it is possible by Proposition
4.1.1 to approximate each pi by a measure with finite support and barycenter 0-)i.
Convexity and a limiting argument then give

Moreover,

Therefore

f(0j) :! Pi(f).

Viff) < f((0) + sup I R(0) - Poj) I
Ui

V(f Yff) + sup sup I f((0) - f((,0) 1
1:5i:5 ..Ui

Finally, for 8 > 0 one may choose the Ui as in the proof of Proposition 4. 1.1 to ensure

that

Therefore v

V(f tt(J) +

Now we are in a position to prove the main result of this subsection.

Theorem 4.2.2. Let % be a C*-algebra with identity and co a state over

-

ILet 0 be an abelian von Neumann subalgebra o 7r.(91)' and p c- (9.(E,) thef
corresponding orthogonal measure. Thejollowing conditions are equivalent:

(1) 0 is a maximal abelian subalgebra of
(2) p is maximal among the orthogonal measures (9.(E,);
(3) It is maximal among the measures M.(E.).

PROOF. The equivalence of conditions (1) and (2) is a direct consequence of
Theorem 4.1.28, and condition (3) clearly implies condition (2). Therefore it
remains to prove that condition (2) implies condition (3).

Assume y is maximal among the orthogonal measures (9(E,). Since ft is

orthogonal it follows from Theorem 4.1.25 that 0 is *-isomorphic to the range of
the map f c- L'(y) F--+ K, (f) G Therefore, if P =A I is a projection in 0, with

P92. 0 0, there is an f e L'(p), with I > y(f) > 0, such that P = KM(f). Now set

A = y(f) and define measures Y11 92 on E, by setting

tt' (g) u(fg)IA,

PAO Y(0 - f)9)1(1 - A)
for g c- QEJ Thus

Y AY1 + (1 - A)Y2

and if wi denotes the barycenter of pi then

0) = ' 0)1 + (1 - 4-02 *

Next suppose v c- M.(E,) and v >- M. We will prove that v -< y. Hence v = y and

y is maximal among the measures M.(E,,).
First, we remark that by Proposition 4.2.1 there exists a decomposition

V =  Vl + (1 -  )V2
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where vi c- M.,(E,). Now suppose that p is a positive measure on E, satisfying
p :!! v. Since the positive measures form a cone which is a lattice with respect to its
natural order (see the discussion prior to Proposition 4. 1. t) it follows from Lemma
4A.16 that there exist measures P11 P2 on E., such that

P :-- 41 + (1 -  )P2

and 0 :!! pi < vi. Let (p and (pi denote the barycenters of p and pi. Then since p :!! v

one deduces from Theorem 2.3.t9 that

q(A) (Q., T7r.(A)f2,J,

0 - 4PJA) (Q., T27rJA)Q.),

for all A c- % where T, T1, and T, are positive elements of 7r.(%)' and T T, + T2.
But since p, :!! v, one has for A > 0

(Q., T,7r.(A)Q,,,) = pl(,4)
< V,0)

pl(A) = (Q., P7r.(A)f2,,).
Therefore

0 < T, < P.

Similarly

0 < T, < I - P.

It then follows straightforwardly that T, = PT1P and T2 = (I - P)T2(l - P). In

particular both T, and T, commute with P and since T = T, + T2 one concludes
that T also commutes with P. But the definition of T is independent of the choice of
P c- 0 and hence T commutes with every projection in  8. Since 0 is maximal

abelian it follows that T c- 0. Thus we have deduced that if v >- p and p is a positive
measure satisfying p :!  v then there is a positive element T c- 0 such that

p(A) = (Q., T7r.(A)Q,,J
for all A c- %.

Finally, let

V Y,  ivi
i=1

be a decomposition of v in terms of probability measures vi and with  i > 0. Then

pi =  ivi :!  v. Hence there exist positive elements Ti c- 0 such that

for all A c- % and

Y Ti = 1.
i=1

But since p is orthogonal there exist, by Theorem 4.1.25, positive fi C- L'(p) such
that Ti Then if one defines measures pi by

tli(g) = Y(fig)



Extremal, Central, and Subcentral Decompositions 363

for g e C(E,), it readily follows that each pi is a probability measure, the

barycenters of yj and vi are equal, and

Y ::-- Y_' Jti-
i=1

Therefore v -< y by Proposition 4.2.1 and the proof of the theorem is complete.

Our next aim is to derive a characterization of uniqueness for a maximal

measure with a fixed state as barycenter.

Theorem 4.2.3. Let 91 be a C*-algebra with identity, o-) a state over 91 and

P = Thefollowing conditions are equivalent:

(1) there is a unique maximal probability measure it with barycenter 0-);

(2) is abelian;
(3) Pn.(W)P generates an abelian algebra.

If these conditions are satisfied then y is the orthogonal measure corre-

sponding to

PROOF. The equivalence of conditions (2) and (3) follows from the consider-

ations of Section 4.1.3. Theorem 4.1.25 establishes that if is abelian then

P7r.(91)P generates an abelian algebra and conversely. Thus it suffices to prove the

equivalence of conditions (1) and (2).
Now suppose condition (2) is false then there exist two distinct maximal abelian

subalgebras 0, and 432 of and the corresponding orthogonal measures Y,
and Y2 are distinct maximal measures, with barycenter o_), by Theorem 4.2.2. Thus

condition (1) is false and one concludes that (1) => (2).
It remains to prove (2) => (1).
Let it denote the orthogonal measure associated with the abelian von Neumann

algebra 7r.(%)'. Then y is maximal in M.(E,) by Theorem 4.2.2. Next let v be a

second maximal measure in M.(E,). Our aim is to show that and v have a

common upper bound p c- M.(E,), and consequently p = y and p v by maximal-

ity of /.t and v. Hence y = v and y is the unique maximal measure in M.(E.).
Now It and v can be approximated in the weak* topology by measures Y" and v"

with finite support by Lemma 4.1.26. Thus it suffices to construct a net p,, e MJEW)
such that M,,, -< p, and v,,, -< p,, because any weak* limit point p of the p,, will satisfy
y -< p and v -< p. These remarks reduce the problem to finding a common upper
bound for two finitely supported measures y, v c- M.(E,) whenever is
abelian.

Let

ft Aj6",' V  jlb.j'
j=1

and define Ti, Zi e 7u,,,(%)' by

Tj = Kl,(X,.,)), Zj = Kv(X{wj,}),
where X, denotes the characteristic function of the subset S g E,. It follows that

Aiwi(A) = (TiQ., 7rjA)Qw), Aj 0-)j'(A) = (ZjQ., 7r.(A)Q,,)
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for all A c- %, and

Y T = I = Y Z
, j,

j=1

Since Tj and Zi are positive and 7r.(%)' is abelian the products TjZj are positive.
Now define  jj and o)ij by

 ij - (TAQ.' Q.),

 jjo)jj(A) = (TiZA, 7r.(A)f2.)

and consider the measure

P Y- Aij6")ij-
i=1 j=1

One has

Ito) Y  jj (0  j CO Y ;,j (0ij, j ij
j=1

and a simple application of convexity gives

P >- f" P >- V.

Theorem 4.1.28 characterizes the order relation y >- v for orthogonal
measures on the state space of a C*-algebra and Proposition 4.2.1 gives an

alternative characterization for general measures on convex compact sets.

The next proposition provides an intermediate result in the algebraic setting
valid whenever the larger measure ft is simplicial, i.e., y c-'9(M"'(E,)). Noting
that orthogonal measures are automatically simplicial, by Corollary 4.1.23,
this result can be viewed as a generalization of the equivalence (t) -:: :> (2) in
Theorem 4A.28. It can be used to derive an alternative proof of the last part of
Theorem 4.2.3 and will also be useful in the following subsection for the

geometric characterization of the orthogonal measure associated with the
center of the representation 7E,

Proposition 4.2.4. Let % be a C*-algebra with identity, co a state over W,
and y, v two measures in M,,,(E,). Let L,,(ft) denote the positive part of the
unit ball of L'(y) and consider the following two conditions:

(t) ft >- V;

(2)  K4(g); g c- L"O (Y) ;;? (K,(f); f c- L' (v)l1 + 1 + f-

It follows that (t) implies (2) and if  t c- S(MJE,)) then (2) implies (t).
Moreover thefollowing conditions are equivalent:

(F) y c- oO(M,,,(E,));
(2') the map f c- L'(ft)  - K ,(f) G 71,,(%)' is faithful;
(Y) the affine continuous functions over E, are dense in Ll(y).
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PROOF. Assume It >- v and let f c- L'l+(v). Define v, and v, by

1,1(g) =
V(fg)

V2(9) =
VW f)g)

VU V(1 f)

It follows that

V = AV, + (1 - A)V 

with A = v(f). Therefore there exists by Proposition 4.2.1 a decomposition of M,

Y = A111 + (1 -  )/121

such that the pi and vi have a common barycenter coi. Since ),.pi :!! y there is a

g c- L,+ (p) such that A dy 1
= g dy. Now one has

(Q., Kv(f)7r.(A)Q.) = vffi)
= AV'(A)
= Aft, (A)
= ft(gA) = K1,(g)7r.(A)f2.)

for all A c- %. Therefore Kv(f) = Ku(g), by cyclicity, and condition (2) is valid.

The proof of the converse implication is based upon the alternative characteriza-

tion of simpliciality provided by condition (2). Hence we next prove the final

statement of the proposition, the equivalence of conditions (1), (2'), and (3).
(1) => (3') If condition (3) is false then there is an f c- L'(,U) such that

0 f :!! 1 and yff,4) = 0 for all A c- 91. In particular y(f 0. Define y f by

Y I f(g) = MW f)g)

and note that

f(A) = ft(A) = a)(A).

Therefore It, f c- M.(E,) and

91 +f + 91 -f

2

i.e., condition (1) is false.

(Y) => (2) If the map f F-)- K,,(f) is not faithful then there is a nonzero f such

that K,,(f) is zero and then

flff,i) = (Q., K'.(f)7.(A)Q.) = 0

for all A c- 91. Thus the affine functions are not dense in L'(p).
(2) ==> (Y) If ft  60(M.(Ew)) then Y = (YI + /12)/2 for two distinct measures

911 Y2 c- M.(EA). As y, < 2M there is a nonzero f c- L'(y) such that y,(g)
/.t((l + f )g). One then has

(o(A) = p + y(f i)
= w(A) + (Qw, K jf)7r.(A)Q.).

By CyCliCity Kjf) = 0 and condition (2) is false.

Now we return to the proof that condition (2) implies condition (1) when

p cff(M.(E,,)).
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Let
n

V Y Ai Vi
i=1

be a convex decomposition of v in terms of probability measures vi. As Aj i,j :!! v there
are fj c- Lj, (v) such that Aj dvi = fi dv. Clearly,

n

Y- fi
i=1

Now let gi c- L,,(y) be such that K,(gi) = Kv(fi) and define yj by Aj dfti = gi dy. Now

Aj,i(b(yj)) = Aigi(A) = p(gil)
= (Q., Kjgj)7r.(A)n,,j
= (Q., Kv(fj)7r.(A)f2w)
= v(fji) = Aj vj(,i) = Aji(b(vj)).

Therefore the barycenters b(p) and b(vi) of pi and vi, respectively, are equal. But

Kv fi Kv(fi)Y-

n n

Y- Kjg) =' K4 9i
j=1

Now y c- S(M.(E,)) and hence, by condition (2), the map K,, is faithful. Therefore

gi

and
n

Y Aitti-
i=1

One immediately concludes from Proposition 4.2.1 that y >- v.

We mentioned above that an alternative proof of the implication (2) => (1)
in Theorem 4.2.3 can be constructed with the aid of Proposition 4.2.4.
Explicitly if y is the orthogonal measure corresponding to the abelian algebra
7r,,,(%)' then the map f c- L'(M) F--* K4(f) G 7T.(%)' is a *-morphism, and

7EW(91)' = IKI,(f); f c- L'(p)j.
As the map is automatically isometric one has

(7T.(91)') 1 +
= I K,,(f); f c- L 'j, (y)

where
+ denotes the positive part of the unit ball of Now if

v c- M,,,,(E,) then

JK,(g); g c- L' (V) S:-: (7T,,(91)')j + = jKm(f); f c- L" (M)I.I + 1 +

But y c-.6(MjE,)) by Corollary 4.1.23 and hence v -< y by Proposition 4.2.2.
Thus y is the unique maximal measure in M,(E,).
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Finally, we can deduce support properties of the orthogonal measures

associated with maximal abelian subalgebras of n.(%)' by combining the

foregoing results with those of Section 4.1.

Theorem 4.2.5. Let % be a C*-algebra with identity andw a state over W.
Let 0 be a maximal abelian subalgebra of and y the correspondin9
orthogonal measure over the state space EA. It follows that y is pseudo-
supported by the pure states iff(E,,) over W.

Moreover, if (o is contained in a face F satisfying the separability con-

dition. S then the extremal points S(F), of F, form a Baire subset of the pure
states over W, and

PROOF. The measure y is maximal in M.(E,) by Theorem 4.2.2. Hence it is

pseudosupported by S(E,,) by Theorem 4.1.1t.

Now assume that W contains a sequence of C*-subalgebras such that

 1 = Un 91n and each %,, contains a separable ideal 0_ and assume that

w c F = {(p; (p c E,.a, n

Then .5,, is separable by Proposition 4.1.34. Hence is separable in the weak

operator topology. It follows that 0 contains a separable C*-subalgebra 00 such that

0, is weakly dense in 0. Let now (E be the C*-algebra generated by 7r,j%)(=%)
and 00, and let (_E,, be the C*-algebra generated by 00 and %_ and finally, 3,, the

C*-algebra generated by 0, and 0_ As 00 g; W', it follows that 3n is a separable ideal
in (_ _ and we have that Un ( n is dense in & Define

F {0; Cp c- E., 11 Cp 1, n = 1, 2_ . .

Then (b c.F. Since (V-' 0 is abelian, it follows from Proposition 4.1.34 and Theorem
4.2.4 that &(F) is a Baire set of the form Of(Ec) n F for somef c- S(Ec), P(af(Ec)) = 1,

1, and hence 1. Now, r(&(F)) g &(Ejj) by Proposition 4.1.37, and

r(,ff(F)) contains an F,-set U with y(U) = I by Lemma 4.1.36. It then follows from

Proposition 4.1.34 that ft(U r) F) = 1. But as U r) F g; ff(F) and (ff(F) is a Baire set

it follows, finally, that y(,ff(F)) = 1.

We conclude our discussion ofextremal decompositions with two examples
which illustrate special structures of state spaces. Although Theorem 4.2.4
established criteria for a given state w e E., to be the barycenter of a unique
maximal measure, we did not examine criteria which ensure that every
w c- EA has this property. The general theory of barycentric decompositions,
Theorem 4.1.15, establishes that this is equivalent to E% being a simplex and
the first example shows that this occurs if, and only if, 91 is abelian.

EXAMPLE 4.2.6. Let 91 be a C*-algebra; then the following conditions are equiva-
lent:

(1) the state space Es is a simplex;
(2) W is abelian;
(3) the positive elements W ,

of% form a lattice.
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This equivalence is valid for 91 with, or without, an identity. The proof of the general
case is reduced to the special case by adjoining an identity. Next note if % is abelian
then 91 = QX), where X is the space of characters of W by Theorem 2. 1.11 (A) in
Section 2.3.5, and Ea is the set of probability measures on QX). Thus (2) => (1) and
(2) => (3). The equivalence ofconditions (1) and (2) is then established by the following
argument.

(1)=>(2) Assume that (2) is false; then there exist two elements A, BEEN such that

AB - BA = C:A 0.

Moreover, Lemma 2.3.23 asserts the existence of a pure state (o over 121 such that

W(C*C) = IICI12 .
The associated irreducible representation (.5,_n.) must be on a

space of dimension greater than one because the contrary assumption would imply
7r.(C) 0. Let 0, and 02 be any two orthogonal unit vectors in -5,, and define

(oi(A) (i//i, 7E,,,(A)0i) for A c- 121, i = 1, 2. Moreover, introduce

(o -, (A) = ((0 1 0 2), 7r,,(A) (0 1 0 2))/2 for A c- 9J.

One has

(i),(A) + ")2(A) = o)+(A) + o)-(A).

Hence the two distinct maximal measures (6, + 6112)/2, (6,, + 6. _)/2 have the same

barycenter and Eq, is not a simplex.
The proof of the equivalence is now completed by showing that (3) implies (1).
(3) => (1) Let 9 be any hermitian functional over % and define 9(+ 1 by

9(+)(A) = suplg(B); 0 :!! B < Al.

The function 9(+) is clearly bounded and we next prove that it is linear. For this we

argue that if 0 :!! B :!  A, + A, with the A i
> 0 then the lattice property implies the

existence of B1, B2 such that B = B, + B2 and 0 :!! B, < A, 0 < B2 :!! A2. This is

established by defining

B, A
I A B, B2 = B - B

Clearly 0 < B, :! ; A, and 0 B2. But B - A2 < B and B - A2 :!! A, Therefore
one has B - A 2

< A I /\ B, which is equivalent to B2 :f - A 2 - Using this decomposition
one then has

(p(+)(A, + A2) = supJ9(B1 + B2); 0 :!! B, :!  A,, 0 B2 < A21
= 9(+)(Al) + (P(+)(A2)-

Now let (o, and (1)2 be positive linear functionals over % and define

(01 V (0, = ((01 - (0,)(+) + (,)-).

For A > 0 and E >- 0 one then has a B with 0 < B <- A such that

(o), - o),)(+)(A) :!! o),(B) - (,-),(B) + e.

Therefore if w > o), and (o > (o, one has

(col v (t)-,)(A) < (ol(B) + ()2(A - B) +

:!! (o(A) + E,
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i.e., (o, v (o, is the least upper bound of (o I and (02. A similar argument shows that

the greatest lower bound of (0 1, ()2 exists and is given by

(1), A (02  ('O - ((O - (0-1)"'-

Hence the positive functionals over 121 form a lattice and EN is a simplex.

Note that the  p(') introduced in this proof is just the positive part 9 ,
of

 p in the Jordan decomposition. The negative part 9 of 9 can be calculated

by a similar ansatz and the obvious relation 9 -

= ( 9) , .

EXAMPLE 4.2.7. Let 91 = M2 be the C*-algebra of all 2 x 2 complex matrices.

It follows from Example 4.2.6 that E, is not a simplex, and we will show that E, is

affinely isomorphic to the unit ball in R'.
Define the Paull matrices '70, ("1, '72, '73 in 91,a by

UO = 0), '71 = (0 1), U2 Ci '73 = (I(0 1 1 0 0 0

Then the real linear span of Jail is just %,_ If 1i 1i 17i c- %,a one computes

Tr ai ai) = 2L-to,

2
_

2
_

2
_

2
OCOdet (Y- ai ai Ot I Lo 2 "3 .

Hence,yi aici c- W, if, and only if, a,   ! 0, oco2   ! oc,2+ 'OC22+ OC32 i.e., 91, is identified

with the positive light cone in the Minkowski space R'.
Now any state co c- EN is given by a unique positive matrix p c 1A

+
with Tr (p) = 1,

by (o(A) = Tr(pA). The map o)  --* j) is affine. Thus E% is affinely isomorphic to

J(oci) c- R4; LXO = _L' X12 +  X"2 + 1
2 < _Ll2

-
3 - 4

i.e., E, is affinely isomorphic to the unit ball in R3.

Finally, it is easy to construct the natural, positive cone'  ', associated with M2 in

the representation defined by -r = (-L)Tr. In fact, 12- 1/2 forms an2 7rr(ai)Q, 1 0 : i:5 3

orthonormal basis for  ),, and since T is a trace we have   O, = 71,(121 + )Q,. This gives an

identification of with the Hilbert space C4 such that

2 2(oci) c R4 ; 10 > 0, 112 + a + 13 :   X 0
2

4i.e., 9, is just the positive light-cone in R

More generally, it is not hard to show that if 91 is an arbitrary C*-algebra with

identity, and W1, (02 c- &,(E,), then the face generated by 1'(o, (0-, 1 in E, is either the
line segment between (ol and (02 (if 7r,, and 71-2 are inequivalent) or is affinely iso-

morphic to the unit sphere in R 3 (I-f (0 1:A ('02 and 7r,,,, is equivalent to 7r(,,,). This is an

important abstract property of the convex, compact set E%.
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4.2.2. Central and Subcentral Decompositions

In this subsection we examine the decompositions of a state w which are

associated with the von Neumann subalgebras of the center J. n

7r,,(91)' of the representation The orthogonal measure corresponding
to 3,, is usually called the central measure and we refer to the measures

associated with von Neumann subalgebras of 3,, as subcentral measures.

This class of measures is of particular importance in physical applications
because the elements of 7u,J91)" are interpreted as observables of a system in

the state a) and the center J. corresponds to the set of invariants of the system.
The central measure then gives the probability distribution of the values of
these invariants, and the associated decomposition is an expression of 0-) in
terms ofstates in which the invariants have specific values. Specific subalgebras
of J,,,, such as the commutant algebra J,,,c and the algebra at infinity -1,'
introduced by Definition 2.6.4, might have a particular physical significance
and hence the corresponding subcentral decompositions are of interest.

We begin our analysis by showing that the subcentral measures can be
characterized by a strengthened condition of orthogonality. To introduce this
condition we first recall that two representations 7E, and 71, of a C*-algebra
% are quasi-equivalent if each n, -normal state IS n2-normal and conversely.
As a complement, we say that 7r, and n2 are disjoint, written 7r,  7r2, if no

n,-normal state IS 7 2-normal and conversely. Correspondingly, two positive
linear functionals o), and 0)2 on W are disjoint, wl if n.., and are (02, 7r"12
disjoint. If % is an abelian C*-algebra, the notions of quasi-equivalence and

disjointness reduce to the notions of equivalence and disjointness of regular
Borel measures.

It follows immediately from the definition that n,  n2 if and only if 7r, and

7r2 have no quasi-equivalent subrepresentations, which again is equivalent to

7E, and 7 2 having no unitary equivalent subrepresentations (Theorem 2.4.26).
For our purposes the following characterization of disjointness of states will
be useful.

Lemma 4.2.8. Let (01, 0)2 be positive linear fiinctionals over the C*-

algebras W, and let o-) = (o, + 0)2. Thefolloiving conditions are equivalent:

(1) o), anti o)-, are disjoint;
(2) there is a projection P c- 7T,J 1)" r-) such that

o),(A) = (Q,,, P7rJA)Q,,,),

(,i),(A) - (0,,), ( - P)7rJA)f2,)).

In particular, di, J *

s oJ'u), and o), iniplies orthogonality. Jointnes

PROOF. (1) => (2) If (,)' is a positive linear fUnctional SUCh that (!)' < (,,), and
w' < (,),, theii wis both 7i,,),-normal and 7r(,)_,-normal. Hence o-)' = 0. It follows from
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Lemma4.1.19 that (i), I w-, and, in particular, that there exists a projection Pcn .'(121)'
with the property that

u),(A)

etc. Let B e e PS and consider the positive functional

I - P)& , 7r,,,(A)( - fl&:).

Then o)' is manifestly 7r,,).,-normal, and since

o)'(A I I P)B 112( 7r,JA)(-)

for A   ! 0, w' is also 7r,,),-normal. It follows that (.,)' = 0 and hence (I - P)BP 0 for

all B c 7r,,P21)'. Thus P c- 7r,,(121)" and, finally, P c 7r.(121)" n 7r,J121)'.
(2) => (1) If (2) holds there exists no partial isometry U on .5,,) such that U e 7r,,(N)'

and (I - P)UP = U. But this amounts to saying that 7r., and 7-L.., have no unitary
equivalent subrepresentations, hencew,  o)-, -

The following proposition gives an alternative characterization of the

notion of subcentral measure.

Proposition 4.2.9. Let % be a C*-algebra with identity, w a state over W,
and let y c- MJE, ,). Thefiolloiving conditions are equivalent:

(1) for any Borel set S - Ew one has

fSdy(w) (o' fE,11
\S

dy(w) (,o'

(2) y is subcentral, i.e., p is orthogonal, and the associated abelian

subalgebra K,,(L'(p)) of7rJ91)' is contained in the center 7rJ91)" r-)

7r,J91)'of the representation 7r,,)(91).

PROOF. (1) => (2) It fc llows from Lemma 4.2.8 that p is orthogonal and K,
maps projections in L'(p) into central projections. Since K,, is a *-isomorphism by
Proposition 4.1.22, K,,(L'(p)) is contained in the center of J 71 21).

(2) => (1) If S is a Borel set, then K,,(Zs) and K1,(Y.Ea,s) are mutually orthogonal
projections in the center of with sum T ; thus

( 'dp(w') u)')  (
E,11\S

(/Y(o)') (0,)f
by the formula

and Lemma 4.2.8.

fSdp(w') w(A) K,(Xs)ir.(A)Q.)

It follows from Theorem 4.1.28 that the central measure is the smallest

measure in MJEN) which maximizes all the subcentral measures. Moreover,
Lemma 4.1.26 implies that p,_ is the weak* limit of the monotone net of

subcentral measures of finite support. This latter result can be used to

strengthen the geometric characterization of the central measure.
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Theorem 4.2.10. Let % be a C*-algebra with identity and o) a state over %.

It follows that each subcentral measure v c- 6,,(E,) is dominated by all

maximal measures y c M,,,(E,,).
Conversely, tt,,_ is the largest measure in M.(E,),) which is dominated by all

maximal measures in M,,,,(E,).

PROOF. To prove the first statement we argue exactly as in the proof of (2) => (1)
in Theorem 4.2.3. One reduces the problem to finding a common upper bound p for

two measures y, v c- M,,,(E,) of finite support where v is assumed to be subcentral.

But this is achieved by repeating the construction used in the proof of Theorem

4.2.3 and noting that the subcentrality of v implies Zj e 3,,, and hence the products
TjZj are positive.
To prove the converse statement we must show that each measure ft C- M.(E,)

that is dominated by all the maximal measures in M.(E,) is also dominated by the

central measure Now the maximal orthogonal measures in (9.(E,) are

maximal in M.(Ew) by Theorem 4.2.2. Hence  K,ff); f e L,+(ft)l is contained in all

maximal abelian von Neumann subalgebras of 71,,,(%), by Theorem 4.2.2 and

Proposition 4.2.4. Hence,

( K4(f); f e L

where QJ, +
is the positive part of the unit ball of the center. But

(31") 1 +
-_ (K,,-(J'); fe L'+ (ft3.) 

and ft.. c-,9(M.(E,)) by Corollary 4.1.23. Therefore

by Proposition 4.2.4.

To conclude this section we establish the natural result that p._ is

pseudosupported by the factor states F,, and that with some separability
assumptions it is actually supported by F,,.

Theorem4.2.11. Let% be a C*-algebra with identity, o) a state over 91, and

p,_ the associated central measure. It follows that p3_ is pseudosupported
by thefiactor states F , over %. Moreover, ifo-) is contained in aface F sati fying
the separability condition S, then y is supported by a subset G - E% such
that

(1) G is a F,-subset of E,,;
(2) G g F, r-) F.

PROOF. We may assume 7ij%) is faithful, because if 3 = ker 7u.(%) and p;
%  -4 %/3 is the quotient map, then 9 is a pure state of %/3 if, and only if, (p - p is a

pure state of %, and the states of this form are a weakly*-closed subset of E,.
Next we may view % as a C"-subalgebra of the C*-algebra CS generated by n.(%)

and The commutant of (S is (S' n nj%)". Let Co be the

extension of co to (S defined by

CO(C) = (Q"" CQ.), C c- (Y'
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and let P be the element of (9 (Ec) corresponding to 3. If r; E. F-+ E. is the
restriction mapping then r(b = w and o r The last identification follows from
the relation

P(ClC2 A., C1PC2P-PC'P.)'

where P [3J2,J =

Now, is a maximal measure in MjE,,:), by Theorem 4.2.4, and one concludes
from Theorem 4.1.11 that P is pseudosupported by the pure states on (E. Next,
r(&(Ec)) s F by Proposition 4.1.37, and hence y is pseudosupported by F, by
Lemma 4.1.36.

Now consider the second statement of the theorem. Let be a sequence of

C*-subalgebras of 91 such that W U,, W_ and let T),, be a separable ideal in W,, such
that

F 19; c- E%, 11 n > I

If w c- F, then .5. is separable by Proposition 4.1.34, and the argument used in the

proof of Theorem 4.2.5 implies the existence of a separable C*-subalgebra 93, -
7r.(%)' such that 98, is weakly dense in 7r,jW). Now, redefining E as the C*-algebra
generated by 00 and nj%) and arguing exactly as in the proof of Theorem 4.2.5,
we find an &-set U - F, such that y(U) = 1. Since F is a stable face p(F) = 1, and
hence M(F r-) U) = 1. The regularity of the Borel measure p then implies the existence

of an F,-subset G - F n U 9 F n Fw such that p(G) = 1.

Remark. In the simplest case covered by Theorem 4.2.11, the case of separable
W, one can prove that the set F,, of all factor states is a Borel subset of E,,
(see Notes and Remarks).

EXAMPLE 4.2.12. As an application of the foregoing theorem consider a quasi-
local algebra constructed as follows. Let I be a countable index set and If the directed
set of finite subsets of I, where the direction is by inclusion. Associate with each
a c- I a separable Hilbert space SD-',,, with each A c- If the tensor product space

-5A 5-
c- A

and define WA 5A). Let 121 be the C*-algebra generated by the union of the 91A
The algebra 91 is quasi-local in the sense of Definition 2.6.3 and a state W over ')J is

locally normal in the sense of Definition 2.6.6 if, and only if, (o c- F, where

F = jw; w c- E., 1, A c- Ifj
.

11(olyl- 5A)II =

(compare Example 4.1.35(5)). Now consider the algebra at infinity

n U 7r.(WA'))Ac-If(A'r,A=O
It follows from Theorem 2.6.10 that 3.1 = 3. and hence the central decomposition
coincides with the decomposition at infinity, and conversely. Moreover, Theorems
2.6.10 and 4.2.10 imply that the associated measure p.3_ is supported by an F,-subset
of locally normal states with trivial algebra at infinity.



4.3. Invariant States

4.3. 1. Ergodic Decompositions

We conclude our description of decomposition theory for states with an

examination of states which are invariant under a group of *-automorphisms.
Thus in this section we examine both a C*-algebra % with identity and a group
G represented as *-automorphisms of W. We denote the action of G by

A c- W  --* -E,(A) c- W

for all 9 c- G. A state o) over 91 is then said to be G-invariant if

,co(A) = co(,rg(A))

for all c- G and A c-- W. The states EA of W are a convex weakly* compact9
subset of the dual %*, of W, and it follows immediately that the G-invariant

states form a convex, weakly* closed, hence compact, subset of EN. We

denote this set by E,G. Our aim is to decompose a state (o c- E.,G in terms of

G) G G)the extremal points S(E of Ea .
The extremal G-invariant states S(E.

are usually called ergodic states, or G-ergodic states, because of their relative

purity, or indecomposability, among the invariant states. The corresponding
decomposition is naturally referred to as the ergodic decomposition of a

state.

Our discussion will be divided into three parts. In this subsection we

analyze the existence and uniqueness of the ergodic decomposition. In

Sections 4.3.2 and 4.3.3 we examine a variety of characterizations of the

ergodic states S(E,,G) and in Section 4.3.4 we analyze the decomposition of

a G-ergodic state in terms of states with a lower invariance, e.g., invariance

under a subgroup H g G. In physical applications the group G represents
symmetries of the system and G-invariance of o-) reflects the presence of these

symmetries in the state co. The G-ergodic states should correspond to the

symmetric pure phases of the system and the decomposition with respect
to a subgroup corresponds to an analysis of broken symmetries.

First recall that if (o is G-invariant then by Corollary 2.3.17 there exists a

representation of G by unitary operators U.(G) acting on the Hilbert space

374
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of the cyclic representation (S ),, n., Q.) associated with w. This repre-
sentation is uniquely determined by the two requirements.

U.(g)7r,,,(A)U,,,(g)* = 7E.(r,(A))
for A c%geG,and

U.Wfl. = 0.

for g e G. Throughout this section we often use the notation 7r', U,,,, 0.)
to denote this quadruple of space, representations, and cyclic vector.

Next it is useful to define an action -r* of G on the dual %* by

(T9*(p) (A) = q(Tg -  (A))

for g c- G, A c- %, and 9 c- 91*. We have adopted a convention which ensures

that -c* is a group representation,

(T*g,  o) (A) =  (A))91 9(T(g 192) -

9(Tgj- , Tg i- .(A)) = (Tg* -r,*
t 1 .7 2 (A).

We can define an action of G on the algebra C(E,,) of continuous functions

on E, by second transposition. Ify is a Baire measure on E. which is invariant
under this action, then we can extend this action to L'(y). For simplicity of
notation we also denote this latter action by T. Thus

(Tg f)(W) = f(T*- 1W)9

forf c- L'(y) and w c- E,.

Proposition 4.3.1. Let 91 be a C*-algebra with identity, G a group,

g c- G  -+ Tg c- Aut(%) a representation of G as *-automorphisms of 91, and
w a G-invariant state over 91. There is a one-to-one correspondence between

thefollowing:

(1) the orthogonal measures M, over Ew, with barycenter (o which satisfy
the invariance condition

P(Tg(fl )f2) = U(fl f2)

for allfJ2 c- L'(y) and g c- G;
(2) the abelian von Neumann subalgebras 0 of the commutant

{n.(W) u UJG)J';

(3) the orthogonal projections P on .5. such that

M. = Q"" U.(g)P = P,

P7r.(91)P C f
I P7U.(W)Pf.

PROOF. Theorem 4.1.25 has already established a one-to-one correspondence
between orthogonal measures u, abelian von Neumann subalgebras 93 -

and projections P such that PQ,,, = Q., P7zJW)P - JP7r,,(%)P). It remains to in-

corporate the invariance properties and this is easily achieved by use of the explicit
relationships, between corresponding elements It, 0, P., established in Theorem 4.1.25.
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First assume p to satisfy the invariance conditions. Then

(0, 7r,,,(A) U,,,(g)K,,(J') U,,,(g
- 1)7r.(B)iDj

(Q., 7r.(-rg -, (A))K,.(.f')n.(Tg -  (B))Qj

pffrg-  ( _B))
pffA B)

for all A, B c- %, g c- G, and f c- L'(y). Therefore by cyclicitY

U.(g)K,(f)U.(g)* = K,(f).

But 0 = fK,(f); f c- L'(p)l and hence 0 g jnj%) u U.(G)j'.
Next assume 0 g u U,,,(G)I,' and note that P = [00,j. It follows

immediately that

U.(g)P = P.

Finally, assume P to be in the third set described in the proposition and note that

p(rg,(A -rg,(A -rg,,(A,,))
= (K2,_ nj-rg (A 1))P7r,,(Tg,(A 2))P
= (Q, 7rjA I )P7r,,(A 2)P P7r,,(A,)Q,,,)
= P01,42 '' * '4n)

for all A,, A2,..., A,,c- 91 and 91, 92,..., gn c- G.

But the Stone-Weierstrass theorem ensures that eachfc- C(E,) can be uniformly
approximated by a polynomial   P in the Ai and by isometry rg fcan be approximated
by Tg )' uniformly in g c- G. Using two such approximations one concludes that

P((Tg fl) f2) = Y(fl f2)

for all fl, f2 c- C(E.) and g c- G.

The ordering of the orthogonal measures described in Proposition 4.3.1

naturally retains all the properties described in Theorem 4.1.28 for the order-

ing of orthogonal measures. Thus if 931, 932 are two abelian von Neumann

subalgebrasofl7r,,(Ig) u UJG)J'andpo, I PQ52 are the corresponding measures
then

931  932   90, _' PQ32

etc.

The next result concerns the support properties of these special orthogonal
measures.

Proposition 4.3.2. Let W be a C*-algebra with identity, G a group, g C- G

T9 c- Aut(91) a representation oj' G as
*-automorphisms oj'%, and (0 a G-

invariant state over 91. Ify is an orthogonal measure with barycenter 0) then

thefollowing conditions are equivalent:

(1) y(Tg(fj)f2) = y(f, f2) for allf, f2 c- C(EA) and g c- G;
(2) the support y is contained in the weakly* closed subset E,' formed

by the G-invariant states.
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Finally, if y satisfies these conditions and is maximal then it is pseudo-
supported by the ergodic states 9(Ew') and if, moreover, co is contained in a

Gface F ofEw which satisfies the separability condition S then y is supported
by e(E G).

PROOF. Clearly (2) ==> (1).
(1) => (2) Let 0 9 f7r.(12f) u U,,(G)I' be the abelian von Neumann algebra

corresponding to y by the correspondence established in Proposition 4.3.1, and let
91 be a finite-dimensional abelian von Neumann subalgebra of 0. The orthogonal
measure tt,, corresponding to 91 satisfies the invariance property and has finite

Gsupport f(l),, ()2, (oJ. But each (oi c- Ew because

(PiQ_ 7r,,(A)Q,,))
wi(A) -

(Q. I Pi Q.)
'

A c- W,

with Pi a projection in 91. Lemma 4.1.26 then establishes that the measures Y, con-

verge in the weak* topology to p and hence the y, also converge in the weak*
G)* , G) G.topology on C(E., to the measure v c M,,,(E obtained by restricting y to E.

Thus M(E ,G) = i!(Eg,') = 1, ii.e., the support of p is in EHG

If V I, V2 c (9.(E,) are two orthogonal measures satisfying the invariance property
"G, , G).then they can be viewed as measures on E i.e., i,,, V2 e M,,,(EM We first argue

that if i,l >_ V2 in M,,,(E.) then 1 I >_ t'2 in M,,,(E,'). For this it suffices to note that
each f c S(E91G) has a convex lower sernicontinuous extension.f to E, obtained by
settingf((o) = + cc for w c E,\E,G. Thus using the ordering one has

VIM = VIY) > 1 2(h = V2(A

Consequently, if an orthogonal measure with the invariance property is maximal in

M.(E,) then it is maximal in M.(E.G) and the pseudosupport statement follows
from Theorem 4. 1.11. Next remark that Proposition 4.1.34 established that

(,'(F) = af(En) n F

for a function f c S(E,) which is strictly convex over F. Thus defining FG = F n E,'
G Gone concludes that F is a face in Ea, which satisfies the separability condition S

and

6'(FG) = a
f(E'UG) n FG c- 9'(E,, ')

because f is also strictly convex over FG
c- F. But F is stable and y is supported by

F n EnG by (2). Further, y is supported by af(E,21G ) by Theorem 4.1.7. Thus 'U is

supported by 6(FG) c 6'(EWG).

Next we give a characterization of uniqueness of maximal measures with
a fixed barycenter o-) c EwG.

Proposition 4.3.3. Let W be a C*-algebra with identity, G a group acting
as *-automorphisms T ofW, and a) a G-invariant state over 91. Thefollowing
conditions are equivalent:

, G)(1) M,,,(EV contains a unique maximal measure v;
(2) 17r.(W) u U.(G)J' is abelian.



378 Decomposition Theory

Ifthese conditions are satisfied then v is the orthogonal measure correspond-
ing to 17r.(W) u U,,,(G)I'.

PROOF. This follows by a repetition of the proof that (1) --> (2) in Theorem 4.2.3.
One now replaces 7r,,(%)' by u U.(G) I' and notes that if v is a G-invariant

measure with barycenter w then JKJf); J'c- L'(v)l S:- 17r.(W) u U")(G)J'. This
inclusion follows from the identity

v(f-Eg-(; B-)) = v(fA-B)
by the same calculation used at the beginning of the proof of Proposition 4.3.1.

Our next aim is to establish more useful criteria for the uniqueness of a

maximal orthogonal measure ft c- M.(E,,G). Note that if w is in a face F of
E%G which satisfies the separability condition S then the unique /I will be

supported by the G-ergodic states ff(E.,,G), by the above proposition. Thus
in this case uniqueness of a maximal orthogonal y on E,,,G corresponds to

uniqueness of ergodic decomposition. In the sequel we consider the unique-
ness problem with no further reference to the support properties of Y.
The main new technical tool used in the further development of ergodic

decompositions is a result usually referred to as the mean ergodic theorem.
We will repeatedly use this result in application to the unitary representation
U.(G) of G on .5.. As we are not making any continuity assumptions on

g F--+ U.(g) we need a slightly abstract version of this theorem.

Proposition 4.3.4. (Alaoglu-Birkhoff mean ergodic theorem). Let V be

afamily of bounded operators on the Hilbert space S) satisfying

(1) 11 U 11 :!! ; I for all U c- V;
(2) U1U2c-VJbrallU,,U2C_W-

Furthermore, let E be the orthogonal projection on the subspace of S5formed
by the vectors invariant under all U c- V, i.e.,

E.5 = { ; U =  for all U c- VJ.

Itfollows that E is in the strong closure of the convex hull Co(w) ofV.

PROOF. First note that if 0 G E-5 and U c- J& then

Therefore

and

11011 2
= (U0, 0) = (0, U*O) :!! 110 1111 U*0 11 :!! 110 11 2.

(0, U*O) 110112

U*011 11011.

Thus

11 U*0 _ 0 11 2 = 11 U*0 11 2 _ (U*O, 0) _ (0, U*O) + 110 11 2

= 0
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and one has U* Consequently, if 9 c- (E.5)' then

(U9, 0) = (9, U*0 = ((P, 0) = 0

and U p e (E.5)'. Next consider the convex set

C' = fX; X = X9, X e CO(O&)I.

Because each convex closed subset of S); contains a unique element of minimal

norm there must be a minimal element X c- C., g (E.5)'. But then for each U c- 0&

one has

11UX11 :!! 11A

and by minimality

UX = X.

Thus X = 0.

Next, if X is a general element of .5 it has a unique decomposition

X =  + (P

with  c- E.5 and  p c- (E.5)'. The above argument then gives

inf JJXX -  11 = inf JJX pjj = 0.
X e C.(,&) X E co(,&)

Finally, we may apply the foregoing argument to the family

I&I" = JU (B U ( ... ( U; UE VI

acting on the direct sum of n copies of -5. Thus for E > 0 and X, X G .5 one may
find an X E Co(O&) such that

JjXXj - EXill' < s.

Note that as E is in the strong closure of Co(V) it follows that one can

always choose a net of elements X,,, c- Co(,&),

X, = Y_ Aj-Uj,
i

such that X,,, converges strongly to E. We will apply this result to representa-
tions of the group G by unitary operators and then it can be further argued
that these approximants can be chosen as averages, or means, over the group.
This interpretation as a mean value gives an intuitive explanation of the
above limiting process and it is also helpful in understanding several of the

limiting processes which occur in the subsequent analysis. Nevertheless, it is
not absolutely necessary to the development of ergodic decompositions and
we will describe the theory without this extra embellishment (see Notes and

Remarks).

EXAMPLE 4.3.5. Let x E R' -* U(x) c- Y(.5) be a weakly (strongly) continuous

unitary representation of the translation group on the Hilbert space .5 and let E
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denote the orthogonal projection on the subspace of .5 formed by the vectors invariant

under all U(x). Next let A,, be a net of Borel subsets of R' with the property that

JA,,A(A , + y)l
= 0

I A,, I

for all y c- R" where I A I denotes the Lebesgue measure of A, and AAB = (A u B)\
(A r-) B). It follows that

lim I dx U(x) - E)  1 = 0, 0 G .5.1  JAo, I

To establish this one first remarks that if  c ES!) then the result is trivial. Next

take 0 c- (E5)' and for y c- R' form 0Y = (I - U(y))O. One then has

I
dx U(x) - E 0Y = f dx U(x)ofA I I A , I AxA(A,,, + y)

<
110 111 A x A(Ao, + y)

I A , I

and the result again follows. Finally, if (p is orthogonal to the set

T) - {0y;  c- (E.5)-, y c- R'J

then (I - U(y))g c- E.5 for all y c- R'. But E(I - U(y))g = 0 and hence (I - U(y))g
= 0. Thus 9 c- E.5 and Z' = E.5. Hence we have established the existence of the limit

on a subset of .5 whose linear span is dense and the existence then follows for all

0 C- .5.

The properties which are crucial to the development of ergodic decompo-
sition theory involve approximate commutation of pairs of elements of the

C*-algebra % when one element is shifted under the action -r of the auto-

morphism group G. These conditions are usually referred to under the

generic heading of asymptotic abelianness.

We will study such conditions in the form

inf I (o([A, B]) 0
A'c- CO(TG(A))

for each pair A, B c- % and a certain subclass of states oi. Here we have used

CO(TG(A)) to denote the convex hull Of TG(A) T,(A); g e GJ. The term

asymptotic abelianness is used because in specific applications in which G

has a topological structure the condition is usually achieved by taking
A' = rg(A) and moving g out of every compact subset of G. We will demon-

strate that refinements of this condition can be used to characterize the

uniqueness of ergodic decomposition, the subcentrality of these decomposi-
G).tions, and the ergodic structure of the extremal states S(E  J We emphasize

that these criteria are particularly useful because the conditions of asymptotic
abelianness are often fulfilled in a strong and easily verifiable form such as

norm commutation:

inf 11 [-cg(A), B] 11 = 0.
g c- G
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We begin by immediately introducing the two precise forms of asymptotic
abelianness which will be necessary.

Definition 4.3.6. Let W be a C*-algebra with identity, G a group, g G G

,rg c Aut(91) a representation of G as *-automorphisms of 91, and for each

A e % let CO('rG(A)) denote the convex hull Of {T,(A); g c- GJ. Finally, let W
be a G-invariant state over 91.

The pair (91, w) is defined to be G-abelian if

inf I (o'([A', B]) 0
A'E CO(rG(A))

for all A, B e 91 and all G-invariant vector states w' of 7r..
The pair (91, w) is defined to be G-central if

inf I w"([A', B]) 0
A'eCo(rG(A))

for all A, B e 91 and all states o)" such that co" < Aw'for some A > 0 and some
G-invariant vector state w' of 7r,

Note that if 9f is abelian then both these conditions are satisfied for any

group of automorphisms G. Further, if (%, (o) is H-abelian, or H-central,
where H is a subgroup of G, then (W, (o) is automatically G-abelian or

G-central.

Our aim is to show that (W, w) is G-abelian for a sufficiently large number
of G-invariant states co if, and only if, each such o) is the barycenter of a

measure /t, which is unique maximal among the measures such that

p(c,(fl)f2) = yfflf2), fl, f2 c C(EJ

Subsequently we show that G-centrality characterizes the situation in which

the corresponding y are subcentral.

Proposition 4.3.7. Let 91 be a C*-algebra with identity, G a group, and

g c G  --+ -rg c- Aut(91) a representation of G as *-automorphisms of %. Next
let oi be a G-invariant state over % and denote by E. the orthogonal pro-

jection on the subspace of.5.formed by the vectors invariant under U.(G).
Consider theJ61lowing conditions:

(1) the pair (%, co) is G-*abelian;
(2) E,,,7r,,,(%)E,,, is abelian ; 3

(3) f7rJ91) u U.(G)J' is abelian;
(4) there exists a unique maximal measure y c- M,,,(E.G).

Itfollows that (1) *-:> (2) => (3) - :--> (4) and if Q,,, is separatingfor 7rJ91)" then

(1) <--> (2) -:: :> (3) ,--> (4).

3By a slight abuse of language which appears frequently in the sequel, Condition 2 does not

mean that E,,,7r,,(12[)E,, is an algebra, but only that the operators in E,,7[,,,(121)E,,) commute

mutually.
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PROOF. (1) => (2) It suffices to prove (2) for A selfadjoint. Now given g > 0,
A = A* c- 91, and 0 c- E,,, S-'), there exists by Proposition 4.3.4 a convex combination

S'J(U.) of U""

SAU.) Y Ai U,,,(gj),

such that

II(S,(U,,,) - E,,)7E.(A)0JJ < -

2

Therefore defining S,,(-r(A)) by
n

Y Ai -rg,(A)
i=1

and letting S,(U.) denote any other convex combination of U,,, and S,(A) the

corresponding convex combination of E,(A) one has

11 E. 7iJA)0 - 7E,,(SI, S,(c(A)))0 11 = 11 S,,(U,,,)[E. 7r.(A)o - < -

2

Thus

J(0, 7r,,,(A)E,,7r,,,(B)O) - (0, 7r,JB)E,,,7r,,,(A)0)J :f _  ,JJBJJ 11011

+ 1(0, 7r,,([S,SJ-E(A)), B])O)I.

But the convex combination S, is still arbitrary and hence, applying condition (1),
one finds

(0, [E,,7r.(A)E,_ E,,,7rJB)E,J0) = 0.

As this is valid for all 0 e E,_5 one concludes that condition (2) is valid.

(2) => (1) If S,(r(A)) denotes the above convex combination in TG(A) then con-

dition (2) implies

B])O)l :!! JIBIJ II(S;.(U,,,) - EJ7r,,(A)0JJ

+ JIBIJ II(S,(U,,) - E,,,)7r.(A*)0JJ

and condition (1) follows from Proposition 4.3.4.

(2) => (3) First note that as E.Q,,, = 0. and E,,,7r,,,(12[)E,,, is abelian the basic

characterization of orthogonal measures, Theorem 4.1.25, places E," in correspon-
dence with the abelian von Neumann algebra 17rJ%) u E,J'. But by Proposition
4.3.4 one has E,,, c- UJG)". Hence

17r.(%) u EJ" g 17r.(91) u U,,,(G)I"

and

17r,J121) u U,,,(G)I' -- f7r,,,(W) u EJ'.

Thus u U,,,(G)I' is abelian.

Conditions (3) and (4) are equivalent by Proposition 4.3.3.

Finally, we assume that Q. is separating for 7r.(91)" and prove that (3) =:> (2).
Let 0. = f7r,,,(W) u U,,,(G)I'. One concludes from Theorem 4.1.25 and Proposition

4.3.1 that 0,, is in correspondence with a projection P = with the properties

U,,,(g)P = P and P7E,,,(91)P s   P7E.(%)Pj'. In particular, P < E., and to establish

condition (2) it suffices to prove that P = E, But this is equivalent to showing that
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.Q. is cyclic for 7r.(W)' r-) U.(G)' in E,,,SD;.. Now as Q. is separating for 7r.(W)" it

is automatically cyclic for n.(%)' by Proposition 2.5.3. Hence the desired conclusion
will follow by applying the subsequent result, Proposition 4.3.8, to A = 7rJ%)'.
In particular, this proposition associates to each A c- 7r.(W)' an

such that

Hence

by cyclicity.

M(A) e 7r,,,(91)' n U,,,(G)'

M(A)Q. = E,,,AQ,,,.

{M(A)Q,,,; A c

Note that the implication (3) =:> (2) in Proposition 4.3.7 is not true in

general. A simple counterexample is provided by taking G to be the one

point group and W to be nonabelian. Thus U.(G) is the identity on .5.,
condition (3) is equivalent to 7r.(W)' being abelian, and condition (2) is
equivalent to 7r.(%) being abelian. But this is not the case for all W. Neverthe-
less, there are more general situations in which this converse implication is
valid and for their analysis we need the following generalization of the
mean ergodic theorem to groups of automorphisms of a von Neumann

algebra.

Proposition 4.3.8 (Kovacs and Szdcs). Let M be a von Neumann algebra
on a Hilbert space .5, g c- G 1-4 U(g) c- Yl(.5) a unitary representation of the

group G on .5 such that U(g)9JIU(g)* -- Mfor all g e G, and define 9J1'
T1 r-) U(G). Let E0 be the projection onto the U(G)-invariant vectors on

If F0 =- [TVE0] = I then there exists a unique normal G-invariant pro-
jection Mftom 9W onto 9JIG

. Furthermore, one has

(1) M is positive andfaithful, i.e., if A >_ 0 and M(A) = 0 then A = 0,
(2) {M(A)l = 9JIG r) CO TG(A)

for all A c- 9A, where Co TG(A) denotes the weakly closed convex hull
of {,rg(A); g c- G 1, -cg(A) = U(g)A U(g)*,

(3) M(A) is the unique element in 9W such that

M(A)E0 = E0 AE0,
(4) a normal state w on 9N is G-invariant if, and only if,

(o(A) = a)(M(A)), A c- 9J1,
i.e., (t) = (t) J"G - M.

IfF0:A I then F0 C gjqG r.) (9XG)'and the above results apply withM replaced
by F0 9JIFO and 9JI' replaced by (F0 9RFO)' = 9X'Fo.

PROOF. By the mean ergodic theorem (Proposition 4.3.4) there is a net Y-i Ai'U(gi')
in Co (U(G)) which converges strongly to E, If A c- 9W then

EOAEO = strong lim Y Ai2U(gi1x)AE0
i

= strong lim Y Ai'U(gi')A U(gil)*Eo.
. i
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By Proposition 2.4.18, 9W, is weakly compact, hence the uniformly bounded net

Ji Ai'U(gi')AU(gi')* has a weakly convergent subnet Ji AiflU(gifl)AU(gifl)* con-

verging to B c- 9.11. Therefore

EO A EO = BEO.

Since FO EO Sq-' Is cyclic for 9JZ' and so separating for 9W; hence this relation

uniquely determines B c M, and we can define a map M by B = M(A). The map M

is obviously linear and G-invariant. It is positive by the construction of B, and it

is faithful since E0.5 is separating for M. Explicitly, if A > 0 and M(A) = 0 then

0 = EOAEO = (A 1/2 Eo)*(A 1/2 EO). Hence A 1/2EO 0 and so A 1/2
= 0. Thus A = 0.

Since

U(g)BU(g)-'Eo = U(g)BEO
= U(g)EO A EO EO A EO = BEO

M(gjl)  ;; MG. C Swe see that Conversely, if B 9NG then M(B) - B by construction

and hence M is a projection onto MG. If B, C MG n J(CO(TG(A))l then

BIEO - EOBIEO - EOAEO = BEO

and hence B, = B and

M(A) I. SjjlG iCO(TG(A)) .

) and B'c- 9J1', then for A > 0If
,
e .5 is a vector of the form B' O, where  O e EO ' 

(B"O, M(A)B' O) (B'M(A) 1/2 0 ,
B'M(A) 1/2 0)

B' 11 2( O' M(A) O)
= 11 B' 11 2(  :O' M(A)EO -'0)11 L,

B' 11 2( O , A O).

Hence A i--* (B' O, M(A)B' O) is a normal positive functional. As FO these normal

functionals span a norm-dense subs(5t of 9JZ,, and hence M is normal. If (t) is a normal

G-Invariant state on 9W then

(,)(A) = lim (o Aifl U(gifl)A U(gifl)*

= co(M(A)).

Hence (0 = (0) JMG) 11 M, and this establishes a one-to-one correspondence between

the normal states on 99IG and normal G-invariant states on M.

If FO =A I then since U(g)9J1'U(g)-' = 9J1' for all g c- G and FO = [9J1'EO] we

have U(g)FO = FO U(g). Hence FO c- 9J1 n U(g), = MG. Also, if A C MG, then

A9JUEO = IJJI'A EO - 1JJ1'EO A,

hence FO C (MG), .
The last assertion of the proposition then follows by applying the

first assertion to the von Neumann algebra FO 9JIF, acted upon by the unitary elements

U(g)FO on FO 5.

Now we can use this result to obtain the principal characterization of

uniqueness of G-invariant maximal measures.

Theorem 4.3.9. Let W be a C*-algebra with identity, G a group, and

g c- G F--+,rg c- Aut(%) a representation of G as *-automorphisms qf %. Next
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let o-) be a G-invariant state over W, and E,,, be the orthogonal projection on

the subspace of .5. formed by the vectors invariant under U.(G). Finally,
let N,,,' denote the 7r,,-normal G-invariant states over W. The following
conditions are equivalent:

(1) the pair (W, w) is G-abelian;
(2) every w' c- N G is the barycenter of a unique maximal measure

p' c- M.,(E., G);
(3) 17r.,(W) u U,,,,(G)I' is abelianfor all o)' c- NG;
(4) JE.,7r,,(W)E., I is abelian for all &c- N.G.

PROOF. Proposition 4.3.7 has already established the implications (1) -4--> (4) =>

(2) --> (3) and it remains to prove (2) => (4).
Define F. = [7r,(W)'E.] and set 9W = F,,) 7r,(91)"F.. Next define the action of

-r on 9W by

,r,(A) = U,,,(g)A U.(g)*

and introduce the corresponding unique G-invariant normal projection M; M  - T1G

of Proposition 4.3.8. Next we extend each (o'c NG to by a-weak continuity.
Now let 6 denote the restriction of (o to T1. Since F. > E,,) one has a)(F,,,) = I
and 6 is a state on 931. Furthermore,

N'1'G =Io); o)'c- N")G, (.t)(F(,,) = 11.

Next let N.G denote the weak* closure of N,,,G. It follows from Proposition 4.1.14

that the maximal probability measures over N.Gform a simplex. Hence condition
(2) implies, by a linear isomorphism, that NGis a simplex. But if co, (o, c NG are

G
i_

states such that ((01 + 0)2)/2 c- N
, ,

and (o , V ( )2 and (t), / (02 denote the least
upper and greatest lower bounds of (ol and co,, respectively, then the relations

(0)1 + (02)(F.) ((01 V 0)2 + W1 / 0)2)(F.)
2 2

imply that (1) 1  (t)2  
0) 1 V (021W2 c N G. Thus N Gis both a face in N,,)Gand a

simplex. Now by Proposition 4.3.8 N' 7G = N9MG through the identification (o' 0)' c M
and, since NMG is a simplex, 9JjGis abelian by Example 4.2.6. Now

E,,, 7r.(%)"E. = E,,) F. 7r.(W)"F. E,,,
= E. 9YE,,)
= E,,, M(9N)E.
= E,,, gyGE,,,

and because E,, C (9NGy it follows that E,,)7r,,)(91)"E. is abelian. Finally, because
G G GN
.,
- N. if w'e N. the same proof shows that E., 7r,,,.(91)"E., is abelian for all

&c- N.G.

One conclusion of this theorem is that the commutation property used to
define G-abelianness is, in fact, equivalent to an apparently much stronger
and more uniform type of commutation.
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Corollary 4.3.10. Adopt the notation and assumptions of 7heorem 4.3.9.

Thefollowing conditions are equivalent:

(1) the pair (W, w) is G-abelian;
(2) jbr all A c- W there exists a net A,, in the convex hull OJ"CG(A) such that

lim w([,rg(A,,), B]) = 0
(11

for all o)' c- N G and all B c- W, uniformly in g c- G.

PROOF. Clearly (2) => (1) but (1) ==> (2) by the estimate used in proving (2) (1)
in Proposition 4.3.7. Namely, if

n

SA(T(A)) Y Aj Tg,(A)

and w'(A) 7r,,(A)O) then one has

n,,([-cg SA(c(A)), B])O) 111 B 1111 (SjU.) - E,,))7r,jA)0 I

+ JIBIJ II(S,(U(,,) - Ej7r,,(A*)iPjj.

Corollary 4.3.11. Adopt the notation and assumptions oj' Theorem 4.3.9.

Thefollowing conditions are equivalent:

(1) the pair (W, w) is G-abelianfor all o) c- E,';
(2) E,' is a simplex;
(3) jn,,,(A) u U,,,(G)I' is abelianjbt- all w c- E,';
(4) JE.7r.(%)E,,,j is abelianfor all w c- E,,,'.

This corollary is a global version of Proposition 4.3.7, which involves one

w c- E,', and Theorem 4.3.9, which involves the set of n(,)-normal G-invariant
states N.0'. The global result follows immediately from the local version

Theorem 4.3.9 but it is of some interest that the equivalences I - 2 - 4 may
be derived by relatively simple direct arguments. In particular the implica-
tion I => 2 is frequently of importance in applications because condition I is

often easily verifiable and the simplex property, together with some separa-
bility, implies that each w c- E,' has a unique ergodic decomposition.
A direct proof of 2 => 4 is obtained by a simple variation of the argument

used to prove I =:> 2 in Example 4.2.6, i.e., one assumes that  E',,7T",(%)E,01,. is

not abelian and constructs two distinct maximal measures in MO(EN').
The proof of 4 => I is contained in the proof of Proposition 4.3.7. It is an

elementary computation.
Finally I => 2 may be obtained through use of the mean ergodic theorem

and Corollary 4.1.17. The idea of this proof is to first establish that for each
G

,co c- E and A,, A - 91 one has2,..., A,, c

(Q., n.(A,)E. n.(A2)E. - - - E. 7r.(A,,)Q.)
lim (o(SA.(T(A 1))SA.(,r(A 2)) Sp(r(Aj)),
a
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where SA-(-r(A)), denotes a suitable net of convex combinations Of TG(A):
n

SA.(T(A)) Ai"Tg,.(A).

This is easily arranged by choosing the combination such that the correspond-
ing combination S,,.(U.) of U.(G),

S'J.(U.) Y Aicru.(gia),

converges strongly to E,,, on .5.. Next we define a linear functional y. on

GE byQ

YJ I -An) 7r,,(A I)E,,, 7r.(A 2)E. E. 7r.(An)Q.).

G-abelianness implies that E. 7r.(91)E. is abelian and hence the Stone-

Weierstrass theorem and the spectral argument used in the proof of  heorem
4.1.25 establish that y. defines a probability measure on E%G with barycenter
w. Next, if & c- E,,Gand w' < Aw for some A > 0 then

&(A) = (M., 7r.(A)Q,,,)

with C c- 7r.(%)' r-) U.(G)' by Theorem 2.3-19 and a simple invariance

argument. Therefore

(M., 7r.(A , )E. 7iJA2)E. - - - E,, 7r.(An)Q.)
= lim co'(SA-(T(A1)) ... SA.(T(An))

a

= (Q., 7r.,(A,)E., 7r.,(A2)E., - - - E., 7r.,(An)f1cJ

= Yco'(A 114 2 * * ' 'in)-

,

G
 _4 tt. C G)Thus the mapping w c- E MJE. is affine and E,,' is a simplex

by Corollary 4.1.17. In the next section we will demonstrate that the simplices
Gformed by the invariant states E,, often have the strange geometric character

istic that their extreme points are weakly* dense (see Example 4.3.26).
After this analysis of the implications of G-abelianness we next examine the

stronger condition of G-centrality. We begin with a proposition which

provides two alternative characterizations of this property.

Proposition 4.3.12. Let W be a C*-algebra with identity, G a group,

g c- G F--+ -cg c- Aut(91) a representation of G as *-automorphisms of 91, and

w a G-invariant state over 91. Thefollowing conditions are equivalent:

(1) the pair (91, w) is G-central;
(2) {7rJW)" n U.,(G)'IF., = {,3., n U.,(G)'JF,,,, for all 0-)'c- N.G

where F., = [7r,,J%)E.,], E., denotes the projection onto the

U.,(G) invariant vectors in and 3., is the center of7r.,(W)".
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PROOF. For each A c- 91 we let M,,,,(A) denote the mean value of F.. 7r.,(A)F., as

defined in Proposition 4.3.8. We will demonstrate that both the above conditions are

equivalent to the condition

(3) (0, [M.,(A), F.,7r.,(B)F.,]O) = 0

for all A, B e W, 0 c F., and co' c- N.'.

(3) => (1) Let co'c- N.' and let o)" be a state which is majorized by a multiple
of w'. It follows from Theorem 2.3.19 that w" has the form

o)"(A) = (Q.,

with Q.., = CO., for some C = C* c- 7r.,(91)'. Now the mean M.,(A) is the weak
limit of n.,(SA.(T(A)))F,, where S,.(,r(A)) is a net of convex combinations ofr,(A):

Referring to the proof of Proposition 4.3.7 we see that the net can be chosen so that
the corresponding combination

S' -(U.) = I Ai,U.1(9i,)
j=1

converges strongly to E,,,,,. Thus one calculates

[M,,,(A), F., 7r.,(B)F,,jf2,,)

2

= 7r,,(A)E,, 7r,,,(B)C'Q.) - (Q,,, 7r,,,,(B)E,,,

7r.,(B)] C2Q.')

[M.,(A), 7r.,(B)]Q.,,)

lim o)"([S,.(r(A)), B]).

Therefore (3) => (1).
(1) => (3) Let &c- N.'. If  is a G-invariant vector in !5.. and A A* then for

each e > 0 there exists a convex combination SA(,r(A)) Of TG(A),

n

SA(-c(A)) Y Ai-rg,(A)
j=1

such that

jj(7r.,(SA(-E(A))) - M,,,,(A))0jj <
6

Further, we may choose a convex combination S,(U,,,,) of U,,,,(G) such that

E
< -

6
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Now define SSj-E(A)) by successive convex combinations and note that

8

JJ(7r,,,,(S,S).(-r(A))) - M,,(A))0JJ < -

6

Finally, define a third convex combination S
P SmSA(-r(A)) 0f'rG(S,,S).(-r(A))) and note

that one still has

1(7E.,(SPSmSA(,r(A))) M,,,(A))0JJ < -

6

and

<
6

Now if C = C* c- 7r.,(W)' and B = B* c- W then one has

I (C , [M.,(A), F,,,, 7r.,(B)F.,]CO) I

21 IM(C20, 7r,,,,(B)F., M.,(A)O) I
(E/3) 11 CII 2JIBIJ + 21 IM(C20, 7r.,(B)F,,,, 7r,,,, (Sp S, Sz(-r(A)))0) I

< (2g/3) 11 C112 JIBIJ + 21 IM(C20, 7r,,,(B)E,,, 7r,,,(A)O) I
EIIC112 JIBIJ + 21 IM(C20, 7r,,(B)7r,,(SP S, SA(T(A)))O) I
EIICI12 JIB 11 + I (CO, 7r,,,,([S,, S, Sjr(A)), B])CO) 1,

where we have first used the choice of S, subsequently used the choice of S, and

have also exploited the obvious relation F., E., = E.- Now we are still at liberty
to choose the convex combination SP and hence condition (1) implies

(C , [M.,(A), F., 7r.,(B)F.,]C ) = 0

for A, B selfadjoint elements of 91 and C = C* c- 7rJW)'. But condition (3) then

follows straightforwardly by density and polarization.
(2) => (3) Again let wc N.'. Condition (2) states that for each A c- 7E.,(W) there

is a C c- 3.. n U.,(G)' such that

M,,,,(A)F,,,, = CF.,.
Hence

[M.,(A), F., 7r,,,,(B)F.,] = [C, F., 7r.,(B)F.,] = 0

because F., c- 7r,,j91)". Thus condition (3) is valid.
It remains to prove that (3) => (2) and for this the following lemma will be

necessary.

Lemma 4.3.13. IfE is an orthogonal projection in a von Neumann algebra
9Y and 9YE is the von Neumann algebra ETIE on E.5 then itfollows that

MEY = (M)E -

Moreover, if 3 is the center of9M then 3E is the center Of9RE

PROOF. It is evident that (MEY  9JI'E and hence (9JI'E)' =' ME" = ME -
Con-

versely, if T acts on E.5 and Tc-(T?'E)' g fEl' then TEc-M, or TeM, and

(M'E)' 9 ME. Thus ME = (9X'E)'.



390 Decomposition Theory

Now clearly 3E is contained in the center Of 9& - If, however, T C_ ME n 9ME'
then T = T'E with Te 9M. Let F = [931E]; then F c- 3 and we now argue that FT'

is in 3F. For this note that the mapping S c- 9)?,' --* SE C_ 9J"E is a morphism and

because F = [ME] it is an isomorphism. Hence as T'E lies in the center of WE one

must have T'F in the center 3F Of "F. Hence TF c 3 and T = (TF)E C_ 3E -

END OF PROOF OF PROPOSITION 4.3.12. If co'c- N.' and TZ' = 7c..(%)" n
U,,,(G)' then condition (3) states that

 JAGF., = F,,,'9XGF., s ;

But F, e and hence Lemma 4.3.13 implies that

(F,,,, = F., 7r.,(%)'F,,,,

Combining these relations gives

But one then has

9NGF,,, --

9XGF,,,,, (7r.,(%)" r) U,,,,(G)n
Q3., n U.,(G)')F.,.

The reverse inclusion is, however, obvious because J, n U.,(G)'  =- 9XG and hence

condition (2) is valid.

Next we come to the second principal result concerning ergodic decompo-
sitions.

Theorem 4.3.14. Let % be a C*-algebra with identity, G a group, and

g c- G  -4,rg c- Aut(91) a representation of G as *-automorphisms of %. Next,
let o-) be a G-invariant state over 91 and E,,, the orthogonal projection on the

subspace of S ). formed by the vectors invariant under U.(G). Finally let

N,,,' denote the 7r.-normal G-invariant states over %. The following con-

ditions are equivalent:

(1) the pair (W, (o) is G-central;
G(2) every o-)' c- N", is the barycenter of a unique maximal measure

Gy' c- M.,(E. ), and this measure is subcentral;
(3) {7r.,(%) u U,,,,(G)I' = .3,,, r-) U,,(G)',Jbr all w'c- NcOG' where 3, is

the center oJ*7r,,(91)";
(4) JEw, 7rw,(%)E,,,, I is abelian and

17r.,(91) y U.,(G)J" r- u U.,(G)I' = 3,,,, r-) U.,(G)'

for all co' c- N,,)G, where 3., is the center of

PROOF. First consider conditions (2) and (3). If (2) is valid then Y' is the orthogonal
measure corresponding to 17r.,(%) u U,,,(G)I' by Proposition 4.3.3 and by the defini-
tion of a subcentral measure

{7r.,(%) u U.,(G)I' 9 3,,,, n U.,(G).
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As the reverse inclusion is trivial condition (3) is valid. Conversely, if (3) is valid

then {7r.,(W) u U.,(G)J' is abelian and condition (2) follows from Proposition 4.3.3.

Next we prove that (1) => (3) but for this we need the following lemma.

Lemma 4.3.15. Let 9JI be a abelian von Neumann algebra on a Hilbert

space .5 with a cyclic vector 92. Itfollows that 9W is maximal abelian, i.e.,

9JI 9JI.

PROOF. Since 9W - 9JI' the vector KI is separating for 9JI by Proposition 2.5.3. If

A and J are the modular operator and modular conjugation associated with (TI, n)
then one has A 1, J = S because 11SAQ 112 = 11A*g2112 = IlAfI112.

But JAJB92 JAB*Q = BA*Q = A*BQ in this case. Hence JAJ = A*. Since

J9JU = 9JI' by Theorem 2.5.14, it follows that 9N = 9JI* = 9JI'.

END OF PROOF OF THEOREm 4.3.14. (1) => (3) Note by Theorem 4.3.9 that

condition (1) implies that is abelian. Moreover, if

9JI = {7r,,,,(W) u U,,,(G)I",

E., 7r.,(W)"E., = E., 9NE.,.

Also E., c- U.,(G)" g 9W by the mean ergodic theorem. But 0., is cyclic for

E., 7r..(W)E,,,, in E.-5.,, and therefore by successive applications of Lemmas 4.3.15

and 4.3.13 one has

E., 7r.,(91)"E., (E,,,,, 9WE.)'E,,,,
E,,,, 9JI'E,,,,,.

But then one has

{7r.,(91)" r-) U.,(G)}E.,
{,3., r-) U.,(G)')E.,,

where the second equality follows from condition (2) of Proposition 4.3.12. Finally,
one notes that E., fV,., is cyclic for and hence

7r.,(W)'r) U.,(G)' = & r-) U.,(G)'.

(3) => (4) As 3., is abelian one automatically has {7r.,(W) u U.,(G)}' abelian

and then E.. 7r.,(W)E., is abelian by Theorem 4.3.9. But again defining

9N = {7r.,(91) u U.,(G)J"
one has

r) U.,(G)' - 9W r) 931'

g 9A' = 3., r) U.,(G)',

where the first two inclusions are trivial and the third follows from condition (3).
(4) => (3) Once again remark that

= E.,9JIE,,,

and E., c- U.,(G)" E- TZ, where 9JI = {7r.,(W) u U.,(G)}". Hence because E&7r.,(91)"E.
is abelian the argument used in the proof of (1) => (3) gives

E.,ME., = E.,9JI'E.,.
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But then applying the second statement of Lemma 4.3.13 one has

E., 9RE., = E.,(9N n M')E.,.

Therefore by condition (4)

17r.,(W) u U,,,,(G)I'E,,,, = {3., r)

Finally, as E., -5., is cyclic for 7r.(%)" condition (3) follows.

(3) => (1) By Proposition 4.3.12 it suffices to prove that

{7r,,(%)" n U,,,(G)'IF. = 13., n U.,(G)'jF.,.

For this consider the map K, associated with the orthogonal measure Y corresponding
to {7r.,(W) u U.,(G)I' and the map M constructed in Proposition 4.3.8. One has for
A c- W

M(A)E,,,, = E,,7r.,(A)E., = K,(A)E,,,,.
Now the range of K, is contained in 171.,(91) u U,,,,,(G)I' and this latter set is contained
in 3,,,, by condition (3). Therefore multiplying the last relation by 71.,(%)' one finds

M(A)F,,, K,(,4)F,,,,
{,3.. n U.,(G)' ,F,,.

But the range of M on 7u..(%)" is equal to 17r.,(%)" n U,,,,(G)j F',', and hence

{,3,,,, n U,,(G)'jF., g; 17r,,(%)" n U.,(G)'jF,,,
n

and the proof is complete.

As with G-abelianness the property of G-centrality is actually equivalent
to a seemingly much stronger commutation property.

Corollary 4.3.16. Adopt the assumptions of Theorem 4.3.14. Thefollowing
conditions are equivalent:

(1) the pair (%, o)) is G-central;
(2) for all A c- % there exists a net A,, in the convex hull of Jrg(A); g c- GI

such that

lim (,o"([-cg(A,), BI) = 0

Gfor all (o" such that co" < Aco'for some A > 0 and co'c- N andfor all
B c- %, uniformlyfor g c- G.

Condition (2) clearly implies condition (1) but the converse follows from
rewriting the estimates used to prove Proposition 4.3.12. One first chooses
a net ofconvex combinations SA.(-c(A)) Of rG(A) such that 7r.(SA. (-c(A)))E,,, con-
verges strongly to M.(A)E.. Subsequently, one chooses a second net S/110 of
convex combinations of U. such that S,,,(U.) converges strongly to E..
Then defining A,,,,# by

A,# = SmoS.Z.(c(A))
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one checks from the estimates used in the proof of Proposition 4.3.12 that
this double net converges with the correct uniformity in g.

4.3.2. Ergodic States

In the previous subsection we analyzed the decomposition of G-invariant
states in terms of maximal orthogonal measures on the space EWG. This

theory is a direct generalization of the decomposition theory for states over an

abelian C*-algebra 91; the abelian property ofW is replaced by G-abelianness,
Gor G-centrality, and the states E,2, are replaced by the G-invariant states E,, .

Thus the G-ergodic states &(Es') correspond to the pure states 09(Eg') of the
abelian algebra and it is to be expected that they will have similar properties.
In this subsection we analyze this analogy for general G and in the subsequent
subsection we examine further details for locally compact abelian groups
which act continuously. Throughout both subsections we assume that G acts

as a group of *-automorphismsr of % and it will be irrelevant whether or not

possesses an identity.
The pure states of an abelian C*-algebra have several distinctive features.

Firstly, they generate irreducible representations, which are automatically
one-dimensional, and as a consequence they factorize, i.e.,

w(AB) = w(A)w(B)

for all A, B c- 91, by Corollary 2.3.21. Each of these properties has an analogue
for the G-ergodic states but the group G and its representation U"'(G) intervene
in a crucial manner. If E,,, denotes the orthogonal projection on the subspace
of .5. formed by the vectors invariant under U.(G) then the following
chart lists equivalent properties for a state o) over an abelian algebra and the

analogous properties for a G-abelian pair (W, w) (we subsequently show that
the latter properties are also equivalent).

Abelian G-Abelian

-5. one-dimensional E,,,S5,, one-dimensional

, G)w c- 6(EN) o) c- S(E4
7r.(91) irreducible 17r(%) u U,,,(G),' irreducible

o)(AB) = (o(A)a)(B) inf lu)(A'B) - (,)(A)o)(B)J = 0
A'E C- IG (A)

In the last entry Co TG(A) again denotes the convex hull of the set

{'r,(A); g c- G1.
The approximate factorization property which occurs in this case is often
called a cluster property, or a mixing property. In the sequel we also examine
more general cluster properties of the type

inf 1(,o(AB'C) - o.)(AC)(o(B)J = 0.
B' E CO TG (B)
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The cluster property with two elements is equivalent to a spectral property
of U.(G), the property that E,,, has rank one, and under quite general circum-

stances stronger spectral restrictions can be deduced from three element
cluster properties. This will be illustrated in Section 4.3.3.

Several of the equivalences indicated in the above chart are independent
of the assumption that the pair (%, o)) is G-abelian. We begin with a result
which characterizes the concepts of irreducibility and ergodicity.

Theorem4.3.17. Take o) c- E,G
.
Let E,,, denote the orthogonal projection

on the subspace of .5,,, formed by the vectors invariant under UJG) and let
1,,, denote the identity on Consider thefiollowing conditions:

(1) E. has rank one;

(2) o) is G-ergodic, i.e., (t) c- e(E'MG);
(3) 17r.(%) u U,,,(G)l is irreducible on

(4) 1.3. n U(,,(G)'l - JC ,,J,
where

7[,,(%)" n 7T.(%)'.

ItJ61lows that (1) => (2) <=> (3) => (4).

moreover, the pair (%, a)) is G-abelian (2) => (1) and  f(%, (o) is G-central
then all the conditions are equivalent.

PROOF. (2) <--> (3) From Theorem 2.3.19 and G-invariance one sees that (2) is

false if, and only if, there exists a nonzero selfadjoint Tc- f 7r",(91) U U,,,(G),'-' which is

not proportional to %. But by Proposition 2.3.8 the latter condition is equivalent
to the falseness of (3). Thus conditions (2) and (3) are simultaneously false and hence
simultaneously true.

(1) => (3) By assumption E,,) is the projection onto Q,_ As this vector is cyclic
for 7E.(%) it follows that 17r,J%) u E,,,,', is irreducible. The mean ergodic theorem,
Proposition 4.3.4, implies, however, that f, 7r,J%) u E,,, 7r,,)(9A) u U(,)(G) and
hence this latter set is irreducible.

(3) => (4) Condition (3) is equivalent to

But one has

r-) J7r(,)(91)r-) U(JG)"j-

and hence condition (4) is valid.
Next assume that the pair (91, o)) is G-abelian. If  7r,,)(121) u U,,,(G),', is irreducible

on S--)(,) then E,,,J7r.(%) u U(,,(G),'.E,,) is irreducible on E(,,S ),,). But

U(,)(G)',.E(,) = E,,)7r(,)(91)E(,)

and this latter set is abelian by Proposition 4.3.7. Thus E,,) must have rank one, i.e.,
(3) => (1).
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Finally, if (91, (o) is G-central then

{7r.(W) u U,,(G)I' = {,3. r) U.(G)')

by Theorem 4.3.14 and hence (4) => (3).

Note that ifW = Y(S);,) for some Hilbert space.5, co is a vector state, and G is
the one-point group represented by the identity automorphism then condition

(2) is true but condition (1) is false whenever the dimension of .5 is greater than
one. Thus G-abelianness is necessary for the implication (2) => (1). The next

example shows that G-centrality is necessary for the implication (4) =:> (3).

EXAMPLE 4.3.18. Let W = M2 be the algebra of complex 2 x 2 matrices {Aijl,
G the group of diagonal unitary elements in 91, and -r,(A) = gAg The G-invariant
states of 91 are given by

wAQAijJ) = AA I I + (I - A)A22

for 0 < A :!! 1, and there are two distinct G-ergodic states wo and w, One has

E, = [n,,,(D)Q.J where D is the set of diagonal matrices and hence (W, (o,) is
G-abelian. But if A :0 0 or I then (oj is not G-ergodic. Nevertheless 3,, r-) U,,,(G)'
= JC1 .,I. Thus the implication (4) => (3) in Theorem 4.3.17 is false and consequently
(91, co,) is not G-central. Note that for all A different from 0 or I the vector Q,,' is

separating for This will be of subsequent interest.

Let w c- Ea'. Condition (4) of Theorem 4.3.17,

1,3. r-) U,,,(G)'l = fC1 .1,

is sometimes called central ergodicity and the corresponding states are said
to be centrally ergodic. The equivalence and dis ointness properties of thesei
states are of some interest and the next theorem generalizes Proposition
2.4.27 to these states.

GTheorem 4.3.19.
aIfC01, C02 c- E, are centrally ergodic then co, and 0_)2 are

either quasi-equivalent or disjoint, and they are quasi-equivalent if, and only
if) (CO 1 + (02)/2 is centrally ergodic. Furthermore, the following two con-

ditions are equivalent:

(1) all centrally ergodic states are ergodic, i.e., if co c- E%G and

U,.,,(G)' = C1

then

7r.(W)' n U.(G)' = CT

(2) if(so, and C02 are centrally ergodic, then either o), = C02 or co I  C02

In particular, if {W, col is G-central for all co e EaG then all centrally
ergodic states are ergodic, and any pair co, C02 of centrally ergodic states

are either equ*al or disjoint.
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PROOF. Assume that (o,, (02 c- EsGare centrally ergodic, with associated representa-
tions (bi, 7ri, Ui, f2i). Define

-5 1 -5- 2 7r =- 7r I ED 7r 2 U = Ul  U2,

.3 7490" n 74%)', 3G = 3 n U(G)',

P, = 15, (9 0, P2 = 0 (D 1-52'
E = 17CM)421 G) 02)], P = 171021YP1 -51.

Since P, c- 7r(W)', we have P e 7r(W)" n 7r(W)'. Moreover, since P, C- U(G)' and
U(g)7r(%)'U(g)* = n(W)' for all g c- G it follows that P c- U(G), and we conclude that
p C 3G.

Clearly, PP, = PIP = P1. Define Q = PP2 = P2 P and then Q c- 7r(91). Thus
viewed as an operator on _` 'and hences contained in 712(%)'. Also Q c- U(G)P2 Q, )2,1

P2 Q C_ U(G)'. But since P c- 7r(91)" there exists a net JA,,,J in 91 such that 7E(A,,) --+ P

strongly, and then 7r(A,,)P2 = 7C2(A,,) --, QP_ Hence QP2 C_ 7rA%)", and finally,
GP2 Q c- 7r., (9t)" n 7r, (It)' n U, (G)' 2
= C1

-52 ,
where the last equality uses the

central ergodicity of o-).,.

In conclusion, if P = [7r(W)'P, there are two possibilities:

(a) P = PI; (b) P = P, + P = 1 5.
If (a) holds then P, c- 7r(91)". Thus if U is any partial isometry in 7E(W)' then UP,
P, U. Therefore n, and 7 2 have no unitarily equivalent subrepresentations, and 7r,
and n2 are disjoint by the remarks preceding Lemma 4.2.8. If 0) = (0)1 + 0)2)/2
then 7r.(A) = 7r(A)E, and P,E identifies with a nontrivial projection in 3.G.

Hence
(o is not centrally ergodic.

If (b) holds, then 7r(W)'P15 is dense in Sq-, and it follows by polar decomposition
that if Q, is any nonzero projection in 7 2(90' there exists a nonzero partial isometry
U c- 7r('A)' such that UU* <- Q0, U*U :!! P 1. Hence Q1 712 contains a subrepresenta-
tion which is unitarily equivalent with a subrepresentation of 71. Interchanging the
roles of 7r, and R2, it follows that any subrepresentation of 7r, contains a representa-
tion which is unitarily equivalent to a subrepresentation of 7r2, and hence 71 and n2
are quasi-equivalent by Theorem 2.4.26. In this case .3, = CP = Cl,, and
0) = (0)1 + ()2)/2 is centrally ergodic by similar reasoning to case (a).
We now turn to the proof of the equivalence of the statements (1) and (2) in the

theorem.
G(1) ==> (2) Let o), and 0)2 be two nondisjoint centrally ergodic states in E,

Then co, and W2 are quasi-equivalent and (w, + W2)/2 is centrally ergodic by the
Gfirst part of the theorem. But then (w, + (1)2)/2 c- S(E. ) by assumption (1), and hence

(01 = 0)2 = (COI + 0)2)/2.
(2) => (1) Let w be a centrally ergodic state and let 0)1, 0)2 c- E.G be two states

such that w = (o), + 0)2)/2. Since (oi :!! 2w there exists a vector 0, c- S) . such that

wi(A) = (Qi, 7r.(A)Qi), A c- 91,

by Theorem 2.3.19. Hence 7r, is unitarily equivalent to the subrepresentation of 7E.
determined by the projection Pi = [7rJW)QJ c- 7r.(W)'. But then 3., = Pi,3. by
Lemma 4.3-13 and So 3Gi = pi3.G = CPi. Hence co, and (02 are centrally ergodic
and since (o = ((')I + C02)/2 is centrally ergodic it follows by the first part of the
theorem that o), and (02 are quasi-equivalent. But then o), = 0)2 by assumption (2),
and hence (o is extremal in Eq,G, i.e., co is ergodic.
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The last statements of the theorem now follow from the implication (4) =;> (2) of

Theorem 4.3.17 and the implication (1) => (2) of the present theorem.

Let us now return to the examination of criteria for ergodicity. The next

result shows that G-abelianness and G-centrality in Theorem 4.3.17 can to a

certain extent be replaced by a separation property of

GTheorem 4.3.20. Let o-) e E Let E. denote the orthogonal projection on

the subspace of .5. formed by the vectors invariant under U.(G) and let
denote the identity on .5..
Consider thefollowing conditions:

(1) {7r.(%)" r-) U.(G)'J = JCT,,,J;
(2) E. has rank one;

, G);(3) o-) is G-ergodic, i.e., o-) c- off(E4
(4) {7r.(%) u U.(G)J is irreducible on S-)..

Itfiollows that (1) => (2) => (3) -::--> (4).
Moreover, (1) implies that Q. is separating for 7r.(%)". Conversely, if Q,"

is separatingfor then allfour conditions are equivalent.

PROOF. First assume condition (1) is true and define P. by

It follows that
P. = En"'(W)TIJ

P. c- 17r.(91)" n U.(G)'J.

Thus P,,, by assumption. Hence Q,, is cyclic for 7r,,,(%)'and separating for 7r.(W)"
by Proposition 2.5.3.

(1) =* (2) By Proposition 4.3.8 there exists a unique normal G-invariant projec-
tion M; 7r,,,(91)"  --* 7r.(W)" r-) U.(G)' such that M(A)E. = E"' A E.. Thus if M(91)
CT

.
then E. has rank one.

The implications (2) => (3) <--> (4) follow from Theorem 4.3.17.

Finally, assume that Q. is separating for 7r.(%)" and let A, J be the modular opera-
tor and modular conjugation associated with the pair Since

jAI/2 U.(g)AQ. = S-rg(A)Q.
= -rg(A*)Q,,, = U.(g)JA' /2 AQ.

for A EE 7r,,,(W)" and is a core for A1/2 it follows that JA 1/2 U"(g) = U"'(g)jA112.
By the uniqueness of the polar decomposition one then concludes that JU.(g)
U,,,(g)J. But 7r,,,(W)" = J7r.(W)'J and hence

InJW)" r-) U.(G)'J = J{7r.(%)' r) U,,,(G)'JJ.

Thus (4) =:> (1).

Theorem 4.3.20 is similar to Theorem 4.3.17 but contains the extra condi-
tion f7rJ91)" r-) U.(G)'J = {CT .1 and omits the condition of central ergodic-
ity, i.e., {,3,,, r-) U.(G)'J = {C%J. We have, however, already remarked in

Example 4.3.18 that this latter condition does not imply ergodicity of w even
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if is separating for The next example complements this by showing
that ergodicity of w does not necessarily imply {7r.(%)" n U,,(G)'J = C1,,'
even when {W, wl is G-central.

EXAMPLE 4.3.21. Let W = Y(S ) for some Hilbert space of dimension greater
than one and let U be any unitary operator with a unique eigenvector Q corresponding
to the eigenvalue zero. Let G = Z and -c,,(A) = U"A U The state (o defined by

o-)(A) = (Q, AQ)

is G-invariant and E,,, is the rank one projection with range Q. Therefore (0 is G-
ergodic. It also follows that (o is the only 7r.-normal G-invariant state. Hence (%, (0)
is G-central because 7r.(W)' = 'I,, = CT

.. Nevertheless, there are nontrivial A C- W
which commute with U, for example U itself, and hence condition (1) of Theorem
4.3.20 is false.

Next we examine characterizations of ergodicity in terms of cluster
properties. The criteria provided by the following results are not direct
criteria for ergodicity but give conditions for the projection E" on the in-
variant vectors to have rank one. Thus Theorem 4.3.17 and Theorem 4.3.20
can then be applied to obtain ergodicity criteria. The following result is
essentially an algebraic rephrasing of the mean ergodic theorem.

GTheorem 4.3.22. Let (o c- E and let E,,, denote the orthogonal projection
on the subspace of.5,,,formed by the vectors invariant under U.(G). Further,
for each A c- W let CO 'CG(A) denote the convex hull of JTg(A); g c- GJ. The
following conditions are equivalent:

(1) E. has rank one;
(2) infB,c-CorG(B) I o-)(AB') - o)(A)co(B) I = Ofor all A, B c- 91;
(3) For each B c- 91 there exists a net JB,,J (_ CO TG(B) such that

Iim I o)(ATg(B,,)) - co(A)(o(B) 0
a

for all A c- W uniformlyfor g c- G.

PROOF. (1) => (3) By the mean ergodic theorem, Proposition 4.3.4, there exists

a net of convex combinations S,.(U.) of U.(g),
n,,,

such that U.(g)S,.(U.) converges strongly on )., uniformly in g, to the rank one

projection E,,, on Q.. Hence if B,, = S,.(,r(B)), where

one has

llmlw(A,rg(B,,)) - (o(A)(o(B)l = 0

uniformly in g.
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(3) => (2) This is evident.

(2) ==> (1) Given E > 0 the mean ergodic theorem implies that for each B c- 'a

one may choose a B'c- Co TG(B) such that

< E.

Thus

(Q., 7r.(A)E. 7r.(B)Q,,) - (il., 7r.(A)f1,,) 7r.(B)il.) I

(Q., 7r,,,(A')E. 7r.(B)Q.) - 7r.(A)92.) (92., ir.(B')f2.)J
8 11 A 11 + I o_)(Aff) - o_)(A)(o(B) I

for all A"2 CO'rG(A). Hence condition (2) implies

(n., 7r.(A)E. 7r.(B)n.) = 7r.(A)K2.) (92., 7r.(B)f1,J

and by cyclicity E. is the rank one projection onto Q..

The next theorem establishes that the rank one property of E. can also be

characterized by a three-element cluster property, if Q. is separating for

7r.(W)".

Theorem 4.3.23. Adopt the assumption and notations of Theorem 4.3.22.
Consider thefollowing conditions:

(1) E,,, has rank one;

(2) infB, ECOTG(B) I oi(AB'C) - (o(AC)w(B) I Ofor all A, B, C e 91;
(3) for each B c- W there exists a net JB,,J CO TG(B) such that

lim I w(Arg(B,,)C) - w(AC)w(B) 0

for all A, C c- W, uniformly for g c G.

Itfollows that (1) .4-- (2) (3) and ifQ. is separaiingfor 7r.(W)" then all three
conditions are equivalent.

PROOF. (3) => (2) This is evident.

(2) => (1) If W possesses an identity I then setting C = I one finds that-condition

(2) implies condition (2) of Theorem 4.3.22. But this latter condition is equivalent
to condition (1). If W does not possess an identity we choose for E > 0 a C such that

11 <

Then it follows that

lco(Aff) - w(A)w(B)l :! 2EIIA11 JIBIJ + Jw(ABQ - o)(AQw(B)J.

The desired conclusion follows again from Theorem 4.3.22.

Finally, assume 0. is separating for 7r.(91)" and consider the implication (1) => (3).
If E,, has rank one, then Theorem 4.3.22 establishes the existence of a net JB.J 9

CO TG(B) such that 7r,(,r,(B ))Q. converges weakly to w(B)0_ If, however, Q. is

separating for n,(W)" then it is cyclic for 7r,(%)' and it follows that 7r.(Tg(B,,)) con-

verges weakly to w(B)T.. But this is equivalent to condition (3).
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Note that Example 4.3.21 illustrates a situation in which Q. is the unique
U,,,(G)-invariant vector in -5., and hence the cluster properties of Theorem

4.3.22 are valid. Nevertheless, conditions (2) and (3) of Theorem 4.3.23 are

not valid in this example because 91 contains many nontrivial elements which

are invariant under the action -r of the group G. Thus the conditions of
Theorem 4.3.23 are not generally equivalent. Nevertheless, there are a variety
of circumstances which assure equivalence. For example, the separation
property for Q,,, which was assumed in Theorem 4.3.23 can be replaced by a

form of asymptotic abelianness. If, in particular, the G-invariant state 0-)

satisfies
inf I co(A EB', Q) I = 0

B' c Co rG (B)

for all A, B, C c- % then it follows from the uniformity established by condition

(3) of Theorem 4.3.22 that the two-point cluster property

inf I (o(AB') - (o(A)(o(B) I = 0, A, B c-

B'e Co TG(B)

is equivalent to the three-point cluster property

inf lo-)(AB'C) - w(AC)o)(B)l = 0.
B'6 CO'CG (B)

The foregoing results describe the general connections between cluster

properties, ergodicity, and spectral properties, i.e., uniqueness of Q.. With-

out further assumptions on the structure of G, or the continuity of its action,
it is difficult to elaborate the theory more fully and results are fragmentary.
Thus in the next subsection we specialize to the important case of locally
compact abelian groups with continuous action, but we first conclude the

general discussion with a few remarks concerning the directions in which the

theory has developed and three illustrative examples.
First notice that under suitable algebraic assumptions G-ergodicity of (0

is equivalent to the existence of a net {B,,j  =- CO TG(B) such that

I im I w(ABj - w(A)w(B) I = 0
(11

for all A, B c- 91. This expression of clustering in terms ofconvex combinations

can be interpreted as an abstract method of stating that the functions g C- G 1--+

w(A,rg(B)) c- C have mean value o)(A)w(B). There are various methods of

emphasizing this notion of mean, or average, value. For general G one may
examine the subset of bounded functions over G such that the norm closed

convex hulls of their left and their right translates contain constant functions,
i.e., the almost periodic functions (see Section 4.3.4). For such functions the

constant is unique and has the obvious interpretation as a mean value. The

mean ergodic theorem states that the matrix elements of every unitary
representation of G have mean values in this sense. Alternatively, one can

define an invariant mean as a state over the C*-algebra Cb(G) of bounded
continuous functions over G which is invariant under left, or right, transla-

tions. Even if a mean of this type exists it is not necessarily unique but it will
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coincide with the foregoing mean over the almost periodic functions. With
an utter disregard for etymology, the groups with Invariant states in this
sense are called amenable. Not every group is amenable but for the amenable

groups the mean values can be constructed by various explicit methods and
the clustering criteria are reexpressed by each of these methods, e.g., if
G = R' and U.(R') is continuous then the above form of clustering is

equivalent to

lim dxo-)(A-r_,(B)) = w(A)w(ft
a I A,,, I fA.

where the sets A,, satisfy the conditions described in Example 4.3.5 and the

equivalence follows from this example. In the next section we will use mean

values for locally compact abelian groups.
Next we remark that there are various other stronger cluster properties

which can be used to classify stronger notions of ergodicity. For example, one
could examine those oj for which zero is in the convex hull of the clustering
functions, i.e., the w such that

0 c- Co f I (o(A Tg(B)) - w(A)o)(B) I; g c- G I

for all A, B c- W. Note that this would be impossible if U,,,(G) has a non-

invariant eigenvector and thus this type of clustering implies a stronger
spectral property. One can also partially hierarchize the G-ergodic states in
terms of spectral properties (see Examples 4.3.28 and 4.3.34). Furthermore,
it is of interest to examine the states for which there exists a net g' C- G such that

lim I o)(ATg.(B)) - o-)(A)w(B) 0
a,

for all A, B c- W. This type of cluster property occurs in classical ergodic
theory and the following example shows that it can arise in the general
noncommutative theory for quite unexpected reasons.

EXAMPLE 4.3.24 (Strong mixing). Let G be a group acting as *-automorphisms T

of a C*-algebra W and assume the existence of a net g'c- G such that the asymptotic
abelianness condition

lim 11 [A, Tg.(B)] 11 = 0

is satisfied for all A, B e W. If w is a factor state over W, i.e., if 7r,"(W)" is a factor, then
it follows that the cluster property

limjw(ATg.(B)) - (o(A)w(Tg.(B))j = 0

is satisfied for all A, B c- W. To deduce this we first remark that as 7r.(91)" is a factor
then the C*-algebra Q3,, generated by 7r,,,(%) u on .5., is irreducible. Next
note that the vector qA = 7r.(A)Q. - w(A)Q. is orthogonal to Q.. Therefore there
is an hermitian Te Y(.5.) such that

TqA = 0, TO,,, = Q..
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It follows from the Kadison transitivity theorem, cited in the notes and remarks to

Section 2.4.2, that T may be chosen in  3. Thus, introducing C, and C2 by

C I
= T(7r,,(A) - co(A)%), C, = (%, - T) (7r(,(A) - (,)(A)l .),

one has C,Q(,) = 0, C2*E2. = 0 and 7r,,,(A) = (o(A)%, + C, + C2. Therefore

o)(A,r,(B)) - w(A)co(-rg.(B)) = (Q,_ [Cl,

But C, c- 0 and hence for each e > 0 there is a finite family of A i c- %, i = 1, 2,..., n,
and Bi c- TE.(%)' such that

n

C, 7E.(Ai)Bi <

JIBIJ

Thus

n

I a)(Arg.(B)) - w(A)o)(Tg.(B)) I < E + 11 Bi 1111 EAj, 'rg.(B)] 11.

The cluster property follows immediately.
Note that in the foregoing derivation G-invariance of (t) was not necessary. If

one assumes that w is G-invariant and that there exists a sequence of nets {gj'j i G
such that

Ii,m 11 EA, -r(g,.)-gj.(B)]jj = 0

for all i 0 j, and all A, B e W, then one can derive the multiple clustering property

lim I o)(Tg,,(A OT92 (A 2) -cgn,:,(An)) - co(A )(o(A 2) o)(An)0

for all A,, A 2, An c- %. For this it suffices to apply the foregoing reasoning n - I

times with the successive choices

A Ak, B = -r(90)- ig,-,  (Ak E(gk')-  g,,.(Aj, k = 1, 2, n - 1.

If G R' one often encounters situations for which

I'm 11 EA, T.,(B)] 11 = 0
1-,1 - -

for all A, B c- %, and in this case one concludes that eacii R'-invariant factor state W

satisfies the property

lim I w(Txl (A 1)TX2(A 2) ... Tx,,(An)) - co(Aj)oj(A2) ... (o(A n) I = 0

for all A 1, . . . , An C- 121, and all n  2. The limit is understood to mean that I xi - xj
tends to infinity for all pairs i :A j. This last cluster property, with 1, = 1, was originally
introduced in classical ergodic theory under the name of strong mixing of all orders.
The property for n = 2 is simply called strong mixing.

The uniform asymptotic abelianness condition

lim 11 [A, rg.(B)] 0

played a crucial role in this last example. The uniformity allows one to deduce

mixing for every factor state w. This condition is of further interest because
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it clearly implies G-abelianness and G-centrality for every G-invariant state.

There are various other forms of asymptotic abelianness which are stronger
than G-abelianness but weaker than the above uniform condition. Although
none of these other properties appear to have the same type of generic
characteristic as G-abelianness and G-centrality (by this we mean the structure

described in Theorems 4.3.9 and 4.3.14), they do occur naturally in examples
and are of interest for particular problems. For example, the pair (%, W) is

usually defined to be weakly asymptotically abelian if there is a net g" Ei G
such that

lim ( o, 7r,,,,([A, -rg.(B)]) ) = 0
of

for all c- .5. and A, B c- W. Weak asymptotic abelianness in mean is
defined by replacing the pointwise limit by a mean value. Example 4.3.24

immediately yields an application of these notions. If (91, 0-)) is weakly
asymptotically abelian and w is a factor state then w is strongly mixing and if
the asymptotic abelianness is in mean then the mixing is in mean. The proofof
both these statements is identical to the proof given in Example 4.3.24. Note,
however, that the proofofmixing to all orders depends crucially on uniformity
of the asymptotic abelian condition.

If w is a faithful factor state, i.e., if n.(W)" is a factor and Q', is separating
for 7r,,(91)" then weak asymptotic abelianness and strong clustering (mixing)
are actually equivalent. The above discussion shows that weak asymptotic
abelianness implies clustering but to establish the converse we remark
that the clustering condition

lim I (o(Arg.(B)) - o)(A)o)(,rg.(B)) 0
I

for all A, B c- 91 is equivalent to

lim (7r.(Tg.(B)) - o-)(,rg.(B))%jK2.)j = 0
Ix

for all B c- W,  c But Q,,, is cyclic for by Proposition 2.5.3, and
hence this latter property is equivalent to

liM (7E.(Tg.(B)) - w(Tg.(B))T J p) I = 0
a

for all (p,  c- S5,L). Weak asymptotic abelianness follows immediately. Once

again this result does not require G-invariance of (o but if o) is G-invariant then
the weak asymptotic abelianness becomes equivalent to strong clustering
(mixing) of all orders.

At this point it is worth mentioning another interplay between topologies
and types of limits. If (91, w) is weakly asymptotically abelian for all W C- EW
then it follows from the Hahn-Banach theorem that

inf 11 [A, B] 11 = 0
B'eCo'rC;(B)

for all A, B c- W, i.e., one has a uniform asymptotic abelianness in mean. This
is a special case of a general theorem due to Mazur, which establishes that if
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a sequence of elements converges weakly on a Banach space then some

convex combination of the sequence converges uniformly.
Next, we emphasize that the ergodicity criteria can sometimes be

strengthened by examination of the structure of the particular group G under

consideration. In fact, this type of generalization has been less exploited but

it is of interest in applications to mathematical physics where special sym-

metry groups such as the Poincar6 group, or the Euclidean group, have

particular significance. We will illustrate this point with an example involving
the Euclidean group Ev. This group consists of the translations R' and the

orthogonal group Ov of rotations acting on Rv. We assume that the groups
act continuously on %, that o) is Ev-invariant and Rv-ergodic. Moreover,
we assume that Q,,, is the unique (up to a phase factor) U.(Rv) invariant

vector in .5.. It then follows from Example 4.3.5 that w satisfies the cluster

property

im dx o)(Ar,(B)) = co(A)w(B)
L (2L)'
I I  Jx

I Ix, I <L

for all A, B e %. The invariance of (o under rotations allows one to conclude,
however, that the stronger cluster property

lim o_)(Ar_,(B)) = (o(A)o)(B)
1X1--

for all A, B c- % is also valid. The idea behind this derivation is a smoothing
with respect to rotations, a method which is described in the following
example.

EXAMPLE 4.3.25. Let U; (x, R)  -* U(x, R) be a strongly continuous unitary
representation of the Euclidean group E' with v > 2. If E is the projection on the

subspace of .5 formed by the vectors invariant under U(R', 1) then one can establish

that

lim (9, U(x, 1) ) = (9, EO)
1xi - -

for all (p, 0 e .5. The proof is based upon a regularization procedure which involves

smoothing over rotations. Let A,` be a neighborhood of the identity in the rotation

group such that

U(O, R)(p - 9 11 < 11 (p 1111 U(O, R)O - 0 11 <
2 2

for all R c- A". Thus if f is a positive C'-function with support in A', and integral
unity, then

fdR f(R) (9, U(O, R)* U(x, 1) U(O, R)O) - ( p, U(x, 1)0) < 9

and consequently,

1 (9, U(x, 1)0) - (9, EO) I fd( o, E(p)o)fdR f(R)e'('P)x + E,
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where E denotes the spectral measure of U except that the point 101 is given zero

weight. It thus suffices to argue that there Is an f of the above type which satisfies

lim dR f(R)ei(Rp) 
= 0

JxJ-.
f

uniformly for p in compact subsets of R'\101. This is not difficult but we omit the

details.

Finally, we examine a geometric property of the set of G-ergodic states

which occurs in many applications. Corollary 4.3.11 established that E,"G
Gis a simplex whenever (91, w) is G-abelian for each co c- E. .
The next example

, G)demonstrates that the set of extreme points 61(E. of such simplices can be

dense. This density property is reminiscent of the density of pure states

established in Example 4.1.31 but is more interesting in the simplex situation.
The extra interest arises because one can demonstrate that there exists a

unique (up to affine isomorphisms) simplex such that the set of extreme

points is dense (see Notes and Remarks). Thus the various spaces of G-

invariant states described in the following example are all affinely isomorphic.

EXAMPLE 4.3.26. Let W denote a UHF algebra as introduced in Examples 2.6.12,
3.2.25, and 4.1.31 but choose the index set I to be equal to Z'. For x G Z' let J5." denote
the underlying Hilbert space (see Example 2.6.12) and assume the dimension of .5" is

independent of x. Next for each a c- Z'- choose a unitary mapping V'(a); -5x  -4 -5x +a
such that Vx(O) is the identity in .5x and Vx(a, + a2) = VX1a2(a1)Vx(a2). Furthermore,
for each finite subset A - Z' define VA(a) by

VA(a) V,(a).
x c- A

Thus one has Va+A(-a) = VA(a)*. One can now introduce an action T of Z' as

*-automorphisms of 91 by defining

,rJA) = VA(a)AVA,J-a)

for each A C- WA -
In this way -r is consistently defined on the union of the 91A, A (= Zv,

as an isometric *-isomorphism and can be extended by continuity to %. Note that if
Ell 21,A 6 iaA then Tx(A) C- iaA + x.

Now we claim that S(E,, ) is dense in E% .
To establish

this we first let AL denote the cube

AL = IX; X = IXI, X2, - - - XJ, 1XJ < LJ
Gand remark that if (t) c- E. then w in restriction to 91AL is determined by a density

matrix PAL in the form

w(A) = Tr-5AL(PALA), A 6 91AL'

Moreover, if A E  IA then

w(A) = Tr-5AL(PAL -rx(A))

for all x c- Z' such that A0 + x c-- AL. Next we build a periodic approximation WL,
of w, by the following procedure. Let f AL'In  ,, denote a sequence of mutually disjoint
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translates of A, whose union is equal to -7'. For each finite A -- Z' there will exist
a finite subset IA of the positive integers such that

A U A,"
--]A

and we define co, on  21A by setting

(I-)L(A) = Tr PALn) A)
1A

(the PA, - are the density matrices determined by (i)). Thus O)L is specified on the union
of the Sk and it extends by continuity to a state over % Next we define a Z'-invariant
state 6L by

( L(A) AL (')L(T_,(A)),
-AL

where I ALI = (2L + 1)" indicates the number of points in AL. Now it easily follows
that if A C-  11A then

I (o(A) - (bL(A) I A L I Y- I'-OL(,Ex(A)) - (t)(A) I
- AL

x +A tAL

211A 111 AL I Y- I
- Al,

x + A tAL

---0
L=.

and one concludes that 6L converges in the weak* topology to 0). Finally, we argue
that (7)L C- 6O(E,,,v). For this we first remark that W is asymptotically abelian in the

strong sense:

lim 11 [A, Tx(B)] 11 = 0.
lxl-.

This property follows easily for A, B c-  k from the product structure of % and for

general A, B by norm continuity. Now it follows from Theorem 4.3.17 that

6L C- &(Ea") if, and only if, it satisfies the cluster property given by condition (2) of
Theorem 4.3.22. But if A, B c-  k and B' is defined by

B' = I AL'I Y -ry(B)
y c- AL'

then

11M (7)JAB') lim I AL I I AL'I OL(Tx(A)-rx , Y(B))
L'- L'- -AL

y c- AL'

I AL I Y O)L(Tx(A))6L(B)
- AL

'5)L(A)(5L(B).

The cluster property for general A, B follows by continuity and we conclude that

e S(E,1).
Finally, E,Z! vis a simplex by asymptotic abelianness and Corollary 4.3.11.
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4.3.3. Locally Compact Abelian Groups

In this subsection we continue the analysis of G-invariant and G-ergodic
states oi over a C*-algebra W but with a specialization for G and its action 'r.

Firstly, we assume that G is a locally compact abelian group and, secondly,
we assume strong continuity of the unitary representation U,,,(G) of G

generated by (o. The second assumption is automatically fulfilled if the action

T of G on W is strongly or, equivalently, weakly continuous. We adopt the

notation already used in Sections 2.7.1 and 3.2.3 for G. In particular, 6 denotes
the dual group, or character group, of G and dP. the projection-valued
measure associated with U,,,(G) by the SNAG theorem, i.e., the spectral
decomposition of U,,,,(G) is given by

U"(t) = f6dP,,( )
The aim of this subsection is the analysis of the spectrum a(U.), of U,,,(G),
and the spectrum a(i) of the group of automorphisms  , of obtained

by the canonical extension

 ,(A) = U,,,(t)AU.(t)*

for A e 7r.(%)". Subsequently, we examine the spectra of  acting on

The formal definition of these spectra are given by Definition 3.2.37 and

a(U.) is exactly the support of P,,,. Note that iff c- L'(G) and if(A), U"(f
denote the regularized operators

 P) fdt f(t) ,(^ U.(f fdt f(t) U,,(t),

then one has

U,,,(f)AQ,,,

for all A e But if suppf n a(!) 0 then ff(A) = 0 for all A c- 7r.(%)"
and by cyclicity one must have U,,,(f) = 0. This shows that u(U,,,) g a(i);
but the converse is generally false as can be illustrated by taking G = R and

arranging that a(U.) g [0, oo>. Nevertheless, we will examine situations for
which the two spectra are identical.

It is also of interest to examine the point spectra up(U,,) and up(i) of U.(G)
and  . The point spectrum of U.(G) is directly defined by

UP(U.) = 1 ; T C- 6, P.QTD 0 01,

i.e., T c- up(U.) if, and only if, there is a nonzero eigenvector  , e .5. such that

UJO01 = 01 001
for all t c- G. Similarly, up( ) is defined as the set of characters y such that

M'QyJ) =A 0, i.e., the set of T for which there exists a nonzero AY c- M

satisfying the eigenvalue equation

 ,(A) t)AY
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for all t c- G. We will find conditions under which the sets cp(U,,) and up( )
are related.

Throughout the rest of the subsection we adopt the above notation and

assumptions and for simplicity we use the notation

PIT] = PGTI).

We generally use additive notation for the group operations but for brevity
we occasionally use multiplicative notation, i.e., T1T2 in place of T, + T2

and T
- 1

in place of - T. Finally, we associate with up(U,,) the projection
P(,) defined by

PO) PITI.
Y C- 6

We refer to P,,5. as the subspace of U.(G)-almost periodic vectors. The

motivation for this nomenclature will be clarified in Section 4.3.4.

The first and most complete spectral result is obtained for G-ergodic
faithful states.

Theorem 4.3.27. Let (t) c- E,,'. Assume that G is locally compact abelian,
the corresponding unitary representation U.(G) is strongly continuous, and

let dP. denote the projection valued spectral measure of U,, (G).
If Q,,, is separatingfor 7r.(%)" theJbIlowing statements are true:

(1) a(U(,,) - g( ), up(U(,) - ap(i) and both sets are symmetric, i.e.,
closed under the inverse operation  , -4 -7 in 6;

(2)  f (o is G-ergodic then Jbr each 7 c- up(U,,,) - ap( ) there exists a

,
c- 7r,,( I)" such thatunit vector  , c- -5. and a unitary V

UJO ' - (71 0011  '(Vl) - (71 OV,

and 0,, V,, are both unique up to a phase;
(3) ij'(o is G-ergodic then the two sets a(U,,,) and o7,(U,,) are both subgroups

of G;
(4) ij'co is G-ergodic and the annihilator H,,) qfo7p(U,,) is the closed

subgroup qf'G defined by

H(,) = It; t e G, ( , t) lJor all 7 c- u,(U.)',-
then

V";  ' C- 07P(i) "'

where P. is the projection onto the subspace qf U(,(G)-almost
periodic vectors and E,,,(H,)) is the projection onto the subspace of
U(JH,,))-invariant vectors. Equality of thefibur sets occurs if, and

only if, E,,,(H,,,) and, in particular, ij'up(U,,) is countable and
closed.
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PROOF. As Q. is separating for n.(%)" It is cyclic for by Proposition 2.5.3.

This will be used throughout the proof.
(1) If if and U,,(J') denote the regularization of i and U,,, with.f c- L'(G) then

it follows from the relation

U.(f)AQ,,, = if(A)Q.
and the separating character of Q. that U.(f) = 0 if, and only if,  f = 0. Hence

u(U.) = u(i) by Definition 3.2.37.

Next note that if A, c- satisfies the eigenvalue equation

 ,(A) t)A,

then  y = AYQ,,, satisfies

t) Y.

Therefore ap(i) g up(U,,). Conversely, assume y c- up(U,,,) and choose A c- 7r.(%)"
such that

P,,,[y]AQ. : - 0.

Now Pjy] is the subspace of .5. formed by the vectors invariant under the unitary
representation t F- (y, t)U(,,(t) of G. Therefore Proposition 4.3.4 implies the existence

of a net

S.'-(YU.) Y- AAT' ti')U.(ti')
j=1

of convex combinations of yU. such that S,,,,(TU,,) converges strongly to Pj'j.
Consider the corresponding net

S, .(y (A)) Ai'(7, tj')i,.(A)

of convex combinations of yi(A). One has JjSA.(y (A))jj < 11AIJ and S;..(y (A))
converges strongly on the dense subspace 7rjW)'f2.. Hence S,& (A)) converges

strongly to a bounded operator A,. Clearly, one has A, c 7r,,(W)", 11 A., 11 A 11, and

AYCQ. CP.[y]AQ.

for all C c The special choice C %, gives AY :7-1 0 and it then follows that

it(AY)C0. U,,)(t)A,(U.(0*cu.(0)f2,,)
CU.(t)P,,)['y]AQ,,)

( -,t)Ay M,,

for all C c- 7r.(W)'. Thus

i,(A) = ( -,t)A,,
and ap(U.) 9 ap( ). This together with the previous inclusion establishes equality
of the point spectra.

Symmetry of a( ) follows from Lemma 3.2.42 and symmetry of ap( ) follows

because

t)A7* t)Ay*.
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(2) We assume w is G-ergodic.
If A, denotes the eigenelement of  constructed abovethen A,*A,c-7r,,,(91)"r-) U,,(G)'.

Thus one concludes from Theorem 4.3.20 that A,,*A, is a nonzero multiple A, of

the identity I_ Consequently, JA,j = AA12T .:A 0 and if A, = V, I A, I denotes the

polar decomposition of AY then VY is unitary. It also immediately follows that

(AY)
"(VY) 1/2 t)VY

 A

and V, is also an eigenelement of i. Now if WY* c- 7r.(%)" is any other unitary eigen-
element one has

il(WY* VY) =  '(Wy)* '(Vy) = WI* V,

Thus WY* VY c- 7r.(%)" r-) U.(G)'and another application ofTheorem 4.3.20 establishes

that W,* VY is a multiple of the identity, i.e., W, differs from V, by at most a phase.
Next note that JAYQ.; A c- is certainly dense in Pjy].5. because

AYQ. = P.[y]AQ..

Hence P.[y].5,.,, must consist of multiples of VQ., i.e., P"[y] has rank one and the

corresponding eigenelement of U.(G) is unique up to a phase.
(3) If Y1, Y2 c- 6p( ) and VY11 VY2 are the corresponding unitary eigenelements

then VY I VT2 is unitary and satisfies the eigenvalue equation

it(v V
Y1 Y2) = ( I, WY2, OVY.VY2 = (YIY2, OVYIVY2'

Thus yj + Y2(=Y1Y2)C_6P( ) and this additivity property combined with the pre-

viously proved symmetry establishes that 6p(i) ( = o7p(U.)) is a subgroup of 6.

Finally, assume y, Y2 c-,7(U.) and let N be an arbitrary neighborhood of y, + Y2

If M is a neighborhood of the identity in 0 such that yj + Y2 + M + M s N then

the equivalence (1) <=> (2) of Proposition 12.40 implies the existence of functions

fl,h c- L'(G) such that supp.fi g  j + M and U,,(.fi) =A 0. Hence there exist A,
A2 C_ 91 such that the corresponding regularizations  f,(Aj) satisfy

if,(Aj)Q. 0 0, i = 1, 2.

Thus a#f,(Aj)) g yj + M, where we now use the terminology of spectral subspaces
introduced in Section 3.2.3. Moreover, one concludes from Lemmas 3.2.38 and

3.2.42 that a#,( f ,
(A 1Wf2(A 2)) '_ Y 1 + Y2 + M + M for all t C- G. Therefore if we

can show that

 ,( f,(Aj))1f2(A2)nw :A 0

for some t c G then we can conclude from Proposition 3.2.40 that y I + Y2 C_ 6(Uw)-
But

211 #f,(AlWf2(A2)Owll = co( fJA2)* #f,(A 1)* f (A ))if2(A2))

and as co is G-ergodic

inf I (O(if2(A2)*A f2(A2))
A G C- IG (?f  (A,)*  f, (A 0)

- (00f2(A 2 *) f2(AA - w(if,(A I *)if,(A 1)) 1 = 0

by Theorem 4.3.23. Thus the desired conclusion is valid and a(U,,,) (= a( )) is additive.

The additivity together with the symmetry established in part (1) then prove that

a(U.) is a subgroup of 6.
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(4) As G, tl + t2) t1)(7, t2) and (T, -t) = ( -,t) it follows that H. is a

subgroup of G. But H. is closed because t F--+ ( ,, t) is continuous. The definition of
H,,, and the eigenvalue equation for V, imply that V. c- U.(H.)' and hence

IV,;  c- up(i) I" g 7r.('A)" r) U,,,(H.)'.

But if V, and 0,,, denote the eigenelements of i and UJG) then

U"'(0V"O"' = Gy" OV'O,
and hence

V,P.[T,l = P.1YYJV"'P.b'J
Now taking the conjugate of this relation and using V,* = V,-. one obtains

PJT'1V' = P.bAV"PJT-'Y'1-
Therefore

P- P.bAV'PJT-'Y'1

Y- P"'1YY'1V"P"LA = V'P"

and hence

I V'; Y C- UP(i) 7r.(91)" r)

Conversely, if A c- r-) one has

P,,,AQ. AQ..

Consequently,
AQ,,, Y A

7Q_

where A,, e are the eigenelements constructed in the proof of part (2). More

generally,
A CQ,,, = Y A,, CU.

Y

for all C c- Consequently, if X c- I VY; y c ap(i) I' then

(C I Q., [A, X1C2 n.) = I t(A Y*Clfl- XC2n,,,) - (Cfla, XAyC2t2J
Y

0

for all C1, C2 c- because [A., X] = 0. Thus A c- I Vy;,,, c- ap(ffl" and

I VY; y c- ap(i))" = 7r,,(121)" r-) P,,' g 7r.(121)" n U.(H.)'.

But it follows from the mean ergodic theorem that E.(H(,) c- U.(H.)" and hence

E.(H(,,)' 2 n(J91)" r- U.(H,,).

Thus if A c- 7r(,,(91)" r) E,,)(H,,)' and t c- H(, then

U.(t)AU.(-t)Q. U.(t)AK2,,)

AQ,,,
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and since 0. is separating A c- 7r.(%)" r-) U,,(H.)',

n E.(H,,)' = n U,,,(H,,,).

If E,,,(H,,,) then one has equality between all four sets and conversely equality
of the sets gives

I IV,;  ' C- UPMI'AA

Finally, assume aP(U,J is closed; then the dual ff, of H,, is given by H,, = GIGP(U,,,).
Let (p;  , c- 6 i-- 7 + c,(U,,,) c- H,,, denote the natural homomorphism of 07 onto IL
then each Borel subset of R,, is the image under 9 of a Borel subset of 6. Now if for

c- .5. one introduces a spectral measure yo on by

U.(00 = dy,,( ) (7-,t)f6 I

for all t c- G, and a second spectral measure v, on I ,,, by restriction, i.e.,

* UIASM di,, (T) ( , s)

for all s c- one then has

Vq'(S) mP((P-'(S))

for each Borel set S In particular,

1".MOD = P"'Q'S'P(U.)")-
Now assume that ap(U.) is countable and consider an increasing sequence of finite

subsets S,, with characteristic functions Zs,, such that U,, S,, = ap(U"). To each such

subset corresponds a projection operator P,, <- P. and

'Uq'(S.) = = (0, P.O.

Now the P,, converge weakly to P. and the Zs,, are a uniformly bounded sequence
which converges pointwise to the characteristic function of UP(U.). Thus by the

Lebesgue dominated convergence theorem

/"PQUP(U.)D = lim liqhs")

lim ( ' P. 0)
n- co

Therefore

E,,,(H,,,)O) v,,(101)

and consequently E,,(H.)

Remark. This last equality is a result concerning unitary representations U
of G which is independent of the algebraic structure. If the point spectrum
up(U) of U is a closed, countable, subgroup of 6 and H denotes its annihilator
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then one has the corresponding equality, but the same argument also estab-

lishes that the restriction U 1, of U to H has no point spectrum other than at

zero.

The structure of the point spectrum exhibited by the foregoing theorem is

of interest in the subsequent discussion of broken symmetries. Note that if

(o c- &(Ew') and if U,,,(G) has eigenvectors which are not multiples of Q. then

w is not ergodic for the stabilizer group H.. This follows from Theorem 4.3.27

because

7r,,,(%)" n U.(H.)' -2 1 VT; j c- ap(i) C

If o7p(U,.) is countable and closed then the general algebraic structure is

simplified by the equality E,,,(H.) P, In particular, one has the identifica-

tion

V ,; 7 c- o7P(Ujj" - 7r(,(W)" r) U,,,(H.)'.

This is of interest because the algebra on the left has a tendency to be abelian.
The uniqueness of the V, implies that T i--+ V, is a representation up to a phase
factor of the abelian group u,(U,,,). Thus if the factors can be chosen so that

it is a representation then the VY commute. This is obviously the case if up(U,,,)
is a cyclic group but it is possible under more general circumstances.' These

algebraic simplifications will be of significance in the subsequent discussion of

decomposition theory for G-ergodic states with nontrivial point spectrum
up(U.). We return to these questions in Section 4.3.4 but we immediately
illustrate how the foregoing result limits the spectral possibilities.

EXAMPLE 4.3.28. Let G = R and consider a G-ergodic state o) for which U,.,
is continuous and Q,,, is separating for 7rJIN)". The spectrum U(Uj (=U(i)) is then

a closed subgroup of A (= R) containing 101. There are three possibilities:

(1) 07(U") = 07P(U,.) = 'k0j;
(2) a(U,,,) = gp(U,,,) is isomorphic to Z;
(3) a(U,,) = R.

In the second case n,J91)" is abelian by the remark preceding the example. In the

third case there are three possibilities for o7p(U.):

(3,) up(U,,,) = 101;
(3,) up(U,,,) is isomorphic to Z;
(33) up(U,,,) is a dense subgroup of R.

In the first situation H,, = R, in the second H,,, is isomorphic to Z, and in the third

H,,, is trivial.

Note that in the second case 7r(,,(9J)" n U,,,(H,,)' is abelian by the remark preceding
the example.

4See a more detailed discussion of this point in the Notes and Remarks to Section 3.2.6.
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If G = R' and a(U,,,) = R' there are many more possibilities for aP(U,,), e.g., one

could have

ap(U.) = Z" x .1,01 for v, < i%f

The properties of the point spectra of G-invariant states described in

Theorem 4.3.27 can be derived by an independent argument which has

interest in its own right because it characterizes ap(U.), etc., through an

algebraic property of the projection P,,, onto the almost periodic vectors.

Under the assumptions of the theorem one can prove that

and this condition is in turn equivalent to

PJTJAPJT JBPJ7,] P,[7,]BP.[T,T-']AP,,,[T,]

for all A c- B c- 71.(%), and 7,, T c- 6. This latter condition implies
the spectral properties by a series of arguments which we will exploit below
for states where Q. is not separating for 7rJ%)".
The experience of decomposition theory for G-invariant states as described

in the previous sections indicates that the same general ergodic structure

pervades either if Q,,, is separating for n.(%)" or if % satisfies a weak form of

asymptotic abelianness. This is to a large extent the case for the point spectrum
and the appropriate commutation property is a generalized form of G-

abelianness.

Definition 4.3.29. Let % be a C*-algebra, G a locally compact abelian group
represented as *-automorphisms T of %, and w a G-invariant state over %

such that the corresponding unitary representation U,,, of G is strongly
continuous. The pair (%, o-)) is defined to be G,-abelian if

inf I ((p,, 7r,,)([A', B])(P2)1 = 0
A'c- Co y, (A)

for all A, B c- %, 7 c- 6, and  Pl, 92 C-' .5., where Co 7,E(A) denotes the

convex hull of J(7, t),r,(A); t c- GJ.

In the subsequent subsection we will demonstrate that G.-abelianness
characterizes uniqueness of maximal measures y c- M,,(E,) which are

supported by an appropriate class of periodic, or almost periodic, states.

Thus Gr-abelianness shares some of the features characteristic of G-abelian-

ness. In the same way that G-abelianness can be characterized by
commutativity of Proposition 4.3.7, G,-abelianness can be
characterized by commutativity of moreover, this property
can be characterized by use of an invariant mean. Such means were briefly
mentioned in Section 4.3.2 in the context of general groups and it is relatively
simple to establish their existence if G is a locally compact abelian group.

First consider the C*-algebra Cb(G) of bounded continuous functions, over

G, equipped with the usual supremum norm, etc. The group G acts as a group
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of *-automorph,sms T Of Cb(G) by (r, f ) (t') = f(tt'). By transposition G

acts on the dual Cb(G)* Of Cb(G) and leaves the convex set of states invariant.

Since G is abelian the Markov-Kakutani fixed point theorem guarantees the

existence of G-invariant states over Cb(G) and it is these states which are

called invariant means. One can similarly define invariant means over any

C*-subalgebra Of Cb(G) which is left invariant by -r. Invariant means can often

be used to replace the nets of convex combinations that we have previously
used. To illustrate this consider a strongly continuous unitary representation
U of G on the Hilbert space .5. Application of an invariant mean M to the

functions

t c- G F-4 (9, U(00) C- Cb(G)

defines a bounded linear operator E on .5 such that

M((9, U0)) = ( p, EO).

The mean ergodic theorem, Proposition 4.3.4, implies that there exists a net

J]i Ai"U(ti") in Co(U(G)) such that Yi Ai'U(ti') --* E0 strongly, where E0 is

the orthogonal projection onto the U-invariant vectors. But this implies that

the functions t  --4 Yj Ai(9, U(t) U(ti)o) tend to (9, E0 0) uniformly in t,
and hence the invariance of M implies

( p, EO) = M((9, U0))

= M Ai"( O' U U(ti)o

E0 0).

Thus E is the orthogonal projection on the subspace of b spanned by the

U-invariant vectors. This yields another version of the mean ergodic theorem
for the representation U; each invariant mean satisfies M(U) = E. This

statement can be used to rephrase the definition of G-abelianness. The pair

(91, w) is G-abelian if, and only if,

M(w'([-r(A), B])) = 0

for all A, B c- 91, and all G-invariant vector states (,o' of A similar

rephrasing of Gr-abelianness is given by the following:

Proposition 4.3.30. TheJ61lowing conditions are equivalent:

(1) the pair (%, (o) is G,-abelian,-
(2) M(((p 1, n,,([y - 1'r(A), B])(P2) = 0 for all A, B c- W, y c- 6, and 9

(P2 c- !5.!b,,,.for some invariant mean M;

(3) is abelian;
(4) Pw[ 1]APJyTJBP,,1Y21 = P.[y1]BP,,1Y2Y-1]APJT21 for all A,

B c- and all y, y, Y2 C- 6-
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PROOF. We begin by proving (1) ::::> (4) and subsequently establish that (3) ,--> (4)
and (2) --> (4).

(1) -<=-> (4) The range of PJT] is the subspace of .5. invariant under the unitary
representation yU. of G. Therefore, given g > 0 and  , an element of a finite subset
A, of S)"., one can find a convex combination S, of yy, U,

SAYY' U.) Ai(YY " ti) U.(ti)

such that

11 (SA(yy, Uj - P,,,[yy, ]) , 11 < E/2.

This is again an application of Proposition 4.3.4. Similarly, )V then a secondif  2 C-

application of this proposition to the unitary representation yyj U. (D Y- 1Y2 U. on

establishes that S, can be chosen such that

11 (SAY -1Y2 U.) - PJY- IY21)02 11 < E/2.

Next note that if S, denotes any other convex combination then

II(S,(yy,U,,)SA(yy,U,,,) - P,,[,Yjy])0jjj < F,/2,
1 (SJY I

Y2 U,,,)SA(Y - 1
Y2 U(,,) - P.1Y - I Y2102 11 < E/2.

This follows because of invariance and boundedness, e.g.,

S,(Yy,u.)P.[Y,yl = P.Dly]

and 11 S,(yy 1 U,,,) 11 < 1. Now if A c- 9i c- Pjyj].5_ and S, SA(y 'i(A)) C-

Co y-'i(A) is defined by

S, SI(y - ' (A)) Aj pj(y tj tj) ,j(A)
j

one then has

S,SA(y-' (A))*(pj = Sm(yyjUw)SA(yyjUw)A*9j,
S,SA(y-1 (AW2 = Su(Y-IY2U.)SA(Y-IY2Uw)A(P2-

One concludes that if 0, = A*91, 02 = A92 then

1(91, (AP.[y, y]B - BP.EY2Y- ']A)(P2) - (91, [S,Sk(y- ' (A)), B]92)1 < 8-

But the convex combination S, is still arbitrary and hence (1) => (4) and (4) => (1)
for 9i of the special form P,,[yi]Xi. Condition (1) follows by approximating 9i C- P.5.
by finite superpositions of vectors of the form P.[yi]Xi.

(3) ,--> (4) Condition (3) follows from condition (4) by summation over

Y, YI, Y2 C- OJ- Conversely, if 9i = Pjyjyj one has

(91, i,(A)P,,B92) = (91, BP. ,(A)92)
for all A, B c- nj%)", and the decompositions

Y- P-ITY11 = Y- PJY- IY21
Y c- G; Y.6

give

APjyj y]B92) Y BPw[y- IY2]A92)-
y.G Y.Iff
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Condition (4) follows from orthogonality of the characters T, i.e., by Fourier trans-

formation.

(2) ,:.-:> (4) Let  oi = P,,,[Ti]Xi and then one has

M((g 1,
- 1 i(A), B])(P2))

= M((g 1, (7r.(A) ( T I )
- ' U '7r.(B) - 7r,,,(B)T 2 7U,, 7r,,(A))(P2))

= (91, (7r.(A)P.[TT1]7r,JB) - 7r.(B)P,,,[i2 '-']7r,,,(A))(p2),

where we have used the fact that PJTT 1 ] is the projection onto the subspace invariant

under the unitary representation TT I U,,, and hence M(T-y I U,,,) = P.[,,,-l I ]. This

formula establishes the desired equivalence.

This proposition now allows us to derive conclusions for the point spectra
similar to those of Theorem 4.3.27.

Theorem 4.3.31. Let w c- Eq,', where G is a locally compact abelian group,
and assume that the pair (91, w) is Gr--abelian. Thefollowing statements are

true:

(1) ap(U.) 9 up( ) and both sets are symmetric;
(2) if co is G-ergodic then for each 7 c- up(U.) there exists a unit vector

c- .5. and a unitary element V, c- 7r,,,(%)' such that

UJO01 = (_ 100111  Xvl) = (7, OV,
and 0, V, are both unique tip to a phase;

(3) ifw is G-ergodic then up(U.) is a subgroup ofG. IfH,,, is the annihila-
tor of up(U,,) then

I VT; T G Up( U,,,) 7E,,,(%)' r) P.'
R(J'21)' r-) E(,(H(,,)'= 7r(,,(%)' r-) U,,,(H,)',

where P. is the projection onto the subspace spanned by the U,,,(G)-
almost periodic vectors and E.(H(,,) is the projection on the subspace
of U,,,(H,,,)-invariant vectors. Thefour sets are equal if, and only if,
E,,  (H.) and, in particular, iftp(U.) is countable and closed;

(4) ifP. is the identity then 7r.(W)" is maximal abelian.

PROOF. (1) Condition (4) of Proposition 4.3.30 implies that

(Q., AP,,,[y]BQ,,,) = (Q., BP.[y-']AQ.)
for all A, B c- 7r.(%)". Thus T c- (7, (U,,,) implies yc- up(U,,) and hence ap(U.) is

symmetric. Moreover, if

then

i,(A) = ( _,t)A

 ,(A*) = (y, t)A* )A*

and so up(i) is symmetric. Next let y c- up(U,,,) and A e 7r.(91)" be such that

P.[T]AQ,,, 0 0
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If M is an invariant mean over Cb(G) then one can define a bounded operator A, by

((p, AYO) = M((9, yi(A) ))

and because

((p, A,Q.) M(((p, TU,,AQ.))
((p, P.[T]AQ.)

one concludes that A. :A 0. It easily follows that

i,(A) = ( _,t)A,
and hence up(U.) - ap(i).

(2) and (3) Let y c- ap(U.), and (o c- 9(EUG).
The set fnj%) u U,,,(G) I is irreducible,

on S3., by Theorem 43A7, and hence Pjy]f7rj121) u UjG)jP.[y] is irreducible

on Pjy]fV,_ But

P.[y] f7r.(W) u U.(G)jP.[y] = P,1Y17rA91)P,,,EY1

and, since (%, (o) is G-abelian, the right hand set is abelian (see Proposition 4.3.30).
Therefore P,,,[T] must have rank one and this establishes the existence, and unique-

ness up to a phase, of 0,
Next choose A c- nj%)" such that P,,,[y]AQ. :0 0. If B is any other element of

7r.(%)" one then has

IIBP,,,[y]AQ. 112= A*P,,[y]B*BP.[T]AQ.)

= (Q., A*P,,EY]APj0]B*BQ.)

by condition (4) of Proposition 4.3.30 (0 is the identity in 6 in the additive

notation.) But by the previous paragraph PJO] has rank one and Q", c- P(JO].' -)"'.
Thus

jjBPjT]AQ,,,, 11 2 = jjBQ,,,jj2jjp.[y]AQ.jj2 :  JJA112 I I BQ,, 112

Hence once can define a bounded operator AY by

AyBnw = BP,,,[y]AD.

and then extending by continuity. One has 11A,11 11AII and one easily computes
that

 ,(Ay) = (y, t)AY.

Moreover, A., c- 7r.(%)' because if B, C c- 7r.(%)" then

CAYBQw = CBP,,,[y]AQ. = A,CBQ..

Now A,*AY c- n U.(G)' and hence if co is G-ergodic AY*A, is a nonzero

multiple of the identity. The unitary element VY e 7r.(%)' occurring in the polar
decomposition of AY is then an eigenelernent of i and the proof of (2) and the sub-

group property of up(U.) are identical to the proofs of similar properties in Theorem
4.3.27. Next, note that P.nj%)"P. is abelian and P.D. = D.. Thus {7rj91) U P.1'
is abelian by the general correspondence theory for orthogonal measures Theorem
4.1.25. But one also has [{V,; y c- aP(U.)j"Qj and hence, by the same theorem,

{VY; Y G CrP(U.)j" = U Pj.
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But the proof that

IV,; T c- a,( Uj 1" 9 E,,(H,,)'

is identical to the proof of the similar properties proved in statement (4) of Theorem

4.3.27. One interchanges 7r.(91)" and 7rj91)' in the argument. Finally, E"(H.)
implies equality of the four sets but if the sets are equal then

P,, [17r,,,(A) u P.j'Qj
[j7rj9J) u EJHJ 'Qj = E,,,(H,,,)

by the correspondence of Theorem 4.1.25. The equality E,,,(H.) follows whenever
up(U.) is countable and closed by the same argument used to prove the equality in
Theorem 4.3.27.

(4) If P,,, =  . then condition (3) of Proposition 4.3.30 together with Lemma
4.3.15 imply that 7rjW)" is maximal abelian.

Corollary 4.3.32. Let w c- S(E,'), where G is a locally compact abeliall

group and W has an identity. Assume that the point spectrum U,(U.) Qf
U,,,, is a countable, closed, subgroup of 6, and let H,,, denote its annihilator.

TheJ61lowing conditions are equivalent:

(1) the pair (%, o)) is G,-abelian;
(2) the pair (91, (o) is H,,,-abelian;
(3) fior each H,,,-invariant n,,-normal state (,o' there exists a unique

maximal measure y' e M,,,(EH,,,).91

1f, moreover,,g,(U,,j is cyclic then these conditions are satisfied.

PROOF. It follows from the third statement of Theorem 4.3.31 that

fV,; Tcap(U.)j" = 7rjW)'n P,,)' = 7rj91)'r-) U,,,(H.)'

but (W, co) is G,--abelian if, and only if, the second algebra is abelian (Proposition
4.3.30) and (%, a)) is H.-abelian if, and only if, the third algebra is abelian. Thus

(1) <-=> (2). The equivalence (2) --> (3) follows from Theorem 4.3.9 applied to H..
Finally, if up(U.) is cyclic then the uniqueness of the V, ensures that f V,; 7 c orp(U.)j"
is abelian and hence all three conditions are satisfied.

We remark in passing that the final statement of the corollary is not true

for general up(U.).
After this discussion of the point spectrum we next analyze the complete

spectrum with the assumption of a clustering condition which is stronger than
ergodicity. Note that we cannot generally expect the spectra a(U,,,) and

a( ) to be equal nor can we expect a(U.) to be symmetric because for G = R
there are many counterexamples. Nevertheless, additivity of a(U.) is possible.

Theorem 4.3.33. Let o-) c- EwG, where G is a locally compact abelian group,
and assume that the corresponding unitary representation U.(G), of G, is

strongly continuous. Further assume that

inf I w(BA'C) - co(A)w(BC) I = 0
A'G CO  G (A)

fior all A, B, C c- W. Itfollows that the spectrum a(U,,,) of UJG) is additive.
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PROOF. The proof is identical to the proof of additivity given in Theorem 4.3.27(3).
For 7 1, /2'  6(U.) one forms regularized elements if  (A,), if,(A 2) with spectra in

neighborhoods containing y, and 72 such that ij-,(Ai)Q,,, :A 0, i = 1, 2. One then

uses the cluster property to prove that i#f (A 1))if2(A2)0(,, is a nonzero element

of .5. for some t c- G and this element has spectrum in a neighborhood containing
71 + 72-

Remark. If in Theorem 4.3.33, G is the product of two subgroups G, and G2,
then the additivity of the spectra Of U,JG, and U.IG2 follows from the three-

point cluster property for G2 alone. It is also of interest that this cluster

property gives additivity of the spectrum of U.1G, even if G2 is not locally
compact abelian.

Note that the cluster condition in Theorem 4.3.33 implies the ergodicity
of w by Theorems 4.3.17 and 4.3.23. Moreover, if K2. is separating for 71.(%)"
then the cluster property is equivalent to ergodicity by Theorems 4.3.20 and

4.3.23. Further note that if the cluster property is slightly more uniform, e.g., if

inf I o)(B ,(A)C) - o-)(A)o-)(BC) I = 0
A' e Coyt(A)

for all A, B, C e W uniformly for t e G, then one easily deduces that

inf I o)(B[A,, A 21 C) I = 0
A 1'c= Co yf(A 1)

for all A, A2, C e W. Therefore the pair (%, w) is G,-abelian and the results

of Theorem 4.3.31 concerning the point spectrum apply. A particular
example of how this can occur is the following.

EXAMPLE 4.3.34. Let G R and aj an R-ergodic state such that t i--+ U,,(t) is

strongly continuous and

T

lim - dt jw(B[-E,(Aj), A2101 = 0-
T-. 2T f-T

Then (It, co) is G.-abelian, and Theorem 4.3.17 and Example 4.3.5 imply that

I T

lim - dt w(B-r,(A)C) = o)(A)co(BC).
T- 2T f-T

Hence Theorems 4.3.31 and 4.3.33 imply that up(U.) is a closed subgroup of R and

u(U.) is a closed, additive subset of R. One has first the possibility

(1) a(U.) s [0, oo > or c(U,,,) s < - oo, 0] and o7p(U,,,) = 101.

There remain two possibilities: either all points in a(U.) are isolated, or not. In

the first case one has that a(U.) = cp(U,,,) and hence

(2) a(U,,) = 101 or a(U.) is isomorphic to Z, and in both cases is maximal

abelian.
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In the remaining case there exist a, b > 0 such that a, - b e a(U.) and one of
the points, for example a, is not isolated in a(U.). (The case that 0 is not isolated can
be treated by a small variation of the argument.) By additivity one has that

ma - nb e a(U.)

for all m, n e Z,. If a and b are not commensurate it follows that U(U,J is dense in R,
and hence a(U,,,) = R. If a and b are commensurate, there exist positive m, n C- Z
such that ina = nb -= c. But then c e a(U,,) and c = ma is not isolated. It follows
that 0 is not isolated, and hence a(U.) contains at least one of the half intervals

[0, oc >. By additivity a(U.) = R, and hence the last possibility is

(3) a(U,,,) = R, and either ap(U.) = 101 or ap(U.) is isomorphic to Z or UP(U.)
is a dense subgroup of R.

Note that in case (1) it follows from the Borchers-Arveson theorem (Theorem
3.2.46) that UJR) - 7r.(W)". Hence ergodicity, which is equivalent to

7r.(W)' r-) U,,,(R)' = Cl_

implies 7r.(W)= C ,,, and hence 7r,,(W)" = More generally, one can prove
that 7r,JW)" is a von Neumann algebra of type III if, and only if, (0.. is not a trace

when restricted to 7rJ91)'. (See Notes and Remarks.)

We conclude this subsection with a method for isolating the point spectrum
of a unitary group and a criterion for up(U.) to consist of the single point
101. We begin by remarking that the mean ergodic theorem can be rephrased
to give the following rather different looking result.

Lemma 4.3.35. Let U be a strongly continuous unitary representation of
the locally compact abelian group G acting on a Hilbert space .5 and let M
denote an invariant mean over Cb(G). Itfollows that

M( I ((p, U ) 12) (9, p[y] ) 12
Y P(U)

for all (p, 0 c- where P denotes the spectral projector, and a
P
the point

spectrum of U.

PROOF. Let 35 denote the conjugate space to .5 (see footnote on page 70) and
define b = 6 (D .5,. To each  p c.5 we then associate (p = 9 (D qi e 6. Next introduce
U on b by U(t) p = U(t)* p and define 0 = U (9 U*. One then has

cj(t4) = ( O' U(tv)(00, U(MN)
= ( O' U(00) (9, U(00 = 1 (9, U(t)o) 12.

Moreover,

Ci(t)(P & fdP(y,)g (& fdp(Y2)  (Y I Y2- 0

and hence the projection valued measure P associated with U satisfies

0(y) = fdP(y 1) (D dP(y - 'y,).
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Using the fact that the convolution of a discrete measure with a continuous measure

is continuous one easily concludes that the projection k on the subspace of b formed
by the 0 invariant vectors is

I ply] o PEY1.
Y. ,,(U)

Therefore

(0, E0) (,P, ply1o)(9,0 0)
p(U)

I I ( O, PlY101'.
Y  F "(U)

Thus the statement of the lemma is equivalent to the mean ergodic theorem for
0, 1. e., M( 0) = t.

The existence of 'an invariant mean on Cb(G) allows one to reformulate
some of the criteria for ergodicity given in the previous subsection. For

example, one easily concludes that if w c- E,,' and E,,, is the orthogonal
projection on the subspace of .5,, formed by the vectors invariant under
U.(G) then E. is rank one if, and only if,

M(w(kr(B)) - w(A)w(B)) = 0

for all A, B c- W and some invariant mean M. Furthermore, if 0. is separating
for 7rJ%)" then these conditions are equivalent to

M(w(A-c(B)C) - w(AC)w(B)) = 0

for all A, B, C c- 9A and some M.
These last criteria generalize as follows.

Proposition 4.3-36. Let (t) c- E,G, where G is a locally compact abelian

group and assume that the corresponding unitary representation U,, of G is

strongly continuous. Consider theJollowing conditions:

(1) Q. is the unique (up to afactor) eigenvector of U,,,(G);
(2) M( I o)(A -c(B)) - o_)(A)o)(B)) 0 for all A, B c- W and some in-

variant mean M;
(3) M( I (o(Ar(B)C) - (o(A C)o)(B) 1 0 for all A, B, C c- W, and some

invariant mean M.

One has (1) ---> (2) --: -- (3) and if 0. is separating for 7r.(W)" then all three
conditions are equivalent.

PROOF. First note that as M is a state over Cb(G) it satisfies the Cauchy-Schwarz
inequality, Lemma 2.3. 10, and hence

M(l.fl)2 < M(I.f 12):  M(Ij,I)II.f1j.')

for allf c- Cb(G). Therefore condition (2) is equivalent to

M(J(,o(A-r(B)) - o)(A)(,)(B) 12) = 0

for all A, B c- 91.
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Next introduce 9, and OB by

(PA (o(A)E2,_ OB = 7rjB)Q,,, - (o(B)Q, ,

and remark that

I ((PA, UJ0OB) 12 = 1(o(A-E,(B)) - (o(A)w(B) 12.

Thus by Lemma 4.3.35 one has

M(j(o(A-r(B)) - a)(A)(o(B) 12) 12
-

1 (9A, B)
E ,(U,.)

and condition (2) is equivalent to each term on the right-hand side be'I ing zero. It

follows immediately that this is equivalent to condition (1).
The implication (3) => (2) follows by choosing C to be the identity, if W possesses

an identity, or by approximating Q,, by 7r,,)(C)Q,, in the general case. The converse

implication, for Q,, separating, follows by remarking that (3) is equivalent to

M(1(9, 7r,,)(r(B))O) - (9, O)w(B)J) = 0

for all (p, 0 c .5,, and B c 91. But as Q,, is cyclic for 7r(j121)' by assumption, this is

equivalent to

M(I((p, C7r(,)(-E(B))Q,,)) - ((p, CQ,,))(,)(B)j) = 0

for all 9 c C c- 7r.(91)', and B c 121. But this last condition is implied by the condition

M( I ((p, 7r,,)(T(B))Q,,)) - (9, Qjo)(B) I) = 0

for all 9 c- .5,,, and B c- W, and this is equivalent to condition (2).

The second implication of Proposition 4.3.36 first arose in classical ergodic
theory, i.e., the case of abelian % and G = R, and it is usually called weak

mixing.

4.3.4. Broken Symmetry

Throughout this section we concentrated on the problem of decomposing
a given G-invariant state into G-ergodic states. In this subsection we examine

decompositions of a G-ergodic state into states with a lower symmetry.
Given a G-ergodic state w there are various ways of decomposing it into

states which are not G-invariant. For example, if 7r,,)(91)" is not a factor then

one could consider the central decomposition of w discussed in Section 4.2.2.
There are several possibilities for the states occurring in this decomposition.

(1) The states could retain invariance under a subgroup H of G. This
occurs if 3. g U.(H)'. Note that in this case if the pair (91, w) is H-central
then 3. = f7r.(91) u U.(H)j', by Theorem 4.3.14, and the central and H-

ergodic decompositions coincide. Thus from the point of view of the central

decomposition H would be the natural symmetry group of w.

(2) The states could lose all invariance but nevertheless retain some traces

of symmetry such as almost periodicity. This behavior arises if the action of G
on 3. is multiperiodic in an appropriate sense.

(3) The states could simply lose all form of invariance and symmetry.
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The first two situations in which a residual symmetry remains are of

particular interest and it is this type of problem which we intend to discuss.
Such decompositions are related to the phenomena of spontaneous symmetry
breaking which occur in physics.

First we examine the decomposition of G-ergodic states into states in-

variant under a normal subgroup H and establish conditions under which the

decomposition corresponds to an averaging over the quotient group GIH.
Subsequently, we specialize to locally compact abelian groups and examine

decompositions into almost periodic states. The existence of nontrivial

decompositions and the choice of a natural symmetry group is then closely
related to the properties of the point spectrum discussed in the previous
section.

We begin with an existence result for decomposition with respect to a

normal subgroup. This result is of interest because it does not require any
particular assumption on the structure of W other than the strong continuity
of the action of the group.

Theorem 4.3.37. Let G be a topological group and H a closed normal

subgroup of G such that the quotient group GIH is compact. Let d be the
normalized Haar measure on GIH. Assume that G acts as a strongly con-

tinuous group of *-automorphisms -r ofa C*-algebra % with identity and take
o) c- 6(E,,'). It follows that there exists a probability measure Y., with

barycenter o), supported by a closed subset qf (ff(E,H), and hence maximal

, H)for the order >-. Furthermore, there exists an (b c- 6(E such that

Y.M - fG1Hd f(Eg*6)

fior each f c- C(E,) and, in particular,

o,)(A) - fG1Hd4 6(cg(A))

for all A c- %. If the pair (%, (o) is H-abelian then y. is the unique maximal
measure on EwH with barycenter o-) and coincides with the orthogonal
measure corresponding to u U,,,(H)".f

PROOF. First note that if A c- % and o) e E91H then A(rg*o)) is a bounded continuous

function on G which is invarianL under translations by H. Therefore it defines a

bounded continuous function over GIH. Next we introduce the average of,4 over the

group GIH by

<A > fG1Hdj i(Tg*v)) = fG1Hdj (o(cg - (A))

and prove that <A> is continuous over El
Let 4 denote the image of g under the quotient map p of G onto GIH. Thus

(o(r,(A)) = (o(rg(A)). Now if -, > 0 and g c- G then there is an open neighborhood
N(g) of g such that

11-rg(A) - Tg,(A)II <   ;/4



Invariant States 425

for all gc- N(g). This uses the strong continuity of T. But as p is open NI(q) = p(N(g))
is an open neighborhood of j c- GIH, and because for any 4'e N(j) there exists a

g'c- p n N(g) one must have

(o(T (A)) - < -

4

for all j'c- &(0). Next let N(g), i = 1, 2, ..., n, be a finite family ofsuch neighborhoods
chosen such that the corresponding N(O) cover the compact space GIH and consider

an (o'c- E," with the property

0)(Tj,(A)) - W(Tq,(A)) <
2

for all i = 1, 2_ . .,
n. Since each 0 c- GIH must lie in some N(O) one then has

w(T4(A)) - w'(-c -(A)) I < I OJ(T4(A)) - (O(T4,(A))9

,(A)) I + I (o'(-rq,(A)) - (t)(Tg(A)) I < c+ lw(Tq.,(A)) - (1)'(Tq

for all j c- GIH. Therefore o.)'(-c.4(A)) converges to (o(ro(A)), uniformly in j c GIH, as

o)' converges in the weak* topology to o). Thus o) e E,"  --* <A> (w) is continuous.

Next define the average of w c E,H by

< o-) >(A) f dj (,)(-r4(A)) = <,4 > (o)).
GIH

G G GClearly, <o)> c E, and <w> = w for all w c- E Now for a fixed w c- S(E., ) define

the set K,,) by

K,,, = {w'; (o'c- E,H, <o-)'> (A) = a)(A) for all A c 91 If.

As <,4> is continuous the sets

HI o-)'; (,o' c E, , < o)'> (A) = (o(A) I

are closed and hence K,, is a closed subset of the compact set E, H. But K," is convexa

and nonempty because co c- K(,,, and hence it has extreme points.
,

H
- S(K,,) butWe next argue that S(K,,) &(EV ). Assume, conversely, that ( b c-

 (bl + 0 - 002

 H - , (K(,)) one must havefor (bl, (702 c E, distinct from (b and 0 < A < 1. As (7b c- 6'

(b,  K,,) or (52 0 K_ Suppose (7), K(,); then <(T)I> :A o). But

(') = <( )> A<61> + 0 - W(70,

which contradicts the assumption w c 6'(E uG). Therefore (7) c- &(EHH).
, H) -rg*(b), with 6 c- &(K,,), is a continuous function over GNow iff c- QES then f(

which is invariant under right translations by H and one can define

ft.(f) = f'G
/
Hdj f(Tg*6).

It follows that y. is a positive functional over C(E,,H) and hence a positive Radon9

measure. Now the orbit 6,,,, = {-rg*(7); 0 c- GIH I of (b is closed because GIH is compact.
Moreover, if 4 c- GIH then rg.

* is an affine isomorphism of E,H onto E,,H and hence
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H) H H). But Cjmaps S(E onto (ff(ES ). Thus C, is a closed subset of S(E,,, is a support-
ing set of y. and M. is maximal by Proposition 4. 1. 10. But

p,,,(A) = <A>((b) = <Co>(A) = o)(A)

for each A c- 91 and one concludes that M. has barycenter w.

Finally, if the pair (%, (o) is H-abelian then f7rj%) u U,,,(H)',.' is abelian, by
Proposition 4.3.7, and M,,, is the corresponding orthogonal measure by the fourth
statement of Proposition 4.3.7.

The final statement of this theorem is of the greatest interest because it
describes a situation in which the decomposition into H-ergodic states exists
in the appropriate form and is unique. Note that the Co occurring in the

decomposition is also unique in the sense that any other (b cS(Ej,') which

gives a similar decomposition must lie in the orbit (9. of Co under -c*. We
next give another version of this theorem which requires less continuity of
the action of G but some separability. In contrast to the above proof one

exploits the H-abelianness of (91, o-)) to establish the existence of the desired

decomposition. Note that this theorem applies to a a-weakly continuous

group of *-automorphisms of a von Neumann algebra.

Theorem 4.3.38. Let G be a topological group and H a closed normal

subgroup of G such that the quotient group GIH is compact. Let dj be the
normalized Haar measure on GIH. Assume that G acts as a group of *-auto-
morphisms,r of a C*-algebra W with identity. Take co c- 60(E%G) and assume

that the pair (W, co) is H-abelian and that the unitary representation U"
of G is weakly continuous.

Ifw is in a face F of E,H which satis es the separability condition S then;fi
it follows that there is an (T) c- (ff(ES

9

H F such that g GIH F--+ T *(T) is 4-
measurable and

o-)(A) ::= fG1Hdj Cb(r4(A))

for all A c- %. This decomposition coincides with that given by the unique
, H),maximal measure y c- MJES i.e., the orthogonal measure corresponding

to f 7r.(91) u U.(H)j', and one has

Y(f) = fG1Hdj f(Tg*Co')

H).for eachf c- C(E.,

PROOF. As (91, w) is H-abelian the commutant u U.(H)I' is abelian by
Proposition 4.3.7. Hence Proposition 4.3.3 implies that M.(E,H) contains a unique
maximal measure y and this measure is the orthogonal measure corresponding to

, H)u U,,(H)lf'. Now if f c- C(E. then the action of T on f is defined by

(Tgf)((O') = f(Tg*CO')
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but problems arise because this action is not necessarily continuous. We circumvent

these problems by exploiting properties of p.

, H)First note that if A, B c- 91 andfe QEN then one has

K,(Tg f) -::-- UJg)KM(f) U.(g)

by a simple calculation using the invariance.of It, i.e.,

7EJA)KJ-cgf)7r,,(B)Q.) = p(  B_-cgf)
= p(_T;7(_AB)f)
= (Q., 7r.(A)U.(g)K,(J')UJg)

(The G-invariance of p follows from uniqueness.) Next let E"' denote the projection
onto the subspace of S)-,, spanned by the U.(H)-invariant vectors. The basic cor-

respondences for orthogonal measures give

Ew .5,,, = [I K,ff); fE QE 11H)y,Q.]

and, moreover,

= (Q(,), K,,(f)UJg)*K,,(fJQ,,)

H),for all f, fn c- C(E. where j denotes the image of g in the quotient group GIH.
Now note that

fG1Hd4 U.(4)E. = E.(G)

defines a projection onto a subspace of U,,(G)-invariant states. But the pair (%, W)
is H-abelian, hence G-abelian, and (o c- S(E,'). Thus it follows from Theorem 4.3.17

that E.(G) has rank one, i.e., E.(G) is the projection onto Q.. Therefore we conclude

that

g c- G F-+ p((-cg.f)fn) = p((-rj.f)fn)

is a continuous function over GIH, for all fl J,, c- QEH), and

f.1Hd4 y((T4f)fn) = y(f)p(fJ.

Now F is a stable face by Proposition 4.1.34. It follows that y is supported by F.

Moreover, y is supported by (6(E,") by Proposition 4.3.2. Therefore Y is supported
-) 6'(EH) and there must exist an (b c F n &(E91H) which is contained in theby F r I

support of y. Next let fA,,nJ,,:, be a countable dense subset of the selfadjoint
elements of the two-sided ideals 3_ n > 1, used in the definition of the separability
condition S, Definition 4.1.32. We introduce a sequence of weak* neighborhoods
NP(6), p  !! 1, of (b by

NP(Co) = Iw; & c E'MH' I (CO - co') (A n,,n) I ":: 1 IP fo r I < n, in :!! p 1.

It then follows that

t(oi = nNP(6) n F.
P : I
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Now iffp c C(E.,  ! 2, are chosen such that 0 :!E , fp :!! 1, JP', H), P jw') I for o,)'c- NP(6),
and.fp(w') = 0 for (o'c E,H\NP (6) then one has

it((EofVp')
< lif

PUP)

and

lim
P((r4f)f')

- (.rgj,) WO) 0
P-0 Y(4)

for fc- QE,H), and for each c- GIH. Hence the Lebesgue dominated convergence
theorem implies that  c- GIH  - (-r,. f ) (Co) is d  -measurable and

dj (r -f) (6) 11m
'

Ym(fp)g 4 tt((E .ftlpf
p-c

f(;IH
In particular,

(o(A) = kt(,i) dj (o(E,(A)).fGIH
Although the foregoing theorems give existence results for decomposition

of a G-ergodic state with respect to a normal subgroup H they do not indicate

any natural choice of H. If one specializes to locally compact abelian groups G
then the choice of H is directly related to properties of the point spectrum
a,(U.) of U.. Recall that if a) c- S(E'MG) then the point spectrum of U,,,
is a subgroup of G if Q,) is separating fo r by Theorem 4.3.27, or if the

pair (%, (o) is G,-abellan by Theorem 4.3.3 1. If H,,, is the annihilator of

up(U.) then all eigenvectors of UJG) will be invariant under U,,,(H,)). This
indicates that oj is not H(,-ergodic and there should exist nontrivial de-

compositions with respect to H,,), or any subgroup of H(,). Now note that

GIH,,, is the dual of up(U,,) and GIH,,) is compact if, and only if, a isP(U(o)
discrete. Thus one has the following:

Corollary 4.3-39. Let (i) c- S(Ea whet, G), -e G is a locally compact abelian

group and % has an identity. Assume that the point spectrum U 0P(U(O)  f
U(,)(G) is a discrete subgroup qf'6 anti let H,, denote its annihilator. Ifthe
pair (%, co) is H,,-abelian and if w is in a face F of EH- which satisfies the

separability condition S then there exists an (bC_e(E'-) n F such that
i c- GIH,,,  --+Ti*6 is measurable with respect to the Haar measure di on

GIH(,) and

o)(A) = fG1H_(it (5(-E,(A))

for all A e 91.

This result is a direct transcription of Theorem 4.3.38 but in this special
setting one can deduce more concerning (, .
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The above comments on the points spectrum indicate that the annihilator

group is the natural symmetry group of the system. But experience with
physical examples indicates that the characterization of the natural symmetry
group is related to an improvement of cluster properties for the constituent
states occurring in the ergodic decompositions. In this respect it is of interest
that under a hypothesis similar to those of the corollary one can indeed show
that (b may be chosen to be weakly mixing for H, i.e.,

M(lCo(A-c(B)) - (b(A)(b(B)J) = 0

for all A, B c- W, where M is any invariant mean over Cb(H.). The proof of
this statement relies, however, upon some representation theory, and will be
given in the following section, Theorem 4.4.12. It appears reasonable to

conjecture that this strengthening of cluster properties is the correct quantita-
tive characterization of the natural symmetry group but as results of this

type are scarce the position is unclear.

Decompositions with respect to normal subgroups possess a number of
characteristic features. As the set of states occurring in the decomposition
is the orbit 4 c- G1HJ of one fixed state under the action of the quotient
group GIH, these states simultaneously satisfy various types of algebraic
property, e.g., (W, -cg-*(Z)) is H-abelian, or H-central, if, and only if, (91, (b) is
H-abelian, or H-central. Thus if (91, (b) is H-central then it follows by a slight
modification of the last statement of Theorem 4.3.19 that distinct states To*Co
of the orbit generate disjoint representations of 91. Nevertheless, there is a

unitary equivalence relation between the associated unitary representations
of H which one establishes as follows.
For simplicity let (.5,, ng, U4, K24) denote the representation associated with

,r *(b and (.5, 7r, U, 92) the representation associated with (b. We define a map
V, from .5g to .5 by

One then has

11  4 7ro(A)924 112 = (7)(T4(A*A))
= 11 7rg-(A)K24 112

and hence V, extends to a bounded isometric map. But V4 is invertible because

V4 '7r(A)f2 = 7r4(-cj-,(A))K24

defines a bounded isometric inverse. Therefore Vo is a unitary map from fV4
to .5. Now one calculates

(V,7r4(A)Q4, U(h)V47r4(B)Q4) = (7r(-r4(A))K2,7r(Th'r4(B))f2)
= (7r(r4(A))Q, 7r(-rg T4 - I h4(B))K2)

(V47r4(A)92 , V47r4(T4-,h4(B))K2)
(7r4(A)K2.4, U4(4-'h0)7r4(B)Q)
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for all h c- H, and hence

V. U(h)V, = Uo( -'h4).
Thus the unitary representation U.,(H) is unitarily equivalent to the unitary
representation U(4HO - '). In particular, if G is abelian then UO(H) and U(H)
are unitarily equivalent. More generally, the equivalence is between the family
of representations U,(4-'Ho) which incorporate the correct orientation of
the state within the quotient group.
We next examine almost periodic decompositions of G-ergodic states for

locally compact abelian groups G. First we need to review a number of basic
facts concerning almost periodic functions.

Let L'(G) denote the bounded functions over G equipped with the

supremum norm,

I f 11 sup If(0 1,
t c- G

and Cb(G) the C*-algebra of bounded continuous functions over G. The

trigonometric functions T(G) are defined as the Banach *-subalgebra of
Cb(G) formed by finite linear combinations of characters of G and the C*-

algebra A(G) of almost periodic functions as the uniform closure of T(G).
The foregoing definition states that a functionfis almost periodic if, and only

if, it is the uniform limit ofa family of finite linear combinations of characters
of G. There are other possible characterizations and the original definition
of Bohr is in terms of approximate periods. Ifr denotes the action of G on the
bounded functions, i.e., (T,f)(t') = f(t + t) then t c- G is called an 8-period
of f if, and only if,

11'rt f - f 11 "0
< .6.

With this definition the following conditions are equivalent (see Notes and
Remarks):

(1) f e A(G);
(2) f is continuous and for each e > 0 there is a finite subset B - G such

that A, + B = G, where A, denotes the set of g-periods off;
(3) f c- L'(G) and the uniform closure of the orbit {,r, f ; t c- GI is compact.

The equivalence of conditions (2) and (3) can be clarified if one remarks that
a set in a complete metric space has a compact closure if, and only if, it is

totally bounded. Thus condition (3) is equivalent to the statement that for
each e > 0 there exists a finite number of elements t, t,,. . . , t,, c- G such that

inf 11 -c, f - -r,, f 11, O < r,

1 :! i:5 n

for all t c- G. This is equivalent to the statement that for each t C- G there is a

tI e B = It, - - - , tnj such that t - t' is an E-period of f.
Suppose now that G acts as a group of *-automorphismsE of a C*-algebra

91 with identity. It is natural to define a state (o over % to be almost periodic
if the functions t c- G " 0)(T,(A)) are in A(G) for all A c- %. If EA(') denotes theQI
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corresponding set of states then EA(G) is convex but not necessarily weakly*
closed. This causes difficulties if one attempts to develop the decomposition
theory of almost periodic states. Nevertheless, one has the following result
for orthogonal measures.

Proposition 4.3.40. Let 91 be a C*-algebra with identity, G a locally compact
abelian group acting as *-automorphisms -r qf 91, and (o a G-invariant state

over 91. Assume that U. is strongly continuous and let P. denote the pro-
jection on the subspace of U.(G)-almost periodic vectors. There is a one-to-

one correspondence between the.following:

(1) the orthogonal measures y over E. with barycenter o) which are such
that

t c- G F-+ y(-r,(f1)f2)
is almost periodicfOr allf, f2 c- C(E.);

(2) the abelian von Neumann subalgebras 0 ofthe commutant

J7[,JW) U Pw I';

(3) the orthogonal projections P on .5. such that

pn", = Q., P < PW
P7r.(W)P 9 {P7E.(W)PJ'.

Remark. This proposition is in absolute analogy with the corresponding
result for invariant states, Proposition 4.3. 1. Note that in condition (2) of this
latter proposition one has the identification

{7r,,,(W) u U.(G)J' = {7r.(%) u EJ,

where E. is the projection on the subspace of U.(G)-invariant vectors (for
this equality see the conclusion of the proof of (4) in Theorem 4.3.27). More-
over the property U,,(g)P = P in condition (3) of Proposition 4.3.1 can be
reexpressed as P :!  E..

PROOF. We again exploit the general correspondences between orthogonal
measures y, abelian von Neumann subalgebras 0 - and projections P
such that M. = 92. and P7r.(%)P s f P7rJ91)PJ', established by Theorem 4.1.25.
We concentrate on incorporating the conditions of almost periodicity.

(1) => (2) First assume y to satisfy the almost periodic condition; then

t E G F-* (Q., 7r.(A) U.(t)K, (f)Q.) = tl(T _,(A)f)
is almost periodic for each A e W and f c QE%). By cyclicity, one concludes that
[K,ff)K2J < P.. Next remark that

K,,(f) U.(t)7r.(B)Q,,, = 7r.(T,(B))KJf)Qw
= 7rJT,(B))Pw KJf)Q.
- I (y, t)Uw(t)7rw(B)P.[Y]KJf)Qw.

YEG
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Therefore as

(7r.(A)K2., KM(f)P.7rjB)Q.) M(T(7r.(A)Q,,,, K,(f)U.7r.(B)Q.))
c- 01

one has

KM(f)P.7r,,,(B)Qw) Y M(T'7(7r,,(A)Q., U.7r",(B)P.[T]Ku(f)Q.))
Y"YE6

(7r.(A)Q., P.[y'y]7rjB)P.[Y]Kjf)Q.)

(7rjA)Q,_ P. 7r.(B)P. K,,(f)Q.)

(7r.(A)Q,,,, P,, K, (f)7r.(B)Q.).

This means that K,(f) G {7r.(%) u P.1'. But 0 = {K,,(f); fG C(Ew)j" and hence
93   17r.(W) u PJ'. Thus we have established that (1) ==> (2). But as P = [F8Q.] It

immediately follows that P < P., i.e., (2) => (3). It remains to prove that (3) => (1).
But

/1(T,(fj)f2) = (Q_ K,,(fl) Uo(t) - 1 Ku(f2)Qw)
== (f2c_ K,(.fl) U(,(t) - 1P. K,(f2)0(,,)

by the basic structure theorem for orthogonal measures, Theorem 4.1.25, and thus
this function is almost periodic for all f, f2 c- C(E,).

The next result characterizes the basic properties of the measures intro-
duced in Proposition 4.3.40.

Proposition 4.3.41. Let % be a C*-algebra with identity, G a locally compact
abelian group acting as *-automorphisms T of %, o) a G-invariant state, and
assume that U,, is strongly continuous. Ify c- OjEw) and

t c- G F-+ p(-r,(f,)f2)

is almost periodic for all f, f2 c- C(E,,) then the support of y is contained in
the weak*-closure EA(G) of the convex set E'(G) of almost periodic states. If,W %

moreover, y is maximal then it is pseudosupported by &(_PA(G)) and if o-) is
contained in aface F which satisfies the separability condition S then Y is

oo(FA (G)).supported by 121

If f 7r.(%) u P.1' is abelian then M("(PA(G)) contains a unique maximal91

measure. Conversely, i M.(.EA(G)) contains a unique maximal measure suchf %

that /i(T(fj)f2) c- A(G) for all f, f2 c- C(E%) then u Pj' is abelian.
In both cases y is the orthogonal measure corresponding to fnj%) u P'J'.

PROOF. The proof is similar to that of Propositions 4.3.2 and 4.3.3 with invariance

replaced by almost periodicity. The first statement follows by simple repetition of
the arguments used to establish Proposition 4.3.2 but the second statement needs
a slight modification of the previous proofs.

V C M.(EA(G)) A(G)First consider a measure with finite support in E. then

{Kv(f); f G QEa)j  {7r.(%) u 15.1'
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by the same calculation used to prove Proposition 4.3.40. For this it is important that

v(r(f1)f2) c- A(G) but this follows from the assumed support property of v. Now if

17r.(W) u P.1' is abelian then it determines an orthogonal measure 'U over E.,
by Proposition 4.3.40, and this measure satisfies the almost periodic condition

Y('rffW2) c- A(G). Hence repetition of the argument used to prove (2) => (1) in
, A (G)Theorem 4.2.3 establishes that v. But the measures in MJE, ) with finite

A(G) are weakly* dense and hence p >- v for all V G M"'('rA(G))'isupport in Eq, I i. e., y is91

maximal. If, conversely, there is a unique maximal measure y which satisfies the almost
periodic condition then

I K,(f); f G C(Em) I E- 17r.(W) u P,,, I'

by Proposition 4.3.40. But the argument used to prove (1) => (2) in Theorem 4.2.3
then establishes that these two algebras are equal and abelian.

Finally, we examine the decomposition of a G-ergodic state into almost
periodic states in the case that the pair (%, w) is Gr-abelian. This is equivalent
to P. being abelian, by Proposition 4.3.30, and the basic correspond-
ences of orthogonal measures then imply that In.(%) u P.1' is abelian.
Thus there is a unique maximal measurep c- MJFA(G)), by Proposition 4.3.41.
It is tempting to interpret the decomposition of w defined by y as a decompo-
sition of w into almost periodic states but the difficulty with this interpre-
tation is that y is not necessarily supported by EA(G) but only by its weak*
closure. Nevertheless, we first show that y is equivalent to an ergodic measure
m on a compact Hausdorff space M on which G acts in an almost periodic
manner. Ergodicity in this context means that every m-measurable G-
invariant subset of M has measure zero, or measure one. It is this property
which provides an analogy with the previous subgroup decompositions, in
which the orbit under the group action of each point in the support of y had
measure one.

Proposition 4.3.42. Let (t) c- E,G ,
where % has an identity, and let y be an

orthogonal G-invariant measure with barycenter co, i.e., y(rg(f)) = y(f)
for allf c- C(E.) and g c- G. There exists a compact HausdorfJ space M, an

action i* of G on M, a G-invariant Baire measure m on M, and a measure-

preserving *-isomorphiSM K of L'(Ew; y) onto L'(M; m) which commutes

with the action of G.
G)If the pair (91, w) is G-abelian and w c- 60(Ea then m is ergodic for the

action i*.

If, moreover, G is locally compact abelian, the pair (%, w) is G,-abelian,
and y is the orthogonal measure corresponding to the projector P. onto the
UJG)-almost periodic vectors, then M can be chosen such that the action  *
is almost periodic, i.e., the orbit fi,* o; t c- GJ ofeach 9 c- QM) has compact
closure in C(M).

PROOF. Let 0 g 7r.(%)'be the abelian von Neumann subalgebra of the commutant

corresponding to y. The G-invariance of y ensures that

U.(g)0U.(g)-' E- 0
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for all g c- G and hence one can define an automorphism group i of 0 by

 g(B) = UJg)BU.(g)-'.

Next let m be the G-invariant state over 0 defined by

m(B) = M.)

for B c- 0. Then m identifies with a probability measure on the spectrum M of 43

with support equal to the spectrum since K2,,, is separating for 0, and 0 can be identi-

fied with L '(M; m). The action  of G on 0 defines an action i* of the group on M

by transposition. The *-isomorphISM K of L'(E,; ft) onto L'(M; m) is then intro-

duced by

f c- L'(E,,,; P)  --* K(f) = K,(f) c- 0 = L'(M; m),

where K,, is the linear map associated with p by Lemma 4.1.21. Note that

K('rgf) KM(Tgf)
U,J&4(f) U.(g) ig*K(f)

where the covariant transformation law for K. follows from the G-invariance of

by the calculation used in the proof of Theorem 4.3.38. Furthermore,

177(K(f)) = (Q,,, K1,(f)Q,J = ft(f).

Next assume that the pair (%, w) is G-abelian. The condition (o c- S(E,,G) is then

equivalent to K2,,) being the unique, up to a factor, U,,,(G)- invariant vector in .5,_ by
Theorem 4.3.17. Thus if P c- 0 is a projection onto a G-invariant M-measurable set

ig(P) = P and hence

U.(g)PQ,,, = PK2,,, = AQ,,

for all g c- G and some A c- C. But Q,,, is separating for Q3, because 0 -- 7U.(91)', and

therefore P = 1, or 0. Thus m is ergodic for the action of G.

Finally, if a) c- S(E.') and (%, w) is G.-abelian then the unitary eigenelements
V, c- 7r.(%)' of the automorphism group i satisfy

I V,,; 7 G Up(U.) I" - 1'71.(91) U PJ'

by Theorem 4.3.3 1. Let 0, be the C*-algebra generated by I V,; 7 c- uP(U.)J and then
0 = 00" u is the von Neumann algebra associated with the orthog-
onal measure determined by Thus M may be replaced by the spectrum of 0,
in the above construction so 00 = QM) - L'(M; m) - 0. As each element B c- 00
is the uniform limit of polynomials of the eigenelements of i it follows that  acts in

a strongly continuous manner on 0, and the uniform closure of the orbit Jr,(B); t c- G I
is compact. The latter property is a consequence of the arguments which give the

alternative characterizations of almost periodicity mentioned above.

Remark. If in the first statement of the proposition one assumes that [OK2'J
is separable, where 0  7rJ%)'is the von Neumann algebra associated with P,
then one can deduce more concerning the *-isomorphISM K. It follows by a

general result of von Neumann's (see Notes and Remarks) that there exist
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subsets E, - E,, and M,,, - M with y and m measure one, and a Borel

isomorphism q from E. to M,,, such that

f(qO)) (K -1f)(0))

for all co c- Eu and f c L'(M; m).

The final statement of Proposition 4.3.42 can be improved if one has more
information concerning the support of the orthogonal measure Y associated
with 15.. Our next aim is to show that if the support of It is contained in
EA(G) then the corresponding decomposition ofw can often be expressed as an

average of a state (D c- &(EA(G)) over its orbit. To deduce this result and to
create an analogy with the previous normal subgroup decompositions it is
useful to have a fourth characterization of almost periodic functions in terms
of a compactification of G.

If G is a locally compact abelian group let Gd denote the dual of G equipped
with the discrete topology. The dual 6 Of od is a compact group by Pontryagin
duality. Now let ot be the map of G into 6 defined by

(7, 0 = (at, Y)

for allf c- G, and y c- CJd -
One can show that a is a continuous isomorphism of

G onto a dense subgroup a(G) of 6. The group G- is usually called the Bohr
compactification of G. It can be used to characterize the almost periodic
functions A(G) by the following criterion.

Let f be a bounded function over G; then the following conditions are

equivalent:

(1) f c- A(G);
(2) there is an h c- C(6) such that

f(t) = h(at)
for all t c- G.

Note that as a(G) is dense in 6, this characterization of A(G) establishes a

*-isomorphism a; f c- QG) i--* af c- A(G) such that

('Xf)W = f(Oct)

for all t c- G.

Next remark that G has an action r on A(G) given by (-c, f) (t') = f(t + t')
and the existence of a unique Haar measure dt on 6 ensures the existence of a
unique invariant mean M on A(G). One has the relation

M(,xf f dt- f(T)
c

for all f c- C(C). The existence and uniqueness of the mean M can also be
established from the other characterizations of A(G). For example, M can be
described as a linear functional over A(G) satisfying M(y) = 0 for each
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character distinct from the identity 1 and M(1) = 1. To see this let M' be any
invariant mean over A(G). If T c- 6 then

(T' 7, 0 - G, t0 (T' 0 G, 0

and consequently

M'(Tt T) M'(T) (T' t)M'(T)

for all t c- G. Hence M'(T) = 0 for all T except the identity. This establishes
that the invariant mean M is uniquely determined on T(G) and hence, by
continuity, uniquely determined on A(G). A third characterization of M is

given in terms of the orbits IT, f ; t c- G 1. For each f c- A(G) one can demon-
strate that the closed convex hull of the associated orbit contains a unique
constant M(f) and the constants define the invariant mean.

Now let us return to the characterization of almost periodic decomposi-
tions.

Proposition 4.3.43. Let o) c- S(E' JG) where G is a locally compact abelian

group and % has an identity. Assume that the pair (%, (o) is G,-abelian, let

H,,, - G denote the annihilator of the point spectrum c,(U,,) of U, and
let y denote the orthogonal measure corresponding to the projection P. onto

the U,,,(G)-almost periodic vectors. Further assume that

(1) o) lies in aface F which satisfies the separability condition S;
A(G)(2) the support ofy is contained in E.,

It follows that there exists an (7) c S(EA(G)) r-) EH_ such thatW 91

f((0) = M(f(T*C0))

fr allf c- C(EA(G)), where M denotes the unique invariant mean on A(GIH.).Is

In particular,

(o(A) = M(Co(,r(A)))

Jbr all A c W.

PROOF. As the pair (%, (t)) is G,-abelian P,,, 7[,,(9A)P,,' is abelian by Proposition
4.3.30 and f7r,,(121) u fl,,If' Is abelian by the basic correspondences for orthogonal

O(EA(G)).measures. It then follows from Proposition 4.3.41 that p is supported by . ,

Let S, denote the support of p. It follows from Theorem 4.3.31 that J7r(J91) U P.1'
 7r,,)(')A) u E,,,(H,,,)I'. Consequently, applying Proposition 4.3.2 with G = H. one

concludes that S, - EH-. But b assumption S, E'(') and hencey %

S _A(G)) A(G) H_E. , n E,21 E%

&(EA(G)) n EH_.
Is %

A(G H_Finally, p is supported by F, and hence supported by F n S(E91 )) n E"%
Next note that G-invariance of p implies that if (5 c- S, then r,*Co c- S, for all t c G,

and hence -i defines an action on C(S,,). Moreover, each almost periodic function over

G is in correspondence with a continuous function over the Bohr compactification
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of G. Thus one can define an action -r* of G on each a) c- S, - E,(" and, by trans-

position, an action f on.f c- QS,). The resulting function Tt c- 6 is continuous.
But if J',J,, c- QS.) then

1.t(T,(f)fJ (92,_ K uff) U,,,(t) - 1 KJfJQ
K,(.f) U(Jt) - 1,P,,) Ku(Jn)Q,J

by the basic structure theorem for orthogonal measures (Theorem 4.1.25) and the
covariant transformation law for K,, derived in the proof of Theorem 4.3.38. Thus

Y'E a,(U-)

In particular, y(,r(f)fn) c- A(GIH,,,) and

M(Y(_r(./')./nJ)

because M(y) = 0 for all T c 6, except the identity i, and P(,.,[l] is the projection on

Q. by Theorem 4.3.31(2). Expressed in terms of GIH(,, this last relation then gives

Y(f) = lt(f) - Ifz;
-/.-(IT fiNif).f.),

where dT is again the Haar measure. Now one can repeat the argument based on the
Lebesgue dominated convergence theorem used in the proof of Theorem 4.3.38, to
deduce that

fff
_JH

A(G)) r. (o(Ell_).for any (b c- S, n &(EA , 'I9

Note that EA(') r) E"- = EA(GIH-) and hence the decomposition is reallyW 91 W

into almost periodic states over the quotient group GIH,,,.
Proposition 4.3.43 is unsatisfactory because it requires the assumption

that y has support in EA(G). To illustrate the nature of this assumption con-

sider the case that up(U,,) is discrete, and hence GIH. is compact. Thus GIH.
is equal to its own compactification, A(GIH,,,) = QG1HJ, and the orbits
i c- GIH,,, F--+ (D(ri(A)) are automatically continuous for each Co C- EA(G,'H and
each A c- 91. Thus Proposition 4.3.43 gives a decomposition of W C- S(E G) of
the same type as Corollary 4.3.39,

o_)(A) = di 6(ri(A)),f,
GIH,.,,

but the assumed support property of y introduces a continuity of -ri*(b
which is not in general present. Of course if r acts in a strongly continuous
manner on W then the special case of Proposition 4.3.43 and Corollary
4.3.39 coincide. To avoid the support assumption for It and nevertheless
obtain a decomposition of o-) as the mean of another state, with ergodic
properties, over its orbit it appears necessary to broaden the notion of almost
periodic state. One should find some analogue of measurability of the orbit,
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i.e., the correct notion of almost periodicity should be related to measur-

ability of the orbit with respect to the Haar measure on G.

Finally, we note that it is not clear what cluster properties characterize the

(b c- 61(V')) but if o-) and Co are related as in Proposition 4.3.43, it is not

difficult to demonstrate that

M((b(A-r(B))) = CD(A)(o(B).



4.4. Spatial Decomposition

Hitherto in this chapter we have been interested in decomposing a given
state w on an operator algebra W into other states. The general scheme ofthese

decompositions, developed in section 4.1.3, was to choose an abelian von

Neumann subalgebra 93 g7r.(%)', and decompose w "over the spectrum
of 0." If !S is finite-dimensional, i.e., 0 is spanned by a finite sequence P,
P2, P. of mutually orthogonal projections with Yi=, Pi = T, then the

decomposition of (t) takes the form

n

(0 = I Aio)i,
i = 1

where Aiwi(A) = (Q., Pin.(A)0.). Closely associated with this decomposi-
tion of w one also has a spatial decomposition of the representation

05.1

i.e., defining

5i = Pi _50)

7ri = Pi 7r.,

Pi Q.
Pi Q.

then (5i, ni, wi) identifies with 7r, Q.) and one has

n

.5. 5,

n

7r.i.

This decomposition of 7r. is called the spatial decomposition of 7r,,, defined
by F8, and this subsection is devoted to a generalization of this concept to

general abelian von Neumann subalgebras 0 - Of course the

decomposition in the general case will take the form of a direct integral
rather than a direct sum, and we first have to develop a theory of direct

439
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integrals of Hilbert spaces. It turns out that a satisfactory theory of this sort

can only be developed when both the measure space and the Hilbert space
have suitable separability properties. As this theory has been treated ex-

tensively in most of the standard textbooks on operator algebras, we princi-
pally content ourselves with a review of the results. Most of the problems are

of a measure-theoretic nature, and the proofs have the flavor of the proof of

Proposition 4.1.34.

The examination of decomposition theory via the decomposition of repre-
sentations has several advantages over the foregoing approach, which

concentrated almost completely on states. For example to obtain a "good"
support properties of the maximal orthogonal measures M. occurring in the

extremal, center, and ergodic decompositions we consistently assumed that

the state o) was in a face F satisfying the separability condition S. Although
this assumption is natural in applications of decomposition theory to quasi-
local algebras it appears slightly artificial in the general setting. Representa-
tion theory allows us to conclude that the measures y., have good support
properties under the weaker, and more natural, assumption that the repre-
sentation space .5. is separable. Furthermore, one can exploit the decompo-
sition of representations to obtain results concerning the decomposition with

respect to the algebra at infinity and to prove that the decomposition of an

ergodic state with respect to a normal subgroup leads to improved cluster

properties.

4.4. 1. General Theory

First recall that a finite positive measure y on a measure space Z is called a

standard measure if there exists a p-negligible subset E g Z such that Z\E
is a standard measure space, i.e., the Borel structure on Z\E is the Borel

structure defined by a Polish space (a complete, separable, metric space).
Note in particular that if E, is the state space of a C*-algebra with unit,
F - E% is a face satisfying the separability condition S, o) c- F, and p is a

Baire measure with w as barycenter, then y is supported by F by Proposition
4.1.34 and one deduces easily that y is a standard measure. Now assume that Y
is a standard measure on Z, and furthermore that there is a Hilbert space
.5(z), associated to each z c- Z. Then, under circumstances we shall describe,
one can define a direct integral Hilbert space

fz dy(z) .5(z).

There are two equivalent ways of doing this. One is rather short and con-

crete but a bit artificial from a fundamental viewpoint, and the other is longer
but nevertheless more intuitive and applicable. We will describe both methods.

Definition 4.4.1A. Let S) , g -5, g ... g .5,,. be a sequence of Hilbert

spaces chosen once and for all, with .5,, having dimension n. Let {Zj be a
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partition of Z into measurable subsets, and define .5(z) = .5,, for z c- Z, Then

dy(z) .5(z)f"
z

is defined as the set of all functionsfdefined on Z such that

(i) f(z) c- .5,, - .5R. for z c- Z,
(ii) z f(z) c- -5,,, is p-measurable, i.e., z F--+ f(z)) is p-measurable

for all  c-

(iii) Iz dy(z) I I f(Z) 11 2 , C)O.

(Note that (ii) and separability of .5,. imply that z  - 11 f(Z) 11 2is measurable.)
The linear operations on .5 are defined in the obvious manner, and the

inner product by

(f, g) f dy(z) (f(z), g(z)).
z

The space S;), is called the direct integral of the Hilbert spaces .5(z).

For the other definition we need a condition on the collection .5(z) of
Hilbert spaces, which is trivially fulfilled in Definition 4AIA.

Definition 4AIB. LetF be the space offunctions on Z such that  (z) G.5(z)
for each z c- Z. 1.5(z); z c- Zj is called a measurable family if there exists a

sequence { ,,j of functions in F such that

(1) z  --+ ( Jz),  jz)) is p-measurable for all n, m,
(2) { Jz); n = 1, 2_ . .1 is dense in S);(z) for each z c- Z.

If {.5(z)j is a measurable family and V is a linear subsPace of F then V is
said to be measurable if it satisfies:

(1) for  , q e V, z  --+ ( (z), q(z)) is measurable;
(2) there exists a countable family { ,,; n = 1, 2,...1 in V such that

{ Jz); n = 1, 2_ .1 is dense in .5(z) for each z c- Z.

Now, it follows by Zorn's Lemma that any subspace satisfying (1) and (2)
is contained in a maximal subspace V g F satisfying (1) and (2).

Let .5 be the set of elements  in such a maximal V satisfying

fdy(z) I I (Z) 11 2 , OC).

Then SD;, is a Hilbert space if the inner product is defined by

( , 0 = fdy(z) ( (z), ij(z)).
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We write

ED

dy(z) .5(z)f
z

and call .5 the direct integral of thefamily {_5(z)j.

The equivalence of Definitions 4.4. 1 A and 4.4. 1 B, and the independence of
the latter from the particular maximal measurable subspace V employed,
follow from the next structure theorem, which is proved by a method
reminiscent of the Gram-Schmidt orthogonalization procedure.

Theorem 4.4.2. Let y be a standard measure on Z, 1.5(z); z c- Zlf a measur-

able J mily of Hilbert spaces, .5, (_ -52 -_ - - -_ S ,,, an increasing sequence
of Hilbert spaces such that dim(-5n) = n, and define

Zn ::::::: jz c- Z; dimQ;)(z)) = n

Then Zn is a partition ofZ into measurable subsets.

IJ'V is a maximal measurable subset of  F, and .5 the associated Hilbert

space, then there exists a unitary operator

No

U; ( (L2(Zn, dy) & 5n)
n=1

of the following form: for each Z C_ Zn - Z there exists a unitary operator
U(Z); NZ) '_ 5n, and if  c- .5 then

WOW = U(zMZ).

Here we view (@No 1 (L2n = (Zn, dy) & 5n) as functions q from Z into _5NO such
that q(z) c- -5n for z c Zn -

It follows immediately from this theorem, that if V,, V, are two maximal
measurable subspaces of,.F, and .50,.5, are the associated Hilbert spaces, then
there exists for each z c- Z a unitary V(z) on .5(z) such that

(VO(Z) = V(zMz), C- -50
defines a unitary operator V; .50   .5, Hence

-50 dy(z) .5(z)f
z

is uniquely defined up to this type of unitary equivalence.
Since y is a standard measure, it follows that

fz dy(z) .5(z)

is separable. It is also useful to note that if

(e)

V g fz dp(z) 5(z)
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is a subspace such that

(1) 1  (z);  c- V I is dense in .5(z) for each z c- Z and

(2) if  c- V and f c- L'(Z; d1i) then (f )(z) = f(z) (z) defines an

element on V,

then V is dense in JEO dy(z) 15(z) (and this can of course be used to define the
z

direct integral without invoking maximal measurable subspaces). The proof
is simple. If  c- V` then

fdy(z) f(z) ( (z), q(z)) = 0

for all f c- L'(Z; dy) and q c- V. Hence (&), ?7(z)) = 0 for z p-almost every-
where and so  (z) = 0 for z p-almost everywhere, i.e., 0. We will encounter

similar results later, e.g., Theorem 4.4.5.

We next define the decomposable and diagonalizable operators on the

direct integral space
ED

dy(z) .5(z)
z

defined by the maximal measurable subspace V. For each z c- Z let

T(z) c- Y(.5(z)). z  -* T(z) is called a measurable family of operators if

(z F-+ T(z) (z)) c- V for each  c V. If this is the case then z  -+ 11 T(z)II is

measurable. If this function is essentially bounded then c .5 implies that

T c- .5, where the latter vector is defined by

(T )(z) = T(z) (z).

The mapping  F-+ T defines a bounded operator T on Any operator of

this form is called decomposable and is denoted by
0

T dy(z) T(z).f
z

It is clear that if T and S are decomposable operators then T + S, TS, and T*

are decomposable, and the following relations hold:

T + S = djt(z) (T(z) + S(z));f
z

ED

TS = dy(z) (T(z)S(z));f
z

ED

T* = dy(z) T(z)*;f
z

11 T11 = ess supflj T(z)JI; z e Zj.

If T is a decomposable operator and in addition T(z) is a scalar operator on

.5(z) for each z then T is called a diagonalizable operator. Writing
'ED No

djt(z).5(z) = (D(L2(Z" , dpt)f
z n=1
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one deduces that the decomposable operators identify with the von Neumann

algebra
No

( (L"(Z,,, dy) 0 Y1(.5,J)
n = 1

and the diagonalizable operators identify with the abelian von Neumann

subalgebra
No

(D (L(Z,,, dy) & 15.).
n = 1

The latter algebra is just the center of the former, and we show next that this is
the general form of an abelian von Neumann algebra on a separable Hilbert

space.

Theorem 4.4.3. Let 3 be an abelian von Neumann algebra on a separable
Hilbert space .5. It follows that there exists a standard measure P on a

measure space Z, a measurable family z F--+ .5(z) of Hilbert spaces, and a

unitary map

U; dy(z) .5(z)f
z

such that U,3 U* is just the algebra of diagonalizable operators on

ED

dy(z) .5(z).f
z

We have already proved this theorem in the case that 3 has a cyclic and

separating vector in the introductory remarks to Section 2.5. In this case all
the S;)(z) are one-dimensional. Using the structure theorem for isomorphisms
between von Neumann algebras deduced in Theorem 2.4.26, the proof of
Theorem 4.4.3 is mainly a technical exercise.

We next mention some results on the form of von Neumann algebras 9X

consisting of decomposable operators and containing the diagonalizable
operators,3, i.e., 3 g TZ - 3'.

Definition 4.4.4. Let y be a standard measure on Z, z  --4.5(z) a measurable

family of Hilbert spaces over Z, with direct integral

ED

fz dy(z) .5(z).

For each z, let 9JI(z) be a von Neumann algebra on -5(z). The family

JM(Z); z C- ZI
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is called a measurable family of von Neumann algebras if there exists a

sequence

A,, dy(z) A,,(--)f;
Z

of decomposable operators on ) such that 9R(z) is the von Neumann algebra
generated by JAJz); n = 1, 2_ .1 for almost every z. In this situation, the
von Neumann algebra 9N = QA,,; n 1, 2,...J u 3)" generated by

I A,,; n 1, 2_ . .1

and the diagonalizable operators is called the direct integral of the family
1931(z)l and is written

ED

9W dy(z) 9JI(z).
Z

The justification for this terminology is provided by the following theorem,
which shows that the sequence {A.J only plays a spurious role in the definition
of T1. The proof makes use of the bicommutant theorem and the fact that 3
is contained in the center of 9A.

Theorem 4.4-5. Let 9Y and 91 be two direct integral von Neumann algebras.
Itfbllows that M - % if, and only if, Tl(z) g W(z)for almost all z C- Z.

In particular, M is uniquely determined by the measurablefamily J9X(z),1-,
i.e., an operator A is contained in T? if, and only if, A is decomposable with
A(z) c 9N(z)for almost all z c- Z.

As any von Neumann algebra on a separable Hilbert space is separable in

the a-weak topology, it follows from Definition 4.4.4 that a von Neumann

algebra 9W on

dy(z) .5(z)
Z

is a direct integral if and only if

.3 - 9A - 3'.

Hence Theorem 4.4.5 gives a characterization of these von Neumann algebras.
The next proposition shows, not surprisingly, that the direct integral opera-
tion commutes with the operations of countable intersections and formation
of the commutant among these von Neumann algebras.

Proposition 4.4.6. Let y be a standard measure and

fZ dy(z) .5(z)

a direct integral Hilbert space
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(a) If

9W dy(z) 9X(z)f
z

is a direct integral von Neumann algebra on then 9JI' also has
this property and

ED

9N, = dy(z) 9JZ(z)'.f
z

(b) If
ED

gy" = dii(z) Mn(Z)f
z

is a sequence of direct integral von Neumann algebras then the
intersection of the A is a direct integral von Neumann algebra and

ED

n A dit(z) nMn(Z) -f
n z n

One obtains an interesting corollary of the last result by letting
ED

dy(z) .5(z)f
z

be the decomposition of Sn corresponding to the center 3 = 931 n 9JI' by
Theorem 4.4.3. Using (a) and putting 9R, = 9A and 9A, = 9A', in the last

proposition we obtain

dy(z)(M(z) n 9N(z)').f
z

But as 3 is just the diagonalizable operators on .5, we see that

9N(Z) n Tl(z)' = CI JNZ)

for almost all z, i.e., 9JI(z) is a factor for almost all z. This reduces the classi-

fication problem of von Neumann algebras with separable predual to the two

problems of classifying standard measures, and of classifying factors with

separable predual. But any standard measure space Z is either countable, with
all subsets measurable, or isomorphic to the measure space consisting of the
unit interval [0, 1] equipped with its usual Borel structure. Thus the hardest

part of the problem is the classification of factors, which we briefly sketched
in Section 2.7.3.
We next turn to the most important topic of this subsection, the decomposi-

tion of representations. Let

'ED

fz dy(z) .5(z)

be a direct integral Hilbert space and let 71 be a nondegenerate representation
of a separable C*-algebra W on -5 such that each operator n(A) is decompos-
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able. Using standard separability arguments it is not hard to show that for

p-almost all z c- Z there exists a representation 7r(z) of W on _5(Z) such that

z i--+ 7r(z)(A) is measurable and

7r(A) dy(z) 7r(z) (A)f
z

for all A c- 91. One then of course says that z 7r(z) is measurable and writes

7r(z).f
z

The next theorem is an immediate consequence of the abovementioned fact

and Theorem 4.4.3.

Theorem 4.4.7. Let 91 be a separable Ct-algebra, n a nondegenerate representa-
tion of 91 on a separable Hilbert space.5, and 0 an abelian von Neumann sub-

algebra of n(W)'. It follows that there exists a standard measure space Z, a

positive, bounded, measure y on Z, a measurable family z  --+ -5(z) of Hilbert
spaces on Z, a measurable family z F-+ 7r(z) oJ'representations oJ'% on _5(z),
and a unitary map

U; .5 dy(z) .5(z)f
z

such that UOU* is just the set ofdiagonalizable operators on

ID

dy(z) -5(z)
z

and

ED

U7r(A)U* dy(z)7r(z) (A)
z

for all A e

This is the fundamental theorem for the spatial decomposition of repre-
sentations, and in the general setting there are immediately two natural
choices of 0:

(1) 93 is maximal abelian in 7z(%)' (extremal decomposition)
(2) 0 = 7r(%)' n 7r(%)" (factor decomposition).

The next corollary is an analogue of Theorem 4.2.5 and Theorem 4.2.11 for

spatial decompositions. In fact, it follows from Theorem 4.4.9 in the next

subsection that these two theorems are consequences of the corollary in the

case where W is separable. This gives a proofof these theorems in the separ-
able case without the use of barycentric decomposition theory.
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Corollary 4.4.8. Let W be a separable C*-algebra, 71 a nondegenerate re-

presentation of 91 on a separable Hilbert space .5,  3 an abelian von Neu-
mann subalgebra Qf 7r(91), and

ED

7r dy(z) 7r(z)
z

the decomposition qf 7r corresponding to 93.

(a) the.following two statements are equivalent:

(1) 7r(z) is irreducible.for p-almost all z c- Z;
(2) 93 is maximal abelian in 7r(91)'.

(b) if 0 = 7r(91)' r-) 7r(9t)" then the 7r(z) arej ctor representations for
p-almost all z G Z, and in this case

7r(W)" dy(z) (7r(z) (91))".f
z

PROOF. (a 1) => (a2) Assume that the 7r(z) are irreducible for p-almost all z and
let A c- 0' r-) 7r(I)J)'. As A c- 0' it follows that A is decomposable,

A dp(z) A(z).
z

But for any B c- 121 we have

7r(B)A An(B).

Therefore

7r(z)(B)A(z) A(z)7r(.?)(B)

for p-almost all z. As 7r(121)" is a-weakly separable it follows that A(z) c- 7t(Z)(91)'
CT_5(,) for p-almost all z. Hence A is diagonalizable and A c- 0.

(a2)=>(al) IfO is maximal abelian in 7r(121)', then 0'Is the von Neumann algebra
generated by 7r(91) and 0. Definition 4.4.4 then implies that

01 dy(z) (7r(z)

and hence, by Proposition 4.4.6(a)

G.-

0 = fz dp(Z) (7r(z) (121))'.

But since 0 consists of just the diagonalizable operators on -5, it follows that
= (CT,(=) for p-almost all z.

(b) This is an immediate consequence of Proposition 4.4.6, (a) and (b), and
Definition 4.4.4.
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The assumption that It is separable in Theorem 4.4.7 and Corollary 4.4.8
cannot be removed without unvalidating these results (with the exception (a2)
=: (al) in Corollary 4.4.8). A counterexample to the version of Theorem 4.4.7
without the separability of I has been given by Reinhard Schaflitzel.

Let (Y, v) be a standard measure space without atoms, let -Do be an infinite
dimensional separable Hilbert space and

d v(y)-DO L2 (y, V)
Y

the direct integral corresponding to the constant field of Hilbert spaces. Let 2(
be the algebra of decomposable operators on D. If Theorem 4.4.7 were correct
for It then 2( would have an irreducible representation 7r on a separable Hilbert

space. But It is a von Neumann algebra on JD which is a-finite and has no direct
summand of finite type I. Hence it follows from [[Tak 1]] that 7r would be
normal. But then.7r would correspond to an atom in Y, and the non-existence
of atoms gives a contradiction.

In order to cope with the decompositions of a representation -r of a non-

separable C*-algebra '2f into irreducible representations one needs a more

general concept of direct integrals due to Wils [Wil]. But then one obtains
decompositions into irreducible representations only after a modification of
the decomposition given by maximal orthogonal measures on the state space.
There are pathological examples where the maximal orthogonal measures are

not concentrated on the pure states [Tay], [Hen], [Sch].

4.4.2. Spatial Decomposition and

Decomposition of States

In this subsection we connect the theory of spatial decomposition developed
in 4.4.1 with the decomposition theory for states developed earlier. We also
use this connection to prove two results on support properties of the or-

thogonal measures which we could not obtain earlier.
Let W be a C*-algebra with identity, and let w be a state over 91 which is

contained in a face F 9; E., satisfying the separability condition S, Definition
4.1.32. If M e MJE.) is a Baire measure with barycenter w, it follows from
Proposition 4.1.34 that y may be viewed as a measure on F. Hence y is a

standard measure on F. For w' c F define .5(w') = .5., as the representation
Hilbert space associated with w'. We shall show that w' e F i--+ .5(w') is a

measurable family of Hilbert spaces in the sense of Definition 4.4. 1 B. To this
end, let IA,,,kl,,,k-,, be the sequence of elements of W used in characterizing
F in the proof of Proposition 4.1.34, with the minor difference that we now

assume the JAn,k1k ,, aredense in the whole ideal 3,, foreach n. Lemma4.1.33
then implies that J7r.,(A,,k)),,k ,1 is a strongly dense sequence in
for each w' c- F, and in particular  7r.,(A,,, k  I is dense in .5(w') for
each w' e F. As
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w' e F F-+ (7r,,,,, (An, I)Q.,, 7r,,,,(A n, 00co')
= cD(Am*,, An, k)

is continuous, hence measurable, w' c- Fis a measurable family of

Hilbert spaces and we may form the direct integral

f,
F

For each A e  1, 7r.,(A) is a measurable family of operators on and

we may form the direct integral representation
ED

7Ep dli(CO') 7E.,f
F

Let f21U c- .5,, be the unit vector defined by

0" = dy(w')f
F

Then

(Q,u, 7ru(A)Qm) = f dy(w) (Q., 7r.,(A)n.,)
F

= fFdy(w) w'(A)

= w(A)

for all A c- W. Let

E, = [7r,(W)n,] c- 7r,(W)I.

It follows from Theorem 2.3.16 that the isometry U from .5,,, into with

range E,b, defined by

Un.(A)Q,,,

establishes a unitary equivalence between the representations 7r. and E,,7t,,.
The remarkable fact is now that E, = 1.5,. if, and only if, y is an orthogonal
measure on Et. Among other things this provides the structural connection
between spatial decompositions and decomposition of states, i.e.,.the con-

nection between Theorem 4.1.25 and Theorem 4.4.7.

Theorem 4.4.9 (Effros). Let 91 be a C*-algebra with identity, F c: E,,
aface satisfying the separability condition S, y a Baire probability measure

on E9, with barycenter w e F. Let

7r fF dy(w') 7r.,



Spatial Decomposition 451

be the direct integral representation ofW on

0

5" dy(w) .5.,f
F

described before the theorem, and let Eu be the range projection of the

isometry U; .5.  --+ .5, which establishes the canonical unitary equivalence
between 7r. and EIU 71, Thefollowing conditions are equivalent:

(1) E = 1.5";
(2) y is an orthogonal measure.

If these conditions are satisfied then

7rp dy(&) 7r.,
F

is the direct integral decomposition of 7r. with respect to the abelian von

Neumann subalgebra OP E- 7r.(W)' corresponding to the orthogonal
measure y.

PROOF. (1) =:> (2) With the notation established before the theorem, condition

(1) is equivalent to the cyclicity of0, for 7r, or the unitarity of U. We want to show that
the map

f c L'(/,I) F-+ K,(f) E 7E.(%)'

defined in Lemma 4.1.21, is a *-morphism because it then follows from Tomita's

theorem, Proposition 4.1.22, that p is orthogonal.

Let f F--+ T(f) be the natural *-isomorphism between L'(M) and the diagonalizable
operators on

f
1F

i.e., for f E L'(p)

T(f f
ED

dp(a)') f
F

Now one has

(7r,(A)Q,,, UK,,(f)U*7r,(B)n,) = (7rw(A)Q., K,,(f)7r.(B)K2.)

= (Qw, K,(f)7rw(A*B)Q.)

f dy(w') f((o')w(A *B)
F

f dy(w') (7r.,(A)Q.,, f 7r.,(B)Q.)
F

(7r,,(A)Q,,, T(f)7r,,(B)Q,,).
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It follows that K,(f) = U*T(f)U, and SO fF-+ K,(f) is a *-morphism. Note also
that U % U* is just the set of diagonalizable operators on .5,,, and

7E dy(w') 7r.,

is just the spatial decomposition of 7r. corresponding to 0, C-7 n.(W)' in this case.

This proves the last statement of the theorem.

(2) => (1) First note that the linear span of

I T(f f c- L'(p); n, k > I I

is dense in fI dp((o') f%, by the remark after Theorem 4.4.2. Thus to proveF

that K2, is cyclic for 7r, we must show that for any e > 0, f c- L'(y), and A E 91 there
exists a B c- W such that

11 7r,(B)f2, - T(f)7rp(A)Q,, 11 <

But

11 7r,,(B)Qu - T(f)7r,,(A)Q, 112 = (Q,, 7r,(B*B)f2,u) - (f2,,, T(f)7Eu(B*A)Q,)
- (Qu, T(f)'7r,(A*B)Q,) + (nu, T(ff)nm(A*A)n,)

f dp(w') w'(B*B) - f dy(w) f((D')w'(B* A)
F F

dp(w') f(co')&(A *B) + f dp(w') I f(W )12w'(A * A)

7r.(B*B)K2.) - (Q., KJ.f)iz.(B*A)Qw)

(Q.,, KV(f)7r.(A*B)f2.) + (Qw, K,,(ff)iz.(A*A)Q.).
If p is orthogonal then

K,,(.ff) = K1,(.f)*KJ.f)
by Tomita's theorem, and hence one obtains

JJ7rJB)Qm - T(.f)7r,(A)Q, 112 =117r,,(B).Q. - K,,(J*)7r.(A )Q. 11 2.

But as Q. is cyclic for 7z., the last expression can be made less than -E2by an appro-
priate choice of B.

Remark. Even if u is not an orthogonal measure it is clear from the last part
of the proof that the span of the subspaces T(f)E,.5,, f c- L'(p), are dense
in .5,. As T(f) c- 7r,(W)' it follows that 7r. and nJU are quasi-equivalent for all
measures y c- M,(E,,) (see Definition 2.4.25).

If 91 is a C*-algebra with identity, w a state of W such that .5. is separable
and y c- (9.(E,,,) then p is isomorphic to a standard measure by the following
reasoning: the abelian subalgebra 0 of 7r.(%)' corresponding to u is

isomorphic to L'(y) by Proposition 4.1.22. But as 0 acts on the separable
Hilbert space -5., it follows that L'(1t) contains a a-weakly dense separable
C*-subalgebra (Y. If E_ = QX) is the Gelfand representation, of (_E, X is a

second countable compact Hausdorff space, and hence metrizable. Now P
defines a normal state on L'(1,t), and hence a state on QX) by restriction.
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This state is represented by a regular Borel measure go on X, and the
inclusion of QX) in L'(M) defines a *-isomorphism of L'(X; dpo) onto

L'(E,; dy). Identifying measurable subsets modulo null sets with projec-
tions, this *-isomorphism preserves measure, and hence y is *-isomorphic
with the standard measure go in this sense. Hence, repeating the procedure in
the introduction to this subsection and the method in the proof of Theorem
4.4.9, we may make the identification

E)

7r. dy(w) ir.,.f,
E,S

We then obtain the following partial generalizations of Theorems 4.2.5 and
4.2.11 and Proposition 4.3.2.

Theorem 4.4.10. Let W be a C*-algebra with identity, and w a state over W
such that the corresponding representation Hilbert space .5. is separable.
Let 0 be an abelian von Neumann subalgebra of and y e (9,",(Eq,) the
corresponding orthogonal measure.

(1) if 0 is maximal abelian in 7r,,,,(W)' then there exists a p-measurable
subset B s; Eq, such that B consists ofpure states and y(B) = - 1;

(2) if 0 = 7r.(91)' n 7r.(91)", then there exists a p-measurable subset
B - EN such that B consists offactor states and y(B) = 1;

(3) if G is a group, g e G  -- -rg e Aut(%) a representation qfG as *-auto-
morphisms ofW, w c- Ej,', and 0 is maximal abelian in

17r.(%) u U.(G)J'
then there exists a p-measurable subset B g; E% consisting of G-
ergodic states such that y(B) = 1.

PROOF. (1) and (2) follow immediately from Corollary 4.4.8. As for (3) note that
the support ofu is contained in E.' by Proposition 4.3.2, and we may write

E)

71 dlt((o) 7r..,f
E,2,G

f
E

But then

U.(g)7r.(A)Q,,, 7r.(Tg(A))Q.
ED

du(w) 7z., (Tg(A))f2.,f
E," G

fE,11Gdy(co') U.,(g)7r.,(A)f2.,

for all A e  1 and hence the operators U.(g) are decomposable, with

U.(g) f dy(w) U.,(g).
E

41j
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But as 0 is maximal abelian in  7r.(W) u U.(G))', it follows that the set of de-

composable operators

Eq,G

is the von Neumann algebra generated by 93 itself and the operators

ED

7r,.jA) = dy((j)')7r.,(A), A c- W,f
E,1. G

ED

U.(g) = dii(co)U.,(g), g c- G.f
E,21G

It follows from Theorem 4.4.5 that U,,,,(G)I" for p-almost all

w', but the latter condition is equivalent to the ergodicity of W' by Theorem 4.3.17.

We next consider decompositions at infinity. Let

MI 119. 1., C_ I)

be a quasi-local algebra, as introduced in Definition 2.6.3. Let w be a state

over W, and

,3.'L = n U 7E.(W#)
aEL Pla

the corresponding algebra at infinity (Definition 2.6.4). In Theorem 2.6.5

we proved that 3.' is a subalgebra of the center 3. of the representation n,,
and gave a characterization of states with trivial algebra at infinity. We now

prove, under suitable separability assumptions, that the orthogonal measure

y corresponding to the decomposition of w at infinity, i.e., the decomposition
defined by 3.', is supported by a measurable subset of states with trivial

algebra at infinity.

Theorem 4.4.11. Let

0A,

be a quasilocal algebra, w a state of 91, and assume:

(1) there exists an increasing sequence {aj. in I such that for any
oc c- I there exists an n with a < a,,;

(2) each W,,, contains a separable closed twosided ideal 3,, such that

Itfollows that the orthogonal measure M corresponding to the algebra at

infinity 3.j- is supported by a measurable set consisting of states with trivial

algebra at infinity.

PROOF. Since

.3. = .nI( u
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for any w'c- Ew, by (1) of Definition 2.6.3, we might as well assume that I = 11, 2_ . .1
and set %,, = W,. By assumption (2), the state w is contained in a face F g E, satisfy-
ing the separability condition S (Definition 4.1.32). Hence Theorem 4.4.9 implies
that the direct integral decomposition of 7r. corresponding to 3.' has the form

7r. dp(w') 7r,,,'.

Now, for any (o'c- F let

It follows that

U

As.3,' - 0., for each n, it then follows from Definition 4.4.4 that

ED

dy(w')
F

Proposition 4.4.6(b) now implies

n

f%p(w) (n
F n

fOdp(w')
F

But as 3.' are just the diagonalizable operators in the decomposition

7r.,,

it follows that CI_5_, for p-almost all &E F.

To conclude this discussion we use spatial decomposition theory to

improve a previous result, Corollary 4.3.39, on ergodic decomposition with
respect to a subgroup. The following result describes a situation in which an

ergodic decomposition is in fact a decomposition into weakly mixing states,
i.e., states with a higher degree of ergodicity than would be expected.

Theorem 4.4.12. Let w c S(E%'), where G is a second countable locally
compact abelian group acting strongly continuously on a C*-algebra W
with identity. Assume that the point spectrum ap(U.) of U. is a discrete
subgroup of 0 and let H. denote its annihilator. Assume that (%, W) is Gr-
abelian, that co is in aface F satisfying the separability condition S, and let
Co c- 9'(EH,,) r-) F be a state such that i c- GIH.  -4 -r,*Co is measurable with
respect to the Haar measure di on GIH, and

w(A) = fGIH-di(b(T,(A))
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for all A Ei W. Itfollows that (b is weakly mixingfor H., i.e.,

M(j(b(A-r(B)) - (b(A)Cb(B)j) = 0

for all A, B E W and any invariant mean M over Cb(H,,,).

PROOF. First note that as ap(U.) is discrete it is automatically closed. Now as G

is second countable it follows from the definition of the topology on the dual 6
that 0 is second countable. Thus as up(U,,,) c 6 is discrete it must also be countable.

Thus it follows from Corollary 4.3.32 that the pair (91, w) is H.-abelian.
Now the existence of (o follows from Corollary 4.3.39. It also follows from the

proof of this corollary that

f c QE%)  -- p(f dt f

defines an orthogonal measure p on E,. But as GIH. is second countable P is standard

and it follows from Theorem 4.4.9 that the spatial decomposition of 7E,,, corresponding
to y exists and can be written as

fG' I H -dt
dtf

GIH-

Then the vectors of the form

ED

dtf
GIH-

where A c 121 and f c L'(GIH) are dense in .5., by the remark after Theorem 4.4.2.

Next, as G is a second countable topological group, G is metrizable (see Notes

and Remarks), and as G is locally compact, it is complete in this metric. Thus G is a

Polish topological space. As the quotient map G i--+ GIH. is continuous and open,
it follows from the measure theoretic result (2) used in the proof Proposition 3.2.72

that there exists a Borel map q; GIH,,,   G such that  (t) = t. We now define an

isometry U; fG1H dt* as follows. For A E W set

ED

Unj,(A)Q, , dt X,,*i.,(T-7(i)f
GIH

This actually defines a vector in

fG Hdt
because if f e L'(GIH) and B c- W then

t

J'(*b(T17(j)(B*)A)
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is a Borel map due to the strong continuity of T. Hence Un&(A)f26 E.5. by Definition
4.4. 1 B.

Next, note that

JjU7r,F ,(A)f2ajj' = dt*

= fG/Hdt (b(A *A)

= (b(A*A) = 117rJA '112.

Hence U is a well-defined isometry from .56 into .5.. Also, for t e H,,, we have

U Uj(s)njjA)K2(z Un,- (Ts(A))06

e

dit 7iTt*a(T,1jj) -Gl Hf
ifG01Hdt

where the last identity comes from the identification

0

n. dtf
GIH

which implies
QD

U.(S) dt U,.,z(s).f
GIH

It follows that

U Ua(t) U.(t) U, t E H.,

i.e., t  --+ U.D(t) is unitarily equivalent with a subrepresentation of t U.(t). But

ap(U.) is closed and countable by the argument given at the beginning of the proof.
Thus it follows from the remark after the proof of Theorem 4.3.27 that U., restricted

to H., has no point spectrum except at zero. As Uz is unitarily equivalent to a sub-

representation Of UJH_ it follows that Ujj has no point spectrum except at zero.'

But (b is H.-ergodic and hence it follows from Proposition 4.3.36 that cb is weakly
H.- mixing, i.e.,

M(Icb(AT(B)) - (b(A)cb(B)j) = 0

for all A, B e W, and all invariant means M on Cb(H.).
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Section 4.1.2

The modern theory of barycentric decomposition was initiated by the work
ofChoquet. In 1956 he established that every point a) in a metrizable compact
convex set is the barycenter of a probability measure y. supported by the

Gb-set of extreme points 60(K). In the same period he introduced the general
notion of a simplex and proved that each wE K is the bdrycenter of a unique
maximal measure if, and only if, K is a simplex. These versions of Theorems
4.1.11 and 4.1.15 laid the foundations for subsequent development. (See
[Cho 1], [Cho 2], [Cho 3], [Cho 4].)
The next important contribution to the development of the subject was

due to Bishop and de Leeuw [Bis 1]. These authors were the first to introduce
an order relation on the positive measures M,(K). Their order relation >>
differed from the relation >- that we have used and was defined by

P >> V

if, and only if,

11(f 2) > V(f 2)

for all f c- A(K). These two relations are in general distinct (see Example
4.1.29 which is due to Skau [Ska 1]). The relation >- was subsequently
introduced by Choquet [Cho 5]. The existence of an order relation allowed
the use of Zorn's lemma to establish the existence of maximal measures with

a given barycenter (Proposition 4.1.3) and to discuss decompositions for
nonmetrizable K. In particular, Bishop and de Leeuw demonstrated that the
maximal measures in M I (K) are pseudo supported by off(K) and constructed

examples to show that off(K) can be arbitrarily bad, from the point of view of
measure theory, if K is nonmetrizable. Mokobodski later constructed the

example, mentioned in the remark preceding Corollary 4.1.18, of a simplex K
such that e(K) is a Borel subset of K but MJiff(K)) = 0 [Mok 1]. In 1972
MacGibbon established the rather surprising result that if e(K) is a Baire set

then K is automatically metrizable. In fact, for metrizability it suffices that

40(K) be an analytic set [MacG 1].

458
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The first general review of the developments of decomposition theory in

the period 1956-1963 was given by Choquet and Meyer [Cho 6]. This article

included many new features and refinements of the theory and remained for

several years a principal source of access to the theory. Subsequently there

have appeared many excellent descriptions of the subject, e.g., [[Alf 1]],
[[Cho 1]], [Lan 1], [[Phe 1]].

Section 4.1.3

Algebraic decomposition theory is more recent and expository articles are

scarcer. Chapter 3 of Sakai's book [[Sak 1]] contains a partial description
of the theory and our discussion has been largely influenced by the article

of Skau [Ska 1].
The first author to examine decomposition theory in terms of measures

on the state space E,, of a C*-algebra W was Segal in 1951 [Seg 2] but the

general theory was developed much later. There were two basic sources of

motivation: firstly, the introduction by Tomita, in 1956, of the concept of

orthogonal measure [Tomi 2] and secondly, the analysis of invariant states

by Kastler, Robinson and Ruelle, in 1966 (see notes to Section 4.3.1). In

particular, Ruelle was the first to apply the Choquet theory to the decompo-
sition of states.

Tomita proved the one-to-one correspondence between the orthogonal
measures in OJEw) and abelian von Neumann subalgebras of i.e.,
the correspondence between the first and second sets in Theorem 4.1.25.

The full version of Theorem 4.1.25 combines contributions from various

sources and it is not clear to whom it should be most rightly attributed. The

correspondence between the second and third sets occurs explicitly in the

work of Ruelle [Rue 1] and implicitly in the article of Skau [Ska 1]. These
two references also contain versions of the second basic structure theorem

for orthogonal measures, Theorem 4.1.28.

Condition (4) of Theorem 4.1.28 is equivalent to y >> v, where >> is the

Bishop-de Leeuw order relation defined in the notes to Section 4.1.2. Thus

for orthogonal measures the two order relations >> and >- coincide. This

equivalence was first remarked by Skau [Ska 1]. Lemma 4.1.27, which is

crucial to our proofs of the structure theorems, was given implicitly by
Ruelle [Rue 1] and explicitly by Skau [Ska 2].

Section 4.1.4

The results on n-dimensionally homogeneous C*-algebras mentioned prior
to Example 4.1.31 were proved independently by Fell [Fell 1] and Takesaki

and Tomiyama [Tak 4]. These papers also contain an analysis of the global
structure of n *dimensionally homogeneous C*-algebras and contrary to the

von Neumann result these are not generally of the form M,, 0 CO(X), where
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X is a locally compact Hausdorff space. There exists, for example, a 3-

dimensionally homogeneous C*-algebra over the 6-sphere with no pro-
jections except 0 and 1.

The separability condition S was first introduced by Ruelle [Rue 2], who
had applications to locally normal states on quasi-local algebras in mind. A

generalization of the condition occurs in [Rue 1]. Although Ruelle did not

emphasize the geometric and measure-theoretic properties of the set F of
states satisfying the separability condition S the proof of Proposition 4.1.34
is essentially contained in [Rue 1] and [Rue 2].
The fact that the set N,,, of normal states on a von Neumann algebra 9W

is sequentially complete was proved by Akemann [Ake 2].
Details concerning analytic sets and associated concepts are given in

[[Cho 1]]. In particular, we have used the capacity theorem, Theorem 9.7
of this reference, for the measurability properties of analytic sets.

The use of the restriction map in the decomposition theory of states is very
old and dates back at least to Tomita's earlier work [Tomi 3].

Section 4.2.1

The Cartier-Fell-Meyer theorem, Proposition 4.2.1, appeared in [Car 2]
in the context of general compact convex sets and was a crucial element in
Ruelle's and Skau's proofs of the structure theorems for orthogonal measures.

This result can be considered as the natural generalization of the ordering
properties of finite sequences of real numbers described much earlier by
Hardy, Littlewood, and Polya (see [[Hard 1, p. 45]]).
The equivalence of conditions (1) and (2) in Theorem 4.2.2 was a

longstanding open question which was finally resolved by Henrichs [Hen 1].
Theorem 4.2.3 and a version of Theorem 4.2.5 are due to Skau [Ska 1].
Proposition 4.2.4 also occurs in [Ska 1] but the equivalence (1')-: :>(Y) was

derived by Douglas [Dou 1] for a general convex compact set K.

Example 4.2.6 is essentially due to Sherman [She 1] and Fukamiya,
Misonou, and Takeda [Fuk 2].

Section 4.2.2

The central decomposition of states was analyzed by Sakai in 1965 [Sak 1].
His definition of central measure differs from the definition that we have

adopted but it is straightforward to show that the two concepts coincide.
Sakai's version ofthe central decomposition is described at length in [[Sak 1]]
and this reference also contains a proof that the factor states FU over a norm

separable C*-algebra % form a Borel subset of E,,.
The first analysis of central decomposition with Choquet theory was given

by Wils [Wils 1], who subsequently announced the geometric characteriza-
tion of the central measure given by Theorem 4.2.10 [Wils 2]. Wils also
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extended the notion of a central measure to an arbitrary compact convex

set in a locally convex Hausdorff space. Details of this generalization are

given in [[Alf 1]] and [Wils 3].

Sections 4.3.1 and 4.3.2

The analysis of G-invariant states originated with Segal, who introduced the

terminology G-ergodic and characterized ergodicity by irreducibility of

J7r,JW) u UJG)J in 1951 [Seg 3]. The main developments of the theory came
much later, however, and were principally inspired by problems of mathe-

matical physics.
In the early 1960s various authors studied problems of irreducibility of

relativistic quantum fields and this study essentially incorporated the ex-

amination of R-invariant states w such that a(U.) g [0, oo>. It was realized

that this spectral condition and some commutativity implied UJR) -

7r.(91)" and hence ergodicity and purity of w coincide (Example 4.3.34).
Moreover, ergodicity was characterized by "uniqueness of the vacuum,"
i.e., uniqueness up to a factor of the U,,,(G)-invariant vector. This latter

property then indicated that the decomposition of w into pure states was

determined by a "diagonalization" of the operators

E. n.(%)"E.

and various vestigial forms of decomposition with respect to the orthogonal
measure corresponding to E. appeared (see for example, [Ara 5], [Bor 1],
[Ree 1], [Rue 3]).

During the same period analysis of nonrelativistic field theoretic models

indicated that G-invariant states w with {7r,,,(%) u U.(G)J irreducible played
a principal role in the description of thermodynamic equilibrium but the

notion of G-ergodicity had been lost (see, for example, [Ara 8], [Ara 9],
[Haag 3], [Rob 3]). Finally in 1966 Doplicher, Kastler and Robinson

[Dop 1] gave a version of Theorems 4.3.17 and 4.3.22 characterizing ergodic
states for R'. (The notion of asymptotic abelianness due to Robinson first

appeared in print in this last reference.) Subsequently, Kastler and Robinson

[Kas 1] and Ruelle [Rue 2] gave independent accounts ofergodic decomposi-
tion. These papers contained most of the elements necessary for the complete
theory as we have described it, e.g., Choquet theory, asymptotic abelianness,
spectral analysis, subgroup decomposition, etc., and triggered an avalanche

of other works on the subject.
Ruelle's construction of the ergodic decomposition was inspired by earlier

considerations of states of classical statistical mechanics which provide an

intuitive explanation for the structure of the orthogonal measure [Rue 4].
Envisage for simplicity a C*-algebra % generated by one element A and its

translates r.,(A), x c- R', under the group R'. Physically, one could interpret
this as describing a system with one observable A, e.g., the number ofparticles
at the origin, and -rJA) corresponds to the observable at the point x. Now
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one can associate with A and each subsystem A - R3
a macroscopic ob-

servable

AA -

I f dx -r,,(A)
JAI A

e.g., AA would correspond to the particle density in A. The distribution of
values of these macroscopic observables in a state w is then dictated by the
set of moments (o((AA)n). But if w is R'-invariant, i.e., if the system is homo-

geneous in space, then the size independent distribution is determined by the
moments for infinite A, i.e., by

I
lim (9((AA)n)  liM

in fA dx, - - - dx,, n.(A)Uco(X2 - x,)n,,,,(A) ...

A-x A-oc JA n

... Uw(Xn - Xn-,)7r,,(A)Q,,,

(Q,, 7r,,,(A)E. 7r,,(A)E. - - - Ew 7r.(A)K2w).

Thus the value of the orthogonal measure y, corresponding to E., on An

represents the nth moment of the distribution of the values of the macro-

scopic observable. The state w has a precise value for this observable if,
and only ifu(A") = y(A)" and this corresponds exactly to the R'-ergodicity
of w. Thus this model motivates the characterization of pure thermodynamic
phases by ergodic states.

The notion of G-abelianness was introduced by Lanford and Ruelle

[Lan 3], who actually defined it by requiring E. 7z,,,(%)E. to be abelian for all

(o c- E,,'. They then proved that this definition coincided with ours for all

(o c- E,', i.e., they established the equivalence of conditions (1) and (2) of

Proposition 4.3.7. It was first mentioned in [Kas 1] that G-abelianness was

sufficient to assure a unique ergodic decomposition for locally compact
abelian G and the general result was given in [Lan 3]. The fact that uniqueness
of barycentric decomposition for all normal invariant states implies G-
abelianness (Theorem 4.3.9) first appeared in the seminar notes of Dang
Ngoc and Guichardet [Dan 1], [[Gui 2]]. The notion of G-centrality was

introduced by Doplicher, Kastler and Stormer [Dop 2] and Theorem 4.3.14
also first appeared in [Dan 1], [[Gui 2]]. The abstract version of the mean

ergodic theorem, Proposition 4.3.4, appeared in [Ala 1] and the algebraic
version, Proposition 4.3.8, in [Kov 1].
Much of the earlier analysis of ergodic states used some form of mean

value over the group G to express the appropriate conditions of asymptotic
abelianness, etc., and this restricted the results to amenable groups. A locally
compact topological group G is defined to be amenable if there exists a state M

over the C*-algebra Cb(G) of bounded continuous functions over G which is
invariant under right translations. Not all groups are amenable but this class
contains the compact groups, locally compact abelian groups, and locally
compact soluble groups. Moreover, each closed subgroup of an amenable

group is amenable and the quotient of an amenable group G by a closed
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normal subgroup H is amenable. Conversely, if GIH and H are amenable then
G is amenable. Noncompact semisimple Lie groups are not amenable nor

is the free group on two generators. There are a host of equivalent conditions
which characterize amenability and, for example, a locally compact group G
is amenable if, and only if, for each compact K - G there is a net of Borel
sets U,, - G with g(U,,) < oo and

lim M(g U.AUjly(U.) = 0
X

for all g c- K, where y is some fixed Haar measure. The net U,, can then be
used to give an explicit form for the invariant mean

M(f) = lim
I f dp(g) f(g).

Y(U.) U"'

This is a generalization of the type of mean used in Example 4.3.5 (see
[[Gre Ifl.
An alternative approach to the theory for general G is to introduce a mean

on a subspace of the bounded functions B(G) over G. Following Godement
[God 1], Doplicher and Kastler [Dop 3] considered the set off C- B(G) such
that the closed convex hulls of their left, and right, translates both contain a

constant. This constant is then unique and defines the mean M(f) off. This
set contains the functions of positive type over G and hence the matrix
elements of unitary representations of G have means. The difficulty with this

approach is that it is not evident whether functions such as

g c G  --+ w([,rg(A), B])

have a mean and this has to be added as a hypothesis.
Besides. G-abelianness and G-centrality there are various stronger notions

of commutation which have been discussed and hierarC'hized in [Dop 2].
Examples 4.3.18 and 4.3.21 are taken from this article.
An aspect of ergodic decomposition theory which we have not covered is

the theory of decomposition of positive linear functionals over *-algebras of
unbounded operators, for example Wightman functionals over a so-called
Borchers algebra. This theory has pathologies with no analogues in the C*-

theory, i.e., there exists infinite-dimensional irreducible *-representations
of abelian *-algebras, and analogously there may exist extremal Wightman
functionals which are not clustering. These problems have been analyzed
by Borchers and Yngvason in a series of papers, [Bor 5], [Yng 1].
A version of Theorem 4.3.19 first occurred in [Kas 1], an elaboration was

given by Stormer [Sto 3], and the complete result was derived by Nagel
[Nag 1].
The fact that a separating property of Q. can replace asymptotic abelian-

ness for the characterization of ergodic states was pointed out by Jadczyk
[Jad 1], who gave a version of Theorems 4.3.20 and 4.3.23.

Example 4.3.24 is based on an idea occurring in [Kas 1]. A discussion and

interpretation of mixing properties in classical ergodic theory can be found
in Arnold and Avez [[Arn Ifl. The theorem ofMazur quoted in the discussion
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of asymptotic abelianness can be found in the book of Yosida [[Yos 1]]. It is
an immediate consequence of the fact that if K is a closed, convex subset of a
Banach space X, and x c- X\K is a point, then there exists a continuous

affine map (p on X such that 9(x) > 0 and 9(K) 9; <- oo, 0].
Example 4.3.25 is taken from [Rob 4].
Example 4.3.26 is due to Ruelle. The first example of a metrizable simplex

whose extreme points are dense was constructed by Poulsen [Pou 1] in

1961, and Lindenstrauss, Olsen and Sternfeld showed in 1976 that this simplex
was unique up to an affine homeomorphism [Lin 1]. These authors prove also
that the Poulsen simplex S is homogeneous in the sense that any affine

homeomorphism between two faces F, and F2 of S can be extended to an

affine automorphism of S. Moreover, they prove that S is universal in the
sense that any metrizable simplex can be realized as a closed face of S. The
Poulsen simplex is in fact characterized by homogeneity and universality
among the metrizable simplices. The other extreme among simplices K are

those for which S(K) is a closed set. These are the probability measures on

compact Hausdorff spaces and are usually called Bauer simplices. (See, for

example [[Alf Ifl.)

Sections 4.3.3 and 4.3.4

Theorem 4.3.27 originated in [Jad 1] and Theorem 4.3.31 comes from [Kas 1].
This latter reference also contains the notion of Gr--abelianness. The ad-
ditivity of the total spectrum under the conditions of Theorem 4.3.33 is much
older. The idea of the proof dates back at least to 1961 [Wig 1].
The condition for a factor to be type III given in Example 4.3.34 is due to

Stormer [Sto 4] but the first result of this type was due to Hugenholtz
[Hug 1].
Theorem 4.3.37 is taken from [Rob 4]. It is essentially due to Ginibre.

The first result of this type occurred in [Kas 1] for locally compact abelian

groups. Theorem 4.3.38 is due to Robinson [Rob 5].
The equivalence of the various characterizations of almost periodic

functions that we have used can be found in [[Dix 2]]. In fact, the theory
generalizes to nonabelian groups if one replaces the characters by co-

efficients of irreducible finite-dimensional unitary representations. In this
context the results on the point spectrum of a G-ergodic state have been

partially generalized by Doplicher and Kastler [Dop 3].
Proposition 4.3.42 can be found in [Rue 1]. This reference also gives an

elaboration of the last statement of the proposition and in particular a

decomposition of w c- 61(E JG) of the form

w(A) f dq (KA) (Tq* X)
G

for some x c- M. The action of 6 on M is in fact transitive, hence this de-

composition is independent of the choice of x c- M. Moreover, if one adopts
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the separability assumptions of the remark following Proposition 4.3.42
one can write (K(A)(T9*X) = A(q - 1 Tg*x), where q is the Borel isomorphism
from E, 9 E% to M,,, g M which determines K. It is then tempting to use

the fact that K commutes with the action of G to write q
- '-c4*x = q

- ',rg* q(b
= T,*C5 for some (b c- E,,. Unfortunately it appears difficult to justify this
conclusion except in the trivial case that G is a finite group.
The result of von Neumann quoted in the remark following Proposition

4.3.42 can be found in [[Dix 1, Appendix IV]].

Section 4.4.1

The theory of spatial decomposition goes back to von Neumann [Neu 3], and
has not undergone essential changes since. We have followed the approaches
in [[Dix 1]], [[Dix 2]], [[Sak 1]], [[Sch Ifl. The classification of standard
measure spaces mentioned after Proposition 4.4.6 was proved by Mackey
in [Mac 1].

Section 4.4.2

Theorem 4.4.9 and the subsequent remark are due to Effros [Eff 3]. The
decomposition at infinity, Theorem 4.4.11, was studied by Ruelle in [Rue 1],
while the weak mixing property in Theorem 4.4.12 was proved by Kastler and
Robinson [Kas 1]. A proof of the metrizability of a second countable locally
compact group can be found in [[Hew 1]], Theorem 8.3.
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Dunford 155 305,310,312,355,356,358,423,
Dye 305 446,448
Dynamical finite 134

flow 159 hyperfinite 137, 142, 150, 151, 305

system 13, 136, 137 infinite 148

system, C*- 136, 137, 09, 142, 310 Krieger 1142, 151

W*- 136, 137, 138, 140, 142,310 purely infinite 148

Dynamics 159, 160 sernifinite 148
state (see state, factor)
type 1 148, 355, 356

type 1,, 148
Effros 465 type 11 148,150
Element (entire) type 111 148,305

analytic 97, 99, 10t, 115, 178-183, type 11,,, 148,150,305
231,265-267,272,293 type 111 134, t48, 149, 150, 15t, 421,

even 121 464

identity (see identity) type 1110 150,151
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type "'A 150, 151 G,,-Abelian 414, 415, 417, 419, 420,
type 111, 150, 151 428,433,434,436,455,463

Fell 459 G-Central 381, 387, 392-398, 403, 462
Feller 303 Gallavotti and Pulvirenti 311
Field, relativistic 3, 461 GArding 9
Fock 8 Gelfand 3, 7, 16, 152, 153
Form isomorphism 64

bilinear 93,94,102 transform(ation) 63, 250

sesquilinear 214, 270 Generator, (infinitesimal) 162, 165,
Fourier analysis 25, 94, 241, 243, 244 172-206,233-244,265-279,288,

transform(ation) 244, 250, 253, 257, 290,300,304
260,417 strong 168

Friederichs 9 weak 168
extension 104 Generators, neighboring 202

Fujii, Furuta, and Matsumoto 313 Gibbs 12

Fukamuja 152 Ginibre 464

Misonou, and Takeda 460 Glimm 152
Full family of states 220, 221, 222, 305 Glimm and Jaffe 304
Function Godement 463

affine 66, 319, 321, 325, 327, 330, Gram-Schmidt orthogonalization.
336-339,349,364 procedure 442

almost periodic 400, 401, 430, 435, Graph (of an operator) 170, 186, 187,
436,464 188,207

analytic 91 Graph
Borel 5, 295 convergence 186, 187
concave 326,328,336 Hilbert Space 278
convex 321,325,326,327,331,332, limit 187, 188,281

333,353,355,377 Grothendieck 305

countably additive set 321 Group
lower semi-continuous 377 amenable 142, 401, 462, 463
of positive type 463 Co- 164, 169, 174, 202, 204, 205,
subadditive 65, 329, 336, 337 206,233,245,248,305
superadditive 336, 337 CO*- 183, 202, 204, 205, 206, 233,
trignometric 430 245,247,290
upper semicontinuous 326, 327, 328, character 249, 250, 407

331,332,338 circle 139
Functional analysis 152, 267 countable 142, 419

Hermitian 216, 217, 218, 222, 223, compact abelian. 430
305,368 cyclic 413, 419

linear 42 discrete 142, 437, 455
normal 76, 146, 384 dual 137, 139, 165, 249, 407, 412,
positive (linear) 48, 51, 76, 145, 339, 428,435,455

340,346,360,368,369,370,418, Euclidean 404
425 finite (abelian) 141, 465

sesquilinear 57 free
... on two generators 463

tangent 174, 175, 176, 182, 234 locally compact 136, 463, 465
Wightman. 463 locally compact abelian. 139, 249,

Functionals 254, 310, 400, 401, 407, 408, 414,
disjoint positive linear 370 417,419-424,429,431-436,455,
ordering of 52 462-464

Furuta 313 locally compact soluble 463
modular automorphism (see modular

automorphism)
G-Abelian 381, 385, 386, 392-395, 397, noncompact semisimple Lie 463

403,405,414,415,418,419,427, one-parameter 12, 13, 96, 97, 159,
433,434,462- 160,209-299
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Group (cont.) Borel 295, 435, 465

perturbed 247, 430 Jordan 211, 213, (358)
Poincar6 404 order 211, 20, 229, (358)
quotient 424-430, 437
second countable 455, 456, 465
stabilizer 413

Jacobson and Rickart 305
symmetry 209, 404, 423, 424, 429

Jadczyk 463
unitary 97, 189, 250, 253, 257, 261, Jaffe 304

264,291,301,302,42t Jordan 7
Group of translations 25t

Jorgensen 304
Guichardet 152, 462

Haag 9, 11, 13, 14, t56 Kadison 78, t52, 154, t55, 305, 306,
Haagerup 155, 305, 31 t 309,31t
Hardy, Littlewood. and Polya 460 and Ringrose 312

Heisenberg 3 Kaplansky t52, 153, 305, 307

Herman 304, 306, 3 t 1 Kastler t4, 461-464

Hilbert-Schmidt norm 282 and Robinson 461, 465

Hilbert's sixth problem t6 Robinson and Ruelle 459

Hille and Phillips 303 Kato 152, 304

Hugenholtz 13, 464 Kelley 152
Kernel 43, 79, 15 t
Kishimoto 156,304,306,3tl

Ideal KMS condition t 3, 284

Jordan 8 K6the 154

left 23, 40, 146 Kubo t 3

right 23, 39 Kurtz 304

two-sided 23, 24, 78, 133, 310, 352,
427,454

Identity 7, 21, 23, 25, et seq. Lanford 152
approximate 23, 39, 40, 41, 49, 56, and Ruelle 462

62,78,121,153,253,353 Laplace transform 166, 169, 276
Ikunishi and Nakagami 308 Lattice 323, 324, 325, (360), (361)
IndecomPosability 14

De Leeuw 303 304 458 459
Index set 120, 129 , , ,

Lindenstrauss, Olsen and
Inequality Sternfeld 464
Cauchy-Schwarz 49, 50, 57, 78, 131, Lumer and Phillips 303

132,173,234,422
generalized Schwarz 213, 232
Kadison's 305

product 20 MacGibbon 458

triangle 20, 132 Mackey 16, 465
Invariance condition 230, 232, 375 Manifold, differentiable 159
Involution 19 Map
Irreducibility affine 210, 216, 218, 221, 222, 369,

algebraic 154 387,464
topological 47 Borel 294, 295, 298, 299, 456

Isometry (of a C*-algebra) 2tt contractive 34t

Isometry, partial 38, 110, 05, 292, faithful 364, 365, 366

302,371,396 invertible 219

Isomorphism 43, 44, 78, 228, 341, 348, positive 209, 2tt, 215, 219, 229, 232,
355,369,385,390,405,425,433, 305,341
434,444,445,452 quotient 295, 424, 456

anti- 21t restriction 357, 358, 460
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Martin 13 Modular
Matsumoto 313 automorphism (group) 86, 96, 97,
McIntosh 307 102, 147, 149, 230, 278, 279, 281,
Mean 379, 388, 400, 462 285

invariant 280, 302, 313, 400, 414, condition 96

415,421,422,429,435,436,455, conjugation (involution) 89, 94, 102,
457,463 106,226,227,278,391,397

Measure function 137
Baire 213, 322, 375, 433, 440, 450 operator 89, 91, 94, 96, 102, 103,
barycentric 318 226,227,229,278,283,285,391,
Borel 97, 103, 321, 322, 340, 341, 403

350,357,370,452 theory 83
of bounded variation 97 Mokobodski 458
central 370-372, 460, 461 Momentum 4
Dirac (or point) 319, 322, 323, 343 Morphism 42, 213, 224, 227, 228, 34 1,
ergodic 14, 433 342,390,450,451
Haar 137, 249, 289, 428, 435, 437, anti- 211, 213, 224, 227, 228
438,455,463 Jordan 209,211

Lebesgue 380 Murray 3, 11, 16, 154
maximal 318, 325-327, 330-338,

343,355,356,359,361,363,377,
386,424

maximal orthogonal 339, 359, 361,
378,395,440,460 Nagel 463

orthogonal 320, 339-462 Nagumo 303
probability 13, 83, 318, 319, 335, Nagy 152, 304

359,387,424,434,458 Naimark 3, 7, 16, 152, 153, 305
projection-valued 5, 250, 261, 407, Nakagami 308
408,421 Nelson 304

Radon 321, 322, 326, 347, 356, 425 Net 39, 119, 123, 323, 326, 336, 337,
regular 321, 322, 332, 340, 341 342,379,383,386,388,392,396,
Riesz 350 403,415,463
a-finite 75 decreasing 118, 119
signed 323 increasing 76, 78, 79, 130, 146, 155,
simplicial 343, 364, 365 348
standard 440-449, 452, 455, 465 Net of subalgebras 118, 121, 123
subcentral 370-372, 390 Neumann series 26, 171, 241, 268, 274
unique maximal 318, 334, 335, 337, Nondegenerate 72

338,363,366,377,382,385,390, Norm 20
414,419,432,433,458 Normal subgroup 424, 428, 429, 440,

Mechanics 463
classical 159, 287, 288, 289, 311
matrix 3

quantum 3, 5, 6, 16, 121, 154, 159
statistical 6, 10, 13, 16, 84, 124, 129,
273,306,311,461 Observable 5, 6, 7, 12, 160, 209, 370,

wave 3 461 462
Minkowski space 369

,

algebra 137
Misonou 460 Observables, algebra of 12, 122, 141,
Mixing 14, 393 159

strong 401-403 Olesen 309
strong ...

of all orders 402, 403 Olsen 464
weak 423,455,465 Operator

Miyadera 303 See also element
Modulus 34, 38 adjoint 19
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Operator (cont.) Paige 7
affiliated with an algebra 87, 90, 287 Parseval's equality 245
antilinear 86, 88 Partial order 325

antiunitary 84, 87, 89, 210, 226, 248 Pauli matrices 337
bounded 20, -160, 173, 197, 203, 205, Pedersen 152, 305, 309

301,348,378,-409,415,418 Period, approximate (or c-) 430
closable 88, 177, 187, 235, 267, 271, Perturbation 160, 171, 184, 193, 2029

272,276 2469 290
closed 87, 919 1709 171, 1779 1979 bounded 194, 202, 204

235,276,348 relatively bounded 193, 207

compact 21, 729 1299 1309 131, 210 Perturbation series (expansion) 195,
conjugation 84 196,311
conservative 174, 265 unbounded 196
creation 252, 257 Phase 10

decomposable 443, 444, 445, 4489 pure 374, 462
453 space 288

diagonalizable 443-448, 45tg 455 transition 10

dissipative 174-177, 193, 196, 1979 Phillips 303

2345 235, 290, 303, 3049 306 Planck's constant 4

essentially self-adjoint 272, 2789 289 Polarization identity 38, 675 t82
finite-rank 210 Poulsen 464
Hamiltonian 4, 12, 159, 1639 273 Powers 156, 306

Laplacian 188 Powers and Sakai 311
lowering 252 Predual 69, 75, 83, 2169 2335 2809 294,
modular (see modular operator) 2995446
negative part of an 34 Projection
normal 292 final 110
positive 57, 769 89, 1049 2735 351 finite 147

positive part of an 34 initial 110

raising 252 infinite 147
self-adjoint 5, 69 899 104, 153, 1829 Projections, equivalent 147

184, 240, 2695 2709 271, 2739 2779 Pseudo supported 318, 322, 3319 3679
280,286,291 3725373,377

shift 252, 257 Pulvirenti 311

skew-adjoint 292

symmetric 104, 182, 238, 240, 2469
2699 272, 278

trace-class 6. 689 76, 129 Radius of analyticity 178
unbounded 5, 1539 463 Range, numerical 292, 302, 312
unitary 8, 47, 57, 1599 2109 225, 226, Ray 159, 210

227, 2409 2479 2485 2699 293, 295, Reed and Simon 152, 304
374,442 Regularization 308

Weyl 8, 11 Reflexive Banach space 206
Operators, measurable family of 443, Representation 42

449 associated with a state 57
Orbit 141, 142, 425, 429, 4309 434-438 covariant 136, 1379 138
Order cyclic 14, 45, 569 57, 609 3539 3589

anti-symmetric 39, 325 375
reflexive 39, 325 factor (see factor)
relation 36, 39, 3185 325, 326, 327, faithful 8, 149 43, 449 799 133, 138,

334, 3359 3369 3469 348, 349, 359, 1399 2205 237, 238, 2729 3105 352
424,458,459 Fock-Cook 8, 11

structure 78 group 155,368
transitive 39, 325 irreducible 8, 47, 575 805 151, 211,

Orthogonality relation 121 2249 310, 352, 368, 393, 394, 4489
Ota 306 463
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isometric 8 Semigroups, convergence of 184-192
non-degenerate 45, 80, 446, 447, 448 Seminorm. 65, 66, 163, 168, 174
normal 79 C*- 138

Schr6dinger 6, 8, 9 r(X,F)- 204

space 43 Separability condition S, 352, 353,
sub- 44, 81 367,372,377,378,426,427,428,
uniformly bounded 254, 256 432,436,440,447,449,450,454,
unitary (group) 3, 5, 250, 251, 379, 455,460

383,400,403,407,408,409,412, Separating
415,416,419,421,422,426,429, subset 85
430,463,464 vector 80, 86, 88, 109, 226-230,

Representations 277-289,311-444
direct integral of 449, 450 Set
direct sum of 81, 319, 339 analytic 295, 357, 458, 460
disjoint 370 Baire (see Baire set)
equivalent 48, 370 Borel (see Borel set)
inequivalent 9 convex 53,59,66,317-359
measurable family of 447 directed 39, 46, 121, 123, 324, 331,

Representative 43 345
Resolvent 25, 27, 91, 165, 168, 169, F,,- 322, 357, 372, 373

170,184,274,306,311 G,5- 322, 331, 332, 333, 338, 357, 458
convergence 184, 186, 188 metrizable 132, 133, 318, 331, 333,

Rickart 305 339,458
Rieffel 155 M-measurable 356, 357, 452, 454
Riemann approximant (sum) 167,243 y-negligible 356, 357, 440

integral 33, 215, 243 pseudo supporting 322, 331
Riesz and Nagy 152, 304 resolvent 25, 28
Roberts 304, 311, 312 stable 331, 342
Robertson 305 supporting 322, 357, 426
Robinson 304-307, 311, 461, 464 Sherman 460
Root mean square deviation 349 Simon 152, 304
Rudin 152 Simplex 334, 335, 367, 368, 385, 386,
Ruelle 9, 459-465 387,405,406,458,464
Russo and Dye 305 Bauer 464

Poulsen 464
Skau 458,460
Sommerfeld 3

Sakai 76, 152, 155,306,307,309,311, Space
312,459,460 analytic Borel 295

Saturation problem 304 configuration 120
Schr8dinger 3, 6 conjugate 70, 238

equation 4 direct integral 439-442, 449
Schultz 8 direct sum 439
Schur's lemma 153 quotient 23
Schwartz 152 polish 295,440,456

reflection principle 275 measurable family of 441, 442, 444,
Schwinger 13 447,449
Sector of an operator 292 Spectral
Segal 7, 8, 9, 16, 152, 153, 461 concentration 253
Semigroup 161, 164, 165, 166, 167, projector (projection) 58, 71, 87,

168,203 104,132,135
Co- 164, 169-178, 187-194,202,235, radius 25, 26, 29, 31, 37, 44, 59, 241,

303,304 312
CO*- 164, 170, 171, 183, 193-196, subspace 251, 252, 257, 259, 410
202,205,303,304 theory 7, 249, 281, 298, 308

dual 303 values 252



504 Index

Spectrum 25, 26, 28, 32, 35, 51, 61, 62, Statistics

142,149,165,220,240,245,248, Bose 121

251,252,256,257,263,294,306, Fermi 121,156
309,407,419,420,434,464 Sternfeld 464

of an abelian C*-algebra 61 Stinespring 305
Arveson 310 Stone 5, 16
F 310 Stone-von Neumann uniqueness
point 407, 412-415, 419-421, 424, theorem 6, 8, 9

436,455,457,464 Stormer 8, 16, 305, 462, 464
semi-bounded 261 Subalgebra 19

Spin system 311 central 124

Square root 32, 34, 36, 152, 235, 236, fixed point 137, 149
306 Subspace

Stability 13, 160, 184, 202 cyclic 46
Standard form 83, 155, 226, 228, 305 invariant 44
State 42, 48, 51, 153, 344, 345, 346, measurable 441

350,352,353,358,361,363,439, stable 44
452 Summable central sequence 309

almost periodic 414, 424, 430-433 Support of a measure 318, 322, 376,
centrally ergodic 395, 396 377,427,432,435,436,437,453
equilibrium 11, 12,268 Support, finite 322-330, 335, 337, 361,
(G-) ergodic 374, 377, 378, 393-398, 363,371,377,432

401, 405, 407, 408, 410, 413, 418, Symmetry 136, 209, 374, 423, 424

420,423,424,428,440,452, broken 374,413,423
459-464 Wigner 210, 225, 226, 248, 305, 307

extremal G-invariant 318
factor 81, 128, 317, 356, 358, 372,
401,402,403,452,460 Takeda 460

faithful 13, 83, 85, 96, 299, 403 Takesaki 13, 83, 155, 3 10

ground 9, 273, 277, 289, 309 and Tomiyama 459

(G-) invariant 13, 1t7, 240, 268, 272, Taylor series 34

311,374-387,390,393,398,400, Tensor product 142, 143, 144, 145
402-407,414,415,423,427,431, Theorem, Alaoglu 98

432,434,459,46t,462 Alaoglu-Bourbaki 53, 68, 154, 1635
KMS- 285 168,176,205
locally normal 118, 124, 125, 1295 bicommutant 72, 445

133,219,317,352,356,373,460 Bochner 103
mixed 6 Borchers-Arveson 261, 263, 269,
normal 7. 9, 75, 76, 78, 79, 80, 83, 309,421

96, 129, 131, 210, 219, 2205 238, capacity 460
2995355,370,371,383,390,398, Careth6odory-Minkowski 321
452,4605462 Carlson's 91, 155

periodic 414 Cartier-Fell-Meyer 460
physical 7, 122 closed graph 207, 235

primary 81 Connes' Radon-Nikodym 147

pure 6, 53, 57, 58, 62, 153, 343, 350, Connes-Takesaki duality 149
351,3525356, 358,359,367,368, derivation 262
372,405,4525461 Effros' 450

regular 8, 9 Fubini's 257, 258
trace 84, 87, 311, 421 Hahn-Banach 59, 60, 615 65, 66, 75,
vector 49, 131, 356, 395 101, 154, 174, 2005 218, 221, 325,

States 328,329,339,360,403
disjoint 9, 3705 395 Hille-Yosida 171, 173, 174, 178, 181
neighbouring 219 Kadison's (transitivity) 154, 402
orthogonal 339, 340 Kaplansky density 74, 1035 122, 123,
set of 7, 53, 595 61 154,218,232,236,347
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Kovacs-Sziics mean ergodic 383 a-weak 67,70,74,78,279,445
Krein-Milman 53, 59, 61, 153, 217 uniform (norm) 20, 25, 53, 70, 108,
Krein-Smulian 98, 155, 341 127,131,163,169,194,289,355
Lebesgue dominated weak 67,70,74,108,295,356

convergence 100, 185, 186, 412, strong operator 127, 309

428,437 weak* (a(%*, 91)-) 14, 53, 68, 13 1,
Liouville's 275 132, 176, 181, 206, 317, 329, 335,
Lumer-Phillips 177 337,346,355,377,406
Mackey's 98 weak operator 3, 341

Mackey-Arens 223 Trace 145, 280, 281, 287
Markov-Kakutani fixed point 415 norm 68
Mazur's 403, 464 faithful 148, 149
mean ergodic 378, 383, 386, 391, normal 148, 149

394,398-400,411,415,421,422, semifinite 148, 149
462 Translations, space 13

monotone convergence 327 Trotter 304

Pontryagin's duality 139 product formula 304

Radon-Nikodym 213 Twist 206, 302
Riesz representation 68, 70, 83,213,
239,322,350

Sakai's 76, 233 Urysohn's lemma 332
spectral 5

spectral mapping 31
SNAG (Stone-Naimark-Ambrose-
Godement) 250 van Daele 155

Stone's 251 van der Waerden 16

Stone-von Neumann uniqueness 6 Vaught 152

Stone-Weierstrass 24, 63, 64, 325, Vector

346,347,376,387 almost periodic 408, 414, 431

Tauberian 250, 253 cyclic (see cyclic vector)
Tomita's 341, 450, 452 separating (see separating vector)
Tomita-Takesaki 94, 155, 311 von Neumann 3, 5, 11, 16, 154, 465

Trotter-Kato 304
uniform boundedness 100
von Neumann density 72,73,74, Weight 145, 146

154 dual 311
Thermodynamic limit 10, 11, 13 faithful 146, 147, 149
Time development 160 normal 146, 147, 149
Tomita 13, 83, 459, 460 semifinite 146, 1475 148, 149
Tomita-Takesaki theory 135 835 84, Weyl 6

91,146 criterion 253
Tomiyama 459 Wightman 9, 16,463

property E of 150 Wigner 7
Topology See also symmetry, Wigner

discrete 435 Wils 460
locally convex 59,65597,163 Winnink 13
locally uniform 132503 Woronowicz t55, 312
Mackey (-r(X,F)-) 98, 155, t63, t64,

t67,t69,t74,t84
metric 20, 02, 133

Yosida 152 464303
quotient 295 , ,

Yngvason 463
strong 66, 695 70, 745 tO8, 295

a-strong 66, 705 74

strong* 69, 70, 74, 108, 295

u-strong* 69, 70, 74 Zorn's lemma 46, 775 3265 332, 44t,
u(X,F)- 97, 98, 99, 1635 166, 17t 458




